xref: /openbmc/linux/drivers/mtd/nand/raw/diskonchip.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * (C) 2003 Red Hat, Inc.
3  * (C) 2004 Dan Brown <dan_brown@ieee.org>
4  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
5  *
6  * Author: David Woodhouse <dwmw2@infradead.org>
7  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
8  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
9  *
10  * Error correction code lifted from the old docecc code
11  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
12  * Copyright (C) 2000 Netgem S.A.
13  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
14  *
15  * Interface to generic NAND code for M-Systems DiskOnChip devices
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/rslib.h>
23 #include <linux/moduleparam.h>
24 #include <linux/slab.h>
25 #include <linux/io.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/doc2000.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/inftl.h>
32 #include <linux/module.h>
33 
34 /* Where to look for the devices? */
35 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
36 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
37 #endif
38 
39 static unsigned long doc_locations[] __initdata = {
40 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
41 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
42 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
43 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
44 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
45 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
46 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
47 #else
48 	0xc8000, 0xca000, 0xcc000, 0xce000,
49 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
50 	0xd8000, 0xda000, 0xdc000, 0xde000,
51 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
52 	0xe8000, 0xea000, 0xec000, 0xee000,
53 #endif
54 #endif
55 	0xffffffff };
56 
57 static struct mtd_info *doclist = NULL;
58 
59 struct doc_priv {
60 	void __iomem *virtadr;
61 	unsigned long physadr;
62 	u_char ChipID;
63 	u_char CDSNControl;
64 	int chips_per_floor;	/* The number of chips detected on each floor */
65 	int curfloor;
66 	int curchip;
67 	int mh0_page;
68 	int mh1_page;
69 	struct rs_control *rs_decoder;
70 	struct mtd_info *nextdoc;
71 
72 	/* Handle the last stage of initialization (BBT scan, partitioning) */
73 	int (*late_init)(struct mtd_info *mtd);
74 };
75 
76 /* This is the ecc value computed by the HW ecc generator upon writing an empty
77    page, one with all 0xff for data. */
78 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
79 
80 #define INFTL_BBT_RESERVED_BLOCKS 4
81 
82 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
83 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
84 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
85 
86 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
87 			      unsigned int bitmask);
88 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
89 
90 static int debug = 0;
91 module_param(debug, int, 0);
92 
93 static int try_dword = 1;
94 module_param(try_dword, int, 0);
95 
96 static int no_ecc_failures = 0;
97 module_param(no_ecc_failures, int, 0);
98 
99 static int no_autopart = 0;
100 module_param(no_autopart, int, 0);
101 
102 static int show_firmware_partition = 0;
103 module_param(show_firmware_partition, int, 0);
104 
105 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
106 static int inftl_bbt_write = 1;
107 #else
108 static int inftl_bbt_write = 0;
109 #endif
110 module_param(inftl_bbt_write, int, 0);
111 
112 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
113 module_param(doc_config_location, ulong, 0);
114 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
115 
116 /* Sector size for HW ECC */
117 #define SECTOR_SIZE 512
118 /* The sector bytes are packed into NB_DATA 10 bit words */
119 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
120 /* Number of roots */
121 #define NROOTS 4
122 /* First consective root */
123 #define FCR 510
124 /* Number of symbols */
125 #define NN 1023
126 
127 /*
128  * The HW decoder in the DoC ASIC's provides us a error syndrome,
129  * which we must convert to a standard syndrome usable by the generic
130  * Reed-Solomon library code.
131  *
132  * Fabrice Bellard figured this out in the old docecc code. I added
133  * some comments, improved a minor bit and converted it to make use
134  * of the generic Reed-Solomon library. tglx
135  */
136 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
137 {
138 	int i, j, nerr, errpos[8];
139 	uint8_t parity;
140 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
141 	struct rs_codec *cd = rs->codec;
142 
143 	memset(syn, 0, sizeof(syn));
144 	/* Convert the ecc bytes into words */
145 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
146 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
147 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
148 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
149 	parity = ecc[1];
150 
151 	/* Initialize the syndrome buffer */
152 	for (i = 0; i < NROOTS; i++)
153 		s[i] = ds[0];
154 	/*
155 	 *  Evaluate
156 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
157 	 *  where x = alpha^(FCR + i)
158 	 */
159 	for (j = 1; j < NROOTS; j++) {
160 		if (ds[j] == 0)
161 			continue;
162 		tmp = cd->index_of[ds[j]];
163 		for (i = 0; i < NROOTS; i++)
164 			s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
165 	}
166 
167 	/* Calc syn[i] = s[i] / alpha^(v + i) */
168 	for (i = 0; i < NROOTS; i++) {
169 		if (s[i])
170 			syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
171 	}
172 	/* Call the decoder library */
173 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
174 
175 	/* Incorrectable errors ? */
176 	if (nerr < 0)
177 		return nerr;
178 
179 	/*
180 	 * Correct the errors. The bitpositions are a bit of magic,
181 	 * but they are given by the design of the de/encoder circuit
182 	 * in the DoC ASIC's.
183 	 */
184 	for (i = 0; i < nerr; i++) {
185 		int index, bitpos, pos = 1015 - errpos[i];
186 		uint8_t val;
187 		if (pos >= NB_DATA && pos < 1019)
188 			continue;
189 		if (pos < NB_DATA) {
190 			/* extract bit position (MSB first) */
191 			pos = 10 * (NB_DATA - 1 - pos) - 6;
192 			/* now correct the following 10 bits. At most two bytes
193 			   can be modified since pos is even */
194 			index = (pos >> 3) ^ 1;
195 			bitpos = pos & 7;
196 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
197 				val = (uint8_t) (errval[i] >> (2 + bitpos));
198 				parity ^= val;
199 				if (index < SECTOR_SIZE)
200 					data[index] ^= val;
201 			}
202 			index = ((pos >> 3) + 1) ^ 1;
203 			bitpos = (bitpos + 10) & 7;
204 			if (bitpos == 0)
205 				bitpos = 8;
206 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
207 				val = (uint8_t) (errval[i] << (8 - bitpos));
208 				parity ^= val;
209 				if (index < SECTOR_SIZE)
210 					data[index] ^= val;
211 			}
212 		}
213 	}
214 	/* If the parity is wrong, no rescue possible */
215 	return parity ? -EBADMSG : nerr;
216 }
217 
218 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
219 {
220 	volatile char dummy;
221 	int i;
222 
223 	for (i = 0; i < cycles; i++) {
224 		if (DoC_is_Millennium(doc))
225 			dummy = ReadDOC(doc->virtadr, NOP);
226 		else if (DoC_is_MillenniumPlus(doc))
227 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
228 		else
229 			dummy = ReadDOC(doc->virtadr, DOCStatus);
230 	}
231 
232 }
233 
234 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
235 
236 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
237 static int _DoC_WaitReady(struct doc_priv *doc)
238 {
239 	void __iomem *docptr = doc->virtadr;
240 	unsigned long timeo = jiffies + (HZ * 10);
241 
242 	if (debug)
243 		printk("_DoC_WaitReady...\n");
244 	/* Out-of-line routine to wait for chip response */
245 	if (DoC_is_MillenniumPlus(doc)) {
246 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
247 			if (time_after(jiffies, timeo)) {
248 				printk("_DoC_WaitReady timed out.\n");
249 				return -EIO;
250 			}
251 			udelay(1);
252 			cond_resched();
253 		}
254 	} else {
255 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
256 			if (time_after(jiffies, timeo)) {
257 				printk("_DoC_WaitReady timed out.\n");
258 				return -EIO;
259 			}
260 			udelay(1);
261 			cond_resched();
262 		}
263 	}
264 
265 	return 0;
266 }
267 
268 static inline int DoC_WaitReady(struct doc_priv *doc)
269 {
270 	void __iomem *docptr = doc->virtadr;
271 	int ret = 0;
272 
273 	if (DoC_is_MillenniumPlus(doc)) {
274 		DoC_Delay(doc, 4);
275 
276 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
277 			/* Call the out-of-line routine to wait */
278 			ret = _DoC_WaitReady(doc);
279 	} else {
280 		DoC_Delay(doc, 4);
281 
282 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
283 			/* Call the out-of-line routine to wait */
284 			ret = _DoC_WaitReady(doc);
285 		DoC_Delay(doc, 2);
286 	}
287 
288 	if (debug)
289 		printk("DoC_WaitReady OK\n");
290 	return ret;
291 }
292 
293 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
294 {
295 	struct nand_chip *this = mtd_to_nand(mtd);
296 	struct doc_priv *doc = nand_get_controller_data(this);
297 	void __iomem *docptr = doc->virtadr;
298 
299 	if (debug)
300 		printk("write_byte %02x\n", datum);
301 	WriteDOC(datum, docptr, CDSNSlowIO);
302 	WriteDOC(datum, docptr, 2k_CDSN_IO);
303 }
304 
305 static u_char doc2000_read_byte(struct mtd_info *mtd)
306 {
307 	struct nand_chip *this = mtd_to_nand(mtd);
308 	struct doc_priv *doc = nand_get_controller_data(this);
309 	void __iomem *docptr = doc->virtadr;
310 	u_char ret;
311 
312 	ReadDOC(docptr, CDSNSlowIO);
313 	DoC_Delay(doc, 2);
314 	ret = ReadDOC(docptr, 2k_CDSN_IO);
315 	if (debug)
316 		printk("read_byte returns %02x\n", ret);
317 	return ret;
318 }
319 
320 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
321 {
322 	struct nand_chip *this = mtd_to_nand(mtd);
323 	struct doc_priv *doc = nand_get_controller_data(this);
324 	void __iomem *docptr = doc->virtadr;
325 	int i;
326 	if (debug)
327 		printk("writebuf of %d bytes: ", len);
328 	for (i = 0; i < len; i++) {
329 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
330 		if (debug && i < 16)
331 			printk("%02x ", buf[i]);
332 	}
333 	if (debug)
334 		printk("\n");
335 }
336 
337 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
338 {
339 	struct nand_chip *this = mtd_to_nand(mtd);
340 	struct doc_priv *doc = nand_get_controller_data(this);
341 	void __iomem *docptr = doc->virtadr;
342 	int i;
343 
344 	if (debug)
345 		printk("readbuf of %d bytes: ", len);
346 
347 	for (i = 0; i < len; i++) {
348 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
349 	}
350 }
351 
352 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
353 {
354 	struct nand_chip *this = mtd_to_nand(mtd);
355 	struct doc_priv *doc = nand_get_controller_data(this);
356 	void __iomem *docptr = doc->virtadr;
357 	int i;
358 
359 	if (debug)
360 		printk("readbuf_dword of %d bytes: ", len);
361 
362 	if (unlikely((((unsigned long)buf) | len) & 3)) {
363 		for (i = 0; i < len; i++) {
364 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
365 		}
366 	} else {
367 		for (i = 0; i < len; i += 4) {
368 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
369 		}
370 	}
371 }
372 
373 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
374 {
375 	struct nand_chip *this = mtd_to_nand(mtd);
376 	struct doc_priv *doc = nand_get_controller_data(this);
377 	uint16_t ret;
378 
379 	doc200x_select_chip(mtd, nr);
380 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
381 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
382 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
383 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
384 
385 	/* We can't use dev_ready here, but at least we wait for the
386 	 * command to complete
387 	 */
388 	udelay(50);
389 
390 	ret = this->read_byte(mtd) << 8;
391 	ret |= this->read_byte(mtd);
392 
393 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
394 		/* First chip probe. See if we get same results by 32-bit access */
395 		union {
396 			uint32_t dword;
397 			uint8_t byte[4];
398 		} ident;
399 		void __iomem *docptr = doc->virtadr;
400 
401 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
402 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
403 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
404 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
405 				  NAND_NCE | NAND_CTRL_CHANGE);
406 
407 		udelay(50);
408 
409 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
410 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
411 			pr_info("DiskOnChip 2000 responds to DWORD access\n");
412 			this->read_buf = &doc2000_readbuf_dword;
413 		}
414 	}
415 
416 	return ret;
417 }
418 
419 static void __init doc2000_count_chips(struct mtd_info *mtd)
420 {
421 	struct nand_chip *this = mtd_to_nand(mtd);
422 	struct doc_priv *doc = nand_get_controller_data(this);
423 	uint16_t mfrid;
424 	int i;
425 
426 	/* Max 4 chips per floor on DiskOnChip 2000 */
427 	doc->chips_per_floor = 4;
428 
429 	/* Find out what the first chip is */
430 	mfrid = doc200x_ident_chip(mtd, 0);
431 
432 	/* Find how many chips in each floor. */
433 	for (i = 1; i < 4; i++) {
434 		if (doc200x_ident_chip(mtd, i) != mfrid)
435 			break;
436 	}
437 	doc->chips_per_floor = i;
438 	pr_debug("Detected %d chips per floor.\n", i);
439 }
440 
441 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
442 {
443 	struct doc_priv *doc = nand_get_controller_data(this);
444 
445 	int status;
446 
447 	DoC_WaitReady(doc);
448 	nand_status_op(this, NULL);
449 	DoC_WaitReady(doc);
450 	status = (int)this->read_byte(mtd);
451 
452 	return status;
453 }
454 
455 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
456 {
457 	struct nand_chip *this = mtd_to_nand(mtd);
458 	struct doc_priv *doc = nand_get_controller_data(this);
459 	void __iomem *docptr = doc->virtadr;
460 
461 	WriteDOC(datum, docptr, CDSNSlowIO);
462 	WriteDOC(datum, docptr, Mil_CDSN_IO);
463 	WriteDOC(datum, docptr, WritePipeTerm);
464 }
465 
466 static u_char doc2001_read_byte(struct mtd_info *mtd)
467 {
468 	struct nand_chip *this = mtd_to_nand(mtd);
469 	struct doc_priv *doc = nand_get_controller_data(this);
470 	void __iomem *docptr = doc->virtadr;
471 
472 	//ReadDOC(docptr, CDSNSlowIO);
473 	/* 11.4.5 -- delay twice to allow extended length cycle */
474 	DoC_Delay(doc, 2);
475 	ReadDOC(docptr, ReadPipeInit);
476 	//return ReadDOC(docptr, Mil_CDSN_IO);
477 	return ReadDOC(docptr, LastDataRead);
478 }
479 
480 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
481 {
482 	struct nand_chip *this = mtd_to_nand(mtd);
483 	struct doc_priv *doc = nand_get_controller_data(this);
484 	void __iomem *docptr = doc->virtadr;
485 	int i;
486 
487 	for (i = 0; i < len; i++)
488 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
489 	/* Terminate write pipeline */
490 	WriteDOC(0x00, docptr, WritePipeTerm);
491 }
492 
493 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
494 {
495 	struct nand_chip *this = mtd_to_nand(mtd);
496 	struct doc_priv *doc = nand_get_controller_data(this);
497 	void __iomem *docptr = doc->virtadr;
498 	int i;
499 
500 	/* Start read pipeline */
501 	ReadDOC(docptr, ReadPipeInit);
502 
503 	for (i = 0; i < len - 1; i++)
504 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
505 
506 	/* Terminate read pipeline */
507 	buf[i] = ReadDOC(docptr, LastDataRead);
508 }
509 
510 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
511 {
512 	struct nand_chip *this = mtd_to_nand(mtd);
513 	struct doc_priv *doc = nand_get_controller_data(this);
514 	void __iomem *docptr = doc->virtadr;
515 	u_char ret;
516 
517 	ReadDOC(docptr, Mplus_ReadPipeInit);
518 	ReadDOC(docptr, Mplus_ReadPipeInit);
519 	ret = ReadDOC(docptr, Mplus_LastDataRead);
520 	if (debug)
521 		printk("read_byte returns %02x\n", ret);
522 	return ret;
523 }
524 
525 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
526 {
527 	struct nand_chip *this = mtd_to_nand(mtd);
528 	struct doc_priv *doc = nand_get_controller_data(this);
529 	void __iomem *docptr = doc->virtadr;
530 	int i;
531 
532 	if (debug)
533 		printk("writebuf of %d bytes: ", len);
534 	for (i = 0; i < len; i++) {
535 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
536 		if (debug && i < 16)
537 			printk("%02x ", buf[i]);
538 	}
539 	if (debug)
540 		printk("\n");
541 }
542 
543 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
544 {
545 	struct nand_chip *this = mtd_to_nand(mtd);
546 	struct doc_priv *doc = nand_get_controller_data(this);
547 	void __iomem *docptr = doc->virtadr;
548 	int i;
549 
550 	if (debug)
551 		printk("readbuf of %d bytes: ", len);
552 
553 	/* Start read pipeline */
554 	ReadDOC(docptr, Mplus_ReadPipeInit);
555 	ReadDOC(docptr, Mplus_ReadPipeInit);
556 
557 	for (i = 0; i < len - 2; i++) {
558 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
559 		if (debug && i < 16)
560 			printk("%02x ", buf[i]);
561 	}
562 
563 	/* Terminate read pipeline */
564 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
565 	if (debug && i < 16)
566 		printk("%02x ", buf[len - 2]);
567 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
568 	if (debug && i < 16)
569 		printk("%02x ", buf[len - 1]);
570 	if (debug)
571 		printk("\n");
572 }
573 
574 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
575 {
576 	struct nand_chip *this = mtd_to_nand(mtd);
577 	struct doc_priv *doc = nand_get_controller_data(this);
578 	void __iomem *docptr = doc->virtadr;
579 	int floor = 0;
580 
581 	if (debug)
582 		printk("select chip (%d)\n", chip);
583 
584 	if (chip == -1) {
585 		/* Disable flash internally */
586 		WriteDOC(0, docptr, Mplus_FlashSelect);
587 		return;
588 	}
589 
590 	floor = chip / doc->chips_per_floor;
591 	chip -= (floor * doc->chips_per_floor);
592 
593 	/* Assert ChipEnable and deassert WriteProtect */
594 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
595 	nand_reset_op(this);
596 
597 	doc->curchip = chip;
598 	doc->curfloor = floor;
599 }
600 
601 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
602 {
603 	struct nand_chip *this = mtd_to_nand(mtd);
604 	struct doc_priv *doc = nand_get_controller_data(this);
605 	void __iomem *docptr = doc->virtadr;
606 	int floor = 0;
607 
608 	if (debug)
609 		printk("select chip (%d)\n", chip);
610 
611 	if (chip == -1)
612 		return;
613 
614 	floor = chip / doc->chips_per_floor;
615 	chip -= (floor * doc->chips_per_floor);
616 
617 	/* 11.4.4 -- deassert CE before changing chip */
618 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
619 
620 	WriteDOC(floor, docptr, FloorSelect);
621 	WriteDOC(chip, docptr, CDSNDeviceSelect);
622 
623 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
624 
625 	doc->curchip = chip;
626 	doc->curfloor = floor;
627 }
628 
629 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
630 
631 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
632 			      unsigned int ctrl)
633 {
634 	struct nand_chip *this = mtd_to_nand(mtd);
635 	struct doc_priv *doc = nand_get_controller_data(this);
636 	void __iomem *docptr = doc->virtadr;
637 
638 	if (ctrl & NAND_CTRL_CHANGE) {
639 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
640 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
641 		if (debug)
642 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
643 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
644 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
645 		DoC_Delay(doc, 4);
646 	}
647 	if (cmd != NAND_CMD_NONE) {
648 		if (DoC_is_2000(doc))
649 			doc2000_write_byte(mtd, cmd);
650 		else
651 			doc2001_write_byte(mtd, cmd);
652 	}
653 }
654 
655 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
656 {
657 	struct nand_chip *this = mtd_to_nand(mtd);
658 	struct doc_priv *doc = nand_get_controller_data(this);
659 	void __iomem *docptr = doc->virtadr;
660 
661 	/*
662 	 * Must terminate write pipeline before sending any commands
663 	 * to the device.
664 	 */
665 	if (command == NAND_CMD_PAGEPROG) {
666 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
667 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
668 	}
669 
670 	/*
671 	 * Write out the command to the device.
672 	 */
673 	if (command == NAND_CMD_SEQIN) {
674 		int readcmd;
675 
676 		if (column >= mtd->writesize) {
677 			/* OOB area */
678 			column -= mtd->writesize;
679 			readcmd = NAND_CMD_READOOB;
680 		} else if (column < 256) {
681 			/* First 256 bytes --> READ0 */
682 			readcmd = NAND_CMD_READ0;
683 		} else {
684 			column -= 256;
685 			readcmd = NAND_CMD_READ1;
686 		}
687 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
688 	}
689 	WriteDOC(command, docptr, Mplus_FlashCmd);
690 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
691 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
692 
693 	if (column != -1 || page_addr != -1) {
694 		/* Serially input address */
695 		if (column != -1) {
696 			/* Adjust columns for 16 bit buswidth */
697 			if (this->options & NAND_BUSWIDTH_16 &&
698 					!nand_opcode_8bits(command))
699 				column >>= 1;
700 			WriteDOC(column, docptr, Mplus_FlashAddress);
701 		}
702 		if (page_addr != -1) {
703 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
704 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
705 			if (this->options & NAND_ROW_ADDR_3) {
706 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
707 				printk("high density\n");
708 			}
709 		}
710 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
711 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
712 		/* deassert ALE */
713 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
714 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
715 			WriteDOC(0, docptr, Mplus_FlashControl);
716 	}
717 
718 	/*
719 	 * program and erase have their own busy handlers
720 	 * status and sequential in needs no delay
721 	 */
722 	switch (command) {
723 
724 	case NAND_CMD_PAGEPROG:
725 	case NAND_CMD_ERASE1:
726 	case NAND_CMD_ERASE2:
727 	case NAND_CMD_SEQIN:
728 	case NAND_CMD_STATUS:
729 		return;
730 
731 	case NAND_CMD_RESET:
732 		if (this->dev_ready)
733 			break;
734 		udelay(this->chip_delay);
735 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
736 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
737 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
738 		while (!(this->read_byte(mtd) & 0x40)) ;
739 		return;
740 
741 		/* This applies to read commands */
742 	default:
743 		/*
744 		 * If we don't have access to the busy pin, we apply the given
745 		 * command delay
746 		 */
747 		if (!this->dev_ready) {
748 			udelay(this->chip_delay);
749 			return;
750 		}
751 	}
752 
753 	/* Apply this short delay always to ensure that we do wait tWB in
754 	 * any case on any machine. */
755 	ndelay(100);
756 	/* wait until command is processed */
757 	while (!this->dev_ready(mtd)) ;
758 }
759 
760 static int doc200x_dev_ready(struct mtd_info *mtd)
761 {
762 	struct nand_chip *this = mtd_to_nand(mtd);
763 	struct doc_priv *doc = nand_get_controller_data(this);
764 	void __iomem *docptr = doc->virtadr;
765 
766 	if (DoC_is_MillenniumPlus(doc)) {
767 		/* 11.4.2 -- must NOP four times before checking FR/B# */
768 		DoC_Delay(doc, 4);
769 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
770 			if (debug)
771 				printk("not ready\n");
772 			return 0;
773 		}
774 		if (debug)
775 			printk("was ready\n");
776 		return 1;
777 	} else {
778 		/* 11.4.2 -- must NOP four times before checking FR/B# */
779 		DoC_Delay(doc, 4);
780 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
781 			if (debug)
782 				printk("not ready\n");
783 			return 0;
784 		}
785 		/* 11.4.2 -- Must NOP twice if it's ready */
786 		DoC_Delay(doc, 2);
787 		if (debug)
788 			printk("was ready\n");
789 		return 1;
790 	}
791 }
792 
793 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
794 {
795 	/* This is our last resort if we couldn't find or create a BBT.  Just
796 	   pretend all blocks are good. */
797 	return 0;
798 }
799 
800 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
801 {
802 	struct nand_chip *this = mtd_to_nand(mtd);
803 	struct doc_priv *doc = nand_get_controller_data(this);
804 	void __iomem *docptr = doc->virtadr;
805 
806 	/* Prime the ECC engine */
807 	switch (mode) {
808 	case NAND_ECC_READ:
809 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
810 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
811 		break;
812 	case NAND_ECC_WRITE:
813 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
814 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
815 		break;
816 	}
817 }
818 
819 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
820 {
821 	struct nand_chip *this = mtd_to_nand(mtd);
822 	struct doc_priv *doc = nand_get_controller_data(this);
823 	void __iomem *docptr = doc->virtadr;
824 
825 	/* Prime the ECC engine */
826 	switch (mode) {
827 	case NAND_ECC_READ:
828 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
829 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
830 		break;
831 	case NAND_ECC_WRITE:
832 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
833 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
834 		break;
835 	}
836 }
837 
838 /* This code is only called on write */
839 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
840 {
841 	struct nand_chip *this = mtd_to_nand(mtd);
842 	struct doc_priv *doc = nand_get_controller_data(this);
843 	void __iomem *docptr = doc->virtadr;
844 	int i;
845 	int emptymatch = 1;
846 
847 	/* flush the pipeline */
848 	if (DoC_is_2000(doc)) {
849 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
850 		WriteDOC(0, docptr, 2k_CDSN_IO);
851 		WriteDOC(0, docptr, 2k_CDSN_IO);
852 		WriteDOC(0, docptr, 2k_CDSN_IO);
853 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
854 	} else if (DoC_is_MillenniumPlus(doc)) {
855 		WriteDOC(0, docptr, Mplus_NOP);
856 		WriteDOC(0, docptr, Mplus_NOP);
857 		WriteDOC(0, docptr, Mplus_NOP);
858 	} else {
859 		WriteDOC(0, docptr, NOP);
860 		WriteDOC(0, docptr, NOP);
861 		WriteDOC(0, docptr, NOP);
862 	}
863 
864 	for (i = 0; i < 6; i++) {
865 		if (DoC_is_MillenniumPlus(doc))
866 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
867 		else
868 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
869 		if (ecc_code[i] != empty_write_ecc[i])
870 			emptymatch = 0;
871 	}
872 	if (DoC_is_MillenniumPlus(doc))
873 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
874 	else
875 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
876 #if 0
877 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
878 	if (emptymatch) {
879 		/* Note: this somewhat expensive test should not be triggered
880 		   often.  It could be optimized away by examining the data in
881 		   the writebuf routine, and remembering the result. */
882 		for (i = 0; i < 512; i++) {
883 			if (dat[i] == 0xff)
884 				continue;
885 			emptymatch = 0;
886 			break;
887 		}
888 	}
889 	/* If emptymatch still =1, we do have an all-0xff data buffer.
890 	   Return all-0xff ecc value instead of the computed one, so
891 	   it'll look just like a freshly-erased page. */
892 	if (emptymatch)
893 		memset(ecc_code, 0xff, 6);
894 #endif
895 	return 0;
896 }
897 
898 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
899 				u_char *read_ecc, u_char *isnull)
900 {
901 	int i, ret = 0;
902 	struct nand_chip *this = mtd_to_nand(mtd);
903 	struct doc_priv *doc = nand_get_controller_data(this);
904 	void __iomem *docptr = doc->virtadr;
905 	uint8_t calc_ecc[6];
906 	volatile u_char dummy;
907 
908 	/* flush the pipeline */
909 	if (DoC_is_2000(doc)) {
910 		dummy = ReadDOC(docptr, 2k_ECCStatus);
911 		dummy = ReadDOC(docptr, 2k_ECCStatus);
912 		dummy = ReadDOC(docptr, 2k_ECCStatus);
913 	} else if (DoC_is_MillenniumPlus(doc)) {
914 		dummy = ReadDOC(docptr, Mplus_ECCConf);
915 		dummy = ReadDOC(docptr, Mplus_ECCConf);
916 		dummy = ReadDOC(docptr, Mplus_ECCConf);
917 	} else {
918 		dummy = ReadDOC(docptr, ECCConf);
919 		dummy = ReadDOC(docptr, ECCConf);
920 		dummy = ReadDOC(docptr, ECCConf);
921 	}
922 
923 	/* Error occurred ? */
924 	if (dummy & 0x80) {
925 		for (i = 0; i < 6; i++) {
926 			if (DoC_is_MillenniumPlus(doc))
927 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
928 			else
929 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
930 		}
931 
932 		ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
933 		if (ret > 0)
934 			pr_err("doc200x_correct_data corrected %d errors\n",
935 			       ret);
936 	}
937 	if (DoC_is_MillenniumPlus(doc))
938 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
939 	else
940 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
941 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
942 		pr_err("suppressing ECC failure\n");
943 		ret = 0;
944 	}
945 	return ret;
946 }
947 
948 //u_char mydatabuf[528];
949 
950 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
951 				 struct mtd_oob_region *oobregion)
952 {
953 	if (section)
954 		return -ERANGE;
955 
956 	oobregion->offset = 0;
957 	oobregion->length = 6;
958 
959 	return 0;
960 }
961 
962 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
963 				  struct mtd_oob_region *oobregion)
964 {
965 	if (section > 1)
966 		return -ERANGE;
967 
968 	/*
969 	 * The strange out-of-order free bytes definition is a (possibly
970 	 * unneeded) attempt to retain compatibility.  It used to read:
971 	 *	.oobfree = { {8, 8} }
972 	 * Since that leaves two bytes unusable, it was changed.  But the
973 	 * following scheme might affect existing jffs2 installs by moving the
974 	 * cleanmarker:
975 	 *	.oobfree = { {6, 10} }
976 	 * jffs2 seems to handle the above gracefully, but the current scheme
977 	 * seems safer. The only problem with it is that any code retrieving
978 	 * free bytes position must be able to handle out-of-order segments.
979 	 */
980 	if (!section) {
981 		oobregion->offset = 8;
982 		oobregion->length = 8;
983 	} else {
984 		oobregion->offset = 6;
985 		oobregion->length = 2;
986 	}
987 
988 	return 0;
989 }
990 
991 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
992 	.ecc = doc200x_ooblayout_ecc,
993 	.free = doc200x_ooblayout_free,
994 };
995 
996 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
997    On successful return, buf will contain a copy of the media header for
998    further processing.  id is the string to scan for, and will presumably be
999    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1000    header.  The page #s of the found media headers are placed in mh0_page and
1001    mh1_page in the DOC private structure. */
1002 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1003 {
1004 	struct nand_chip *this = mtd_to_nand(mtd);
1005 	struct doc_priv *doc = nand_get_controller_data(this);
1006 	unsigned offs;
1007 	int ret;
1008 	size_t retlen;
1009 
1010 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1011 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1012 		if (retlen != mtd->writesize)
1013 			continue;
1014 		if (ret) {
1015 			pr_warn("ECC error scanning DOC at 0x%x\n", offs);
1016 		}
1017 		if (memcmp(buf, id, 6))
1018 			continue;
1019 		pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1020 		if (doc->mh0_page == -1) {
1021 			doc->mh0_page = offs >> this->page_shift;
1022 			if (!findmirror)
1023 				return 1;
1024 			continue;
1025 		}
1026 		doc->mh1_page = offs >> this->page_shift;
1027 		return 2;
1028 	}
1029 	if (doc->mh0_page == -1) {
1030 		pr_warn("DiskOnChip %s Media Header not found.\n", id);
1031 		return 0;
1032 	}
1033 	/* Only one mediaheader was found.  We want buf to contain a
1034 	   mediaheader on return, so we'll have to re-read the one we found. */
1035 	offs = doc->mh0_page << this->page_shift;
1036 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1037 	if (retlen != mtd->writesize) {
1038 		/* Insanity.  Give up. */
1039 		pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
1040 		return 0;
1041 	}
1042 	return 1;
1043 }
1044 
1045 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1046 {
1047 	struct nand_chip *this = mtd_to_nand(mtd);
1048 	struct doc_priv *doc = nand_get_controller_data(this);
1049 	int ret = 0;
1050 	u_char *buf;
1051 	struct NFTLMediaHeader *mh;
1052 	const unsigned psize = 1 << this->page_shift;
1053 	int numparts = 0;
1054 	unsigned blocks, maxblocks;
1055 	int offs, numheaders;
1056 
1057 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1058 	if (!buf) {
1059 		return 0;
1060 	}
1061 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1062 		goto out;
1063 	mh = (struct NFTLMediaHeader *)buf;
1064 
1065 	le16_to_cpus(&mh->NumEraseUnits);
1066 	le16_to_cpus(&mh->FirstPhysicalEUN);
1067 	le32_to_cpus(&mh->FormattedSize);
1068 
1069 	pr_info("    DataOrgID        = %s\n"
1070 		"    NumEraseUnits    = %d\n"
1071 		"    FirstPhysicalEUN = %d\n"
1072 		"    FormattedSize    = %d\n"
1073 		"    UnitSizeFactor   = %d\n",
1074 		mh->DataOrgID, mh->NumEraseUnits,
1075 		mh->FirstPhysicalEUN, mh->FormattedSize,
1076 		mh->UnitSizeFactor);
1077 
1078 	blocks = mtd->size >> this->phys_erase_shift;
1079 	maxblocks = min(32768U, mtd->erasesize - psize);
1080 
1081 	if (mh->UnitSizeFactor == 0x00) {
1082 		/* Auto-determine UnitSizeFactor.  The constraints are:
1083 		   - There can be at most 32768 virtual blocks.
1084 		   - There can be at most (virtual block size - page size)
1085 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1086 		 */
1087 		mh->UnitSizeFactor = 0xff;
1088 		while (blocks > maxblocks) {
1089 			blocks >>= 1;
1090 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1091 			mh->UnitSizeFactor--;
1092 		}
1093 		pr_warn("UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1094 	}
1095 
1096 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1097 	   layers; variables with have already been configured by nand_scan.
1098 	   Unfortunately, we didn't know before this point what these values
1099 	   should be.  Thus, this code is somewhat dependent on the exact
1100 	   implementation of the NAND layer.  */
1101 	if (mh->UnitSizeFactor != 0xff) {
1102 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1103 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1104 		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
1105 		blocks = mtd->size >> this->bbt_erase_shift;
1106 		maxblocks = min(32768U, mtd->erasesize - psize);
1107 	}
1108 
1109 	if (blocks > maxblocks) {
1110 		pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1111 		goto out;
1112 	}
1113 
1114 	/* Skip past the media headers. */
1115 	offs = max(doc->mh0_page, doc->mh1_page);
1116 	offs <<= this->page_shift;
1117 	offs += mtd->erasesize;
1118 
1119 	if (show_firmware_partition == 1) {
1120 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1121 		parts[0].offset = 0;
1122 		parts[0].size = offs;
1123 		numparts = 1;
1124 	}
1125 
1126 	parts[numparts].name = " DiskOnChip BDTL partition";
1127 	parts[numparts].offset = offs;
1128 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1129 
1130 	offs += parts[numparts].size;
1131 	numparts++;
1132 
1133 	if (offs < mtd->size) {
1134 		parts[numparts].name = " DiskOnChip Remainder partition";
1135 		parts[numparts].offset = offs;
1136 		parts[numparts].size = mtd->size - offs;
1137 		numparts++;
1138 	}
1139 
1140 	ret = numparts;
1141  out:
1142 	kfree(buf);
1143 	return ret;
1144 }
1145 
1146 /* This is a stripped-down copy of the code in inftlmount.c */
1147 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1148 {
1149 	struct nand_chip *this = mtd_to_nand(mtd);
1150 	struct doc_priv *doc = nand_get_controller_data(this);
1151 	int ret = 0;
1152 	u_char *buf;
1153 	struct INFTLMediaHeader *mh;
1154 	struct INFTLPartition *ip;
1155 	int numparts = 0;
1156 	int blocks;
1157 	int vshift, lastvunit = 0;
1158 	int i;
1159 	int end = mtd->size;
1160 
1161 	if (inftl_bbt_write)
1162 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1163 
1164 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1165 	if (!buf) {
1166 		return 0;
1167 	}
1168 
1169 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1170 		goto out;
1171 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1172 	mh = (struct INFTLMediaHeader *)buf;
1173 
1174 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1175 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1176 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1177 	le32_to_cpus(&mh->BlockMultiplierBits);
1178 	le32_to_cpus(&mh->FormatFlags);
1179 	le32_to_cpus(&mh->PercentUsed);
1180 
1181 	pr_info("    bootRecordID          = %s\n"
1182 		"    NoOfBootImageBlocks   = %d\n"
1183 		"    NoOfBinaryPartitions  = %d\n"
1184 		"    NoOfBDTLPartitions    = %d\n"
1185 		"    BlockMultiplerBits    = %d\n"
1186 		"    FormatFlgs            = %d\n"
1187 		"    OsakVersion           = %d.%d.%d.%d\n"
1188 		"    PercentUsed           = %d\n",
1189 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1190 		mh->NoOfBinaryPartitions,
1191 		mh->NoOfBDTLPartitions,
1192 		mh->BlockMultiplierBits, mh->FormatFlags,
1193 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1194 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1195 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1196 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1197 		mh->PercentUsed);
1198 
1199 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1200 
1201 	blocks = mtd->size >> vshift;
1202 	if (blocks > 32768) {
1203 		pr_err("BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1204 		goto out;
1205 	}
1206 
1207 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1208 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1209 		pr_err("Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1210 		goto out;
1211 	}
1212 
1213 	/* Scan the partitions */
1214 	for (i = 0; (i < 4); i++) {
1215 		ip = &(mh->Partitions[i]);
1216 		le32_to_cpus(&ip->virtualUnits);
1217 		le32_to_cpus(&ip->firstUnit);
1218 		le32_to_cpus(&ip->lastUnit);
1219 		le32_to_cpus(&ip->flags);
1220 		le32_to_cpus(&ip->spareUnits);
1221 		le32_to_cpus(&ip->Reserved0);
1222 
1223 		pr_info("    PARTITION[%d] ->\n"
1224 			"        virtualUnits    = %d\n"
1225 			"        firstUnit       = %d\n"
1226 			"        lastUnit        = %d\n"
1227 			"        flags           = 0x%x\n"
1228 			"        spareUnits      = %d\n",
1229 			i, ip->virtualUnits, ip->firstUnit,
1230 			ip->lastUnit, ip->flags,
1231 			ip->spareUnits);
1232 
1233 		if ((show_firmware_partition == 1) &&
1234 		    (i == 0) && (ip->firstUnit > 0)) {
1235 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1236 			parts[0].offset = 0;
1237 			parts[0].size = mtd->erasesize * ip->firstUnit;
1238 			numparts = 1;
1239 		}
1240 
1241 		if (ip->flags & INFTL_BINARY)
1242 			parts[numparts].name = " DiskOnChip BDK partition";
1243 		else
1244 			parts[numparts].name = " DiskOnChip BDTL partition";
1245 		parts[numparts].offset = ip->firstUnit << vshift;
1246 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1247 		numparts++;
1248 		if (ip->lastUnit > lastvunit)
1249 			lastvunit = ip->lastUnit;
1250 		if (ip->flags & INFTL_LAST)
1251 			break;
1252 	}
1253 	lastvunit++;
1254 	if ((lastvunit << vshift) < end) {
1255 		parts[numparts].name = " DiskOnChip Remainder partition";
1256 		parts[numparts].offset = lastvunit << vshift;
1257 		parts[numparts].size = end - parts[numparts].offset;
1258 		numparts++;
1259 	}
1260 	ret = numparts;
1261  out:
1262 	kfree(buf);
1263 	return ret;
1264 }
1265 
1266 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1267 {
1268 	int ret, numparts;
1269 	struct nand_chip *this = mtd_to_nand(mtd);
1270 	struct doc_priv *doc = nand_get_controller_data(this);
1271 	struct mtd_partition parts[2];
1272 
1273 	memset((char *)parts, 0, sizeof(parts));
1274 	/* On NFTL, we have to find the media headers before we can read the
1275 	   BBTs, since they're stored in the media header eraseblocks. */
1276 	numparts = nftl_partscan(mtd, parts);
1277 	if (!numparts)
1278 		return -EIO;
1279 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1280 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1281 				NAND_BBT_VERSION;
1282 	this->bbt_td->veroffs = 7;
1283 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1284 	if (doc->mh1_page != -1) {
1285 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1286 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1287 					NAND_BBT_VERSION;
1288 		this->bbt_md->veroffs = 7;
1289 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1290 	} else {
1291 		this->bbt_md = NULL;
1292 	}
1293 
1294 	ret = this->scan_bbt(mtd);
1295 	if (ret)
1296 		return ret;
1297 
1298 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1299 }
1300 
1301 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1302 {
1303 	int ret, numparts;
1304 	struct nand_chip *this = mtd_to_nand(mtd);
1305 	struct doc_priv *doc = nand_get_controller_data(this);
1306 	struct mtd_partition parts[5];
1307 
1308 	if (this->numchips > doc->chips_per_floor) {
1309 		pr_err("Multi-floor INFTL devices not yet supported.\n");
1310 		return -EIO;
1311 	}
1312 
1313 	if (DoC_is_MillenniumPlus(doc)) {
1314 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1315 		if (inftl_bbt_write)
1316 			this->bbt_td->options |= NAND_BBT_WRITE;
1317 		this->bbt_td->pages[0] = 2;
1318 		this->bbt_md = NULL;
1319 	} else {
1320 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1321 		if (inftl_bbt_write)
1322 			this->bbt_td->options |= NAND_BBT_WRITE;
1323 		this->bbt_td->offs = 8;
1324 		this->bbt_td->len = 8;
1325 		this->bbt_td->veroffs = 7;
1326 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1327 		this->bbt_td->reserved_block_code = 0x01;
1328 		this->bbt_td->pattern = "MSYS_BBT";
1329 
1330 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1331 		if (inftl_bbt_write)
1332 			this->bbt_md->options |= NAND_BBT_WRITE;
1333 		this->bbt_md->offs = 8;
1334 		this->bbt_md->len = 8;
1335 		this->bbt_md->veroffs = 7;
1336 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1337 		this->bbt_md->reserved_block_code = 0x01;
1338 		this->bbt_md->pattern = "TBB_SYSM";
1339 	}
1340 
1341 	ret = this->scan_bbt(mtd);
1342 	if (ret)
1343 		return ret;
1344 
1345 	memset((char *)parts, 0, sizeof(parts));
1346 	numparts = inftl_partscan(mtd, parts);
1347 	/* At least for now, require the INFTL Media Header.  We could probably
1348 	   do without it for non-INFTL use, since all it gives us is
1349 	   autopartitioning, but I want to give it more thought. */
1350 	if (!numparts)
1351 		return -EIO;
1352 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1353 }
1354 
1355 static inline int __init doc2000_init(struct mtd_info *mtd)
1356 {
1357 	struct nand_chip *this = mtd_to_nand(mtd);
1358 	struct doc_priv *doc = nand_get_controller_data(this);
1359 
1360 	this->read_byte = doc2000_read_byte;
1361 	this->write_buf = doc2000_writebuf;
1362 	this->read_buf = doc2000_readbuf;
1363 	doc->late_init = nftl_scan_bbt;
1364 
1365 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1366 	doc2000_count_chips(mtd);
1367 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1368 	return (4 * doc->chips_per_floor);
1369 }
1370 
1371 static inline int __init doc2001_init(struct mtd_info *mtd)
1372 {
1373 	struct nand_chip *this = mtd_to_nand(mtd);
1374 	struct doc_priv *doc = nand_get_controller_data(this);
1375 
1376 	this->read_byte = doc2001_read_byte;
1377 	this->write_buf = doc2001_writebuf;
1378 	this->read_buf = doc2001_readbuf;
1379 
1380 	ReadDOC(doc->virtadr, ChipID);
1381 	ReadDOC(doc->virtadr, ChipID);
1382 	ReadDOC(doc->virtadr, ChipID);
1383 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1384 		/* It's not a Millennium; it's one of the newer
1385 		   DiskOnChip 2000 units with a similar ASIC.
1386 		   Treat it like a Millennium, except that it
1387 		   can have multiple chips. */
1388 		doc2000_count_chips(mtd);
1389 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1390 		doc->late_init = inftl_scan_bbt;
1391 		return (4 * doc->chips_per_floor);
1392 	} else {
1393 		/* Bog-standard Millennium */
1394 		doc->chips_per_floor = 1;
1395 		mtd->name = "DiskOnChip Millennium";
1396 		doc->late_init = nftl_scan_bbt;
1397 		return 1;
1398 	}
1399 }
1400 
1401 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1402 {
1403 	struct nand_chip *this = mtd_to_nand(mtd);
1404 	struct doc_priv *doc = nand_get_controller_data(this);
1405 
1406 	this->read_byte = doc2001plus_read_byte;
1407 	this->write_buf = doc2001plus_writebuf;
1408 	this->read_buf = doc2001plus_readbuf;
1409 	doc->late_init = inftl_scan_bbt;
1410 	this->cmd_ctrl = NULL;
1411 	this->select_chip = doc2001plus_select_chip;
1412 	this->cmdfunc = doc2001plus_command;
1413 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1414 
1415 	doc->chips_per_floor = 1;
1416 	mtd->name = "DiskOnChip Millennium Plus";
1417 
1418 	return 1;
1419 }
1420 
1421 static int __init doc_probe(unsigned long physadr)
1422 {
1423 	struct nand_chip *nand = NULL;
1424 	struct doc_priv *doc = NULL;
1425 	unsigned char ChipID;
1426 	struct mtd_info *mtd;
1427 	void __iomem *virtadr;
1428 	unsigned char save_control;
1429 	unsigned char tmp, tmpb, tmpc;
1430 	int reg, len, numchips;
1431 	int ret = 0;
1432 
1433 	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1434 		return -EBUSY;
1435 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1436 	if (!virtadr) {
1437 		pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
1438 		       DOC_IOREMAP_LEN, physadr);
1439 		ret = -EIO;
1440 		goto error_ioremap;
1441 	}
1442 
1443 	/* It's not possible to cleanly detect the DiskOnChip - the
1444 	 * bootup procedure will put the device into reset mode, and
1445 	 * it's not possible to talk to it without actually writing
1446 	 * to the DOCControl register. So we store the current contents
1447 	 * of the DOCControl register's location, in case we later decide
1448 	 * that it's not a DiskOnChip, and want to put it back how we
1449 	 * found it.
1450 	 */
1451 	save_control = ReadDOC(virtadr, DOCControl);
1452 
1453 	/* Reset the DiskOnChip ASIC */
1454 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1455 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1456 
1457 	/* Enable the DiskOnChip ASIC */
1458 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1459 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1460 
1461 	ChipID = ReadDOC(virtadr, ChipID);
1462 
1463 	switch (ChipID) {
1464 	case DOC_ChipID_Doc2k:
1465 		reg = DoC_2k_ECCStatus;
1466 		break;
1467 	case DOC_ChipID_DocMil:
1468 		reg = DoC_ECCConf;
1469 		break;
1470 	case DOC_ChipID_DocMilPlus16:
1471 	case DOC_ChipID_DocMilPlus32:
1472 	case 0:
1473 		/* Possible Millennium Plus, need to do more checks */
1474 		/* Possibly release from power down mode */
1475 		for (tmp = 0; (tmp < 4); tmp++)
1476 			ReadDOC(virtadr, Mplus_Power);
1477 
1478 		/* Reset the Millennium Plus ASIC */
1479 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1480 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1481 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1482 
1483 		usleep_range(1000, 2000);
1484 		/* Enable the Millennium Plus ASIC */
1485 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1486 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1487 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1488 		usleep_range(1000, 2000);
1489 
1490 		ChipID = ReadDOC(virtadr, ChipID);
1491 
1492 		switch (ChipID) {
1493 		case DOC_ChipID_DocMilPlus16:
1494 			reg = DoC_Mplus_Toggle;
1495 			break;
1496 		case DOC_ChipID_DocMilPlus32:
1497 			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1498 		default:
1499 			ret = -ENODEV;
1500 			goto notfound;
1501 		}
1502 		break;
1503 
1504 	default:
1505 		ret = -ENODEV;
1506 		goto notfound;
1507 	}
1508 	/* Check the TOGGLE bit in the ECC register */
1509 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1510 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1511 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512 	if ((tmp == tmpb) || (tmp != tmpc)) {
1513 		pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1514 		ret = -ENODEV;
1515 		goto notfound;
1516 	}
1517 
1518 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1519 		unsigned char oldval;
1520 		unsigned char newval;
1521 		nand = mtd_to_nand(mtd);
1522 		doc = nand_get_controller_data(nand);
1523 		/* Use the alias resolution register to determine if this is
1524 		   in fact the same DOC aliased to a new address.  If writes
1525 		   to one chip's alias resolution register change the value on
1526 		   the other chip, they're the same chip. */
1527 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1528 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1529 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1530 		} else {
1531 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1532 			newval = ReadDOC(virtadr, AliasResolution);
1533 		}
1534 		if (oldval != newval)
1535 			continue;
1536 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1537 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1538 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1539 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1540 		} else {
1541 			WriteDOC(~newval, virtadr, AliasResolution);
1542 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1543 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1544 		}
1545 		newval = ~newval;
1546 		if (oldval == newval) {
1547 			pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
1548 				 doc->physadr, physadr);
1549 			goto notfound;
1550 		}
1551 	}
1552 
1553 	pr_notice("DiskOnChip found at 0x%lx\n", physadr);
1554 
1555 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1556 	      (2 * sizeof(struct nand_bbt_descr));
1557 	nand = kzalloc(len, GFP_KERNEL);
1558 	if (!nand) {
1559 		ret = -ENOMEM;
1560 		goto fail;
1561 	}
1562 
1563 
1564 	/*
1565 	 * Allocate a RS codec instance
1566 	 *
1567 	 * Symbolsize is 10 (bits)
1568 	 * Primitve polynomial is x^10+x^3+1
1569 	 * First consecutive root is 510
1570 	 * Primitve element to generate roots = 1
1571 	 * Generator polinomial degree = 4
1572 	 */
1573 	doc = (struct doc_priv *) (nand + 1);
1574 	doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1575 	if (!doc->rs_decoder) {
1576 		pr_err("DiskOnChip: Could not create a RS codec\n");
1577 		ret = -ENOMEM;
1578 		goto fail;
1579 	}
1580 
1581 	mtd			= nand_to_mtd(nand);
1582 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1583 	nand->bbt_md		= nand->bbt_td + 1;
1584 
1585 	mtd->owner		= THIS_MODULE;
1586 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1587 
1588 	nand_set_controller_data(nand, doc);
1589 	nand->select_chip	= doc200x_select_chip;
1590 	nand->cmd_ctrl		= doc200x_hwcontrol;
1591 	nand->dev_ready		= doc200x_dev_ready;
1592 	nand->waitfunc		= doc200x_wait;
1593 	nand->block_bad		= doc200x_block_bad;
1594 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1595 	nand->ecc.calculate	= doc200x_calculate_ecc;
1596 	nand->ecc.correct	= doc200x_correct_data;
1597 
1598 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1599 	nand->ecc.size		= 512;
1600 	nand->ecc.bytes		= 6;
1601 	nand->ecc.strength	= 2;
1602 	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
1603 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1604 	/* Skip the automatic BBT scan so we can run it manually */
1605 	nand->options		|= NAND_SKIP_BBTSCAN;
1606 
1607 	doc->physadr		= physadr;
1608 	doc->virtadr		= virtadr;
1609 	doc->ChipID		= ChipID;
1610 	doc->curfloor		= -1;
1611 	doc->curchip		= -1;
1612 	doc->mh0_page		= -1;
1613 	doc->mh1_page		= -1;
1614 	doc->nextdoc		= doclist;
1615 
1616 	if (ChipID == DOC_ChipID_Doc2k)
1617 		numchips = doc2000_init(mtd);
1618 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1619 		numchips = doc2001plus_init(mtd);
1620 	else
1621 		numchips = doc2001_init(mtd);
1622 
1623 	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1624 		/* DBB note: i believe nand_release is necessary here, as
1625 		   buffers may have been allocated in nand_base.  Check with
1626 		   Thomas. FIX ME! */
1627 		/* nand_release will call mtd_device_unregister, but we
1628 		   haven't yet added it.  This is handled without incident by
1629 		   mtd_device_unregister, as far as I can tell. */
1630 		nand_release(mtd);
1631 		goto fail;
1632 	}
1633 
1634 	/* Success! */
1635 	doclist = mtd;
1636 	return 0;
1637 
1638  notfound:
1639 	/* Put back the contents of the DOCControl register, in case it's not
1640 	   actually a DiskOnChip.  */
1641 	WriteDOC(save_control, virtadr, DOCControl);
1642  fail:
1643 	if (doc)
1644 		free_rs(doc->rs_decoder);
1645 	kfree(nand);
1646 	iounmap(virtadr);
1647 
1648 error_ioremap:
1649 	release_mem_region(physadr, DOC_IOREMAP_LEN);
1650 
1651 	return ret;
1652 }
1653 
1654 static void release_nanddoc(void)
1655 {
1656 	struct mtd_info *mtd, *nextmtd;
1657 	struct nand_chip *nand;
1658 	struct doc_priv *doc;
1659 
1660 	for (mtd = doclist; mtd; mtd = nextmtd) {
1661 		nand = mtd_to_nand(mtd);
1662 		doc = nand_get_controller_data(nand);
1663 
1664 		nextmtd = doc->nextdoc;
1665 		nand_release(mtd);
1666 		iounmap(doc->virtadr);
1667 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1668 		free_rs(doc->rs_decoder);
1669 		kfree(nand);
1670 	}
1671 }
1672 
1673 static int __init init_nanddoc(void)
1674 {
1675 	int i, ret = 0;
1676 
1677 	if (doc_config_location) {
1678 		pr_info("Using configured DiskOnChip probe address 0x%lx\n",
1679 			doc_config_location);
1680 		ret = doc_probe(doc_config_location);
1681 		if (ret < 0)
1682 			return ret;
1683 	} else {
1684 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1685 			doc_probe(doc_locations[i]);
1686 		}
1687 	}
1688 	/* No banner message any more. Print a message if no DiskOnChip
1689 	   found, so the user knows we at least tried. */
1690 	if (!doclist) {
1691 		pr_info("No valid DiskOnChip devices found\n");
1692 		ret = -ENODEV;
1693 	}
1694 	return ret;
1695 }
1696 
1697 static void __exit cleanup_nanddoc(void)
1698 {
1699 	/* Cleanup the nand/DoC resources */
1700 	release_nanddoc();
1701 }
1702 
1703 module_init(init_nanddoc);
1704 module_exit(cleanup_nanddoc);
1705 
1706 MODULE_LICENSE("GPL");
1707 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1708 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1709