xref: /openbmc/linux/drivers/mtd/nand/raw/fsl_ifc_nand.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Freescale Integrated Flash Controller NAND driver
3  *
4  * Copyright 2011-2012 Freescale Semiconductor, Inc
5  *
6  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/of_address.h>
27 #include <linux/slab.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/rawnand.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/nand_ecc.h>
32 #include <linux/fsl_ifc.h>
33 #include <linux/iopoll.h>
34 
35 #define ERR_BYTE		0xFF /* Value returned for read
36 					bytes when read failed	*/
37 #define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
38 					for IFC NAND Machine	*/
39 
40 struct fsl_ifc_ctrl;
41 
42 /* mtd information per set */
43 struct fsl_ifc_mtd {
44 	struct nand_chip chip;
45 	struct fsl_ifc_ctrl *ctrl;
46 
47 	struct device *dev;
48 	int bank;		/* Chip select bank number		*/
49 	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
50 	u8 __iomem *vbase;      /* Chip select base virtual address	*/
51 };
52 
53 /* overview of the fsl ifc controller */
54 struct fsl_ifc_nand_ctrl {
55 	struct nand_controller controller;
56 	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
57 
58 	void __iomem *addr;	/* Address of assigned IFC buffer	*/
59 	unsigned int page;	/* Last page written to / read from	*/
60 	unsigned int read_bytes;/* Number of bytes read during command	*/
61 	unsigned int column;	/* Saved column from SEQIN		*/
62 	unsigned int index;	/* Pointer to next byte to 'read'	*/
63 	unsigned int oob;	/* Non zero if operating on OOB data	*/
64 	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
65 	unsigned int counter;	/* counter for the initializations	*/
66 	unsigned int max_bitflips;  /* Saved during READ0 cmd		*/
67 };
68 
69 static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
70 
71 /*
72  * Generic flash bbt descriptors
73  */
74 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
75 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
76 
77 static struct nand_bbt_descr bbt_main_descr = {
78 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
79 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
80 	.offs =	2, /* 0 on 8-bit small page */
81 	.len = 4,
82 	.veroffs = 6,
83 	.maxblocks = 4,
84 	.pattern = bbt_pattern,
85 };
86 
87 static struct nand_bbt_descr bbt_mirror_descr = {
88 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
89 		   NAND_BBT_2BIT | NAND_BBT_VERSION,
90 	.offs =	2, /* 0 on 8-bit small page */
91 	.len = 4,
92 	.veroffs = 6,
93 	.maxblocks = 4,
94 	.pattern = mirror_pattern,
95 };
96 
97 static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
98 				 struct mtd_oob_region *oobregion)
99 {
100 	struct nand_chip *chip = mtd_to_nand(mtd);
101 
102 	if (section)
103 		return -ERANGE;
104 
105 	oobregion->offset = 8;
106 	oobregion->length = chip->ecc.total;
107 
108 	return 0;
109 }
110 
111 static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
112 				  struct mtd_oob_region *oobregion)
113 {
114 	struct nand_chip *chip = mtd_to_nand(mtd);
115 
116 	if (section > 1)
117 		return -ERANGE;
118 
119 	if (mtd->writesize == 512 &&
120 	    !(chip->options & NAND_BUSWIDTH_16)) {
121 		if (!section) {
122 			oobregion->offset = 0;
123 			oobregion->length = 5;
124 		} else {
125 			oobregion->offset = 6;
126 			oobregion->length = 2;
127 		}
128 
129 		return 0;
130 	}
131 
132 	if (!section) {
133 		oobregion->offset = 2;
134 		oobregion->length = 6;
135 	} else {
136 		oobregion->offset = chip->ecc.total + 8;
137 		oobregion->length = mtd->oobsize - oobregion->offset;
138 	}
139 
140 	return 0;
141 }
142 
143 static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
144 	.ecc = fsl_ifc_ooblayout_ecc,
145 	.free = fsl_ifc_ooblayout_free,
146 };
147 
148 /*
149  * Set up the IFC hardware block and page address fields, and the ifc nand
150  * structure addr field to point to the correct IFC buffer in memory
151  */
152 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
153 {
154 	struct nand_chip *chip = mtd_to_nand(mtd);
155 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
156 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
157 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
158 	int buf_num;
159 
160 	ifc_nand_ctrl->page = page_addr;
161 	/* Program ROW0/COL0 */
162 	ifc_out32(page_addr, &ifc->ifc_nand.row0);
163 	ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
164 
165 	buf_num = page_addr & priv->bufnum_mask;
166 
167 	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
168 	ifc_nand_ctrl->index = column;
169 
170 	/* for OOB data point to the second half of the buffer */
171 	if (oob)
172 		ifc_nand_ctrl->index += mtd->writesize;
173 }
174 
175 /* returns nonzero if entire page is blank */
176 static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
177 			  u32 eccstat, unsigned int bufnum)
178 {
179 	return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
180 }
181 
182 /*
183  * execute IFC NAND command and wait for it to complete
184  */
185 static void fsl_ifc_run_command(struct mtd_info *mtd)
186 {
187 	struct nand_chip *chip = mtd_to_nand(mtd);
188 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
189 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
190 	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
191 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
192 	u32 eccstat;
193 	int i;
194 
195 	/* set the chip select for NAND Transaction */
196 	ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
197 		  &ifc->ifc_nand.nand_csel);
198 
199 	dev_vdbg(priv->dev,
200 			"%s: fir0=%08x fcr0=%08x\n",
201 			__func__,
202 			ifc_in32(&ifc->ifc_nand.nand_fir0),
203 			ifc_in32(&ifc->ifc_nand.nand_fcr0));
204 
205 	ctrl->nand_stat = 0;
206 
207 	/* start read/write seq */
208 	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
209 
210 	/* wait for command complete flag or timeout */
211 	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
212 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
213 
214 	/* ctrl->nand_stat will be updated from IRQ context */
215 	if (!ctrl->nand_stat)
216 		dev_err(priv->dev, "Controller is not responding\n");
217 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
218 		dev_err(priv->dev, "NAND Flash Timeout Error\n");
219 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
220 		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
221 
222 	nctrl->max_bitflips = 0;
223 
224 	if (nctrl->eccread) {
225 		int errors;
226 		int bufnum = nctrl->page & priv->bufnum_mask;
227 		int sector_start = bufnum * chip->ecc.steps;
228 		int sector_end = sector_start + chip->ecc.steps - 1;
229 		__be32 __iomem *eccstat_regs;
230 
231 		eccstat_regs = ifc->ifc_nand.nand_eccstat;
232 		eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
233 
234 		for (i = sector_start; i <= sector_end; i++) {
235 			if (i != sector_start && !(i % 4))
236 				eccstat = ifc_in32(&eccstat_regs[i / 4]);
237 
238 			errors = check_read_ecc(mtd, ctrl, eccstat, i);
239 
240 			if (errors == 15) {
241 				/*
242 				 * Uncorrectable error.
243 				 * We'll check for blank pages later.
244 				 *
245 				 * We disable ECCER reporting due to...
246 				 * erratum IFC-A002770 -- so report it now if we
247 				 * see an uncorrectable error in ECCSTAT.
248 				 */
249 				ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
250 				continue;
251 			}
252 
253 			mtd->ecc_stats.corrected += errors;
254 			nctrl->max_bitflips = max_t(unsigned int,
255 						    nctrl->max_bitflips,
256 						    errors);
257 		}
258 
259 		nctrl->eccread = 0;
260 	}
261 }
262 
263 static void fsl_ifc_do_read(struct nand_chip *chip,
264 			    int oob,
265 			    struct mtd_info *mtd)
266 {
267 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
268 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
269 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
270 
271 	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
272 	if (mtd->writesize > 512) {
273 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
274 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
275 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
276 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
277 			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
278 			  &ifc->ifc_nand.nand_fir0);
279 		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
280 
281 		ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
282 			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
283 			  &ifc->ifc_nand.nand_fcr0);
284 	} else {
285 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
286 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
287 			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
288 			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
289 			  &ifc->ifc_nand.nand_fir0);
290 		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
291 
292 		if (oob)
293 			ifc_out32(NAND_CMD_READOOB <<
294 				  IFC_NAND_FCR0_CMD0_SHIFT,
295 				  &ifc->ifc_nand.nand_fcr0);
296 		else
297 			ifc_out32(NAND_CMD_READ0 <<
298 				  IFC_NAND_FCR0_CMD0_SHIFT,
299 				  &ifc->ifc_nand.nand_fcr0);
300 	}
301 }
302 
303 /* cmdfunc send commands to the IFC NAND Machine */
304 static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
305 			    int column, int page_addr) {
306 	struct mtd_info *mtd = nand_to_mtd(chip);
307 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
308 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
309 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
310 
311 	/* clear the read buffer */
312 	ifc_nand_ctrl->read_bytes = 0;
313 	if (command != NAND_CMD_PAGEPROG)
314 		ifc_nand_ctrl->index = 0;
315 
316 	switch (command) {
317 	/* READ0 read the entire buffer to use hardware ECC. */
318 	case NAND_CMD_READ0:
319 		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
320 		set_addr(mtd, 0, page_addr, 0);
321 
322 		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
323 		ifc_nand_ctrl->index += column;
324 
325 		if (chip->ecc.mode == NAND_ECC_HW)
326 			ifc_nand_ctrl->eccread = 1;
327 
328 		fsl_ifc_do_read(chip, 0, mtd);
329 		fsl_ifc_run_command(mtd);
330 		return;
331 
332 	/* READOOB reads only the OOB because no ECC is performed. */
333 	case NAND_CMD_READOOB:
334 		ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
335 		set_addr(mtd, column, page_addr, 1);
336 
337 		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
338 
339 		fsl_ifc_do_read(chip, 1, mtd);
340 		fsl_ifc_run_command(mtd);
341 
342 		return;
343 
344 	case NAND_CMD_READID:
345 	case NAND_CMD_PARAM: {
346 		/*
347 		 * For READID, read 8 bytes that are currently used.
348 		 * For PARAM, read all 3 copies of 256-bytes pages.
349 		 */
350 		int len = 8;
351 		int timing = IFC_FIR_OP_RB;
352 		if (command == NAND_CMD_PARAM) {
353 			timing = IFC_FIR_OP_RBCD;
354 			len = 256 * 3;
355 		}
356 
357 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
358 			  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
359 			  (timing << IFC_NAND_FIR0_OP2_SHIFT),
360 			  &ifc->ifc_nand.nand_fir0);
361 		ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
362 			  &ifc->ifc_nand.nand_fcr0);
363 		ifc_out32(column, &ifc->ifc_nand.row3);
364 
365 		ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
366 		ifc_nand_ctrl->read_bytes = len;
367 
368 		set_addr(mtd, 0, 0, 0);
369 		fsl_ifc_run_command(mtd);
370 		return;
371 	}
372 
373 	/* ERASE1 stores the block and page address */
374 	case NAND_CMD_ERASE1:
375 		set_addr(mtd, 0, page_addr, 0);
376 		return;
377 
378 	/* ERASE2 uses the block and page address from ERASE1 */
379 	case NAND_CMD_ERASE2:
380 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
381 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
382 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
383 			  &ifc->ifc_nand.nand_fir0);
384 
385 		ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
386 			  (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
387 			  &ifc->ifc_nand.nand_fcr0);
388 
389 		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
390 		ifc_nand_ctrl->read_bytes = 0;
391 		fsl_ifc_run_command(mtd);
392 		return;
393 
394 	/* SEQIN sets up the addr buffer and all registers except the length */
395 	case NAND_CMD_SEQIN: {
396 		u32 nand_fcr0;
397 		ifc_nand_ctrl->column = column;
398 		ifc_nand_ctrl->oob = 0;
399 
400 		if (mtd->writesize > 512) {
401 			nand_fcr0 =
402 				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
403 				(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
404 				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
405 
406 			ifc_out32(
407 				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
408 				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
409 				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
410 				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
411 				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
412 				&ifc->ifc_nand.nand_fir0);
413 			ifc_out32(
414 				(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
415 				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
416 				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
417 				&ifc->ifc_nand.nand_fir1);
418 		} else {
419 			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
420 					IFC_NAND_FCR0_CMD1_SHIFT) |
421 				    (NAND_CMD_SEQIN <<
422 					IFC_NAND_FCR0_CMD2_SHIFT) |
423 				    (NAND_CMD_STATUS <<
424 					IFC_NAND_FCR0_CMD3_SHIFT));
425 
426 			ifc_out32(
427 				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
428 				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
429 				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
430 				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
431 				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
432 				&ifc->ifc_nand.nand_fir0);
433 			ifc_out32(
434 				(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
435 				(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
436 				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
437 				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
438 				&ifc->ifc_nand.nand_fir1);
439 
440 			if (column >= mtd->writesize)
441 				nand_fcr0 |=
442 				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
443 			else
444 				nand_fcr0 |=
445 				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
446 		}
447 
448 		if (column >= mtd->writesize) {
449 			/* OOB area --> READOOB */
450 			column -= mtd->writesize;
451 			ifc_nand_ctrl->oob = 1;
452 		}
453 		ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
454 		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
455 		return;
456 	}
457 
458 	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
459 	case NAND_CMD_PAGEPROG: {
460 		if (ifc_nand_ctrl->oob) {
461 			ifc_out32(ifc_nand_ctrl->index -
462 				  ifc_nand_ctrl->column,
463 				  &ifc->ifc_nand.nand_fbcr);
464 		} else {
465 			ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
466 		}
467 
468 		fsl_ifc_run_command(mtd);
469 		return;
470 	}
471 
472 	case NAND_CMD_STATUS: {
473 		void __iomem *addr;
474 
475 		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
476 			  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
477 			  &ifc->ifc_nand.nand_fir0);
478 		ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
479 			  &ifc->ifc_nand.nand_fcr0);
480 		ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
481 		set_addr(mtd, 0, 0, 0);
482 		ifc_nand_ctrl->read_bytes = 1;
483 
484 		fsl_ifc_run_command(mtd);
485 
486 		/*
487 		 * The chip always seems to report that it is
488 		 * write-protected, even when it is not.
489 		 */
490 		addr = ifc_nand_ctrl->addr;
491 		if (chip->options & NAND_BUSWIDTH_16)
492 			ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
493 		else
494 			ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
495 		return;
496 	}
497 
498 	case NAND_CMD_RESET:
499 		ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
500 			  &ifc->ifc_nand.nand_fir0);
501 		ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
502 			  &ifc->ifc_nand.nand_fcr0);
503 		fsl_ifc_run_command(mtd);
504 		return;
505 
506 	default:
507 		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
508 					__func__, command);
509 	}
510 }
511 
512 static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
513 {
514 	/* The hardware does not seem to support multiple
515 	 * chips per bank.
516 	 */
517 }
518 
519 /*
520  * Write buf to the IFC NAND Controller Data Buffer
521  */
522 static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
523 {
524 	struct mtd_info *mtd = nand_to_mtd(chip);
525 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
526 	unsigned int bufsize = mtd->writesize + mtd->oobsize;
527 
528 	if (len <= 0) {
529 		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
530 		return;
531 	}
532 
533 	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
534 		dev_err(priv->dev,
535 			"%s: beyond end of buffer (%d requested, %u available)\n",
536 			__func__, len, bufsize - ifc_nand_ctrl->index);
537 		len = bufsize - ifc_nand_ctrl->index;
538 	}
539 
540 	memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
541 	ifc_nand_ctrl->index += len;
542 }
543 
544 /*
545  * Read a byte from either the IFC hardware buffer
546  * read function for 8-bit buswidth
547  */
548 static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
549 {
550 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
551 	unsigned int offset;
552 
553 	/*
554 	 * If there are still bytes in the IFC buffer, then use the
555 	 * next byte.
556 	 */
557 	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
558 		offset = ifc_nand_ctrl->index++;
559 		return ifc_in8(ifc_nand_ctrl->addr + offset);
560 	}
561 
562 	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
563 	return ERR_BYTE;
564 }
565 
566 /*
567  * Read two bytes from the IFC hardware buffer
568  * read function for 16-bit buswith
569  */
570 static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
571 {
572 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
573 	uint16_t data;
574 
575 	/*
576 	 * If there are still bytes in the IFC buffer, then use the
577 	 * next byte.
578 	 */
579 	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
580 		data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
581 		ifc_nand_ctrl->index += 2;
582 		return (uint8_t) data;
583 	}
584 
585 	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
586 	return ERR_BYTE;
587 }
588 
589 /*
590  * Read from the IFC Controller Data Buffer
591  */
592 static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
593 {
594 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
595 	int avail;
596 
597 	if (len < 0) {
598 		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
599 		return;
600 	}
601 
602 	avail = min((unsigned int)len,
603 			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
604 	memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
605 	ifc_nand_ctrl->index += avail;
606 
607 	if (len > avail)
608 		dev_err(priv->dev,
609 			"%s: beyond end of buffer (%d requested, %d available)\n",
610 			__func__, len, avail);
611 }
612 
613 /*
614  * This function is called after Program and Erase Operations to
615  * check for success or failure.
616  */
617 static int fsl_ifc_wait(struct nand_chip *chip)
618 {
619 	struct mtd_info *mtd = nand_to_mtd(chip);
620 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
621 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
622 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
623 	u32 nand_fsr;
624 	int status;
625 
626 	/* Use READ_STATUS command, but wait for the device to be ready */
627 	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
628 		  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
629 		  &ifc->ifc_nand.nand_fir0);
630 	ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
631 		  &ifc->ifc_nand.nand_fcr0);
632 	ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
633 	set_addr(mtd, 0, 0, 0);
634 	ifc_nand_ctrl->read_bytes = 1;
635 
636 	fsl_ifc_run_command(mtd);
637 
638 	nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
639 	status = nand_fsr >> 24;
640 	/*
641 	 * The chip always seems to report that it is
642 	 * write-protected, even when it is not.
643 	 */
644 	return status | NAND_STATUS_WP;
645 }
646 
647 /*
648  * The controller does not check for bitflips in erased pages,
649  * therefore software must check instead.
650  */
651 static int check_erased_page(struct nand_chip *chip, u8 *buf)
652 {
653 	struct mtd_info *mtd = nand_to_mtd(chip);
654 	u8 *ecc = chip->oob_poi;
655 	const int ecc_size = chip->ecc.bytes;
656 	const int pkt_size = chip->ecc.size;
657 	int i, res, bitflips = 0;
658 	struct mtd_oob_region oobregion = { };
659 
660 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
661 	ecc += oobregion.offset;
662 
663 	for (i = 0; i < chip->ecc.steps; ++i) {
664 		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
665 						  NULL, 0,
666 						  chip->ecc.strength);
667 		if (res < 0)
668 			mtd->ecc_stats.failed++;
669 		else
670 			mtd->ecc_stats.corrected += res;
671 
672 		bitflips = max(res, bitflips);
673 		buf += pkt_size;
674 		ecc += ecc_size;
675 	}
676 
677 	return bitflips;
678 }
679 
680 static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
681 			     int oob_required, int page)
682 {
683 	struct mtd_info *mtd = nand_to_mtd(chip);
684 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
685 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
686 	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
687 
688 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
689 	if (oob_required)
690 		fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
691 
692 	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
693 		if (!oob_required)
694 			fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
695 
696 		return check_erased_page(chip, buf);
697 	}
698 
699 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
700 		mtd->ecc_stats.failed++;
701 
702 	return nctrl->max_bitflips;
703 }
704 
705 /* ECC will be calculated automatically, and errors will be detected in
706  * waitfunc.
707  */
708 static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
709 			      int oob_required, int page)
710 {
711 	struct mtd_info *mtd = nand_to_mtd(chip);
712 
713 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
714 	fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
715 
716 	return nand_prog_page_end_op(chip);
717 }
718 
719 static int fsl_ifc_attach_chip(struct nand_chip *chip)
720 {
721 	struct mtd_info *mtd = nand_to_mtd(chip);
722 	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
723 
724 	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
725 							chip->numchips);
726 	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
727 							chip->chipsize);
728 	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
729 							chip->pagemask);
730 	dev_dbg(priv->dev, "%s: nand->legacy.chip_delay = %d\n", __func__,
731 		chip->legacy.chip_delay);
732 	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
733 							chip->badblockpos);
734 	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
735 							chip->chip_shift);
736 	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
737 							chip->page_shift);
738 	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
739 							chip->phys_erase_shift);
740 	dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
741 							chip->ecc.mode);
742 	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
743 							chip->ecc.steps);
744 	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
745 							chip->ecc.bytes);
746 	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
747 							chip->ecc.total);
748 	dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
749 							mtd->ooblayout);
750 	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
751 	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
752 	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
753 							mtd->erasesize);
754 	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
755 							mtd->writesize);
756 	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
757 							mtd->oobsize);
758 
759 	return 0;
760 }
761 
762 static const struct nand_controller_ops fsl_ifc_controller_ops = {
763 	.attach_chip = fsl_ifc_attach_chip,
764 };
765 
766 static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
767 {
768 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
769 	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
770 	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
771 	uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
772 	uint32_t cs = priv->bank;
773 
774 	if (ctrl->version < FSL_IFC_VERSION_1_1_0)
775 		return 0;
776 
777 	if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
778 		u32 ncfgr, status;
779 		int ret;
780 
781 		/* Trigger auto initialization */
782 		ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
783 		ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
784 
785 		/* Wait until done */
786 		ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
787 					 status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
788 					 10, IFC_TIMEOUT_MSECS * 1000);
789 		if (ret)
790 			dev_err(priv->dev, "Failed to initialize SRAM!\n");
791 
792 		return ret;
793 	}
794 
795 	/* Save CSOR and CSOR_ext */
796 	csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
797 	csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
798 
799 	/* chage PageSize 8K and SpareSize 1K*/
800 	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
801 	ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
802 	ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
803 
804 	/* READID */
805 	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
806 		    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
807 		    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
808 		    &ifc_runtime->ifc_nand.nand_fir0);
809 	ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
810 		    &ifc_runtime->ifc_nand.nand_fcr0);
811 	ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
812 
813 	ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
814 
815 	/* Program ROW0/COL0 */
816 	ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
817 	ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
818 
819 	/* set the chip select for NAND Transaction */
820 	ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
821 		&ifc_runtime->ifc_nand.nand_csel);
822 
823 	/* start read seq */
824 	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
825 		&ifc_runtime->ifc_nand.nandseq_strt);
826 
827 	/* wait for command complete flag or timeout */
828 	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
829 			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
830 
831 	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
832 		pr_err("fsl-ifc: Failed to Initialise SRAM\n");
833 		return -ETIMEDOUT;
834 	}
835 
836 	/* Restore CSOR and CSOR_ext */
837 	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
838 	ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
839 
840 	return 0;
841 }
842 
843 static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
844 {
845 	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
846 	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
847 	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
848 	struct nand_chip *chip = &priv->chip;
849 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
850 	u32 csor;
851 	int ret;
852 
853 	/* Fill in fsl_ifc_mtd structure */
854 	mtd->dev.parent = priv->dev;
855 	nand_set_flash_node(chip, priv->dev->of_node);
856 
857 	/* fill in nand_chip structure */
858 	/* set up function call table */
859 	if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
860 		& CSPR_PORT_SIZE_16)
861 		chip->legacy.read_byte = fsl_ifc_read_byte16;
862 	else
863 		chip->legacy.read_byte = fsl_ifc_read_byte;
864 
865 	chip->legacy.write_buf = fsl_ifc_write_buf;
866 	chip->legacy.read_buf = fsl_ifc_read_buf;
867 	chip->select_chip = fsl_ifc_select_chip;
868 	chip->legacy.cmdfunc = fsl_ifc_cmdfunc;
869 	chip->legacy.waitfunc = fsl_ifc_wait;
870 	chip->legacy.set_features = nand_get_set_features_notsupp;
871 	chip->legacy.get_features = nand_get_set_features_notsupp;
872 
873 	chip->bbt_td = &bbt_main_descr;
874 	chip->bbt_md = &bbt_mirror_descr;
875 
876 	ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
877 
878 	/* set up nand options */
879 	chip->bbt_options = NAND_BBT_USE_FLASH;
880 	chip->options = NAND_NO_SUBPAGE_WRITE;
881 
882 	if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
883 		& CSPR_PORT_SIZE_16) {
884 		chip->legacy.read_byte = fsl_ifc_read_byte16;
885 		chip->options |= NAND_BUSWIDTH_16;
886 	} else {
887 		chip->legacy.read_byte = fsl_ifc_read_byte;
888 	}
889 
890 	chip->controller = &ifc_nand_ctrl->controller;
891 	nand_set_controller_data(chip, priv);
892 
893 	chip->ecc.read_page = fsl_ifc_read_page;
894 	chip->ecc.write_page = fsl_ifc_write_page;
895 
896 	csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
897 
898 	switch (csor & CSOR_NAND_PGS_MASK) {
899 	case CSOR_NAND_PGS_512:
900 		if (!(chip->options & NAND_BUSWIDTH_16)) {
901 			/* Avoid conflict with bad block marker */
902 			bbt_main_descr.offs = 0;
903 			bbt_mirror_descr.offs = 0;
904 		}
905 
906 		priv->bufnum_mask = 15;
907 		break;
908 
909 	case CSOR_NAND_PGS_2K:
910 		priv->bufnum_mask = 3;
911 		break;
912 
913 	case CSOR_NAND_PGS_4K:
914 		priv->bufnum_mask = 1;
915 		break;
916 
917 	case CSOR_NAND_PGS_8K:
918 		priv->bufnum_mask = 0;
919 		break;
920 
921 	default:
922 		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
923 		return -ENODEV;
924 	}
925 
926 	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
927 	if (csor & CSOR_NAND_ECC_DEC_EN) {
928 		chip->ecc.mode = NAND_ECC_HW;
929 		mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
930 
931 		/* Hardware generates ECC per 512 Bytes */
932 		chip->ecc.size = 512;
933 		if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
934 			chip->ecc.bytes = 8;
935 			chip->ecc.strength = 4;
936 		} else {
937 			chip->ecc.bytes = 16;
938 			chip->ecc.strength = 8;
939 		}
940 	} else {
941 		chip->ecc.mode = NAND_ECC_SOFT;
942 		chip->ecc.algo = NAND_ECC_HAMMING;
943 	}
944 
945 	ret = fsl_ifc_sram_init(priv);
946 	if (ret)
947 		return ret;
948 
949 	/*
950 	 * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
951 	 * versions which had 8KB. Hence bufnum mask needs to be updated.
952 	 */
953 	if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
954 		priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
955 
956 	return 0;
957 }
958 
959 static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
960 {
961 	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
962 
963 	kfree(mtd->name);
964 
965 	if (priv->vbase)
966 		iounmap(priv->vbase);
967 
968 	ifc_nand_ctrl->chips[priv->bank] = NULL;
969 
970 	return 0;
971 }
972 
973 static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
974 		      phys_addr_t addr)
975 {
976 	u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
977 
978 	if (!(cspr & CSPR_V))
979 		return 0;
980 	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
981 		return 0;
982 
983 	return (cspr & CSPR_BA) == convert_ifc_address(addr);
984 }
985 
986 static DEFINE_MUTEX(fsl_ifc_nand_mutex);
987 
988 static int fsl_ifc_nand_probe(struct platform_device *dev)
989 {
990 	struct fsl_ifc_runtime __iomem *ifc;
991 	struct fsl_ifc_mtd *priv;
992 	struct resource res;
993 	static const char *part_probe_types[]
994 		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
995 	int ret;
996 	int bank;
997 	struct device_node *node = dev->dev.of_node;
998 	struct mtd_info *mtd;
999 
1000 	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
1001 		return -ENODEV;
1002 	ifc = fsl_ifc_ctrl_dev->rregs;
1003 
1004 	/* get, allocate and map the memory resource */
1005 	ret = of_address_to_resource(node, 0, &res);
1006 	if (ret) {
1007 		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
1008 		return ret;
1009 	}
1010 
1011 	/* find which chip select it is connected to */
1012 	for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
1013 		if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
1014 			break;
1015 	}
1016 
1017 	if (bank >= fsl_ifc_ctrl_dev->banks) {
1018 		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
1019 			__func__);
1020 		return -ENODEV;
1021 	}
1022 
1023 	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
1024 	if (!priv)
1025 		return -ENOMEM;
1026 
1027 	mutex_lock(&fsl_ifc_nand_mutex);
1028 	if (!fsl_ifc_ctrl_dev->nand) {
1029 		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
1030 		if (!ifc_nand_ctrl) {
1031 			mutex_unlock(&fsl_ifc_nand_mutex);
1032 			return -ENOMEM;
1033 		}
1034 
1035 		ifc_nand_ctrl->read_bytes = 0;
1036 		ifc_nand_ctrl->index = 0;
1037 		ifc_nand_ctrl->addr = NULL;
1038 		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
1039 
1040 		nand_controller_init(&ifc_nand_ctrl->controller);
1041 	} else {
1042 		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
1043 	}
1044 	mutex_unlock(&fsl_ifc_nand_mutex);
1045 
1046 	ifc_nand_ctrl->chips[bank] = priv;
1047 	priv->bank = bank;
1048 	priv->ctrl = fsl_ifc_ctrl_dev;
1049 	priv->dev = &dev->dev;
1050 
1051 	priv->vbase = ioremap(res.start, resource_size(&res));
1052 	if (!priv->vbase) {
1053 		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
1054 		ret = -ENOMEM;
1055 		goto err;
1056 	}
1057 
1058 	dev_set_drvdata(priv->dev, priv);
1059 
1060 	ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
1061 		  IFC_NAND_EVTER_EN_FTOER_EN |
1062 		  IFC_NAND_EVTER_EN_WPER_EN,
1063 		  &ifc->ifc_nand.nand_evter_en);
1064 
1065 	/* enable NAND Machine Interrupts */
1066 	ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
1067 		  IFC_NAND_EVTER_INTR_FTOERIR_EN |
1068 		  IFC_NAND_EVTER_INTR_WPERIR_EN,
1069 		  &ifc->ifc_nand.nand_evter_intr_en);
1070 
1071 	mtd = nand_to_mtd(&priv->chip);
1072 	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
1073 	if (!mtd->name) {
1074 		ret = -ENOMEM;
1075 		goto err;
1076 	}
1077 
1078 	ret = fsl_ifc_chip_init(priv);
1079 	if (ret)
1080 		goto err;
1081 
1082 	priv->chip.controller->ops = &fsl_ifc_controller_ops;
1083 	ret = nand_scan(&priv->chip, 1);
1084 	if (ret)
1085 		goto err;
1086 
1087 	/* First look for RedBoot table or partitions on the command
1088 	 * line, these take precedence over device tree information */
1089 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
1090 	if (ret)
1091 		goto cleanup_nand;
1092 
1093 	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
1094 		 (unsigned long long)res.start, priv->bank);
1095 
1096 	return 0;
1097 
1098 cleanup_nand:
1099 	nand_cleanup(&priv->chip);
1100 err:
1101 	fsl_ifc_chip_remove(priv);
1102 
1103 	return ret;
1104 }
1105 
1106 static int fsl_ifc_nand_remove(struct platform_device *dev)
1107 {
1108 	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
1109 
1110 	nand_release(&priv->chip);
1111 	fsl_ifc_chip_remove(priv);
1112 
1113 	mutex_lock(&fsl_ifc_nand_mutex);
1114 	ifc_nand_ctrl->counter--;
1115 	if (!ifc_nand_ctrl->counter) {
1116 		fsl_ifc_ctrl_dev->nand = NULL;
1117 		kfree(ifc_nand_ctrl);
1118 	}
1119 	mutex_unlock(&fsl_ifc_nand_mutex);
1120 
1121 	return 0;
1122 }
1123 
1124 static const struct of_device_id fsl_ifc_nand_match[] = {
1125 	{
1126 		.compatible = "fsl,ifc-nand",
1127 	},
1128 	{}
1129 };
1130 MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
1131 
1132 static struct platform_driver fsl_ifc_nand_driver = {
1133 	.driver = {
1134 		.name	= "fsl,ifc-nand",
1135 		.of_match_table = fsl_ifc_nand_match,
1136 	},
1137 	.probe       = fsl_ifc_nand_probe,
1138 	.remove      = fsl_ifc_nand_remove,
1139 };
1140 
1141 module_platform_driver(fsl_ifc_nand_driver);
1142 
1143 MODULE_LICENSE("GPL");
1144 MODULE_AUTHOR("Freescale");
1145 MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
1146