xref: /openbmc/linux/drivers/mtd/nand/raw/fsl_ifc_nand.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale Integrated Flash Controller NAND driver
4  *
5  * Copyright 2011-2012 Freescale Semiconductor, Inc
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/kernel.h>
13 #include <linux/of_address.h>
14 #include <linux/slab.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/fsl_ifc.h>
19 #include <linux/iopoll.h>
20 
21 #define ERR_BYTE		0xFF /* Value returned for read
22 					bytes when read failed	*/
23 #define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
24 					for IFC NAND Machine	*/
25 
26 struct fsl_ifc_ctrl;
27 
28 /* mtd information per set */
29 struct fsl_ifc_mtd {
30 	struct nand_chip chip;
31 	struct fsl_ifc_ctrl *ctrl;
32 
33 	struct device *dev;
34 	int bank;		/* Chip select bank number		*/
35 	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
36 	u8 __iomem *vbase;      /* Chip select base virtual address	*/
37 };
38 
39 /* overview of the fsl ifc controller */
40 struct fsl_ifc_nand_ctrl {
41 	struct nand_controller controller;
42 	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
43 
44 	void __iomem *addr;	/* Address of assigned IFC buffer	*/
45 	unsigned int page;	/* Last page written to / read from	*/
46 	unsigned int read_bytes;/* Number of bytes read during command	*/
47 	unsigned int column;	/* Saved column from SEQIN		*/
48 	unsigned int index;	/* Pointer to next byte to 'read'	*/
49 	unsigned int oob;	/* Non zero if operating on OOB data	*/
50 	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
51 	unsigned int counter;	/* counter for the initializations	*/
52 	unsigned int max_bitflips;  /* Saved during READ0 cmd		*/
53 };
54 
55 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
56 
57 /*
58  * Generic flash bbt descriptors
59  */
60 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
61 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
62 
63 static struct nand_bbt_descr bbt_main_descr = {
64 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
65 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
66 	.offs =	2, /* 0 on 8-bit small page */
67 	.len = 4,
68 	.veroffs = 6,
69 	.maxblocks = 4,
70 	.pattern = bbt_pattern,
71 };
72 
73 static struct nand_bbt_descr bbt_mirror_descr = {
74 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
75 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
76 	.offs =	2, /* 0 on 8-bit small page */
77 	.len = 4,
78 	.veroffs = 6,
79 	.maxblocks = 4,
80 	.pattern = mirror_pattern,
81 };
82 
83 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
84 				 struct mtd_oob_region *oobregion)
85 {
86 	struct nand_chip *chip = mtd_to_nand(mtd);
87 
88 	if (section)
89 		return -ERANGE;
90 
91 	oobregion->offset = 8;
92 	oobregion->length = chip->ecc.total;
93 
94 	return 0;
95 }
96 
97 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
98 				  struct mtd_oob_region *oobregion)
99 {
100 	struct nand_chip *chip = mtd_to_nand(mtd);
101 
102 	if (section > 1)
103 		return -ERANGE;
104 
105 	if (mtd->writesize == 512 &&
106 	    !(chip->options & NAND_BUSWIDTH_16)) {
107 		if (!section) {
108 			oobregion->offset = 0;
109 			oobregion->length = 5;
110 		} else {
111 			oobregion->offset = 6;
112 			oobregion->length = 2;
113 		}
114 
115 		return 0;
116 	}
117 
118 	if (!section) {
119 		oobregion->offset = 2;
120 		oobregion->length = 6;
121 	} else {
122 		oobregion->offset = chip->ecc.total + 8;
123 		oobregion->length = mtd->oobsize - oobregion->offset;
124 	}
125 
126 	return 0;
127 }
128 
129 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
130 	.ecc = fsl_ifc_ooblayout_ecc,
131 	.free = fsl_ifc_ooblayout_free,
132 };
133 
134 /*
135  * Set up the IFC hardware block and page address fields, and the ifc nand
136  * structure addr field to point to the correct IFC buffer in memory
137  */
138 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
139 {
140 	struct nand_chip *chip = mtd_to_nand(mtd);
141 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
142 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
143 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
144 	int buf_num;
145 
146 	ifc_nand_ctrl->page = page_addr;
147 	/* Program ROW0/COL0 */
148 	ifc_out32(page_addr, &ifc->ifc_nand.row0);
149 	ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
150 
151 	buf_num = page_addr & priv->bufnum_mask;
152 
153 	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
154 	ifc_nand_ctrl->index = column;
155 
156 	/* for OOB data point to the second half of the buffer */
157 	if (oob)
158 		ifc_nand_ctrl->index += mtd->writesize;
159 }
160 
161 /* returns nonzero if entire page is blank */
162 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
163 			  u32 eccstat, unsigned int bufnum)
164 {
165 	return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
166 }
167 
168 /*
169  * execute IFC NAND command and wait for it to complete
170  */
171 static void fsl_ifc_run_command(struct mtd_info *mtd)
172 {
173 	struct nand_chip *chip = mtd_to_nand(mtd);
174 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
175 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
176 	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
177 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
178 	u32 eccstat;
179 	int i;
180 
181 	/* set the chip select for NAND Transaction */
182 	ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
183 		  &ifc->ifc_nand.nand_csel);
184 
185 	dev_vdbg(priv->dev,
186 			"%s: fir0=%08x fcr0=%08x\n",
187 			__func__,
188 			ifc_in32(&ifc->ifc_nand.nand_fir0),
189 			ifc_in32(&ifc->ifc_nand.nand_fcr0));
190 
191 	ctrl->nand_stat = 0;
192 
193 	/* start read/write seq */
194 	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
195 
196 	/* wait for command complete flag or timeout */
197 	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
198 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
199 
200 	/* ctrl->nand_stat will be updated from IRQ context */
201 	if (!ctrl->nand_stat)
202 		dev_err(priv->dev, "Controller is not responding\n");
203 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
204 		dev_err(priv->dev, "NAND Flash Timeout Error\n");
205 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
206 		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
207 
208 	nctrl->max_bitflips = 0;
209 
210 	if (nctrl->eccread) {
211 		int errors;
212 		int bufnum = nctrl->page & priv->bufnum_mask;
213 		int sector_start = bufnum * chip->ecc.steps;
214 		int sector_end = sector_start + chip->ecc.steps - 1;
215 		__be32 __iomem *eccstat_regs;
216 
217 		eccstat_regs = ifc->ifc_nand.nand_eccstat;
218 		eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
219 
220 		for (i = sector_start; i <= sector_end; i++) {
221 			if (i != sector_start && !(i % 4))
222 				eccstat = ifc_in32(&eccstat_regs[i / 4]);
223 
224 			errors = check_read_ecc(mtd, ctrl, eccstat, i);
225 
226 			if (errors == 15) {
227 				/*
228 				 * Uncorrectable error.
229 				 * We'll check for blank pages later.
230 				 *
231 				 * We disable ECCER reporting due to...
232 				 * erratum IFC-A002770 -- so report it now if we
233 				 * see an uncorrectable error in ECCSTAT.
234 				 */
235 				ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
236 				continue;
237 			}
238 
239 			mtd->ecc_stats.corrected += errors;
240 			nctrl->max_bitflips = max_t(unsigned int,
241 						    nctrl->max_bitflips,
242 						    errors);
243 		}
244 
245 		nctrl->eccread = 0;
246 	}
247 }
248 
249 static void fsl_ifc_do_read(struct nand_chip *chip,
250 			    int oob,
251 			    struct mtd_info *mtd)
252 {
253 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
254 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
255 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
256 
257 	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
258 	if (mtd->writesize > 512) {
259 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
260 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
261 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
262 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
263 			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
264 			  &ifc->ifc_nand.nand_fir0);
265 		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
266 
267 		ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
268 			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
269 			  &ifc->ifc_nand.nand_fcr0);
270 	} else {
271 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
272 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
273 			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
274 			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
275 			  &ifc->ifc_nand.nand_fir0);
276 		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
277 
278 		if (oob)
279 			ifc_out32(NAND_CMD_READOOB <<
280 				  IFC_NAND_FCR0_CMD0_SHIFT,
281 				  &ifc->ifc_nand.nand_fcr0);
282 		else
283 			ifc_out32(NAND_CMD_READ0 <<
284 				  IFC_NAND_FCR0_CMD0_SHIFT,
285 				  &ifc->ifc_nand.nand_fcr0);
286 	}
287 }
288 
289 /* cmdfunc send commands to the IFC NAND Machine */
290 static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
291 			    int column, int page_addr) {
292 	struct mtd_info *mtd = nand_to_mtd(chip);
293 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
294 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
295 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
296 
297 	/* clear the read buffer */
298 	ifc_nand_ctrl->read_bytes = 0;
299 	if (command != NAND_CMD_PAGEPROG)
300 		ifc_nand_ctrl->index = 0;
301 
302 	switch (command) {
303 	/* READ0 read the entire buffer to use hardware ECC. */
304 	case NAND_CMD_READ0:
305 		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
306 		set_addr(mtd, 0, page_addr, 0);
307 
308 		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
309 		ifc_nand_ctrl->index += column;
310 
311 		if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
312 			ifc_nand_ctrl->eccread = 1;
313 
314 		fsl_ifc_do_read(chip, 0, mtd);
315 		fsl_ifc_run_command(mtd);
316 		return;
317 
318 	/* READOOB reads only the OOB because no ECC is performed. */
319 	case NAND_CMD_READOOB:
320 		ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
321 		set_addr(mtd, column, page_addr, 1);
322 
323 		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
324 
325 		fsl_ifc_do_read(chip, 1, mtd);
326 		fsl_ifc_run_command(mtd);
327 
328 		return;
329 
330 	case NAND_CMD_READID:
331 	case NAND_CMD_PARAM: {
332 		/*
333 		 * For READID, read 8 bytes that are currently used.
334 		 * For PARAM, read all 3 copies of 256-bytes pages.
335 		 */
336 		int len = 8;
337 		int timing = IFC_FIR_OP_RB;
338 		if (command == NAND_CMD_PARAM) {
339 			timing = IFC_FIR_OP_RBCD;
340 			len = 256 * 3;
341 		}
342 
343 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
344 			  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
345 			  (timing << IFC_NAND_FIR0_OP2_SHIFT),
346 			  &ifc->ifc_nand.nand_fir0);
347 		ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
348 			  &ifc->ifc_nand.nand_fcr0);
349 		ifc_out32(column, &ifc->ifc_nand.row3);
350 
351 		ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
352 		ifc_nand_ctrl->read_bytes = len;
353 
354 		set_addr(mtd, 0, 0, 0);
355 		fsl_ifc_run_command(mtd);
356 		return;
357 	}
358 
359 	/* ERASE1 stores the block and page address */
360 	case NAND_CMD_ERASE1:
361 		set_addr(mtd, 0, page_addr, 0);
362 		return;
363 
364 	/* ERASE2 uses the block and page address from ERASE1 */
365 	case NAND_CMD_ERASE2:
366 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
367 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
368 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
369 			  &ifc->ifc_nand.nand_fir0);
370 
371 		ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
372 			  (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
373 			  &ifc->ifc_nand.nand_fcr0);
374 
375 		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
376 		ifc_nand_ctrl->read_bytes = 0;
377 		fsl_ifc_run_command(mtd);
378 		return;
379 
380 	/* SEQIN sets up the addr buffer and all registers except the length */
381 	case NAND_CMD_SEQIN: {
382 		u32 nand_fcr0;
383 		ifc_nand_ctrl->column = column;
384 		ifc_nand_ctrl->oob = 0;
385 
386 		if (mtd->writesize > 512) {
387 			nand_fcr0 =
388 				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
389 				(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
390 				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
391 
392 			ifc_out32(
393 				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
394 				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
395 				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
396 				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
397 				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
398 				&ifc->ifc_nand.nand_fir0);
399 			ifc_out32(
400 				(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
401 				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
402 				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
403 				&ifc->ifc_nand.nand_fir1);
404 		} else {
405 			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
406 					IFC_NAND_FCR0_CMD1_SHIFT) |
407 				    (NAND_CMD_SEQIN <<
408 					IFC_NAND_FCR0_CMD2_SHIFT) |
409 				    (NAND_CMD_STATUS <<
410 					IFC_NAND_FCR0_CMD3_SHIFT));
411 
412 			ifc_out32(
413 				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
414 				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
415 				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
416 				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
417 				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
418 				&ifc->ifc_nand.nand_fir0);
419 			ifc_out32(
420 				(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
421 				(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
422 				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
423 				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
424 				&ifc->ifc_nand.nand_fir1);
425 
426 			if (column >= mtd->writesize)
427 				nand_fcr0 |=
428 				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
429 			else
430 				nand_fcr0 |=
431 				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
432 		}
433 
434 		if (column >= mtd->writesize) {
435 			/* OOB area --> READOOB */
436 			column -= mtd->writesize;
437 			ifc_nand_ctrl->oob = 1;
438 		}
439 		ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
440 		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
441 		return;
442 	}
443 
444 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
445 	case NAND_CMD_PAGEPROG: {
446 		if (ifc_nand_ctrl->oob) {
447 			ifc_out32(ifc_nand_ctrl->index -
448 				  ifc_nand_ctrl->column,
449 				  &ifc->ifc_nand.nand_fbcr);
450 		} else {
451 			ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
452 		}
453 
454 		fsl_ifc_run_command(mtd);
455 		return;
456 	}
457 
458 	case NAND_CMD_STATUS: {
459 		void __iomem *addr;
460 
461 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
462 			  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
463 			  &ifc->ifc_nand.nand_fir0);
464 		ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
465 			  &ifc->ifc_nand.nand_fcr0);
466 		ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
467 		set_addr(mtd, 0, 0, 0);
468 		ifc_nand_ctrl->read_bytes = 1;
469 
470 		fsl_ifc_run_command(mtd);
471 
472 		/*
473 		 * The chip always seems to report that it is
474 		 * write-protected, even when it is not.
475 		 */
476 		addr = ifc_nand_ctrl->addr;
477 		if (chip->options & NAND_BUSWIDTH_16)
478 			ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
479 		else
480 			ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
481 		return;
482 	}
483 
484 	case NAND_CMD_RESET:
485 		ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
486 			  &ifc->ifc_nand.nand_fir0);
487 		ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
488 			  &ifc->ifc_nand.nand_fcr0);
489 		fsl_ifc_run_command(mtd);
490 		return;
491 
492 	default:
493 		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
494 					__func__, command);
495 	}
496 }
497 
498 static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
499 {
500 	/* The hardware does not seem to support multiple
501 	 * chips per bank.
502 	 */
503 }
504 
505 /*
506  * Write buf to the IFC NAND Controller Data Buffer
507  */
508 static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
509 {
510 	struct mtd_info *mtd = nand_to_mtd(chip);
511 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
512 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
513 
514 	if (len <= 0) {
515 		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
516 		return;
517 	}
518 
519 	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
520 		dev_err(priv->dev,
521 			"%s: beyond end of buffer (%d requested, %u available)\n",
522 			__func__, len, bufsize - ifc_nand_ctrl->index);
523 		len = bufsize - ifc_nand_ctrl->index;
524 	}
525 
526 	memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
527 	ifc_nand_ctrl->index += len;
528 }
529 
530 /*
531  * Read a byte from either the IFC hardware buffer
532  * read function for 8-bit buswidth
533  */
534 static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
535 {
536 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
537 	unsigned int offset;
538 
539 	/*
540 	 * If there are still bytes in the IFC buffer, then use the
541 	 * next byte.
542 	 */
543 	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
544 		offset = ifc_nand_ctrl->index++;
545 		return ifc_in8(ifc_nand_ctrl->addr + offset);
546 	}
547 
548 	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
549 	return ERR_BYTE;
550 }
551 
552 /*
553  * Read two bytes from the IFC hardware buffer
554  * read function for 16-bit buswith
555  */
556 static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
557 {
558 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
559 	uint16_t data;
560 
561 	/*
562 	 * If there are still bytes in the IFC buffer, then use the
563 	 * next byte.
564 	 */
565 	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
566 		data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
567 		ifc_nand_ctrl->index += 2;
568 		return (uint8_t) data;
569 	}
570 
571 	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
572 	return ERR_BYTE;
573 }
574 
575 /*
576  * Read from the IFC Controller Data Buffer
577  */
578 static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
579 {
580 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
581 	int avail;
582 
583 	if (len < 0) {
584 		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
585 		return;
586 	}
587 
588 	avail = min((unsigned int)len,
589 			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
590 	memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
591 	ifc_nand_ctrl->index += avail;
592 
593 	if (len > avail)
594 		dev_err(priv->dev,
595 			"%s: beyond end of buffer (%d requested, %d available)\n",
596 			__func__, len, avail);
597 }
598 
599 /*
600  * This function is called after Program and Erase Operations to
601  * check for success or failure.
602  */
603 static int fsl_ifc_wait(struct nand_chip *chip)
604 {
605 	struct mtd_info *mtd = nand_to_mtd(chip);
606 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
607 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
608 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
609 	u32 nand_fsr;
610 	int status;
611 
612 	/* Use READ_STATUS command, but wait for the device to be ready */
613 	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
614 		  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
615 		  &ifc->ifc_nand.nand_fir0);
616 	ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
617 		  &ifc->ifc_nand.nand_fcr0);
618 	ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
619 	set_addr(mtd, 0, 0, 0);
620 	ifc_nand_ctrl->read_bytes = 1;
621 
622 	fsl_ifc_run_command(mtd);
623 
624 	nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
625 	status = nand_fsr >> 24;
626 	/*
627 	 * The chip always seems to report that it is
628 	 * write-protected, even when it is not.
629 	 */
630 	return status | NAND_STATUS_WP;
631 }
632 
633 /*
634  * The controller does not check for bitflips in erased pages,
635  * therefore software must check instead.
636  */
637 static int check_erased_page(struct nand_chip *chip, u8 *buf)
638 {
639 	struct mtd_info *mtd = nand_to_mtd(chip);
640 	u8 *ecc = chip->oob_poi;
641 	const int ecc_size = chip->ecc.bytes;
642 	const int pkt_size = chip->ecc.size;
643 	int i, res, bitflips = 0;
644 	struct mtd_oob_region oobregion = { };
645 
646 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
647 	ecc += oobregion.offset;
648 
649 	for (i = 0; i < chip->ecc.steps; ++i) {
650 		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
651 						  NULL, 0,
652 						  chip->ecc.strength);
653 		if (res < 0)
654 			mtd->ecc_stats.failed++;
655 		else
656 			mtd->ecc_stats.corrected += res;
657 
658 		bitflips = max(res, bitflips);
659 		buf += pkt_size;
660 		ecc += ecc_size;
661 	}
662 
663 	return bitflips;
664 }
665 
666 static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
667 			     int oob_required, int page)
668 {
669 	struct mtd_info *mtd = nand_to_mtd(chip);
670 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
671 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
672 	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
673 
674 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
675 	if (oob_required)
676 		fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
677 
678 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
679 		if (!oob_required)
680 			fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
681 
682 		return check_erased_page(chip, buf);
683 	}
684 
685 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
686 		mtd->ecc_stats.failed++;
687 
688 	return nctrl->max_bitflips;
689 }
690 
691 /* ECC will be calculated automatically, and errors will be detected in
692  * waitfunc.
693  */
694 static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
695 			      int oob_required, int page)
696 {
697 	struct mtd_info *mtd = nand_to_mtd(chip);
698 
699 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
700 	fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
701 
702 	return nand_prog_page_end_op(chip);
703 }
704 
705 static int fsl_ifc_attach_chip(struct nand_chip *chip)
706 {
707 	struct mtd_info *mtd = nand_to_mtd(chip);
708 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
709 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
710 	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
711 	u32 csor;
712 
713 	csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
714 
715 	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
716 	if (csor & CSOR_NAND_ECC_DEC_EN) {
717 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
718 		mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
719 
720 		/* Hardware generates ECC per 512 Bytes */
721 		chip->ecc.size = 512;
722 		if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
723 			chip->ecc.bytes = 8;
724 			chip->ecc.strength = 4;
725 		} else {
726 			chip->ecc.bytes = 16;
727 			chip->ecc.strength = 8;
728 		}
729 	} else {
730 		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
731 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
732 	}
733 
734 	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
735 		nanddev_ntargets(&chip->base));
736 	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
737 	        nanddev_target_size(&chip->base));
738 	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
739 							chip->pagemask);
740 	dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
741 		chip->legacy.chip_delay);
742 	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
743 							chip->badblockpos);
744 	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
745 							chip->chip_shift);
746 	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
747 							chip->page_shift);
748 	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
749 							chip->phys_erase_shift);
750 	dev_dbg(priv->dev, "%s: nand->ecc.engine_type = %d\n", __func__,
751 							chip->ecc.engine_type);
752 	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
753 							chip->ecc.steps);
754 	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
755 							chip->ecc.bytes);
756 	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
757 							chip->ecc.total);
758 	dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
759 							mtd->ooblayout);
760 	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
761 	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
762 	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
763 							mtd->erasesize);
764 	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
765 							mtd->writesize);
766 	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
767 							mtd->oobsize);
768 
769 	return 0;
770 }
771 
772 static const struct nand_controller_ops fsl_ifc_controller_ops = {
773 	.attach_chip = fsl_ifc_attach_chip,
774 };
775 
776 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
777 {
778 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
779 	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
780 	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
781 	uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
782 	uint32_t cs = priv->bank;
783 
784 	if (ctrl->version < FSL_IFC_VERSION_1_1_0)
785 		return 0;
786 
787 	if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
788 		u32 ncfgr, status;
789 		int ret;
790 
791 		/* Trigger auto initialization */
792 		ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
793 		ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
794 
795 		/* Wait until done */
796 		ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
797 					 status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
798 					 10, IFC_TIMEOUT_MSECS * 1000);
799 		if (ret)
800 			dev_err(priv->dev, "Failed to initialize SRAM!\n");
801 
802 		return ret;
803 	}
804 
805 	/* Save CSOR and CSOR_ext */
806 	csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
807 	csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
808 
809 	/* chage PageSize 8K and SpareSize 1K*/
810 	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
811 	ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
812 	ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
813 
814 	/* READID */
815 	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
816 		    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
817 		    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
818 		    &ifc_runtime->ifc_nand.nand_fir0);
819 	ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
820 		    &ifc_runtime->ifc_nand.nand_fcr0);
821 	ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
822 
823 	ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
824 
825 	/* Program ROW0/COL0 */
826 	ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
827 	ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
828 
829 	/* set the chip select for NAND Transaction */
830 	ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
831 		&ifc_runtime->ifc_nand.nand_csel);
832 
833 	/* start read seq */
834 	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
835 		&ifc_runtime->ifc_nand.nandseq_strt);
836 
837 	/* wait for command complete flag or timeout */
838 	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
839 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
840 
841 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
842 		pr_err("fsl-ifc: Failed to Initialise SRAM\n");
843 		return -ETIMEDOUT;
844 	}
845 
846 	/* Restore CSOR and CSOR_ext */
847 	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
848 	ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
849 
850 	return 0;
851 }
852 
853 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
854 {
855 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
856 	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
857 	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
858 	struct nand_chip *chip = &priv->chip;
859 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
860 	u32 csor;
861 	int ret;
862 
863 	/* Fill in fsl_ifc_mtd structure */
864 	mtd->dev.parent = priv->dev;
865 	nand_set_flash_node(chip, priv->dev->of_node);
866 
867 	/* fill in nand_chip structure */
868 	/* set up function call table */
869 	if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
870 		& CSPR_PORT_SIZE_16)
871 		chip->legacy.read_byte = fsl_ifc_read_byte16;
872 	else
873 		chip->legacy.read_byte = fsl_ifc_read_byte;
874 
875 	chip->legacy.write_buf = fsl_ifc_write_buf;
876 	chip->legacy.read_buf = fsl_ifc_read_buf;
877 	chip->legacy.select_chip = fsl_ifc_select_chip;
878 	chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
879 	chip->legacy.waitfunc = fsl_ifc_wait;
880 	chip->legacy.set_features = nand_get_set_features_notsupp;
881 	chip->legacy.get_features = nand_get_set_features_notsupp;
882 
883 	chip->bbt_td = &bbt_main_descr;
884 	chip->bbt_md = &bbt_mirror_descr;
885 
886 	ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
887 
888 	/* set up nand options */
889 	chip->bbt_options = NAND_BBT_USE_FLASH;
890 	chip->options = NAND_NO_SUBPAGE_WRITE;
891 
892 	if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
893 		& CSPR_PORT_SIZE_16) {
894 		chip->legacy.read_byte = fsl_ifc_read_byte16;
895 		chip->options |= NAND_BUSWIDTH_16;
896 	} else {
897 		chip->legacy.read_byte = fsl_ifc_read_byte;
898 	}
899 
900 	chip->controller = &ifc_nand_ctrl->controller;
901 	nand_set_controller_data(chip, priv);
902 
903 	chip->ecc.read_page = fsl_ifc_read_page;
904 	chip->ecc.write_page = fsl_ifc_write_page;
905 
906 	csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
907 
908 	switch (csor & CSOR_NAND_PGS_MASK) {
909 	case CSOR_NAND_PGS_512:
910 		if (!(chip->options & NAND_BUSWIDTH_16)) {
911 			/* Avoid conflict with bad block marker */
912 			bbt_main_descr.offs = 0;
913 			bbt_mirror_descr.offs = 0;
914 		}
915 
916 		priv->bufnum_mask = 15;
917 		break;
918 
919 	case CSOR_NAND_PGS_2K:
920 		priv->bufnum_mask = 3;
921 		break;
922 
923 	case CSOR_NAND_PGS_4K:
924 		priv->bufnum_mask = 1;
925 		break;
926 
927 	case CSOR_NAND_PGS_8K:
928 		priv->bufnum_mask = 0;
929 		break;
930 
931 	default:
932 		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
933 		return -ENODEV;
934 	}
935 
936 	ret = fsl_ifc_sram_init(priv);
937 	if (ret)
938 		return ret;
939 
940 	/*
941 	 * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
942 	 * versions which had 8KB. Hence bufnum mask needs to be updated.
943 	 */
944 	if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
945 		priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
946 
947 	return 0;
948 }
949 
950 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
951 {
952 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
953 
954 	kfree(mtd->name);
955 
956 	if (priv->vbase)
957 		iounmap(priv->vbase);
958 
959 	ifc_nand_ctrl->chips[priv->bank] = NULL;
960 
961 	return 0;
962 }
963 
964 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
965 		      phys_addr_t addr)
966 {
967 	u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
968 
969 	if (!(cspr & CSPR_V))
970 		return 0;
971 	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
972 		return 0;
973 
974 	return (cspr & CSPR_BA) == convert_ifc_address(addr);
975 }
976 
977 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
978 
979 static int fsl_ifc_nand_probe(struct platform_device *dev)
980 {
981 	struct fsl_ifc_runtime __iomem *ifc;
982 	struct fsl_ifc_mtd *priv;
983 	struct resource res;
984 	static const char *part_probe_types[]
985 		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
986 	int ret;
987 	int bank;
988 	struct device_node *node = dev->dev.of_node;
989 	struct mtd_info *mtd;
990 
991 	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
992 		return -ENODEV;
993 	ifc = fsl_ifc_ctrl_dev->rregs;
994 
995 	/* get, allocate and map the memory resource */
996 	ret = of_address_to_resource(node, 0, &res);
997 	if (ret) {
998 		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
999 		return ret;
1000 	}
1001 
1002 	/* find which chip select it is connected to */
1003 	for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
1004 		if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
1005 			break;
1006 	}
1007 
1008 	if (bank >= fsl_ifc_ctrl_dev->banks) {
1009 		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
1010 			__func__);
1011 		return -ENODEV;
1012 	}
1013 
1014 	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
1015 	if (!priv)
1016 		return -ENOMEM;
1017 
1018 	mutex_lock(&fsl_ifc_nand_mutex);
1019 	if (!fsl_ifc_ctrl_dev->nand) {
1020 		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1021 		if (!ifc_nand_ctrl) {
1022 			mutex_unlock(&fsl_ifc_nand_mutex);
1023 			return -ENOMEM;
1024 		}
1025 
1026 		ifc_nand_ctrl->read_bytes = 0;
1027 		ifc_nand_ctrl->index = 0;
1028 		ifc_nand_ctrl->addr = NULL;
1029 		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1030 
1031 		nand_controller_init(&ifc_nand_ctrl->controller);
1032 	} else {
1033 		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1034 	}
1035 	mutex_unlock(&fsl_ifc_nand_mutex);
1036 
1037 	ifc_nand_ctrl->chips[bank] = priv;
1038 	priv->bank = bank;
1039 	priv->ctrl = fsl_ifc_ctrl_dev;
1040 	priv->dev = &dev->dev;
1041 
1042 	priv->vbase = ioremap(res.start, resource_size(&res));
1043 	if (!priv->vbase) {
1044 		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1045 		ret = -ENOMEM;
1046 		goto err;
1047 	}
1048 
1049 	dev_set_drvdata(priv->dev, priv);
1050 
1051 	ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1052 		  IFC_NAND_EVTER_EN_FTOER_EN |
1053 		  IFC_NAND_EVTER_EN_WPER_EN,
1054 		  &ifc->ifc_nand.nand_evter_en);
1055 
1056 	/* enable NAND Machine Interrupts */
1057 	ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1058 		  IFC_NAND_EVTER_INTR_FTOERIR_EN |
1059 		  IFC_NAND_EVTER_INTR_WPERIR_EN,
1060 		  &ifc->ifc_nand.nand_evter_intr_en);
1061 
1062 	mtd = nand_to_mtd(&priv->chip);
1063 	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1064 	if (!mtd->name) {
1065 		ret = -ENOMEM;
1066 		goto err;
1067 	}
1068 
1069 	ret = fsl_ifc_chip_init(priv);
1070 	if (ret)
1071 		goto err;
1072 
1073 	priv->chip.controller->ops = &fsl_ifc_controller_ops;
1074 	ret = nand_scan(&priv->chip, 1);
1075 	if (ret)
1076 		goto err;
1077 
1078 	/* First look for RedBoot table or partitions on the command
1079 	 * line, these take precedence over device tree information */
1080 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1081 	if (ret)
1082 		goto cleanup_nand;
1083 
1084 	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1085 		 (unsigned long long)res.start, priv->bank);
1086 
1087 	return 0;
1088 
1089 cleanup_nand:
1090 	nand_cleanup(&priv->chip);
1091 err:
1092 	fsl_ifc_chip_remove(priv);
1093 
1094 	return ret;
1095 }
1096 
1097 static void fsl_ifc_nand_remove(struct platform_device *dev)
1098 {
1099 	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1100 	struct nand_chip *chip = &priv->chip;
1101 	int ret;
1102 
1103 	ret = mtd_device_unregister(nand_to_mtd(chip));
1104 	WARN_ON(ret);
1105 	nand_cleanup(chip);
1106 
1107 	fsl_ifc_chip_remove(priv);
1108 
1109 	mutex_lock(&fsl_ifc_nand_mutex);
1110 	ifc_nand_ctrl->counter--;
1111 	if (!ifc_nand_ctrl->counter) {
1112 		fsl_ifc_ctrl_dev->nand = NULL;
1113 		kfree(ifc_nand_ctrl);
1114 	}
1115 	mutex_unlock(&fsl_ifc_nand_mutex);
1116 }
1117 
1118 static const struct of_device_id fsl_ifc_nand_match[] = {
1119 	{
1120 		.compatible = "fsl,ifc-nand",
1121 	},
1122 	{}
1123 };
1124 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1125 
1126 static struct platform_driver fsl_ifc_nand_driver = {
1127 	.driver = {
1128 		.name	= "fsl,ifc-nand",
1129 		.of_match_table = fsl_ifc_nand_match,
1130 	},
1131 	.probe       = fsl_ifc_nand_probe,
1132 	.remove_new  = fsl_ifc_nand_remove,
1133 };
1134 
1135 module_platform_driver(fsl_ifc_nand_driver);
1136 
1137 MODULE_LICENSE("GPL");
1138 MODULE_AUTHOR("Freescale");
1139 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
1140