xref: /openbmc/linux/drivers/mtd/nand/raw/fsl_upm.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale UPM NAND driver.
4  *
5  * Copyright © 2007-2008  MontaVista Software, Inc.
6  *
7  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/mtd/rawnand.h>
14 #include <linux/mtd/nand_ecc.h>
15 #include <linux/mtd/partitions.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/of_platform.h>
18 #include <linux/io.h>
19 #include <linux/slab.h>
20 #include <asm/fsl_lbc.h>
21 
22 struct fsl_upm_nand {
23 	struct nand_controller base;
24 	struct device *dev;
25 	struct nand_chip chip;
26 	struct fsl_upm upm;
27 	uint8_t upm_addr_offset;
28 	uint8_t upm_cmd_offset;
29 	void __iomem *io_base;
30 	struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS];
31 	uint32_t mchip_offsets[NAND_MAX_CHIPS];
32 	uint32_t mchip_count;
33 	uint32_t mchip_number;
34 };
35 
36 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
37 {
38 	return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
39 			    chip);
40 }
41 
42 static int fun_chip_init(struct fsl_upm_nand *fun,
43 			 const struct device_node *upm_np,
44 			 const struct resource *io_res)
45 {
46 	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
47 	int ret;
48 	struct device_node *flash_np;
49 
50 	fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
51 	fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
52 	fun->chip.controller = &fun->base;
53 	mtd->dev.parent = fun->dev;
54 
55 	flash_np = of_get_next_child(upm_np, NULL);
56 	if (!flash_np)
57 		return -ENODEV;
58 
59 	nand_set_flash_node(&fun->chip, flash_np);
60 	mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn",
61 				   (u64)io_res->start,
62 				   flash_np);
63 	if (!mtd->name) {
64 		ret = -ENOMEM;
65 		goto err;
66 	}
67 
68 	ret = nand_scan(&fun->chip, fun->mchip_count);
69 	if (ret)
70 		goto err;
71 
72 	ret = mtd_device_register(mtd, NULL, 0);
73 err:
74 	of_node_put(flash_np);
75 	return ret;
76 }
77 
78 static int func_exec_instr(struct nand_chip *chip,
79 			   const struct nand_op_instr *instr)
80 {
81 	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
82 	u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number];
83 	unsigned int i;
84 	const u8 *out;
85 	u8 *in;
86 
87 	switch (instr->type) {
88 	case NAND_OP_CMD_INSTR:
89 		fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
90 		mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) |
91 		      reg_offs;
92 		fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
93 		fsl_upm_end_pattern(&fun->upm);
94 		return 0;
95 
96 	case NAND_OP_ADDR_INSTR:
97 		fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
98 		for (i = 0; i < instr->ctx.addr.naddrs; i++) {
99 			mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) |
100 			      reg_offs;
101 			fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar);
102 		}
103 		fsl_upm_end_pattern(&fun->upm);
104 		return 0;
105 
106 	case NAND_OP_DATA_IN_INSTR:
107 		in = instr->ctx.data.buf.in;
108 		for (i = 0; i < instr->ctx.data.len; i++)
109 			in[i] = in_8(fun->io_base + reg_offs);
110 		return 0;
111 
112 	case NAND_OP_DATA_OUT_INSTR:
113 		out = instr->ctx.data.buf.out;
114 		for (i = 0; i < instr->ctx.data.len; i++)
115 			out_8(fun->io_base + reg_offs, out[i]);
116 		return 0;
117 
118 	case NAND_OP_WAITRDY_INSTR:
119 		if (!fun->rnb_gpio[fun->mchip_number])
120 			return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms);
121 
122 		return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number],
123 					 instr->ctx.waitrdy.timeout_ms);
124 
125 	default:
126 		return -EINVAL;
127 	}
128 
129 	return 0;
130 }
131 
132 static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op,
133 		       bool check_only)
134 {
135 	struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip));
136 	unsigned int i;
137 	int ret;
138 
139 	if (op->cs > NAND_MAX_CHIPS)
140 		return -EINVAL;
141 
142 	if (check_only)
143 		return 0;
144 
145 	fun->mchip_number = op->cs;
146 
147 	for (i = 0; i < op->ninstrs; i++) {
148 		ret = func_exec_instr(chip, &op->instrs[i]);
149 		if (ret)
150 			return ret;
151 
152 		if (op->instrs[i].delay_ns)
153 			ndelay(op->instrs[i].delay_ns);
154 	}
155 
156 	return 0;
157 }
158 
159 static const struct nand_controller_ops fun_ops = {
160 	.exec_op = fun_exec_op,
161 };
162 
163 static int fun_probe(struct platform_device *ofdev)
164 {
165 	struct fsl_upm_nand *fun;
166 	struct resource *io_res;
167 	const __be32 *prop;
168 	int ret;
169 	int size;
170 	int i;
171 
172 	fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL);
173 	if (!fun)
174 		return -ENOMEM;
175 
176 	io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
177 	fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res);
178 	if (IS_ERR(fun->io_base))
179 		return PTR_ERR(fun->io_base);
180 
181 	ret = fsl_upm_find(io_res->start, &fun->upm);
182 	if (ret) {
183 		dev_err(&ofdev->dev, "can't find UPM\n");
184 		return ret;
185 	}
186 
187 	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
188 			       &size);
189 	if (!prop || size != sizeof(uint32_t)) {
190 		dev_err(&ofdev->dev, "can't get UPM address offset\n");
191 		return -EINVAL;
192 	}
193 	fun->upm_addr_offset = *prop;
194 
195 	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
196 	if (!prop || size != sizeof(uint32_t)) {
197 		dev_err(&ofdev->dev, "can't get UPM command offset\n");
198 		return -EINVAL;
199 	}
200 	fun->upm_cmd_offset = *prop;
201 
202 	prop = of_get_property(ofdev->dev.of_node,
203 			       "fsl,upm-addr-line-cs-offsets", &size);
204 	if (prop && (size / sizeof(uint32_t)) > 0) {
205 		fun->mchip_count = size / sizeof(uint32_t);
206 		if (fun->mchip_count >= NAND_MAX_CHIPS) {
207 			dev_err(&ofdev->dev, "too much multiple chips\n");
208 			return -EINVAL;
209 		}
210 		for (i = 0; i < fun->mchip_count; i++)
211 			fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
212 	} else {
213 		fun->mchip_count = 1;
214 	}
215 
216 	for (i = 0; i < fun->mchip_count; i++) {
217 		fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev,
218 								 NULL, i,
219 								 GPIOD_IN);
220 		if (IS_ERR(fun->rnb_gpio[i])) {
221 			dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
222 			return PTR_ERR(fun->rnb_gpio[i]);
223 		}
224 	}
225 
226 	nand_controller_init(&fun->base);
227 	fun->base.ops = &fun_ops;
228 	fun->dev = &ofdev->dev;
229 
230 	ret = fun_chip_init(fun, ofdev->dev.of_node, io_res);
231 	if (ret)
232 		return ret;
233 
234 	dev_set_drvdata(&ofdev->dev, fun);
235 
236 	return 0;
237 }
238 
239 static int fun_remove(struct platform_device *ofdev)
240 {
241 	struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
242 	struct nand_chip *chip = &fun->chip;
243 	struct mtd_info *mtd = nand_to_mtd(chip);
244 	int ret;
245 
246 	ret = mtd_device_unregister(mtd);
247 	WARN_ON(ret);
248 	nand_cleanup(chip);
249 
250 	return 0;
251 }
252 
253 static const struct of_device_id of_fun_match[] = {
254 	{ .compatible = "fsl,upm-nand" },
255 	{},
256 };
257 MODULE_DEVICE_TABLE(of, of_fun_match);
258 
259 static struct platform_driver of_fun_driver = {
260 	.driver = {
261 		.name = "fsl,upm-nand",
262 		.of_match_table = of_fun_match,
263 	},
264 	.probe		= fun_probe,
265 	.remove		= fun_remove,
266 };
267 
268 module_platform_driver(of_fun_driver);
269 
270 MODULE_LICENSE("GPL");
271 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
272 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
273 		   "LocalBus User-Programmable Machine");
274