1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * ST Microelectronics 4 * Flexible Static Memory Controller (FSMC) 5 * Driver for NAND portions 6 * 7 * Copyright © 2010 ST Microelectronics 8 * Vipin Kumar <vipin.kumar@st.com> 9 * Ashish Priyadarshi 10 * 11 * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) 12 * Copyright © 2007 STMicroelectronics Pvt. Ltd. 13 * Copyright © 2009 Alessandro Rubini 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/completion.h> 18 #include <linux/delay.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-direction.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/err.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/resource.h> 26 #include <linux/sched.h> 27 #include <linux/types.h> 28 #include <linux/mtd/mtd.h> 29 #include <linux/mtd/nand-ecc-sw-hamming.h> 30 #include <linux/mtd/rawnand.h> 31 #include <linux/platform_device.h> 32 #include <linux/of.h> 33 #include <linux/mtd/partitions.h> 34 #include <linux/io.h> 35 #include <linux/slab.h> 36 #include <linux/amba/bus.h> 37 #include <mtd/mtd-abi.h> 38 39 /* fsmc controller registers for NOR flash */ 40 #define CTRL 0x0 41 /* ctrl register definitions */ 42 #define BANK_ENABLE BIT(0) 43 #define MUXED BIT(1) 44 #define NOR_DEV (2 << 2) 45 #define WIDTH_16 BIT(4) 46 #define RSTPWRDWN BIT(6) 47 #define WPROT BIT(7) 48 #define WRT_ENABLE BIT(12) 49 #define WAIT_ENB BIT(13) 50 51 #define CTRL_TIM 0x4 52 /* ctrl_tim register definitions */ 53 54 #define FSMC_NOR_BANK_SZ 0x8 55 #define FSMC_NOR_REG_SIZE 0x40 56 57 #define FSMC_NOR_REG(base, bank, reg) ((base) + \ 58 (FSMC_NOR_BANK_SZ * (bank)) + \ 59 (reg)) 60 61 /* fsmc controller registers for NAND flash */ 62 #define FSMC_PC 0x00 63 /* pc register definitions */ 64 #define FSMC_RESET BIT(0) 65 #define FSMC_WAITON BIT(1) 66 #define FSMC_ENABLE BIT(2) 67 #define FSMC_DEVTYPE_NAND BIT(3) 68 #define FSMC_DEVWID_16 BIT(4) 69 #define FSMC_ECCEN BIT(6) 70 #define FSMC_ECCPLEN_256 BIT(7) 71 #define FSMC_TCLR_SHIFT (9) 72 #define FSMC_TCLR_MASK (0xF) 73 #define FSMC_TAR_SHIFT (13) 74 #define FSMC_TAR_MASK (0xF) 75 #define STS 0x04 76 /* sts register definitions */ 77 #define FSMC_CODE_RDY BIT(15) 78 #define COMM 0x08 79 /* comm register definitions */ 80 #define FSMC_TSET_SHIFT 0 81 #define FSMC_TSET_MASK 0xFF 82 #define FSMC_TWAIT_SHIFT 8 83 #define FSMC_TWAIT_MASK 0xFF 84 #define FSMC_THOLD_SHIFT 16 85 #define FSMC_THOLD_MASK 0xFF 86 #define FSMC_THIZ_SHIFT 24 87 #define FSMC_THIZ_MASK 0xFF 88 #define ATTRIB 0x0C 89 #define IOATA 0x10 90 #define ECC1 0x14 91 #define ECC2 0x18 92 #define ECC3 0x1C 93 #define FSMC_NAND_BANK_SZ 0x20 94 95 #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) 96 97 /* 98 * According to SPEAr300 Reference Manual (RM0082) 99 * TOUDEL = 7ns (Output delay from the flip-flops to the board) 100 * TINDEL = 5ns (Input delay from the board to the flipflop) 101 */ 102 #define TOUTDEL 7000 103 #define TINDEL 5000 104 105 struct fsmc_nand_timings { 106 u8 tclr; 107 u8 tar; 108 u8 thiz; 109 u8 thold; 110 u8 twait; 111 u8 tset; 112 }; 113 114 enum access_mode { 115 USE_DMA_ACCESS = 1, 116 USE_WORD_ACCESS, 117 }; 118 119 /** 120 * struct fsmc_nand_data - structure for FSMC NAND device state 121 * 122 * @base: Inherit from the nand_controller struct 123 * @pid: Part ID on the AMBA PrimeCell format 124 * @nand: Chip related info for a NAND flash. 125 * 126 * @bank: Bank number for probed device. 127 * @dev: Parent device 128 * @mode: Access mode 129 * @clk: Clock structure for FSMC. 130 * 131 * @read_dma_chan: DMA channel for read access 132 * @write_dma_chan: DMA channel for write access to NAND 133 * @dma_access_complete: Completion structure 134 * 135 * @dev_timings: NAND timings 136 * 137 * @data_pa: NAND Physical port for Data. 138 * @data_va: NAND port for Data. 139 * @cmd_va: NAND port for Command. 140 * @addr_va: NAND port for Address. 141 * @regs_va: Registers base address for a given bank. 142 */ 143 struct fsmc_nand_data { 144 struct nand_controller base; 145 u32 pid; 146 struct nand_chip nand; 147 148 unsigned int bank; 149 struct device *dev; 150 enum access_mode mode; 151 struct clk *clk; 152 153 /* DMA related objects */ 154 struct dma_chan *read_dma_chan; 155 struct dma_chan *write_dma_chan; 156 struct completion dma_access_complete; 157 158 struct fsmc_nand_timings *dev_timings; 159 160 dma_addr_t data_pa; 161 void __iomem *data_va; 162 void __iomem *cmd_va; 163 void __iomem *addr_va; 164 void __iomem *regs_va; 165 }; 166 167 static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, 168 struct mtd_oob_region *oobregion) 169 { 170 struct nand_chip *chip = mtd_to_nand(mtd); 171 172 if (section >= chip->ecc.steps) 173 return -ERANGE; 174 175 oobregion->offset = (section * 16) + 2; 176 oobregion->length = 3; 177 178 return 0; 179 } 180 181 static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, 182 struct mtd_oob_region *oobregion) 183 { 184 struct nand_chip *chip = mtd_to_nand(mtd); 185 186 if (section >= chip->ecc.steps) 187 return -ERANGE; 188 189 oobregion->offset = (section * 16) + 8; 190 191 if (section < chip->ecc.steps - 1) 192 oobregion->length = 8; 193 else 194 oobregion->length = mtd->oobsize - oobregion->offset; 195 196 return 0; 197 } 198 199 static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { 200 .ecc = fsmc_ecc1_ooblayout_ecc, 201 .free = fsmc_ecc1_ooblayout_free, 202 }; 203 204 /* 205 * ECC placement definitions in oobfree type format. 206 * There are 13 bytes of ecc for every 512 byte block and it has to be read 207 * consecutively and immediately after the 512 byte data block for hardware to 208 * generate the error bit offsets in 512 byte data. 209 */ 210 static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, 211 struct mtd_oob_region *oobregion) 212 { 213 struct nand_chip *chip = mtd_to_nand(mtd); 214 215 if (section >= chip->ecc.steps) 216 return -ERANGE; 217 218 oobregion->length = chip->ecc.bytes; 219 220 if (!section && mtd->writesize <= 512) 221 oobregion->offset = 0; 222 else 223 oobregion->offset = (section * 16) + 2; 224 225 return 0; 226 } 227 228 static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, 229 struct mtd_oob_region *oobregion) 230 { 231 struct nand_chip *chip = mtd_to_nand(mtd); 232 233 if (section >= chip->ecc.steps) 234 return -ERANGE; 235 236 oobregion->offset = (section * 16) + 15; 237 238 if (section < chip->ecc.steps - 1) 239 oobregion->length = 3; 240 else 241 oobregion->length = mtd->oobsize - oobregion->offset; 242 243 return 0; 244 } 245 246 static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { 247 .ecc = fsmc_ecc4_ooblayout_ecc, 248 .free = fsmc_ecc4_ooblayout_free, 249 }; 250 251 static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip) 252 { 253 return container_of(chip, struct fsmc_nand_data, nand); 254 } 255 256 /* 257 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine 258 * 259 * This routine initializes timing parameters related to NAND memory access in 260 * FSMC registers 261 */ 262 static void fsmc_nand_setup(struct fsmc_nand_data *host, 263 struct fsmc_nand_timings *tims) 264 { 265 u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; 266 u32 tclr, tar, thiz, thold, twait, tset; 267 268 tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; 269 tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; 270 thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; 271 thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; 272 twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; 273 tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; 274 275 if (host->nand.options & NAND_BUSWIDTH_16) 276 value |= FSMC_DEVWID_16; 277 278 writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC); 279 writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); 280 writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); 281 } 282 283 static int fsmc_calc_timings(struct fsmc_nand_data *host, 284 const struct nand_sdr_timings *sdrt, 285 struct fsmc_nand_timings *tims) 286 { 287 unsigned long hclk = clk_get_rate(host->clk); 288 unsigned long hclkn = NSEC_PER_SEC / hclk; 289 u32 thiz, thold, twait, tset, twait_min; 290 291 if (sdrt->tRC_min < 30000) 292 return -EOPNOTSUPP; 293 294 tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; 295 if (tims->tar > FSMC_TAR_MASK) 296 tims->tar = FSMC_TAR_MASK; 297 tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; 298 if (tims->tclr > FSMC_TCLR_MASK) 299 tims->tclr = FSMC_TCLR_MASK; 300 301 thiz = sdrt->tCS_min - sdrt->tWP_min; 302 tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); 303 304 thold = sdrt->tDH_min; 305 if (thold < sdrt->tCH_min) 306 thold = sdrt->tCH_min; 307 if (thold < sdrt->tCLH_min) 308 thold = sdrt->tCLH_min; 309 if (thold < sdrt->tWH_min) 310 thold = sdrt->tWH_min; 311 if (thold < sdrt->tALH_min) 312 thold = sdrt->tALH_min; 313 if (thold < sdrt->tREH_min) 314 thold = sdrt->tREH_min; 315 tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); 316 if (tims->thold == 0) 317 tims->thold = 1; 318 else if (tims->thold > FSMC_THOLD_MASK) 319 tims->thold = FSMC_THOLD_MASK; 320 321 tset = max(sdrt->tCS_min - sdrt->tWP_min, 322 sdrt->tCEA_max - sdrt->tREA_max); 323 tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; 324 if (tims->tset == 0) 325 tims->tset = 1; 326 else if (tims->tset > FSMC_TSET_MASK) 327 tims->tset = FSMC_TSET_MASK; 328 329 /* 330 * According to SPEAr300 Reference Manual (RM0082) which gives more 331 * information related to FSMSC timings than the SPEAr600 one (RM0305), 332 * twait >= tCEA - (tset * TCLK) + TOUTDEL + TINDEL 333 */ 334 twait_min = sdrt->tCEA_max - ((tims->tset + 1) * hclkn * 1000) 335 + TOUTDEL + TINDEL; 336 twait = max3(sdrt->tRP_min, sdrt->tWP_min, twait_min); 337 338 tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; 339 if (tims->twait == 0) 340 tims->twait = 1; 341 else if (tims->twait > FSMC_TWAIT_MASK) 342 tims->twait = FSMC_TWAIT_MASK; 343 344 return 0; 345 } 346 347 static int fsmc_setup_interface(struct nand_chip *nand, int csline, 348 const struct nand_interface_config *conf) 349 { 350 struct fsmc_nand_data *host = nand_to_fsmc(nand); 351 struct fsmc_nand_timings tims; 352 const struct nand_sdr_timings *sdrt; 353 int ret; 354 355 sdrt = nand_get_sdr_timings(conf); 356 if (IS_ERR(sdrt)) 357 return PTR_ERR(sdrt); 358 359 ret = fsmc_calc_timings(host, sdrt, &tims); 360 if (ret) 361 return ret; 362 363 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 364 return 0; 365 366 fsmc_nand_setup(host, &tims); 367 368 return 0; 369 } 370 371 /* 372 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers 373 */ 374 static void fsmc_enable_hwecc(struct nand_chip *chip, int mode) 375 { 376 struct fsmc_nand_data *host = nand_to_fsmc(chip); 377 378 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256, 379 host->regs_va + FSMC_PC); 380 writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN, 381 host->regs_va + FSMC_PC); 382 writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN, 383 host->regs_va + FSMC_PC); 384 } 385 386 /* 387 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by 388 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to 389 * max of 8-bits) 390 */ 391 static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data, 392 u8 *ecc) 393 { 394 struct fsmc_nand_data *host = nand_to_fsmc(chip); 395 u32 ecc_tmp; 396 unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; 397 398 do { 399 if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) 400 break; 401 402 cond_resched(); 403 } while (!time_after_eq(jiffies, deadline)); 404 405 if (time_after_eq(jiffies, deadline)) { 406 dev_err(host->dev, "calculate ecc timed out\n"); 407 return -ETIMEDOUT; 408 } 409 410 ecc_tmp = readl_relaxed(host->regs_va + ECC1); 411 ecc[0] = ecc_tmp; 412 ecc[1] = ecc_tmp >> 8; 413 ecc[2] = ecc_tmp >> 16; 414 ecc[3] = ecc_tmp >> 24; 415 416 ecc_tmp = readl_relaxed(host->regs_va + ECC2); 417 ecc[4] = ecc_tmp; 418 ecc[5] = ecc_tmp >> 8; 419 ecc[6] = ecc_tmp >> 16; 420 ecc[7] = ecc_tmp >> 24; 421 422 ecc_tmp = readl_relaxed(host->regs_va + ECC3); 423 ecc[8] = ecc_tmp; 424 ecc[9] = ecc_tmp >> 8; 425 ecc[10] = ecc_tmp >> 16; 426 ecc[11] = ecc_tmp >> 24; 427 428 ecc_tmp = readl_relaxed(host->regs_va + STS); 429 ecc[12] = ecc_tmp >> 16; 430 431 return 0; 432 } 433 434 /* 435 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by 436 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to 437 * max of 1-bit) 438 */ 439 static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data, 440 u8 *ecc) 441 { 442 struct fsmc_nand_data *host = nand_to_fsmc(chip); 443 u32 ecc_tmp; 444 445 ecc_tmp = readl_relaxed(host->regs_va + ECC1); 446 ecc[0] = ecc_tmp; 447 ecc[1] = ecc_tmp >> 8; 448 ecc[2] = ecc_tmp >> 16; 449 450 return 0; 451 } 452 453 static int fsmc_correct_ecc1(struct nand_chip *chip, 454 unsigned char *buf, 455 unsigned char *read_ecc, 456 unsigned char *calc_ecc) 457 { 458 bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER; 459 460 return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, 461 chip->ecc.size, sm_order); 462 } 463 464 /* Count the number of 0's in buff upto a max of max_bits */ 465 static int count_written_bits(u8 *buff, int size, int max_bits) 466 { 467 int k, written_bits = 0; 468 469 for (k = 0; k < size; k++) { 470 written_bits += hweight8(~buff[k]); 471 if (written_bits > max_bits) 472 break; 473 } 474 475 return written_bits; 476 } 477 478 static void dma_complete(void *param) 479 { 480 struct fsmc_nand_data *host = param; 481 482 complete(&host->dma_access_complete); 483 } 484 485 static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, 486 enum dma_data_direction direction) 487 { 488 struct dma_chan *chan; 489 struct dma_device *dma_dev; 490 struct dma_async_tx_descriptor *tx; 491 dma_addr_t dma_dst, dma_src, dma_addr; 492 dma_cookie_t cookie; 493 unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 494 int ret; 495 unsigned long time_left; 496 497 if (direction == DMA_TO_DEVICE) 498 chan = host->write_dma_chan; 499 else if (direction == DMA_FROM_DEVICE) 500 chan = host->read_dma_chan; 501 else 502 return -EINVAL; 503 504 dma_dev = chan->device; 505 dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); 506 507 if (direction == DMA_TO_DEVICE) { 508 dma_src = dma_addr; 509 dma_dst = host->data_pa; 510 } else { 511 dma_src = host->data_pa; 512 dma_dst = dma_addr; 513 } 514 515 tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, 516 len, flags); 517 if (!tx) { 518 dev_err(host->dev, "device_prep_dma_memcpy error\n"); 519 ret = -EIO; 520 goto unmap_dma; 521 } 522 523 tx->callback = dma_complete; 524 tx->callback_param = host; 525 cookie = tx->tx_submit(tx); 526 527 ret = dma_submit_error(cookie); 528 if (ret) { 529 dev_err(host->dev, "dma_submit_error %d\n", cookie); 530 goto unmap_dma; 531 } 532 533 dma_async_issue_pending(chan); 534 535 time_left = 536 wait_for_completion_timeout(&host->dma_access_complete, 537 msecs_to_jiffies(3000)); 538 if (time_left == 0) { 539 dmaengine_terminate_all(chan); 540 dev_err(host->dev, "wait_for_completion_timeout\n"); 541 ret = -ETIMEDOUT; 542 goto unmap_dma; 543 } 544 545 ret = 0; 546 547 unmap_dma: 548 dma_unmap_single(dma_dev->dev, dma_addr, len, direction); 549 550 return ret; 551 } 552 553 /* 554 * fsmc_write_buf - write buffer to chip 555 * @host: FSMC NAND controller 556 * @buf: data buffer 557 * @len: number of bytes to write 558 */ 559 static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf, 560 int len) 561 { 562 int i; 563 564 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 565 IS_ALIGNED(len, sizeof(u32))) { 566 u32 *p = (u32 *)buf; 567 568 len = len >> 2; 569 for (i = 0; i < len; i++) 570 writel_relaxed(p[i], host->data_va); 571 } else { 572 for (i = 0; i < len; i++) 573 writeb_relaxed(buf[i], host->data_va); 574 } 575 } 576 577 /* 578 * fsmc_read_buf - read chip data into buffer 579 * @host: FSMC NAND controller 580 * @buf: buffer to store date 581 * @len: number of bytes to read 582 */ 583 static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len) 584 { 585 int i; 586 587 if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && 588 IS_ALIGNED(len, sizeof(u32))) { 589 u32 *p = (u32 *)buf; 590 591 len = len >> 2; 592 for (i = 0; i < len; i++) 593 p[i] = readl_relaxed(host->data_va); 594 } else { 595 for (i = 0; i < len; i++) 596 buf[i] = readb_relaxed(host->data_va); 597 } 598 } 599 600 /* 601 * fsmc_read_buf_dma - read chip data into buffer 602 * @host: FSMC NAND controller 603 * @buf: buffer to store date 604 * @len: number of bytes to read 605 */ 606 static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf, 607 int len) 608 { 609 dma_xfer(host, buf, len, DMA_FROM_DEVICE); 610 } 611 612 /* 613 * fsmc_write_buf_dma - write buffer to chip 614 * @host: FSMC NAND controller 615 * @buf: data buffer 616 * @len: number of bytes to write 617 */ 618 static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf, 619 int len) 620 { 621 dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); 622 } 623 624 /* 625 * fsmc_exec_op - hook called by the core to execute NAND operations 626 * 627 * This controller is simple enough and thus does not need to use the parser 628 * provided by the core, instead, handle every situation here. 629 */ 630 static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, 631 bool check_only) 632 { 633 struct fsmc_nand_data *host = nand_to_fsmc(chip); 634 const struct nand_op_instr *instr = NULL; 635 int ret = 0; 636 unsigned int op_id; 637 int i; 638 639 if (check_only) 640 return 0; 641 642 pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); 643 644 for (op_id = 0; op_id < op->ninstrs; op_id++) { 645 instr = &op->instrs[op_id]; 646 647 nand_op_trace(" ", instr); 648 649 switch (instr->type) { 650 case NAND_OP_CMD_INSTR: 651 writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); 652 break; 653 654 case NAND_OP_ADDR_INSTR: 655 for (i = 0; i < instr->ctx.addr.naddrs; i++) 656 writeb_relaxed(instr->ctx.addr.addrs[i], 657 host->addr_va); 658 break; 659 660 case NAND_OP_DATA_IN_INSTR: 661 if (host->mode == USE_DMA_ACCESS) 662 fsmc_read_buf_dma(host, instr->ctx.data.buf.in, 663 instr->ctx.data.len); 664 else 665 fsmc_read_buf(host, instr->ctx.data.buf.in, 666 instr->ctx.data.len); 667 break; 668 669 case NAND_OP_DATA_OUT_INSTR: 670 if (host->mode == USE_DMA_ACCESS) 671 fsmc_write_buf_dma(host, 672 instr->ctx.data.buf.out, 673 instr->ctx.data.len); 674 else 675 fsmc_write_buf(host, instr->ctx.data.buf.out, 676 instr->ctx.data.len); 677 break; 678 679 case NAND_OP_WAITRDY_INSTR: 680 ret = nand_soft_waitrdy(chip, 681 instr->ctx.waitrdy.timeout_ms); 682 break; 683 } 684 685 if (instr->delay_ns) 686 ndelay(instr->delay_ns); 687 } 688 689 return ret; 690 } 691 692 /* 693 * fsmc_read_page_hwecc 694 * @chip: nand chip info structure 695 * @buf: buffer to store read data 696 * @oob_required: caller expects OOB data read to chip->oob_poi 697 * @page: page number to read 698 * 699 * This routine is needed for fsmc version 8 as reading from NAND chip has to be 700 * performed in a strict sequence as follows: 701 * data(512 byte) -> ecc(13 byte) 702 * After this read, fsmc hardware generates and reports error data bits(up to a 703 * max of 8 bits) 704 */ 705 static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf, 706 int oob_required, int page) 707 { 708 struct mtd_info *mtd = nand_to_mtd(chip); 709 int i, j, s, stat, eccsize = chip->ecc.size; 710 int eccbytes = chip->ecc.bytes; 711 int eccsteps = chip->ecc.steps; 712 u8 *p = buf; 713 u8 *ecc_calc = chip->ecc.calc_buf; 714 u8 *ecc_code = chip->ecc.code_buf; 715 int off, len, ret, group = 0; 716 /* 717 * ecc_oob is intentionally taken as u16. In 16bit devices, we 718 * end up reading 14 bytes (7 words) from oob. The local array is 719 * to maintain word alignment 720 */ 721 u16 ecc_oob[7]; 722 u8 *oob = (u8 *)&ecc_oob[0]; 723 unsigned int max_bitflips = 0; 724 725 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { 726 nand_read_page_op(chip, page, s * eccsize, NULL, 0); 727 chip->ecc.hwctl(chip, NAND_ECC_READ); 728 ret = nand_read_data_op(chip, p, eccsize, false, false); 729 if (ret) 730 return ret; 731 732 for (j = 0; j < eccbytes;) { 733 struct mtd_oob_region oobregion; 734 735 ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); 736 if (ret) 737 return ret; 738 739 off = oobregion.offset; 740 len = oobregion.length; 741 742 /* 743 * length is intentionally kept a higher multiple of 2 744 * to read at least 13 bytes even in case of 16 bit NAND 745 * devices 746 */ 747 if (chip->options & NAND_BUSWIDTH_16) 748 len = roundup(len, 2); 749 750 nand_read_oob_op(chip, page, off, oob + j, len); 751 j += len; 752 } 753 754 memcpy(&ecc_code[i], oob, chip->ecc.bytes); 755 chip->ecc.calculate(chip, p, &ecc_calc[i]); 756 757 stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); 758 if (stat < 0) { 759 mtd->ecc_stats.failed++; 760 } else { 761 mtd->ecc_stats.corrected += stat; 762 max_bitflips = max_t(unsigned int, max_bitflips, stat); 763 } 764 } 765 766 return max_bitflips; 767 } 768 769 /* 770 * fsmc_bch8_correct_data 771 * @mtd: mtd info structure 772 * @dat: buffer of read data 773 * @read_ecc: ecc read from device spare area 774 * @calc_ecc: ecc calculated from read data 775 * 776 * calc_ecc is a 104 bit information containing maximum of 8 error 777 * offset information of 13 bits each in 512 bytes of read data. 778 */ 779 static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat, 780 u8 *read_ecc, u8 *calc_ecc) 781 { 782 struct fsmc_nand_data *host = nand_to_fsmc(chip); 783 u32 err_idx[8]; 784 u32 num_err, i; 785 u32 ecc1, ecc2, ecc3, ecc4; 786 787 num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; 788 789 /* no bit flipping */ 790 if (likely(num_err == 0)) 791 return 0; 792 793 /* too many errors */ 794 if (unlikely(num_err > 8)) { 795 /* 796 * This is a temporary erase check. A newly erased page read 797 * would result in an ecc error because the oob data is also 798 * erased to FF and the calculated ecc for an FF data is not 799 * FF..FF. 800 * This is a workaround to skip performing correction in case 801 * data is FF..FF 802 * 803 * Logic: 804 * For every page, each bit written as 0 is counted until these 805 * number of bits are greater than 8 (the maximum correction 806 * capability of FSMC for each 512 + 13 bytes) 807 */ 808 809 int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); 810 int bits_data = count_written_bits(dat, chip->ecc.size, 8); 811 812 if ((bits_ecc + bits_data) <= 8) { 813 if (bits_data) 814 memset(dat, 0xff, chip->ecc.size); 815 return bits_data; 816 } 817 818 return -EBADMSG; 819 } 820 821 /* 822 * ------------------- calc_ecc[] bit wise -----------|--13 bits--| 823 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| 824 * 825 * calc_ecc is a 104 bit information containing maximum of 8 error 826 * offset information of 13 bits each. calc_ecc is copied into a 827 * u64 array and error offset indexes are populated in err_idx 828 * array 829 */ 830 ecc1 = readl_relaxed(host->regs_va + ECC1); 831 ecc2 = readl_relaxed(host->regs_va + ECC2); 832 ecc3 = readl_relaxed(host->regs_va + ECC3); 833 ecc4 = readl_relaxed(host->regs_va + STS); 834 835 err_idx[0] = (ecc1 >> 0) & 0x1FFF; 836 err_idx[1] = (ecc1 >> 13) & 0x1FFF; 837 err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); 838 err_idx[3] = (ecc2 >> 7) & 0x1FFF; 839 err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); 840 err_idx[5] = (ecc3 >> 1) & 0x1FFF; 841 err_idx[6] = (ecc3 >> 14) & 0x1FFF; 842 err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); 843 844 i = 0; 845 while (num_err--) { 846 err_idx[i] ^= 3; 847 848 if (err_idx[i] < chip->ecc.size * 8) { 849 int err = err_idx[i]; 850 851 dat[err >> 3] ^= BIT(err & 7); 852 i++; 853 } 854 } 855 return i; 856 } 857 858 static bool filter(struct dma_chan *chan, void *slave) 859 { 860 chan->private = slave; 861 return true; 862 } 863 864 static int fsmc_nand_probe_config_dt(struct platform_device *pdev, 865 struct fsmc_nand_data *host, 866 struct nand_chip *nand) 867 { 868 struct device_node *np = pdev->dev.of_node; 869 u32 val; 870 int ret; 871 872 nand->options = 0; 873 874 if (!of_property_read_u32(np, "bank-width", &val)) { 875 if (val == 2) { 876 nand->options |= NAND_BUSWIDTH_16; 877 } else if (val != 1) { 878 dev_err(&pdev->dev, "invalid bank-width %u\n", val); 879 return -EINVAL; 880 } 881 } 882 883 if (of_property_read_bool(np, "nand-skip-bbtscan")) 884 nand->options |= NAND_SKIP_BBTSCAN; 885 886 host->dev_timings = devm_kzalloc(&pdev->dev, 887 sizeof(*host->dev_timings), 888 GFP_KERNEL); 889 if (!host->dev_timings) 890 return -ENOMEM; 891 892 ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, 893 sizeof(*host->dev_timings)); 894 if (ret) 895 host->dev_timings = NULL; 896 897 /* Set default NAND bank to 0 */ 898 host->bank = 0; 899 if (!of_property_read_u32(np, "bank", &val)) { 900 if (val > 3) { 901 dev_err(&pdev->dev, "invalid bank %u\n", val); 902 return -EINVAL; 903 } 904 host->bank = val; 905 } 906 return 0; 907 } 908 909 static int fsmc_nand_attach_chip(struct nand_chip *nand) 910 { 911 struct mtd_info *mtd = nand_to_mtd(nand); 912 struct fsmc_nand_data *host = nand_to_fsmc(nand); 913 914 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID) 915 nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 916 917 if (!nand->ecc.size) 918 nand->ecc.size = 512; 919 920 if (AMBA_REV_BITS(host->pid) >= 8) { 921 nand->ecc.read_page = fsmc_read_page_hwecc; 922 nand->ecc.calculate = fsmc_read_hwecc_ecc4; 923 nand->ecc.correct = fsmc_bch8_correct_data; 924 nand->ecc.bytes = 13; 925 nand->ecc.strength = 8; 926 } 927 928 if (AMBA_REV_BITS(host->pid) >= 8) { 929 switch (mtd->oobsize) { 930 case 16: 931 case 64: 932 case 128: 933 case 224: 934 case 256: 935 break; 936 default: 937 dev_warn(host->dev, 938 "No oob scheme defined for oobsize %d\n", 939 mtd->oobsize); 940 return -EINVAL; 941 } 942 943 mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); 944 945 return 0; 946 } 947 948 switch (nand->ecc.engine_type) { 949 case NAND_ECC_ENGINE_TYPE_ON_HOST: 950 dev_info(host->dev, "Using 1-bit HW ECC scheme\n"); 951 nand->ecc.calculate = fsmc_read_hwecc_ecc1; 952 nand->ecc.correct = fsmc_correct_ecc1; 953 nand->ecc.hwctl = fsmc_enable_hwecc; 954 nand->ecc.bytes = 3; 955 nand->ecc.strength = 1; 956 nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; 957 break; 958 959 case NAND_ECC_ENGINE_TYPE_SOFT: 960 if (nand->ecc.algo == NAND_ECC_ALGO_BCH) { 961 dev_info(host->dev, 962 "Using 4-bit SW BCH ECC scheme\n"); 963 break; 964 } 965 break; 966 967 case NAND_ECC_ENGINE_TYPE_ON_DIE: 968 break; 969 970 default: 971 dev_err(host->dev, "Unsupported ECC mode!\n"); 972 return -ENOTSUPP; 973 } 974 975 /* 976 * Don't set layout for BCH4 SW ECC. This will be 977 * generated later during BCH initialization. 978 */ 979 if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { 980 switch (mtd->oobsize) { 981 case 16: 982 case 64: 983 case 128: 984 mtd_set_ooblayout(mtd, 985 &fsmc_ecc1_ooblayout_ops); 986 break; 987 default: 988 dev_warn(host->dev, 989 "No oob scheme defined for oobsize %d\n", 990 mtd->oobsize); 991 return -EINVAL; 992 } 993 } 994 995 return 0; 996 } 997 998 static const struct nand_controller_ops fsmc_nand_controller_ops = { 999 .attach_chip = fsmc_nand_attach_chip, 1000 .exec_op = fsmc_exec_op, 1001 .setup_interface = fsmc_setup_interface, 1002 }; 1003 1004 /** 1005 * fsmc_nand_disable() - Disables the NAND bank 1006 * @host: The instance to disable 1007 */ 1008 static void fsmc_nand_disable(struct fsmc_nand_data *host) 1009 { 1010 u32 val; 1011 1012 val = readl(host->regs_va + FSMC_PC); 1013 val &= ~FSMC_ENABLE; 1014 writel(val, host->regs_va + FSMC_PC); 1015 } 1016 1017 /* 1018 * fsmc_nand_probe - Probe function 1019 * @pdev: platform device structure 1020 */ 1021 static int __init fsmc_nand_probe(struct platform_device *pdev) 1022 { 1023 struct fsmc_nand_data *host; 1024 struct mtd_info *mtd; 1025 struct nand_chip *nand; 1026 struct resource *res; 1027 void __iomem *base; 1028 dma_cap_mask_t mask; 1029 int ret = 0; 1030 u32 pid; 1031 int i; 1032 1033 /* Allocate memory for the device structure (and zero it) */ 1034 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); 1035 if (!host) 1036 return -ENOMEM; 1037 1038 nand = &host->nand; 1039 1040 ret = fsmc_nand_probe_config_dt(pdev, host, nand); 1041 if (ret) 1042 return ret; 1043 1044 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); 1045 host->data_va = devm_ioremap_resource(&pdev->dev, res); 1046 if (IS_ERR(host->data_va)) 1047 return PTR_ERR(host->data_va); 1048 1049 host->data_pa = (dma_addr_t)res->start; 1050 1051 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); 1052 host->addr_va = devm_ioremap_resource(&pdev->dev, res); 1053 if (IS_ERR(host->addr_va)) 1054 return PTR_ERR(host->addr_va); 1055 1056 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); 1057 host->cmd_va = devm_ioremap_resource(&pdev->dev, res); 1058 if (IS_ERR(host->cmd_va)) 1059 return PTR_ERR(host->cmd_va); 1060 1061 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); 1062 base = devm_ioremap_resource(&pdev->dev, res); 1063 if (IS_ERR(base)) 1064 return PTR_ERR(base); 1065 1066 host->regs_va = base + FSMC_NOR_REG_SIZE + 1067 (host->bank * FSMC_NAND_BANK_SZ); 1068 1069 host->clk = devm_clk_get(&pdev->dev, NULL); 1070 if (IS_ERR(host->clk)) { 1071 dev_err(&pdev->dev, "failed to fetch block clock\n"); 1072 return PTR_ERR(host->clk); 1073 } 1074 1075 ret = clk_prepare_enable(host->clk); 1076 if (ret) 1077 return ret; 1078 1079 /* 1080 * This device ID is actually a common AMBA ID as used on the 1081 * AMBA PrimeCell bus. However it is not a PrimeCell. 1082 */ 1083 for (pid = 0, i = 0; i < 4; i++) 1084 pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 1085 255) << (i * 8); 1086 1087 host->pid = pid; 1088 1089 dev_info(&pdev->dev, 1090 "FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n", 1091 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), 1092 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); 1093 1094 host->dev = &pdev->dev; 1095 1096 if (host->mode == USE_DMA_ACCESS) 1097 init_completion(&host->dma_access_complete); 1098 1099 /* Link all private pointers */ 1100 mtd = nand_to_mtd(&host->nand); 1101 nand_set_flash_node(nand, pdev->dev.of_node); 1102 1103 mtd->dev.parent = &pdev->dev; 1104 1105 nand->badblockbits = 7; 1106 1107 if (host->mode == USE_DMA_ACCESS) { 1108 dma_cap_zero(mask); 1109 dma_cap_set(DMA_MEMCPY, mask); 1110 host->read_dma_chan = dma_request_channel(mask, filter, NULL); 1111 if (!host->read_dma_chan) { 1112 dev_err(&pdev->dev, "Unable to get read dma channel\n"); 1113 ret = -ENODEV; 1114 goto disable_clk; 1115 } 1116 host->write_dma_chan = dma_request_channel(mask, filter, NULL); 1117 if (!host->write_dma_chan) { 1118 dev_err(&pdev->dev, "Unable to get write dma channel\n"); 1119 ret = -ENODEV; 1120 goto release_dma_read_chan; 1121 } 1122 } 1123 1124 if (host->dev_timings) { 1125 fsmc_nand_setup(host, host->dev_timings); 1126 nand->options |= NAND_KEEP_TIMINGS; 1127 } 1128 1129 nand_controller_init(&host->base); 1130 host->base.ops = &fsmc_nand_controller_ops; 1131 nand->controller = &host->base; 1132 1133 /* 1134 * Scan to find existence of the device 1135 */ 1136 ret = nand_scan(nand, 1); 1137 if (ret) 1138 goto release_dma_write_chan; 1139 1140 mtd->name = "nand"; 1141 ret = mtd_device_register(mtd, NULL, 0); 1142 if (ret) 1143 goto cleanup_nand; 1144 1145 platform_set_drvdata(pdev, host); 1146 dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); 1147 1148 return 0; 1149 1150 cleanup_nand: 1151 nand_cleanup(nand); 1152 release_dma_write_chan: 1153 if (host->mode == USE_DMA_ACCESS) 1154 dma_release_channel(host->write_dma_chan); 1155 release_dma_read_chan: 1156 if (host->mode == USE_DMA_ACCESS) 1157 dma_release_channel(host->read_dma_chan); 1158 disable_clk: 1159 fsmc_nand_disable(host); 1160 clk_disable_unprepare(host->clk); 1161 1162 return ret; 1163 } 1164 1165 /* 1166 * Clean up routine 1167 */ 1168 static void fsmc_nand_remove(struct platform_device *pdev) 1169 { 1170 struct fsmc_nand_data *host = platform_get_drvdata(pdev); 1171 1172 if (host) { 1173 struct nand_chip *chip = &host->nand; 1174 int ret; 1175 1176 ret = mtd_device_unregister(nand_to_mtd(chip)); 1177 WARN_ON(ret); 1178 nand_cleanup(chip); 1179 fsmc_nand_disable(host); 1180 1181 if (host->mode == USE_DMA_ACCESS) { 1182 dma_release_channel(host->write_dma_chan); 1183 dma_release_channel(host->read_dma_chan); 1184 } 1185 clk_disable_unprepare(host->clk); 1186 } 1187 } 1188 1189 #ifdef CONFIG_PM_SLEEP 1190 static int fsmc_nand_suspend(struct device *dev) 1191 { 1192 struct fsmc_nand_data *host = dev_get_drvdata(dev); 1193 1194 if (host) 1195 clk_disable_unprepare(host->clk); 1196 1197 return 0; 1198 } 1199 1200 static int fsmc_nand_resume(struct device *dev) 1201 { 1202 struct fsmc_nand_data *host = dev_get_drvdata(dev); 1203 1204 if (host) { 1205 clk_prepare_enable(host->clk); 1206 if (host->dev_timings) 1207 fsmc_nand_setup(host, host->dev_timings); 1208 nand_reset(&host->nand, 0); 1209 } 1210 1211 return 0; 1212 } 1213 #endif 1214 1215 static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); 1216 1217 static const struct of_device_id fsmc_nand_id_table[] = { 1218 { .compatible = "st,spear600-fsmc-nand" }, 1219 { .compatible = "stericsson,fsmc-nand" }, 1220 {} 1221 }; 1222 MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); 1223 1224 static struct platform_driver fsmc_nand_driver = { 1225 .remove_new = fsmc_nand_remove, 1226 .driver = { 1227 .name = "fsmc-nand", 1228 .of_match_table = fsmc_nand_id_table, 1229 .pm = &fsmc_nand_pm_ops, 1230 }, 1231 }; 1232 1233 module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); 1234 1235 MODULE_LICENSE("GPL v2"); 1236 MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); 1237 MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); 1238