1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale UPM NAND driver. 4 * 5 * Copyright © 2007-2008 MontaVista Software, Inc. 6 * 7 * Author: Anton Vorontsov <avorontsov@ru.mvista.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/delay.h> 13 #include <linux/mtd/rawnand.h> 14 #include <linux/mtd/nand_ecc.h> 15 #include <linux/mtd/partitions.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/of_platform.h> 18 #include <linux/io.h> 19 #include <linux/slab.h> 20 #include <asm/fsl_lbc.h> 21 22 struct fsl_upm_nand { 23 struct nand_controller base; 24 struct device *dev; 25 struct nand_chip chip; 26 struct fsl_upm upm; 27 uint8_t upm_addr_offset; 28 uint8_t upm_cmd_offset; 29 void __iomem *io_base; 30 struct gpio_desc *rnb_gpio[NAND_MAX_CHIPS]; 31 uint32_t mchip_offsets[NAND_MAX_CHIPS]; 32 uint32_t mchip_count; 33 uint32_t mchip_number; 34 }; 35 36 static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo) 37 { 38 return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand, 39 chip); 40 } 41 42 static int fun_chip_init(struct fsl_upm_nand *fun, 43 const struct device_node *upm_np, 44 const struct resource *io_res) 45 { 46 struct mtd_info *mtd = nand_to_mtd(&fun->chip); 47 int ret; 48 struct device_node *flash_np; 49 50 fun->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 51 fun->chip.ecc.algo = NAND_ECC_ALGO_HAMMING; 52 fun->chip.controller = &fun->base; 53 mtd->dev.parent = fun->dev; 54 55 flash_np = of_get_next_child(upm_np, NULL); 56 if (!flash_np) 57 return -ENODEV; 58 59 nand_set_flash_node(&fun->chip, flash_np); 60 mtd->name = devm_kasprintf(fun->dev, GFP_KERNEL, "0x%llx.%pOFn", 61 (u64)io_res->start, 62 flash_np); 63 if (!mtd->name) { 64 ret = -ENOMEM; 65 goto err; 66 } 67 68 ret = nand_scan(&fun->chip, fun->mchip_count); 69 if (ret) 70 goto err; 71 72 ret = mtd_device_register(mtd, NULL, 0); 73 err: 74 of_node_put(flash_np); 75 return ret; 76 } 77 78 static int func_exec_instr(struct nand_chip *chip, 79 const struct nand_op_instr *instr) 80 { 81 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip)); 82 u32 mar, reg_offs = fun->mchip_offsets[fun->mchip_number]; 83 unsigned int i; 84 const u8 *out; 85 u8 *in; 86 87 switch (instr->type) { 88 case NAND_OP_CMD_INSTR: 89 fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); 90 mar = (instr->ctx.cmd.opcode << (32 - fun->upm.width)) | 91 reg_offs; 92 fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar); 93 fsl_upm_end_pattern(&fun->upm); 94 return 0; 95 96 case NAND_OP_ADDR_INSTR: 97 fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset); 98 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 99 mar = (instr->ctx.addr.addrs[i] << (32 - fun->upm.width)) | 100 reg_offs; 101 fsl_upm_run_pattern(&fun->upm, fun->io_base + reg_offs, mar); 102 } 103 fsl_upm_end_pattern(&fun->upm); 104 return 0; 105 106 case NAND_OP_DATA_IN_INSTR: 107 in = instr->ctx.data.buf.in; 108 for (i = 0; i < instr->ctx.data.len; i++) 109 in[i] = in_8(fun->io_base + reg_offs); 110 return 0; 111 112 case NAND_OP_DATA_OUT_INSTR: 113 out = instr->ctx.data.buf.out; 114 for (i = 0; i < instr->ctx.data.len; i++) 115 out_8(fun->io_base + reg_offs, out[i]); 116 return 0; 117 118 case NAND_OP_WAITRDY_INSTR: 119 if (!fun->rnb_gpio[fun->mchip_number]) 120 return nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); 121 122 return nand_gpio_waitrdy(chip, fun->rnb_gpio[fun->mchip_number], 123 instr->ctx.waitrdy.timeout_ms); 124 125 default: 126 return -EINVAL; 127 } 128 129 return 0; 130 } 131 132 static int fun_exec_op(struct nand_chip *chip, const struct nand_operation *op, 133 bool check_only) 134 { 135 struct fsl_upm_nand *fun = to_fsl_upm_nand(nand_to_mtd(chip)); 136 unsigned int i; 137 int ret; 138 139 if (op->cs > NAND_MAX_CHIPS) 140 return -EINVAL; 141 142 if (check_only) 143 return 0; 144 145 fun->mchip_number = op->cs; 146 147 for (i = 0; i < op->ninstrs; i++) { 148 ret = func_exec_instr(chip, &op->instrs[i]); 149 if (ret) 150 return ret; 151 152 if (op->instrs[i].delay_ns) 153 ndelay(op->instrs[i].delay_ns); 154 } 155 156 return 0; 157 } 158 159 static const struct nand_controller_ops fun_ops = { 160 .exec_op = fun_exec_op, 161 }; 162 163 static int fun_probe(struct platform_device *ofdev) 164 { 165 struct fsl_upm_nand *fun; 166 struct resource *io_res; 167 const __be32 *prop; 168 int ret; 169 int size; 170 int i; 171 172 fun = devm_kzalloc(&ofdev->dev, sizeof(*fun), GFP_KERNEL); 173 if (!fun) 174 return -ENOMEM; 175 176 io_res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); 177 fun->io_base = devm_ioremap_resource(&ofdev->dev, io_res); 178 if (IS_ERR(fun->io_base)) 179 return PTR_ERR(fun->io_base); 180 181 ret = fsl_upm_find(io_res->start, &fun->upm); 182 if (ret) { 183 dev_err(&ofdev->dev, "can't find UPM\n"); 184 return ret; 185 } 186 187 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset", 188 &size); 189 if (!prop || size != sizeof(uint32_t)) { 190 dev_err(&ofdev->dev, "can't get UPM address offset\n"); 191 return -EINVAL; 192 } 193 fun->upm_addr_offset = *prop; 194 195 prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size); 196 if (!prop || size != sizeof(uint32_t)) { 197 dev_err(&ofdev->dev, "can't get UPM command offset\n"); 198 return -EINVAL; 199 } 200 fun->upm_cmd_offset = *prop; 201 202 prop = of_get_property(ofdev->dev.of_node, 203 "fsl,upm-addr-line-cs-offsets", &size); 204 if (prop && (size / sizeof(uint32_t)) > 0) { 205 fun->mchip_count = size / sizeof(uint32_t); 206 if (fun->mchip_count >= NAND_MAX_CHIPS) { 207 dev_err(&ofdev->dev, "too much multiple chips\n"); 208 return -EINVAL; 209 } 210 for (i = 0; i < fun->mchip_count; i++) 211 fun->mchip_offsets[i] = be32_to_cpu(prop[i]); 212 } else { 213 fun->mchip_count = 1; 214 } 215 216 for (i = 0; i < fun->mchip_count; i++) { 217 fun->rnb_gpio[i] = devm_gpiod_get_index_optional(&ofdev->dev, 218 NULL, i, 219 GPIOD_IN); 220 if (IS_ERR(fun->rnb_gpio[i])) { 221 dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i); 222 return PTR_ERR(fun->rnb_gpio[i]); 223 } 224 } 225 226 nand_controller_init(&fun->base); 227 fun->base.ops = &fun_ops; 228 fun->dev = &ofdev->dev; 229 230 ret = fun_chip_init(fun, ofdev->dev.of_node, io_res); 231 if (ret) 232 return ret; 233 234 dev_set_drvdata(&ofdev->dev, fun); 235 236 return 0; 237 } 238 239 static int fun_remove(struct platform_device *ofdev) 240 { 241 struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); 242 struct nand_chip *chip = &fun->chip; 243 struct mtd_info *mtd = nand_to_mtd(chip); 244 int ret; 245 246 ret = mtd_device_unregister(mtd); 247 WARN_ON(ret); 248 nand_cleanup(chip); 249 250 return 0; 251 } 252 253 static const struct of_device_id of_fun_match[] = { 254 { .compatible = "fsl,upm-nand" }, 255 {}, 256 }; 257 MODULE_DEVICE_TABLE(of, of_fun_match); 258 259 static struct platform_driver of_fun_driver = { 260 .driver = { 261 .name = "fsl,upm-nand", 262 .of_match_table = of_fun_match, 263 }, 264 .probe = fun_probe, 265 .remove = fun_remove, 266 }; 267 268 module_platform_driver(of_fun_driver); 269 270 MODULE_LICENSE("GPL"); 271 MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>"); 272 MODULE_DESCRIPTION("Driver for NAND chips working through Freescale " 273 "LocalBus User-Programmable Machine"); 274