xref: /openbmc/linux/drivers/mtd/nand/raw/fsmc_nand.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * ST Microelectronics
3  * Flexible Static Memory Controller (FSMC)
4  * Driver for NAND portions
5  *
6  * Copyright © 2010 ST Microelectronics
7  * Vipin Kumar <vipin.kumar@st.com>
8  * Ashish Priyadarshi
9  *
10  * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
11  *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
12  *  Copyright © 2009 Alessandro Rubini
13  *
14  * This file is licensed under the terms of the GNU General Public
15  * License version 2. This program is licensed "as is" without any
16  * warranty of any kind, whether express or implied.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/dmaengine.h>
22 #include <linux/dma-direction.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/resource.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/nand_ecc.h>
33 #include <linux/platform_device.h>
34 #include <linux/of.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/amba/bus.h>
39 #include <mtd/mtd-abi.h>
40 
41 /* fsmc controller registers for NOR flash */
42 #define CTRL			0x0
43 	/* ctrl register definitions */
44 	#define BANK_ENABLE		(1 << 0)
45 	#define MUXED			(1 << 1)
46 	#define NOR_DEV			(2 << 2)
47 	#define WIDTH_8			(0 << 4)
48 	#define WIDTH_16		(1 << 4)
49 	#define RSTPWRDWN		(1 << 6)
50 	#define WPROT			(1 << 7)
51 	#define WRT_ENABLE		(1 << 12)
52 	#define WAIT_ENB		(1 << 13)
53 
54 #define CTRL_TIM		0x4
55 	/* ctrl_tim register definitions */
56 
57 #define FSMC_NOR_BANK_SZ	0x8
58 #define FSMC_NOR_REG_SIZE	0x40
59 
60 #define FSMC_NOR_REG(base, bank, reg)		(base + \
61 						FSMC_NOR_BANK_SZ * (bank) + \
62 						reg)
63 
64 /* fsmc controller registers for NAND flash */
65 #define FSMC_PC			0x00
66 	/* pc register definitions */
67 	#define FSMC_RESET		(1 << 0)
68 	#define FSMC_WAITON		(1 << 1)
69 	#define FSMC_ENABLE		(1 << 2)
70 	#define FSMC_DEVTYPE_NAND	(1 << 3)
71 	#define FSMC_DEVWID_8		(0 << 4)
72 	#define FSMC_DEVWID_16		(1 << 4)
73 	#define FSMC_ECCEN		(1 << 6)
74 	#define FSMC_ECCPLEN_512	(0 << 7)
75 	#define FSMC_ECCPLEN_256	(1 << 7)
76 	#define FSMC_TCLR_1		(1)
77 	#define FSMC_TCLR_SHIFT		(9)
78 	#define FSMC_TCLR_MASK		(0xF)
79 	#define FSMC_TAR_1		(1)
80 	#define FSMC_TAR_SHIFT		(13)
81 	#define FSMC_TAR_MASK		(0xF)
82 #define STS			0x04
83 	/* sts register definitions */
84 	#define FSMC_CODE_RDY		(1 << 15)
85 #define COMM			0x08
86 	/* comm register definitions */
87 	#define FSMC_TSET_0		0
88 	#define FSMC_TSET_SHIFT		0
89 	#define FSMC_TSET_MASK		0xFF
90 	#define FSMC_TWAIT_6		6
91 	#define FSMC_TWAIT_SHIFT	8
92 	#define FSMC_TWAIT_MASK		0xFF
93 	#define FSMC_THOLD_4		4
94 	#define FSMC_THOLD_SHIFT	16
95 	#define FSMC_THOLD_MASK		0xFF
96 	#define FSMC_THIZ_1		1
97 	#define FSMC_THIZ_SHIFT		24
98 	#define FSMC_THIZ_MASK		0xFF
99 #define ATTRIB			0x0C
100 #define IOATA			0x10
101 #define ECC1			0x14
102 #define ECC2			0x18
103 #define ECC3			0x1C
104 #define FSMC_NAND_BANK_SZ	0x20
105 
106 #define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
107 
108 struct fsmc_nand_timings {
109 	uint8_t tclr;
110 	uint8_t tar;
111 	uint8_t thiz;
112 	uint8_t thold;
113 	uint8_t twait;
114 	uint8_t tset;
115 };
116 
117 enum access_mode {
118 	USE_DMA_ACCESS = 1,
119 	USE_WORD_ACCESS,
120 };
121 
122 /**
123  * struct fsmc_nand_data - structure for FSMC NAND device state
124  *
125  * @pid:		Part ID on the AMBA PrimeCell format
126  * @mtd:		MTD info for a NAND flash.
127  * @nand:		Chip related info for a NAND flash.
128  * @partitions:		Partition info for a NAND Flash.
129  * @nr_partitions:	Total number of partition of a NAND flash.
130  *
131  * @bank:		Bank number for probed device.
132  * @clk:		Clock structure for FSMC.
133  *
134  * @read_dma_chan:	DMA channel for read access
135  * @write_dma_chan:	DMA channel for write access to NAND
136  * @dma_access_complete: Completion structure
137  *
138  * @data_pa:		NAND Physical port for Data.
139  * @data_va:		NAND port for Data.
140  * @cmd_va:		NAND port for Command.
141  * @addr_va:		NAND port for Address.
142  * @regs_va:		Registers base address for a given bank.
143  */
144 struct fsmc_nand_data {
145 	u32			pid;
146 	struct nand_chip	nand;
147 
148 	unsigned int		bank;
149 	struct device		*dev;
150 	enum access_mode	mode;
151 	struct clk		*clk;
152 
153 	/* DMA related objects */
154 	struct dma_chan		*read_dma_chan;
155 	struct dma_chan		*write_dma_chan;
156 	struct completion	dma_access_complete;
157 
158 	struct fsmc_nand_timings *dev_timings;
159 
160 	dma_addr_t		data_pa;
161 	void __iomem		*data_va;
162 	void __iomem		*cmd_va;
163 	void __iomem		*addr_va;
164 	void __iomem		*regs_va;
165 };
166 
167 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
168 				   struct mtd_oob_region *oobregion)
169 {
170 	struct nand_chip *chip = mtd_to_nand(mtd);
171 
172 	if (section >= chip->ecc.steps)
173 		return -ERANGE;
174 
175 	oobregion->offset = (section * 16) + 2;
176 	oobregion->length = 3;
177 
178 	return 0;
179 }
180 
181 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
182 				    struct mtd_oob_region *oobregion)
183 {
184 	struct nand_chip *chip = mtd_to_nand(mtd);
185 
186 	if (section >= chip->ecc.steps)
187 		return -ERANGE;
188 
189 	oobregion->offset = (section * 16) + 8;
190 
191 	if (section < chip->ecc.steps - 1)
192 		oobregion->length = 8;
193 	else
194 		oobregion->length = mtd->oobsize - oobregion->offset;
195 
196 	return 0;
197 }
198 
199 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
200 	.ecc = fsmc_ecc1_ooblayout_ecc,
201 	.free = fsmc_ecc1_ooblayout_free,
202 };
203 
204 /*
205  * ECC placement definitions in oobfree type format.
206  * There are 13 bytes of ecc for every 512 byte block and it has to be read
207  * consecutively and immediately after the 512 byte data block for hardware to
208  * generate the error bit offsets in 512 byte data.
209  */
210 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
211 				   struct mtd_oob_region *oobregion)
212 {
213 	struct nand_chip *chip = mtd_to_nand(mtd);
214 
215 	if (section >= chip->ecc.steps)
216 		return -ERANGE;
217 
218 	oobregion->length = chip->ecc.bytes;
219 
220 	if (!section && mtd->writesize <= 512)
221 		oobregion->offset = 0;
222 	else
223 		oobregion->offset = (section * 16) + 2;
224 
225 	return 0;
226 }
227 
228 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
229 				    struct mtd_oob_region *oobregion)
230 {
231 	struct nand_chip *chip = mtd_to_nand(mtd);
232 
233 	if (section >= chip->ecc.steps)
234 		return -ERANGE;
235 
236 	oobregion->offset = (section * 16) + 15;
237 
238 	if (section < chip->ecc.steps - 1)
239 		oobregion->length = 3;
240 	else
241 		oobregion->length = mtd->oobsize - oobregion->offset;
242 
243 	return 0;
244 }
245 
246 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
247 	.ecc = fsmc_ecc4_ooblayout_ecc,
248 	.free = fsmc_ecc4_ooblayout_free,
249 };
250 
251 static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
252 {
253 	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
254 }
255 
256 /*
257  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
258  *
259  * This routine initializes timing parameters related to NAND memory access in
260  * FSMC registers
261  */
262 static void fsmc_nand_setup(struct fsmc_nand_data *host,
263 			    struct fsmc_nand_timings *tims)
264 {
265 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
266 	uint32_t tclr, tar, thiz, thold, twait, tset;
267 
268 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
269 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
270 	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
271 	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
272 	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
273 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
274 
275 	if (host->nand.options & NAND_BUSWIDTH_16)
276 		writel_relaxed(value | FSMC_DEVWID_16,
277 			       host->regs_va + FSMC_PC);
278 	else
279 		writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + FSMC_PC);
280 
281 	writel_relaxed(readl(host->regs_va + FSMC_PC) | tclr | tar,
282 		       host->regs_va + FSMC_PC);
283 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
284 	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
285 }
286 
287 static int fsmc_calc_timings(struct fsmc_nand_data *host,
288 			     const struct nand_sdr_timings *sdrt,
289 			     struct fsmc_nand_timings *tims)
290 {
291 	unsigned long hclk = clk_get_rate(host->clk);
292 	unsigned long hclkn = NSEC_PER_SEC / hclk;
293 	uint32_t thiz, thold, twait, tset;
294 
295 	if (sdrt->tRC_min < 30000)
296 		return -EOPNOTSUPP;
297 
298 	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
299 	if (tims->tar > FSMC_TAR_MASK)
300 		tims->tar = FSMC_TAR_MASK;
301 	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
302 	if (tims->tclr > FSMC_TCLR_MASK)
303 		tims->tclr = FSMC_TCLR_MASK;
304 
305 	thiz = sdrt->tCS_min - sdrt->tWP_min;
306 	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
307 
308 	thold = sdrt->tDH_min;
309 	if (thold < sdrt->tCH_min)
310 		thold = sdrt->tCH_min;
311 	if (thold < sdrt->tCLH_min)
312 		thold = sdrt->tCLH_min;
313 	if (thold < sdrt->tWH_min)
314 		thold = sdrt->tWH_min;
315 	if (thold < sdrt->tALH_min)
316 		thold = sdrt->tALH_min;
317 	if (thold < sdrt->tREH_min)
318 		thold = sdrt->tREH_min;
319 	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
320 	if (tims->thold == 0)
321 		tims->thold = 1;
322 	else if (tims->thold > FSMC_THOLD_MASK)
323 		tims->thold = FSMC_THOLD_MASK;
324 
325 	twait = max(sdrt->tRP_min, sdrt->tWP_min);
326 	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
327 	if (tims->twait == 0)
328 		tims->twait = 1;
329 	else if (tims->twait > FSMC_TWAIT_MASK)
330 		tims->twait = FSMC_TWAIT_MASK;
331 
332 	tset = max(sdrt->tCS_min - sdrt->tWP_min,
333 		   sdrt->tCEA_max - sdrt->tREA_max);
334 	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
335 	if (tims->tset == 0)
336 		tims->tset = 1;
337 	else if (tims->tset > FSMC_TSET_MASK)
338 		tims->tset = FSMC_TSET_MASK;
339 
340 	return 0;
341 }
342 
343 static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
344 				     const struct nand_data_interface *conf)
345 {
346 	struct fsmc_nand_data *host = nand_get_controller_data(nand);
347 	struct fsmc_nand_timings tims;
348 	const struct nand_sdr_timings *sdrt;
349 	int ret;
350 
351 	sdrt = nand_get_sdr_timings(conf);
352 	if (IS_ERR(sdrt))
353 		return PTR_ERR(sdrt);
354 
355 	ret = fsmc_calc_timings(host, sdrt, &tims);
356 	if (ret)
357 		return ret;
358 
359 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
360 		return 0;
361 
362 	fsmc_nand_setup(host, &tims);
363 
364 	return 0;
365 }
366 
367 /*
368  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
369  */
370 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
371 {
372 	struct fsmc_nand_data *host = mtd_to_fsmc(nand_to_mtd(chip));
373 
374 	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
375 		       host->regs_va + FSMC_PC);
376 	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
377 		       host->regs_va + FSMC_PC);
378 	writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
379 		       host->regs_va + FSMC_PC);
380 }
381 
382 /*
383  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
384  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
385  * max of 8-bits)
386  */
387 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const uint8_t *data,
388 				uint8_t *ecc)
389 {
390 	struct fsmc_nand_data *host = mtd_to_fsmc(nand_to_mtd(chip));
391 	uint32_t ecc_tmp;
392 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
393 
394 	do {
395 		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
396 			break;
397 		else
398 			cond_resched();
399 	} while (!time_after_eq(jiffies, deadline));
400 
401 	if (time_after_eq(jiffies, deadline)) {
402 		dev_err(host->dev, "calculate ecc timed out\n");
403 		return -ETIMEDOUT;
404 	}
405 
406 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
407 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
408 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
409 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
410 	ecc[3] = (uint8_t) (ecc_tmp >> 24);
411 
412 	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
413 	ecc[4] = (uint8_t) (ecc_tmp >> 0);
414 	ecc[5] = (uint8_t) (ecc_tmp >> 8);
415 	ecc[6] = (uint8_t) (ecc_tmp >> 16);
416 	ecc[7] = (uint8_t) (ecc_tmp >> 24);
417 
418 	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
419 	ecc[8] = (uint8_t) (ecc_tmp >> 0);
420 	ecc[9] = (uint8_t) (ecc_tmp >> 8);
421 	ecc[10] = (uint8_t) (ecc_tmp >> 16);
422 	ecc[11] = (uint8_t) (ecc_tmp >> 24);
423 
424 	ecc_tmp = readl_relaxed(host->regs_va + STS);
425 	ecc[12] = (uint8_t) (ecc_tmp >> 16);
426 
427 	return 0;
428 }
429 
430 /*
431  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
432  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
433  * max of 1-bit)
434  */
435 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const uint8_t *data,
436 				uint8_t *ecc)
437 {
438 	struct fsmc_nand_data *host = mtd_to_fsmc(nand_to_mtd(chip));
439 	uint32_t ecc_tmp;
440 
441 	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
442 	ecc[0] = (uint8_t) (ecc_tmp >> 0);
443 	ecc[1] = (uint8_t) (ecc_tmp >> 8);
444 	ecc[2] = (uint8_t) (ecc_tmp >> 16);
445 
446 	return 0;
447 }
448 
449 /* Count the number of 0's in buff upto a max of max_bits */
450 static int count_written_bits(uint8_t *buff, int size, int max_bits)
451 {
452 	int k, written_bits = 0;
453 
454 	for (k = 0; k < size; k++) {
455 		written_bits += hweight8(~buff[k]);
456 		if (written_bits > max_bits)
457 			break;
458 	}
459 
460 	return written_bits;
461 }
462 
463 static void dma_complete(void *param)
464 {
465 	struct fsmc_nand_data *host = param;
466 
467 	complete(&host->dma_access_complete);
468 }
469 
470 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
471 		enum dma_data_direction direction)
472 {
473 	struct dma_chan *chan;
474 	struct dma_device *dma_dev;
475 	struct dma_async_tx_descriptor *tx;
476 	dma_addr_t dma_dst, dma_src, dma_addr;
477 	dma_cookie_t cookie;
478 	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
479 	int ret;
480 	unsigned long time_left;
481 
482 	if (direction == DMA_TO_DEVICE)
483 		chan = host->write_dma_chan;
484 	else if (direction == DMA_FROM_DEVICE)
485 		chan = host->read_dma_chan;
486 	else
487 		return -EINVAL;
488 
489 	dma_dev = chan->device;
490 	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
491 
492 	if (direction == DMA_TO_DEVICE) {
493 		dma_src = dma_addr;
494 		dma_dst = host->data_pa;
495 	} else {
496 		dma_src = host->data_pa;
497 		dma_dst = dma_addr;
498 	}
499 
500 	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
501 			len, flags);
502 	if (!tx) {
503 		dev_err(host->dev, "device_prep_dma_memcpy error\n");
504 		ret = -EIO;
505 		goto unmap_dma;
506 	}
507 
508 	tx->callback = dma_complete;
509 	tx->callback_param = host;
510 	cookie = tx->tx_submit(tx);
511 
512 	ret = dma_submit_error(cookie);
513 	if (ret) {
514 		dev_err(host->dev, "dma_submit_error %d\n", cookie);
515 		goto unmap_dma;
516 	}
517 
518 	dma_async_issue_pending(chan);
519 
520 	time_left =
521 	wait_for_completion_timeout(&host->dma_access_complete,
522 				msecs_to_jiffies(3000));
523 	if (time_left == 0) {
524 		dmaengine_terminate_all(chan);
525 		dev_err(host->dev, "wait_for_completion_timeout\n");
526 		ret = -ETIMEDOUT;
527 		goto unmap_dma;
528 	}
529 
530 	ret = 0;
531 
532 unmap_dma:
533 	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
534 
535 	return ret;
536 }
537 
538 /*
539  * fsmc_write_buf - write buffer to chip
540  * @mtd:	MTD device structure
541  * @buf:	data buffer
542  * @len:	number of bytes to write
543  */
544 static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
545 {
546 	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
547 	int i;
548 
549 	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
550 			IS_ALIGNED(len, sizeof(uint32_t))) {
551 		uint32_t *p = (uint32_t *)buf;
552 		len = len >> 2;
553 		for (i = 0; i < len; i++)
554 			writel_relaxed(p[i], host->data_va);
555 	} else {
556 		for (i = 0; i < len; i++)
557 			writeb_relaxed(buf[i], host->data_va);
558 	}
559 }
560 
561 /*
562  * fsmc_read_buf - read chip data into buffer
563  * @mtd:	MTD device structure
564  * @buf:	buffer to store date
565  * @len:	number of bytes to read
566  */
567 static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
568 {
569 	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
570 	int i;
571 
572 	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
573 			IS_ALIGNED(len, sizeof(uint32_t))) {
574 		uint32_t *p = (uint32_t *)buf;
575 		len = len >> 2;
576 		for (i = 0; i < len; i++)
577 			p[i] = readl_relaxed(host->data_va);
578 	} else {
579 		for (i = 0; i < len; i++)
580 			buf[i] = readb_relaxed(host->data_va);
581 	}
582 }
583 
584 /*
585  * fsmc_read_buf_dma - read chip data into buffer
586  * @mtd:	MTD device structure
587  * @buf:	buffer to store date
588  * @len:	number of bytes to read
589  */
590 static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
591 {
592 	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
593 
594 	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
595 }
596 
597 /*
598  * fsmc_write_buf_dma - write buffer to chip
599  * @mtd:	MTD device structure
600  * @buf:	data buffer
601  * @len:	number of bytes to write
602  */
603 static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
604 		int len)
605 {
606 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
607 
608 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
609 }
610 
611 /* fsmc_select_chip - assert or deassert nCE */
612 static void fsmc_select_chip(struct nand_chip *chip, int chipnr)
613 {
614 	struct fsmc_nand_data *host = mtd_to_fsmc(nand_to_mtd(chip));
615 	u32 pc;
616 
617 	/* Support only one CS */
618 	if (chipnr > 0)
619 		return;
620 
621 	pc = readl(host->regs_va + FSMC_PC);
622 	if (chipnr < 0)
623 		writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + FSMC_PC);
624 	else
625 		writel_relaxed(pc | FSMC_ENABLE, host->regs_va + FSMC_PC);
626 
627 	/* nCE line must be asserted before starting any operation */
628 	mb();
629 }
630 
631 /*
632  * fsmc_exec_op - hook called by the core to execute NAND operations
633  *
634  * This controller is simple enough and thus does not need to use the parser
635  * provided by the core, instead, handle every situation here.
636  */
637 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
638 			bool check_only)
639 {
640 	struct mtd_info *mtd = nand_to_mtd(chip);
641 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
642 	const struct nand_op_instr *instr = NULL;
643 	int ret = 0;
644 	unsigned int op_id;
645 	int i;
646 
647 	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
648 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
649 		instr = &op->instrs[op_id];
650 
651 		switch (instr->type) {
652 		case NAND_OP_CMD_INSTR:
653 			pr_debug("  ->CMD      [0x%02x]\n",
654 				 instr->ctx.cmd.opcode);
655 
656 			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
657 			break;
658 
659 		case NAND_OP_ADDR_INSTR:
660 			pr_debug("  ->ADDR     [%d cyc]",
661 				 instr->ctx.addr.naddrs);
662 
663 			for (i = 0; i < instr->ctx.addr.naddrs; i++)
664 				writeb_relaxed(instr->ctx.addr.addrs[i],
665 					       host->addr_va);
666 			break;
667 
668 		case NAND_OP_DATA_IN_INSTR:
669 			pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
670 				 instr->ctx.data.force_8bit ?
671 				 ", force 8-bit" : "");
672 
673 			if (host->mode == USE_DMA_ACCESS)
674 				fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
675 						  instr->ctx.data.len);
676 			else
677 				fsmc_read_buf(mtd, instr->ctx.data.buf.in,
678 					      instr->ctx.data.len);
679 			break;
680 
681 		case NAND_OP_DATA_OUT_INSTR:
682 			pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
683 				 instr->ctx.data.force_8bit ?
684 				 ", force 8-bit" : "");
685 
686 			if (host->mode == USE_DMA_ACCESS)
687 				fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
688 						   instr->ctx.data.len);
689 			else
690 				fsmc_write_buf(mtd, instr->ctx.data.buf.out,
691 					       instr->ctx.data.len);
692 			break;
693 
694 		case NAND_OP_WAITRDY_INSTR:
695 			pr_debug("  ->WAITRDY  [max %d ms]\n",
696 				 instr->ctx.waitrdy.timeout_ms);
697 
698 			ret = nand_soft_waitrdy(chip,
699 						instr->ctx.waitrdy.timeout_ms);
700 			break;
701 		}
702 	}
703 
704 	return ret;
705 }
706 
707 /*
708  * fsmc_read_page_hwecc
709  * @chip:	nand chip info structure
710  * @buf:	buffer to store read data
711  * @oob_required:	caller expects OOB data read to chip->oob_poi
712  * @page:	page number to read
713  *
714  * This routine is needed for fsmc version 8 as reading from NAND chip has to be
715  * performed in a strict sequence as follows:
716  * data(512 byte) -> ecc(13 byte)
717  * After this read, fsmc hardware generates and reports error data bits(up to a
718  * max of 8 bits)
719  */
720 static int fsmc_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
721 				int oob_required, int page)
722 {
723 	struct mtd_info *mtd = nand_to_mtd(chip);
724 	int i, j, s, stat, eccsize = chip->ecc.size;
725 	int eccbytes = chip->ecc.bytes;
726 	int eccsteps = chip->ecc.steps;
727 	uint8_t *p = buf;
728 	uint8_t *ecc_calc = chip->ecc.calc_buf;
729 	uint8_t *ecc_code = chip->ecc.code_buf;
730 	int off, len, group = 0;
731 	/*
732 	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
733 	 * end up reading 14 bytes (7 words) from oob. The local array is
734 	 * to maintain word alignment
735 	 */
736 	uint16_t ecc_oob[7];
737 	uint8_t *oob = (uint8_t *)&ecc_oob[0];
738 	unsigned int max_bitflips = 0;
739 
740 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
741 		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
742 		chip->ecc.hwctl(chip, NAND_ECC_READ);
743 		nand_read_data_op(chip, p, eccsize, false);
744 
745 		for (j = 0; j < eccbytes;) {
746 			struct mtd_oob_region oobregion;
747 			int ret;
748 
749 			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
750 			if (ret)
751 				return ret;
752 
753 			off = oobregion.offset;
754 			len = oobregion.length;
755 
756 			/*
757 			 * length is intentionally kept a higher multiple of 2
758 			 * to read at least 13 bytes even in case of 16 bit NAND
759 			 * devices
760 			 */
761 			if (chip->options & NAND_BUSWIDTH_16)
762 				len = roundup(len, 2);
763 
764 			nand_read_oob_op(chip, page, off, oob + j, len);
765 			j += len;
766 		}
767 
768 		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
769 		chip->ecc.calculate(chip, p, &ecc_calc[i]);
770 
771 		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
772 		if (stat < 0) {
773 			mtd->ecc_stats.failed++;
774 		} else {
775 			mtd->ecc_stats.corrected += stat;
776 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
777 		}
778 	}
779 
780 	return max_bitflips;
781 }
782 
783 /*
784  * fsmc_bch8_correct_data
785  * @mtd:	mtd info structure
786  * @dat:	buffer of read data
787  * @read_ecc:	ecc read from device spare area
788  * @calc_ecc:	ecc calculated from read data
789  *
790  * calc_ecc is a 104 bit information containing maximum of 8 error
791  * offset informations of 13 bits each in 512 bytes of read data.
792  */
793 static int fsmc_bch8_correct_data(struct nand_chip *chip, uint8_t *dat,
794 				  uint8_t *read_ecc, uint8_t *calc_ecc)
795 {
796 	struct fsmc_nand_data *host = mtd_to_fsmc(nand_to_mtd(chip));
797 	uint32_t err_idx[8];
798 	uint32_t num_err, i;
799 	uint32_t ecc1, ecc2, ecc3, ecc4;
800 
801 	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
802 
803 	/* no bit flipping */
804 	if (likely(num_err == 0))
805 		return 0;
806 
807 	/* too many errors */
808 	if (unlikely(num_err > 8)) {
809 		/*
810 		 * This is a temporary erase check. A newly erased page read
811 		 * would result in an ecc error because the oob data is also
812 		 * erased to FF and the calculated ecc for an FF data is not
813 		 * FF..FF.
814 		 * This is a workaround to skip performing correction in case
815 		 * data is FF..FF
816 		 *
817 		 * Logic:
818 		 * For every page, each bit written as 0 is counted until these
819 		 * number of bits are greater than 8 (the maximum correction
820 		 * capability of FSMC for each 512 + 13 bytes)
821 		 */
822 
823 		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
824 		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
825 
826 		if ((bits_ecc + bits_data) <= 8) {
827 			if (bits_data)
828 				memset(dat, 0xff, chip->ecc.size);
829 			return bits_data;
830 		}
831 
832 		return -EBADMSG;
833 	}
834 
835 	/*
836 	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
837 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
838 	 *
839 	 * calc_ecc is a 104 bit information containing maximum of 8 error
840 	 * offset informations of 13 bits each. calc_ecc is copied into a
841 	 * uint64_t array and error offset indexes are populated in err_idx
842 	 * array
843 	 */
844 	ecc1 = readl_relaxed(host->regs_va + ECC1);
845 	ecc2 = readl_relaxed(host->regs_va + ECC2);
846 	ecc3 = readl_relaxed(host->regs_va + ECC3);
847 	ecc4 = readl_relaxed(host->regs_va + STS);
848 
849 	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
850 	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
851 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
852 	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
853 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
854 	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
855 	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
856 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
857 
858 	i = 0;
859 	while (num_err--) {
860 		change_bit(0, (unsigned long *)&err_idx[i]);
861 		change_bit(1, (unsigned long *)&err_idx[i]);
862 
863 		if (err_idx[i] < chip->ecc.size * 8) {
864 			change_bit(err_idx[i], (unsigned long *)dat);
865 			i++;
866 		}
867 	}
868 	return i;
869 }
870 
871 static bool filter(struct dma_chan *chan, void *slave)
872 {
873 	chan->private = slave;
874 	return true;
875 }
876 
877 static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
878 				     struct fsmc_nand_data *host,
879 				     struct nand_chip *nand)
880 {
881 	struct device_node *np = pdev->dev.of_node;
882 	u32 val;
883 	int ret;
884 
885 	nand->options = 0;
886 
887 	if (!of_property_read_u32(np, "bank-width", &val)) {
888 		if (val == 2) {
889 			nand->options |= NAND_BUSWIDTH_16;
890 		} else if (val != 1) {
891 			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
892 			return -EINVAL;
893 		}
894 	}
895 
896 	if (of_get_property(np, "nand-skip-bbtscan", NULL))
897 		nand->options |= NAND_SKIP_BBTSCAN;
898 
899 	host->dev_timings = devm_kzalloc(&pdev->dev,
900 				sizeof(*host->dev_timings), GFP_KERNEL);
901 	if (!host->dev_timings)
902 		return -ENOMEM;
903 	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
904 						sizeof(*host->dev_timings));
905 	if (ret)
906 		host->dev_timings = NULL;
907 
908 	/* Set default NAND bank to 0 */
909 	host->bank = 0;
910 	if (!of_property_read_u32(np, "bank", &val)) {
911 		if (val > 3) {
912 			dev_err(&pdev->dev, "invalid bank %u\n", val);
913 			return -EINVAL;
914 		}
915 		host->bank = val;
916 	}
917 	return 0;
918 }
919 
920 static int fsmc_nand_attach_chip(struct nand_chip *nand)
921 {
922 	struct mtd_info *mtd = nand_to_mtd(nand);
923 	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
924 
925 	if (AMBA_REV_BITS(host->pid) >= 8) {
926 		switch (mtd->oobsize) {
927 		case 16:
928 		case 64:
929 		case 128:
930 		case 224:
931 		case 256:
932 			break;
933 		default:
934 			dev_warn(host->dev,
935 				 "No oob scheme defined for oobsize %d\n",
936 				 mtd->oobsize);
937 			return -EINVAL;
938 		}
939 
940 		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
941 
942 		return 0;
943 	}
944 
945 	switch (nand->ecc.mode) {
946 	case NAND_ECC_HW:
947 		dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
948 		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
949 		nand->ecc.correct = nand_correct_data;
950 		nand->ecc.bytes = 3;
951 		nand->ecc.strength = 1;
952 		nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
953 		break;
954 
955 	case NAND_ECC_SOFT:
956 		if (nand->ecc.algo == NAND_ECC_BCH) {
957 			dev_info(host->dev,
958 				 "Using 4-bit SW BCH ECC scheme\n");
959 			break;
960 		}
961 
962 	case NAND_ECC_ON_DIE:
963 		break;
964 
965 	default:
966 		dev_err(host->dev, "Unsupported ECC mode!\n");
967 		return -ENOTSUPP;
968 	}
969 
970 	/*
971 	 * Don't set layout for BCH4 SW ECC. This will be
972 	 * generated later in nand_bch_init() later.
973 	 */
974 	if (nand->ecc.mode == NAND_ECC_HW) {
975 		switch (mtd->oobsize) {
976 		case 16:
977 		case 64:
978 		case 128:
979 			mtd_set_ooblayout(mtd,
980 					  &fsmc_ecc1_ooblayout_ops);
981 			break;
982 		default:
983 			dev_warn(host->dev,
984 				 "No oob scheme defined for oobsize %d\n",
985 				 mtd->oobsize);
986 			return -EINVAL;
987 		}
988 	}
989 
990 	return 0;
991 }
992 
993 static const struct nand_controller_ops fsmc_nand_controller_ops = {
994 	.attach_chip = fsmc_nand_attach_chip,
995 };
996 
997 /*
998  * fsmc_nand_probe - Probe function
999  * @pdev:       platform device structure
1000  */
1001 static int __init fsmc_nand_probe(struct platform_device *pdev)
1002 {
1003 	struct fsmc_nand_data *host;
1004 	struct mtd_info *mtd;
1005 	struct nand_chip *nand;
1006 	struct resource *res;
1007 	void __iomem *base;
1008 	dma_cap_mask_t mask;
1009 	int ret = 0;
1010 	u32 pid;
1011 	int i;
1012 
1013 	/* Allocate memory for the device structure (and zero it) */
1014 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1015 	if (!host)
1016 		return -ENOMEM;
1017 
1018 	nand = &host->nand;
1019 
1020 	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
1021 	if (ret)
1022 		return ret;
1023 
1024 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
1025 	host->data_va = devm_ioremap_resource(&pdev->dev, res);
1026 	if (IS_ERR(host->data_va))
1027 		return PTR_ERR(host->data_va);
1028 
1029 	host->data_pa = (dma_addr_t)res->start;
1030 
1031 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
1032 	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
1033 	if (IS_ERR(host->addr_va))
1034 		return PTR_ERR(host->addr_va);
1035 
1036 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
1037 	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
1038 	if (IS_ERR(host->cmd_va))
1039 		return PTR_ERR(host->cmd_va);
1040 
1041 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
1042 	base = devm_ioremap_resource(&pdev->dev, res);
1043 	if (IS_ERR(base))
1044 		return PTR_ERR(base);
1045 
1046 	host->regs_va = base + FSMC_NOR_REG_SIZE +
1047 		(host->bank * FSMC_NAND_BANK_SZ);
1048 
1049 	host->clk = devm_clk_get(&pdev->dev, NULL);
1050 	if (IS_ERR(host->clk)) {
1051 		dev_err(&pdev->dev, "failed to fetch block clock\n");
1052 		return PTR_ERR(host->clk);
1053 	}
1054 
1055 	ret = clk_prepare_enable(host->clk);
1056 	if (ret)
1057 		return ret;
1058 
1059 	/*
1060 	 * This device ID is actually a common AMBA ID as used on the
1061 	 * AMBA PrimeCell bus. However it is not a PrimeCell.
1062 	 */
1063 	for (pid = 0, i = 0; i < 4; i++)
1064 		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
1065 	host->pid = pid;
1066 	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
1067 		 "revision %02x, config %02x\n",
1068 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
1069 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
1070 
1071 	host->dev = &pdev->dev;
1072 
1073 	if (host->mode == USE_DMA_ACCESS)
1074 		init_completion(&host->dma_access_complete);
1075 
1076 	/* Link all private pointers */
1077 	mtd = nand_to_mtd(&host->nand);
1078 	nand_set_controller_data(nand, host);
1079 	nand_set_flash_node(nand, pdev->dev.of_node);
1080 
1081 	mtd->dev.parent = &pdev->dev;
1082 	nand->exec_op = fsmc_exec_op;
1083 	nand->select_chip = fsmc_select_chip;
1084 
1085 	/*
1086 	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
1087 	 * can overwrite this value if the DT provides a different value.
1088 	 */
1089 	nand->ecc.mode = NAND_ECC_HW;
1090 	nand->ecc.hwctl = fsmc_enable_hwecc;
1091 	nand->ecc.size = 512;
1092 	nand->badblockbits = 7;
1093 
1094 	if (host->mode == USE_DMA_ACCESS) {
1095 		dma_cap_zero(mask);
1096 		dma_cap_set(DMA_MEMCPY, mask);
1097 		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
1098 		if (!host->read_dma_chan) {
1099 			dev_err(&pdev->dev, "Unable to get read dma channel\n");
1100 			goto disable_clk;
1101 		}
1102 		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
1103 		if (!host->write_dma_chan) {
1104 			dev_err(&pdev->dev, "Unable to get write dma channel\n");
1105 			goto release_dma_read_chan;
1106 		}
1107 	}
1108 
1109 	if (host->dev_timings)
1110 		fsmc_nand_setup(host, host->dev_timings);
1111 	else
1112 		nand->setup_data_interface = fsmc_setup_data_interface;
1113 
1114 	if (AMBA_REV_BITS(host->pid) >= 8) {
1115 		nand->ecc.read_page = fsmc_read_page_hwecc;
1116 		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
1117 		nand->ecc.correct = fsmc_bch8_correct_data;
1118 		nand->ecc.bytes = 13;
1119 		nand->ecc.strength = 8;
1120 	}
1121 
1122 	/*
1123 	 * Scan to find existence of the device
1124 	 */
1125 	nand->dummy_controller.ops = &fsmc_nand_controller_ops;
1126 	ret = nand_scan(nand, 1);
1127 	if (ret)
1128 		goto release_dma_write_chan;
1129 
1130 	mtd->name = "nand";
1131 	ret = mtd_device_register(mtd, NULL, 0);
1132 	if (ret)
1133 		goto cleanup_nand;
1134 
1135 	platform_set_drvdata(pdev, host);
1136 	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1137 
1138 	return 0;
1139 
1140 cleanup_nand:
1141 	nand_cleanup(nand);
1142 release_dma_write_chan:
1143 	if (host->mode == USE_DMA_ACCESS)
1144 		dma_release_channel(host->write_dma_chan);
1145 release_dma_read_chan:
1146 	if (host->mode == USE_DMA_ACCESS)
1147 		dma_release_channel(host->read_dma_chan);
1148 disable_clk:
1149 	clk_disable_unprepare(host->clk);
1150 
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Clean up routine
1156  */
1157 static int fsmc_nand_remove(struct platform_device *pdev)
1158 {
1159 	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1160 
1161 	if (host) {
1162 		nand_release(&host->nand);
1163 
1164 		if (host->mode == USE_DMA_ACCESS) {
1165 			dma_release_channel(host->write_dma_chan);
1166 			dma_release_channel(host->read_dma_chan);
1167 		}
1168 		clk_disable_unprepare(host->clk);
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 #ifdef CONFIG_PM_SLEEP
1175 static int fsmc_nand_suspend(struct device *dev)
1176 {
1177 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1178 	if (host)
1179 		clk_disable_unprepare(host->clk);
1180 	return 0;
1181 }
1182 
1183 static int fsmc_nand_resume(struct device *dev)
1184 {
1185 	struct fsmc_nand_data *host = dev_get_drvdata(dev);
1186 	if (host) {
1187 		clk_prepare_enable(host->clk);
1188 		if (host->dev_timings)
1189 			fsmc_nand_setup(host, host->dev_timings);
1190 	}
1191 	return 0;
1192 }
1193 #endif
1194 
1195 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1196 
1197 static const struct of_device_id fsmc_nand_id_table[] = {
1198 	{ .compatible = "st,spear600-fsmc-nand" },
1199 	{ .compatible = "stericsson,fsmc-nand" },
1200 	{}
1201 };
1202 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1203 
1204 static struct platform_driver fsmc_nand_driver = {
1205 	.remove = fsmc_nand_remove,
1206 	.driver = {
1207 		.name = "fsmc-nand",
1208 		.of_match_table = fsmc_nand_id_table,
1209 		.pm = &fsmc_nand_pm_ops,
1210 	},
1211 };
1212 
1213 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1214 
1215 MODULE_LICENSE("GPL");
1216 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1217 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1218