1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 2003 Red Hat, Inc. 4 * (C) 2004 Dan Brown <dan_brown@ieee.org> 5 * (C) 2004 Kalev Lember <kalev@smartlink.ee> 6 * 7 * Author: David Woodhouse <dwmw2@infradead.org> 8 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> 9 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> 10 * 11 * Error correction code lifted from the old docecc code 12 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 13 * Copyright (C) 2000 Netgem S.A. 14 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> 15 * 16 * Interface to generic NAND code for M-Systems DiskOnChip devices 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/sched.h> 22 #include <linux/delay.h> 23 #include <linux/rslib.h> 24 #include <linux/moduleparam.h> 25 #include <linux/slab.h> 26 #include <linux/io.h> 27 28 #include <linux/mtd/mtd.h> 29 #include <linux/mtd/rawnand.h> 30 #include <linux/mtd/doc2000.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/mtd/inftl.h> 33 #include <linux/module.h> 34 35 /* Where to look for the devices? */ 36 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 37 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 38 #endif 39 40 static unsigned long doc_locations[] __initdata = { 41 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) 42 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 43 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 44 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 45 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 46 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 47 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, 48 #else 49 0xc8000, 0xca000, 0xcc000, 0xce000, 50 0xd0000, 0xd2000, 0xd4000, 0xd6000, 51 0xd8000, 0xda000, 0xdc000, 0xde000, 52 0xe0000, 0xe2000, 0xe4000, 0xe6000, 53 0xe8000, 0xea000, 0xec000, 0xee000, 54 #endif 55 #endif 56 0xffffffff }; 57 58 static struct mtd_info *doclist = NULL; 59 60 struct doc_priv { 61 void __iomem *virtadr; 62 unsigned long physadr; 63 u_char ChipID; 64 u_char CDSNControl; 65 int chips_per_floor; /* The number of chips detected on each floor */ 66 int curfloor; 67 int curchip; 68 int mh0_page; 69 int mh1_page; 70 struct rs_control *rs_decoder; 71 struct mtd_info *nextdoc; 72 73 /* Handle the last stage of initialization (BBT scan, partitioning) */ 74 int (*late_init)(struct mtd_info *mtd); 75 }; 76 77 /* This is the ecc value computed by the HW ecc generator upon writing an empty 78 page, one with all 0xff for data. */ 79 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; 80 81 #define INFTL_BBT_RESERVED_BLOCKS 4 82 83 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) 84 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) 85 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) 86 87 static void doc200x_hwcontrol(struct nand_chip *this, int cmd, 88 unsigned int bitmask); 89 static void doc200x_select_chip(struct nand_chip *this, int chip); 90 91 static int debug = 0; 92 module_param(debug, int, 0); 93 94 static int try_dword = 1; 95 module_param(try_dword, int, 0); 96 97 static int no_ecc_failures = 0; 98 module_param(no_ecc_failures, int, 0); 99 100 static int no_autopart = 0; 101 module_param(no_autopart, int, 0); 102 103 static int show_firmware_partition = 0; 104 module_param(show_firmware_partition, int, 0); 105 106 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE 107 static int inftl_bbt_write = 1; 108 #else 109 static int inftl_bbt_write = 0; 110 #endif 111 module_param(inftl_bbt_write, int, 0); 112 113 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; 114 module_param(doc_config_location, ulong, 0); 115 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); 116 117 /* Sector size for HW ECC */ 118 #define SECTOR_SIZE 512 119 /* The sector bytes are packed into NB_DATA 10 bit words */ 120 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) 121 /* Number of roots */ 122 #define NROOTS 4 123 /* First consective root */ 124 #define FCR 510 125 /* Number of symbols */ 126 #define NN 1023 127 128 /* 129 * The HW decoder in the DoC ASIC's provides us a error syndrome, 130 * which we must convert to a standard syndrome usable by the generic 131 * Reed-Solomon library code. 132 * 133 * Fabrice Bellard figured this out in the old docecc code. I added 134 * some comments, improved a minor bit and converted it to make use 135 * of the generic Reed-Solomon library. tglx 136 */ 137 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) 138 { 139 int i, j, nerr, errpos[8]; 140 uint8_t parity; 141 uint16_t ds[4], s[5], tmp, errval[8], syn[4]; 142 struct rs_codec *cd = rs->codec; 143 144 memset(syn, 0, sizeof(syn)); 145 /* Convert the ecc bytes into words */ 146 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); 147 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); 148 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); 149 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); 150 parity = ecc[1]; 151 152 /* Initialize the syndrome buffer */ 153 for (i = 0; i < NROOTS; i++) 154 s[i] = ds[0]; 155 /* 156 * Evaluate 157 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] 158 * where x = alpha^(FCR + i) 159 */ 160 for (j = 1; j < NROOTS; j++) { 161 if (ds[j] == 0) 162 continue; 163 tmp = cd->index_of[ds[j]]; 164 for (i = 0; i < NROOTS; i++) 165 s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)]; 166 } 167 168 /* Calc syn[i] = s[i] / alpha^(v + i) */ 169 for (i = 0; i < NROOTS; i++) { 170 if (s[i]) 171 syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i)); 172 } 173 /* Call the decoder library */ 174 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); 175 176 /* Incorrectable errors ? */ 177 if (nerr < 0) 178 return nerr; 179 180 /* 181 * Correct the errors. The bitpositions are a bit of magic, 182 * but they are given by the design of the de/encoder circuit 183 * in the DoC ASIC's. 184 */ 185 for (i = 0; i < nerr; i++) { 186 int index, bitpos, pos = 1015 - errpos[i]; 187 uint8_t val; 188 if (pos >= NB_DATA && pos < 1019) 189 continue; 190 if (pos < NB_DATA) { 191 /* extract bit position (MSB first) */ 192 pos = 10 * (NB_DATA - 1 - pos) - 6; 193 /* now correct the following 10 bits. At most two bytes 194 can be modified since pos is even */ 195 index = (pos >> 3) ^ 1; 196 bitpos = pos & 7; 197 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 198 val = (uint8_t) (errval[i] >> (2 + bitpos)); 199 parity ^= val; 200 if (index < SECTOR_SIZE) 201 data[index] ^= val; 202 } 203 index = ((pos >> 3) + 1) ^ 1; 204 bitpos = (bitpos + 10) & 7; 205 if (bitpos == 0) 206 bitpos = 8; 207 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { 208 val = (uint8_t) (errval[i] << (8 - bitpos)); 209 parity ^= val; 210 if (index < SECTOR_SIZE) 211 data[index] ^= val; 212 } 213 } 214 } 215 /* If the parity is wrong, no rescue possible */ 216 return parity ? -EBADMSG : nerr; 217 } 218 219 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) 220 { 221 volatile char dummy; 222 int i; 223 224 for (i = 0; i < cycles; i++) { 225 if (DoC_is_Millennium(doc)) 226 dummy = ReadDOC(doc->virtadr, NOP); 227 else if (DoC_is_MillenniumPlus(doc)) 228 dummy = ReadDOC(doc->virtadr, Mplus_NOP); 229 else 230 dummy = ReadDOC(doc->virtadr, DOCStatus); 231 } 232 233 } 234 235 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) 236 237 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ 238 static int _DoC_WaitReady(struct doc_priv *doc) 239 { 240 void __iomem *docptr = doc->virtadr; 241 unsigned long timeo = jiffies + (HZ * 10); 242 243 if (debug) 244 printk("_DoC_WaitReady...\n"); 245 /* Out-of-line routine to wait for chip response */ 246 if (DoC_is_MillenniumPlus(doc)) { 247 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 248 if (time_after(jiffies, timeo)) { 249 printk("_DoC_WaitReady timed out.\n"); 250 return -EIO; 251 } 252 udelay(1); 253 cond_resched(); 254 } 255 } else { 256 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 257 if (time_after(jiffies, timeo)) { 258 printk("_DoC_WaitReady timed out.\n"); 259 return -EIO; 260 } 261 udelay(1); 262 cond_resched(); 263 } 264 } 265 266 return 0; 267 } 268 269 static inline int DoC_WaitReady(struct doc_priv *doc) 270 { 271 void __iomem *docptr = doc->virtadr; 272 int ret = 0; 273 274 if (DoC_is_MillenniumPlus(doc)) { 275 DoC_Delay(doc, 4); 276 277 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) 278 /* Call the out-of-line routine to wait */ 279 ret = _DoC_WaitReady(doc); 280 } else { 281 DoC_Delay(doc, 4); 282 283 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) 284 /* Call the out-of-line routine to wait */ 285 ret = _DoC_WaitReady(doc); 286 DoC_Delay(doc, 2); 287 } 288 289 if (debug) 290 printk("DoC_WaitReady OK\n"); 291 return ret; 292 } 293 294 static void doc2000_write_byte(struct nand_chip *this, u_char datum) 295 { 296 struct doc_priv *doc = nand_get_controller_data(this); 297 void __iomem *docptr = doc->virtadr; 298 299 if (debug) 300 printk("write_byte %02x\n", datum); 301 WriteDOC(datum, docptr, CDSNSlowIO); 302 WriteDOC(datum, docptr, 2k_CDSN_IO); 303 } 304 305 static u_char doc2000_read_byte(struct nand_chip *this) 306 { 307 struct doc_priv *doc = nand_get_controller_data(this); 308 void __iomem *docptr = doc->virtadr; 309 u_char ret; 310 311 ReadDOC(docptr, CDSNSlowIO); 312 DoC_Delay(doc, 2); 313 ret = ReadDOC(docptr, 2k_CDSN_IO); 314 if (debug) 315 printk("read_byte returns %02x\n", ret); 316 return ret; 317 } 318 319 static void doc2000_writebuf(struct nand_chip *this, const u_char *buf, 320 int len) 321 { 322 struct doc_priv *doc = nand_get_controller_data(this); 323 void __iomem *docptr = doc->virtadr; 324 int i; 325 if (debug) 326 printk("writebuf of %d bytes: ", len); 327 for (i = 0; i < len; i++) { 328 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); 329 if (debug && i < 16) 330 printk("%02x ", buf[i]); 331 } 332 if (debug) 333 printk("\n"); 334 } 335 336 static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len) 337 { 338 struct doc_priv *doc = nand_get_controller_data(this); 339 void __iomem *docptr = doc->virtadr; 340 int i; 341 342 if (debug) 343 printk("readbuf of %d bytes: ", len); 344 345 for (i = 0; i < len; i++) 346 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); 347 } 348 349 static void doc2000_readbuf_dword(struct nand_chip *this, u_char *buf, int len) 350 { 351 struct doc_priv *doc = nand_get_controller_data(this); 352 void __iomem *docptr = doc->virtadr; 353 int i; 354 355 if (debug) 356 printk("readbuf_dword of %d bytes: ", len); 357 358 if (unlikely((((unsigned long)buf) | len) & 3)) { 359 for (i = 0; i < len; i++) { 360 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); 361 } 362 } else { 363 for (i = 0; i < len; i += 4) { 364 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); 365 } 366 } 367 } 368 369 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) 370 { 371 struct nand_chip *this = mtd_to_nand(mtd); 372 struct doc_priv *doc = nand_get_controller_data(this); 373 uint16_t ret; 374 375 doc200x_select_chip(this, nr); 376 doc200x_hwcontrol(this, NAND_CMD_READID, 377 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 378 doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 379 doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 380 381 /* We can't use dev_ready here, but at least we wait for the 382 * command to complete 383 */ 384 udelay(50); 385 386 ret = this->legacy.read_byte(this) << 8; 387 ret |= this->legacy.read_byte(this); 388 389 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { 390 /* First chip probe. See if we get same results by 32-bit access */ 391 union { 392 uint32_t dword; 393 uint8_t byte[4]; 394 } ident; 395 void __iomem *docptr = doc->virtadr; 396 397 doc200x_hwcontrol(this, NAND_CMD_READID, 398 NAND_CTRL_CLE | NAND_CTRL_CHANGE); 399 doc200x_hwcontrol(this, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); 400 doc200x_hwcontrol(this, NAND_CMD_NONE, 401 NAND_NCE | NAND_CTRL_CHANGE); 402 403 udelay(50); 404 405 ident.dword = readl(docptr + DoC_2k_CDSN_IO); 406 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { 407 pr_info("DiskOnChip 2000 responds to DWORD access\n"); 408 this->legacy.read_buf = &doc2000_readbuf_dword; 409 } 410 } 411 412 return ret; 413 } 414 415 static void __init doc2000_count_chips(struct mtd_info *mtd) 416 { 417 struct nand_chip *this = mtd_to_nand(mtd); 418 struct doc_priv *doc = nand_get_controller_data(this); 419 uint16_t mfrid; 420 int i; 421 422 /* Max 4 chips per floor on DiskOnChip 2000 */ 423 doc->chips_per_floor = 4; 424 425 /* Find out what the first chip is */ 426 mfrid = doc200x_ident_chip(mtd, 0); 427 428 /* Find how many chips in each floor. */ 429 for (i = 1; i < 4; i++) { 430 if (doc200x_ident_chip(mtd, i) != mfrid) 431 break; 432 } 433 doc->chips_per_floor = i; 434 pr_debug("Detected %d chips per floor.\n", i); 435 } 436 437 static int doc200x_wait(struct nand_chip *this) 438 { 439 struct doc_priv *doc = nand_get_controller_data(this); 440 441 int status; 442 443 DoC_WaitReady(doc); 444 nand_status_op(this, NULL); 445 DoC_WaitReady(doc); 446 status = (int)this->legacy.read_byte(this); 447 448 return status; 449 } 450 451 static void doc2001_write_byte(struct nand_chip *this, u_char datum) 452 { 453 struct doc_priv *doc = nand_get_controller_data(this); 454 void __iomem *docptr = doc->virtadr; 455 456 WriteDOC(datum, docptr, CDSNSlowIO); 457 WriteDOC(datum, docptr, Mil_CDSN_IO); 458 WriteDOC(datum, docptr, WritePipeTerm); 459 } 460 461 static u_char doc2001_read_byte(struct nand_chip *this) 462 { 463 struct doc_priv *doc = nand_get_controller_data(this); 464 void __iomem *docptr = doc->virtadr; 465 466 //ReadDOC(docptr, CDSNSlowIO); 467 /* 11.4.5 -- delay twice to allow extended length cycle */ 468 DoC_Delay(doc, 2); 469 ReadDOC(docptr, ReadPipeInit); 470 //return ReadDOC(docptr, Mil_CDSN_IO); 471 return ReadDOC(docptr, LastDataRead); 472 } 473 474 static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len) 475 { 476 struct doc_priv *doc = nand_get_controller_data(this); 477 void __iomem *docptr = doc->virtadr; 478 int i; 479 480 for (i = 0; i < len; i++) 481 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 482 /* Terminate write pipeline */ 483 WriteDOC(0x00, docptr, WritePipeTerm); 484 } 485 486 static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len) 487 { 488 struct doc_priv *doc = nand_get_controller_data(this); 489 void __iomem *docptr = doc->virtadr; 490 int i; 491 492 /* Start read pipeline */ 493 ReadDOC(docptr, ReadPipeInit); 494 495 for (i = 0; i < len - 1; i++) 496 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); 497 498 /* Terminate read pipeline */ 499 buf[i] = ReadDOC(docptr, LastDataRead); 500 } 501 502 static u_char doc2001plus_read_byte(struct nand_chip *this) 503 { 504 struct doc_priv *doc = nand_get_controller_data(this); 505 void __iomem *docptr = doc->virtadr; 506 u_char ret; 507 508 ReadDOC(docptr, Mplus_ReadPipeInit); 509 ReadDOC(docptr, Mplus_ReadPipeInit); 510 ret = ReadDOC(docptr, Mplus_LastDataRead); 511 if (debug) 512 printk("read_byte returns %02x\n", ret); 513 return ret; 514 } 515 516 static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len) 517 { 518 struct doc_priv *doc = nand_get_controller_data(this); 519 void __iomem *docptr = doc->virtadr; 520 int i; 521 522 if (debug) 523 printk("writebuf of %d bytes: ", len); 524 for (i = 0; i < len; i++) { 525 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); 526 if (debug && i < 16) 527 printk("%02x ", buf[i]); 528 } 529 if (debug) 530 printk("\n"); 531 } 532 533 static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len) 534 { 535 struct doc_priv *doc = nand_get_controller_data(this); 536 void __iomem *docptr = doc->virtadr; 537 int i; 538 539 if (debug) 540 printk("readbuf of %d bytes: ", len); 541 542 /* Start read pipeline */ 543 ReadDOC(docptr, Mplus_ReadPipeInit); 544 ReadDOC(docptr, Mplus_ReadPipeInit); 545 546 for (i = 0; i < len - 2; i++) { 547 buf[i] = ReadDOC(docptr, Mil_CDSN_IO); 548 if (debug && i < 16) 549 printk("%02x ", buf[i]); 550 } 551 552 /* Terminate read pipeline */ 553 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); 554 if (debug && i < 16) 555 printk("%02x ", buf[len - 2]); 556 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); 557 if (debug && i < 16) 558 printk("%02x ", buf[len - 1]); 559 if (debug) 560 printk("\n"); 561 } 562 563 static void doc2001plus_select_chip(struct nand_chip *this, int chip) 564 { 565 struct doc_priv *doc = nand_get_controller_data(this); 566 void __iomem *docptr = doc->virtadr; 567 int floor = 0; 568 569 if (debug) 570 printk("select chip (%d)\n", chip); 571 572 if (chip == -1) { 573 /* Disable flash internally */ 574 WriteDOC(0, docptr, Mplus_FlashSelect); 575 return; 576 } 577 578 floor = chip / doc->chips_per_floor; 579 chip -= (floor * doc->chips_per_floor); 580 581 /* Assert ChipEnable and deassert WriteProtect */ 582 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); 583 nand_reset_op(this); 584 585 doc->curchip = chip; 586 doc->curfloor = floor; 587 } 588 589 static void doc200x_select_chip(struct nand_chip *this, int chip) 590 { 591 struct doc_priv *doc = nand_get_controller_data(this); 592 void __iomem *docptr = doc->virtadr; 593 int floor = 0; 594 595 if (debug) 596 printk("select chip (%d)\n", chip); 597 598 if (chip == -1) 599 return; 600 601 floor = chip / doc->chips_per_floor; 602 chip -= (floor * doc->chips_per_floor); 603 604 /* 11.4.4 -- deassert CE before changing chip */ 605 doc200x_hwcontrol(this, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); 606 607 WriteDOC(floor, docptr, FloorSelect); 608 WriteDOC(chip, docptr, CDSNDeviceSelect); 609 610 doc200x_hwcontrol(this, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); 611 612 doc->curchip = chip; 613 doc->curfloor = floor; 614 } 615 616 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) 617 618 static void doc200x_hwcontrol(struct nand_chip *this, int cmd, 619 unsigned int ctrl) 620 { 621 struct doc_priv *doc = nand_get_controller_data(this); 622 void __iomem *docptr = doc->virtadr; 623 624 if (ctrl & NAND_CTRL_CHANGE) { 625 doc->CDSNControl &= ~CDSN_CTRL_MSK; 626 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; 627 if (debug) 628 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); 629 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 630 /* 11.4.3 -- 4 NOPs after CSDNControl write */ 631 DoC_Delay(doc, 4); 632 } 633 if (cmd != NAND_CMD_NONE) { 634 if (DoC_is_2000(doc)) 635 doc2000_write_byte(this, cmd); 636 else 637 doc2001_write_byte(this, cmd); 638 } 639 } 640 641 static void doc2001plus_command(struct nand_chip *this, unsigned command, 642 int column, int page_addr) 643 { 644 struct mtd_info *mtd = nand_to_mtd(this); 645 struct doc_priv *doc = nand_get_controller_data(this); 646 void __iomem *docptr = doc->virtadr; 647 648 /* 649 * Must terminate write pipeline before sending any commands 650 * to the device. 651 */ 652 if (command == NAND_CMD_PAGEPROG) { 653 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 654 WriteDOC(0x00, docptr, Mplus_WritePipeTerm); 655 } 656 657 /* 658 * Write out the command to the device. 659 */ 660 if (command == NAND_CMD_SEQIN) { 661 int readcmd; 662 663 if (column >= mtd->writesize) { 664 /* OOB area */ 665 column -= mtd->writesize; 666 readcmd = NAND_CMD_READOOB; 667 } else if (column < 256) { 668 /* First 256 bytes --> READ0 */ 669 readcmd = NAND_CMD_READ0; 670 } else { 671 column -= 256; 672 readcmd = NAND_CMD_READ1; 673 } 674 WriteDOC(readcmd, docptr, Mplus_FlashCmd); 675 } 676 WriteDOC(command, docptr, Mplus_FlashCmd); 677 WriteDOC(0, docptr, Mplus_WritePipeTerm); 678 WriteDOC(0, docptr, Mplus_WritePipeTerm); 679 680 if (column != -1 || page_addr != -1) { 681 /* Serially input address */ 682 if (column != -1) { 683 /* Adjust columns for 16 bit buswidth */ 684 if (this->options & NAND_BUSWIDTH_16 && 685 !nand_opcode_8bits(command)) 686 column >>= 1; 687 WriteDOC(column, docptr, Mplus_FlashAddress); 688 } 689 if (page_addr != -1) { 690 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); 691 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); 692 if (this->options & NAND_ROW_ADDR_3) { 693 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); 694 printk("high density\n"); 695 } 696 } 697 WriteDOC(0, docptr, Mplus_WritePipeTerm); 698 WriteDOC(0, docptr, Mplus_WritePipeTerm); 699 /* deassert ALE */ 700 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || 701 command == NAND_CMD_READOOB || command == NAND_CMD_READID) 702 WriteDOC(0, docptr, Mplus_FlashControl); 703 } 704 705 /* 706 * program and erase have their own busy handlers 707 * status and sequential in needs no delay 708 */ 709 switch (command) { 710 711 case NAND_CMD_PAGEPROG: 712 case NAND_CMD_ERASE1: 713 case NAND_CMD_ERASE2: 714 case NAND_CMD_SEQIN: 715 case NAND_CMD_STATUS: 716 return; 717 718 case NAND_CMD_RESET: 719 if (this->legacy.dev_ready) 720 break; 721 udelay(this->legacy.chip_delay); 722 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); 723 WriteDOC(0, docptr, Mplus_WritePipeTerm); 724 WriteDOC(0, docptr, Mplus_WritePipeTerm); 725 while (!(this->legacy.read_byte(this) & 0x40)) ; 726 return; 727 728 /* This applies to read commands */ 729 default: 730 /* 731 * If we don't have access to the busy pin, we apply the given 732 * command delay 733 */ 734 if (!this->legacy.dev_ready) { 735 udelay(this->legacy.chip_delay); 736 return; 737 } 738 } 739 740 /* Apply this short delay always to ensure that we do wait tWB in 741 * any case on any machine. */ 742 ndelay(100); 743 /* wait until command is processed */ 744 while (!this->legacy.dev_ready(this)) ; 745 } 746 747 static int doc200x_dev_ready(struct nand_chip *this) 748 { 749 struct doc_priv *doc = nand_get_controller_data(this); 750 void __iomem *docptr = doc->virtadr; 751 752 if (DoC_is_MillenniumPlus(doc)) { 753 /* 11.4.2 -- must NOP four times before checking FR/B# */ 754 DoC_Delay(doc, 4); 755 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { 756 if (debug) 757 printk("not ready\n"); 758 return 0; 759 } 760 if (debug) 761 printk("was ready\n"); 762 return 1; 763 } else { 764 /* 11.4.2 -- must NOP four times before checking FR/B# */ 765 DoC_Delay(doc, 4); 766 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { 767 if (debug) 768 printk("not ready\n"); 769 return 0; 770 } 771 /* 11.4.2 -- Must NOP twice if it's ready */ 772 DoC_Delay(doc, 2); 773 if (debug) 774 printk("was ready\n"); 775 return 1; 776 } 777 } 778 779 static int doc200x_block_bad(struct nand_chip *this, loff_t ofs) 780 { 781 /* This is our last resort if we couldn't find or create a BBT. Just 782 pretend all blocks are good. */ 783 return 0; 784 } 785 786 static void doc200x_enable_hwecc(struct nand_chip *this, int mode) 787 { 788 struct doc_priv *doc = nand_get_controller_data(this); 789 void __iomem *docptr = doc->virtadr; 790 791 /* Prime the ECC engine */ 792 switch (mode) { 793 case NAND_ECC_READ: 794 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 795 WriteDOC(DOC_ECC_EN, docptr, ECCConf); 796 break; 797 case NAND_ECC_WRITE: 798 WriteDOC(DOC_ECC_RESET, docptr, ECCConf); 799 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); 800 break; 801 } 802 } 803 804 static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode) 805 { 806 struct doc_priv *doc = nand_get_controller_data(this); 807 void __iomem *docptr = doc->virtadr; 808 809 /* Prime the ECC engine */ 810 switch (mode) { 811 case NAND_ECC_READ: 812 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 813 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); 814 break; 815 case NAND_ECC_WRITE: 816 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); 817 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); 818 break; 819 } 820 } 821 822 /* This code is only called on write */ 823 static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat, 824 unsigned char *ecc_code) 825 { 826 struct doc_priv *doc = nand_get_controller_data(this); 827 void __iomem *docptr = doc->virtadr; 828 int i; 829 int emptymatch = 1; 830 831 /* flush the pipeline */ 832 if (DoC_is_2000(doc)) { 833 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); 834 WriteDOC(0, docptr, 2k_CDSN_IO); 835 WriteDOC(0, docptr, 2k_CDSN_IO); 836 WriteDOC(0, docptr, 2k_CDSN_IO); 837 WriteDOC(doc->CDSNControl, docptr, CDSNControl); 838 } else if (DoC_is_MillenniumPlus(doc)) { 839 WriteDOC(0, docptr, Mplus_NOP); 840 WriteDOC(0, docptr, Mplus_NOP); 841 WriteDOC(0, docptr, Mplus_NOP); 842 } else { 843 WriteDOC(0, docptr, NOP); 844 WriteDOC(0, docptr, NOP); 845 WriteDOC(0, docptr, NOP); 846 } 847 848 for (i = 0; i < 6; i++) { 849 if (DoC_is_MillenniumPlus(doc)) 850 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 851 else 852 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 853 if (ecc_code[i] != empty_write_ecc[i]) 854 emptymatch = 0; 855 } 856 if (DoC_is_MillenniumPlus(doc)) 857 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 858 else 859 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 860 #if 0 861 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ 862 if (emptymatch) { 863 /* Note: this somewhat expensive test should not be triggered 864 often. It could be optimized away by examining the data in 865 the writebuf routine, and remembering the result. */ 866 for (i = 0; i < 512; i++) { 867 if (dat[i] == 0xff) 868 continue; 869 emptymatch = 0; 870 break; 871 } 872 } 873 /* If emptymatch still =1, we do have an all-0xff data buffer. 874 Return all-0xff ecc value instead of the computed one, so 875 it'll look just like a freshly-erased page. */ 876 if (emptymatch) 877 memset(ecc_code, 0xff, 6); 878 #endif 879 return 0; 880 } 881 882 static int doc200x_correct_data(struct nand_chip *this, u_char *dat, 883 u_char *read_ecc, u_char *isnull) 884 { 885 int i, ret = 0; 886 struct doc_priv *doc = nand_get_controller_data(this); 887 void __iomem *docptr = doc->virtadr; 888 uint8_t calc_ecc[6]; 889 volatile u_char dummy; 890 891 /* flush the pipeline */ 892 if (DoC_is_2000(doc)) { 893 dummy = ReadDOC(docptr, 2k_ECCStatus); 894 dummy = ReadDOC(docptr, 2k_ECCStatus); 895 dummy = ReadDOC(docptr, 2k_ECCStatus); 896 } else if (DoC_is_MillenniumPlus(doc)) { 897 dummy = ReadDOC(docptr, Mplus_ECCConf); 898 dummy = ReadDOC(docptr, Mplus_ECCConf); 899 dummy = ReadDOC(docptr, Mplus_ECCConf); 900 } else { 901 dummy = ReadDOC(docptr, ECCConf); 902 dummy = ReadDOC(docptr, ECCConf); 903 dummy = ReadDOC(docptr, ECCConf); 904 } 905 906 /* Error occurred ? */ 907 if (dummy & 0x80) { 908 for (i = 0; i < 6; i++) { 909 if (DoC_is_MillenniumPlus(doc)) 910 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); 911 else 912 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); 913 } 914 915 ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc); 916 if (ret > 0) 917 pr_err("doc200x_correct_data corrected %d errors\n", 918 ret); 919 } 920 if (DoC_is_MillenniumPlus(doc)) 921 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); 922 else 923 WriteDOC(DOC_ECC_DIS, docptr, ECCConf); 924 if (no_ecc_failures && mtd_is_eccerr(ret)) { 925 pr_err("suppressing ECC failure\n"); 926 ret = 0; 927 } 928 return ret; 929 } 930 931 //u_char mydatabuf[528]; 932 933 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, 934 struct mtd_oob_region *oobregion) 935 { 936 if (section) 937 return -ERANGE; 938 939 oobregion->offset = 0; 940 oobregion->length = 6; 941 942 return 0; 943 } 944 945 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, 946 struct mtd_oob_region *oobregion) 947 { 948 if (section > 1) 949 return -ERANGE; 950 951 /* 952 * The strange out-of-order free bytes definition is a (possibly 953 * unneeded) attempt to retain compatibility. It used to read: 954 * .oobfree = { {8, 8} } 955 * Since that leaves two bytes unusable, it was changed. But the 956 * following scheme might affect existing jffs2 installs by moving the 957 * cleanmarker: 958 * .oobfree = { {6, 10} } 959 * jffs2 seems to handle the above gracefully, but the current scheme 960 * seems safer. The only problem with it is that any code retrieving 961 * free bytes position must be able to handle out-of-order segments. 962 */ 963 if (!section) { 964 oobregion->offset = 8; 965 oobregion->length = 8; 966 } else { 967 oobregion->offset = 6; 968 oobregion->length = 2; 969 } 970 971 return 0; 972 } 973 974 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { 975 .ecc = doc200x_ooblayout_ecc, 976 .free = doc200x_ooblayout_free, 977 }; 978 979 /* Find the (I)NFTL Media Header, and optionally also the mirror media header. 980 On successful return, buf will contain a copy of the media header for 981 further processing. id is the string to scan for, and will presumably be 982 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media 983 header. The page #s of the found media headers are placed in mh0_page and 984 mh1_page in the DOC private structure. */ 985 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) 986 { 987 struct nand_chip *this = mtd_to_nand(mtd); 988 struct doc_priv *doc = nand_get_controller_data(this); 989 unsigned offs; 990 int ret; 991 size_t retlen; 992 993 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { 994 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 995 if (retlen != mtd->writesize) 996 continue; 997 if (ret) { 998 pr_warn("ECC error scanning DOC at 0x%x\n", offs); 999 } 1000 if (memcmp(buf, id, 6)) 1001 continue; 1002 pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); 1003 if (doc->mh0_page == -1) { 1004 doc->mh0_page = offs >> this->page_shift; 1005 if (!findmirror) 1006 return 1; 1007 continue; 1008 } 1009 doc->mh1_page = offs >> this->page_shift; 1010 return 2; 1011 } 1012 if (doc->mh0_page == -1) { 1013 pr_warn("DiskOnChip %s Media Header not found.\n", id); 1014 return 0; 1015 } 1016 /* Only one mediaheader was found. We want buf to contain a 1017 mediaheader on return, so we'll have to re-read the one we found. */ 1018 offs = doc->mh0_page << this->page_shift; 1019 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); 1020 if (retlen != mtd->writesize) { 1021 /* Insanity. Give up. */ 1022 pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); 1023 return 0; 1024 } 1025 return 1; 1026 } 1027 1028 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1029 { 1030 struct nand_chip *this = mtd_to_nand(mtd); 1031 struct doc_priv *doc = nand_get_controller_data(this); 1032 struct nand_memory_organization *memorg; 1033 int ret = 0; 1034 u_char *buf; 1035 struct NFTLMediaHeader *mh; 1036 const unsigned psize = 1 << this->page_shift; 1037 int numparts = 0; 1038 unsigned blocks, maxblocks; 1039 int offs, numheaders; 1040 1041 memorg = nanddev_get_memorg(&this->base); 1042 1043 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1044 if (!buf) { 1045 return 0; 1046 } 1047 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) 1048 goto out; 1049 mh = (struct NFTLMediaHeader *)buf; 1050 1051 le16_to_cpus(&mh->NumEraseUnits); 1052 le16_to_cpus(&mh->FirstPhysicalEUN); 1053 le32_to_cpus(&mh->FormattedSize); 1054 1055 pr_info(" DataOrgID = %s\n" 1056 " NumEraseUnits = %d\n" 1057 " FirstPhysicalEUN = %d\n" 1058 " FormattedSize = %d\n" 1059 " UnitSizeFactor = %d\n", 1060 mh->DataOrgID, mh->NumEraseUnits, 1061 mh->FirstPhysicalEUN, mh->FormattedSize, 1062 mh->UnitSizeFactor); 1063 1064 blocks = mtd->size >> this->phys_erase_shift; 1065 maxblocks = min(32768U, mtd->erasesize - psize); 1066 1067 if (mh->UnitSizeFactor == 0x00) { 1068 /* Auto-determine UnitSizeFactor. The constraints are: 1069 - There can be at most 32768 virtual blocks. 1070 - There can be at most (virtual block size - page size) 1071 virtual blocks (because MediaHeader+BBT must fit in 1). 1072 */ 1073 mh->UnitSizeFactor = 0xff; 1074 while (blocks > maxblocks) { 1075 blocks >>= 1; 1076 maxblocks = min(32768U, (maxblocks << 1) + psize); 1077 mh->UnitSizeFactor--; 1078 } 1079 pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); 1080 } 1081 1082 /* NOTE: The lines below modify internal variables of the NAND and MTD 1083 layers; variables with have already been configured by nand_scan. 1084 Unfortunately, we didn't know before this point what these values 1085 should be. Thus, this code is somewhat dependent on the exact 1086 implementation of the NAND layer. */ 1087 if (mh->UnitSizeFactor != 0xff) { 1088 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); 1089 memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor); 1090 mtd->erasesize <<= (0xff - mh->UnitSizeFactor); 1091 pr_info("Setting virtual erase size to %d\n", mtd->erasesize); 1092 blocks = mtd->size >> this->bbt_erase_shift; 1093 maxblocks = min(32768U, mtd->erasesize - psize); 1094 } 1095 1096 if (blocks > maxblocks) { 1097 pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); 1098 goto out; 1099 } 1100 1101 /* Skip past the media headers. */ 1102 offs = max(doc->mh0_page, doc->mh1_page); 1103 offs <<= this->page_shift; 1104 offs += mtd->erasesize; 1105 1106 if (show_firmware_partition == 1) { 1107 parts[0].name = " DiskOnChip Firmware / Media Header partition"; 1108 parts[0].offset = 0; 1109 parts[0].size = offs; 1110 numparts = 1; 1111 } 1112 1113 parts[numparts].name = " DiskOnChip BDTL partition"; 1114 parts[numparts].offset = offs; 1115 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; 1116 1117 offs += parts[numparts].size; 1118 numparts++; 1119 1120 if (offs < mtd->size) { 1121 parts[numparts].name = " DiskOnChip Remainder partition"; 1122 parts[numparts].offset = offs; 1123 parts[numparts].size = mtd->size - offs; 1124 numparts++; 1125 } 1126 1127 ret = numparts; 1128 out: 1129 kfree(buf); 1130 return ret; 1131 } 1132 1133 /* This is a stripped-down copy of the code in inftlmount.c */ 1134 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) 1135 { 1136 struct nand_chip *this = mtd_to_nand(mtd); 1137 struct doc_priv *doc = nand_get_controller_data(this); 1138 int ret = 0; 1139 u_char *buf; 1140 struct INFTLMediaHeader *mh; 1141 struct INFTLPartition *ip; 1142 int numparts = 0; 1143 int blocks; 1144 int vshift, lastvunit = 0; 1145 int i; 1146 int end = mtd->size; 1147 1148 if (inftl_bbt_write) 1149 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); 1150 1151 buf = kmalloc(mtd->writesize, GFP_KERNEL); 1152 if (!buf) { 1153 return 0; 1154 } 1155 1156 if (!find_media_headers(mtd, buf, "BNAND", 0)) 1157 goto out; 1158 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); 1159 mh = (struct INFTLMediaHeader *)buf; 1160 1161 le32_to_cpus(&mh->NoOfBootImageBlocks); 1162 le32_to_cpus(&mh->NoOfBinaryPartitions); 1163 le32_to_cpus(&mh->NoOfBDTLPartitions); 1164 le32_to_cpus(&mh->BlockMultiplierBits); 1165 le32_to_cpus(&mh->FormatFlags); 1166 le32_to_cpus(&mh->PercentUsed); 1167 1168 pr_info(" bootRecordID = %s\n" 1169 " NoOfBootImageBlocks = %d\n" 1170 " NoOfBinaryPartitions = %d\n" 1171 " NoOfBDTLPartitions = %d\n" 1172 " BlockMultiplerBits = %d\n" 1173 " FormatFlgs = %d\n" 1174 " OsakVersion = %d.%d.%d.%d\n" 1175 " PercentUsed = %d\n", 1176 mh->bootRecordID, mh->NoOfBootImageBlocks, 1177 mh->NoOfBinaryPartitions, 1178 mh->NoOfBDTLPartitions, 1179 mh->BlockMultiplierBits, mh->FormatFlags, 1180 ((unsigned char *) &mh->OsakVersion)[0] & 0xf, 1181 ((unsigned char *) &mh->OsakVersion)[1] & 0xf, 1182 ((unsigned char *) &mh->OsakVersion)[2] & 0xf, 1183 ((unsigned char *) &mh->OsakVersion)[3] & 0xf, 1184 mh->PercentUsed); 1185 1186 vshift = this->phys_erase_shift + mh->BlockMultiplierBits; 1187 1188 blocks = mtd->size >> vshift; 1189 if (blocks > 32768) { 1190 pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); 1191 goto out; 1192 } 1193 1194 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); 1195 if (inftl_bbt_write && (blocks > mtd->erasesize)) { 1196 pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); 1197 goto out; 1198 } 1199 1200 /* Scan the partitions */ 1201 for (i = 0; (i < 4); i++) { 1202 ip = &(mh->Partitions[i]); 1203 le32_to_cpus(&ip->virtualUnits); 1204 le32_to_cpus(&ip->firstUnit); 1205 le32_to_cpus(&ip->lastUnit); 1206 le32_to_cpus(&ip->flags); 1207 le32_to_cpus(&ip->spareUnits); 1208 le32_to_cpus(&ip->Reserved0); 1209 1210 pr_info(" PARTITION[%d] ->\n" 1211 " virtualUnits = %d\n" 1212 " firstUnit = %d\n" 1213 " lastUnit = %d\n" 1214 " flags = 0x%x\n" 1215 " spareUnits = %d\n", 1216 i, ip->virtualUnits, ip->firstUnit, 1217 ip->lastUnit, ip->flags, 1218 ip->spareUnits); 1219 1220 if ((show_firmware_partition == 1) && 1221 (i == 0) && (ip->firstUnit > 0)) { 1222 parts[0].name = " DiskOnChip IPL / Media Header partition"; 1223 parts[0].offset = 0; 1224 parts[0].size = mtd->erasesize * ip->firstUnit; 1225 numparts = 1; 1226 } 1227 1228 if (ip->flags & INFTL_BINARY) 1229 parts[numparts].name = " DiskOnChip BDK partition"; 1230 else 1231 parts[numparts].name = " DiskOnChip BDTL partition"; 1232 parts[numparts].offset = ip->firstUnit << vshift; 1233 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; 1234 numparts++; 1235 if (ip->lastUnit > lastvunit) 1236 lastvunit = ip->lastUnit; 1237 if (ip->flags & INFTL_LAST) 1238 break; 1239 } 1240 lastvunit++; 1241 if ((lastvunit << vshift) < end) { 1242 parts[numparts].name = " DiskOnChip Remainder partition"; 1243 parts[numparts].offset = lastvunit << vshift; 1244 parts[numparts].size = end - parts[numparts].offset; 1245 numparts++; 1246 } 1247 ret = numparts; 1248 out: 1249 kfree(buf); 1250 return ret; 1251 } 1252 1253 static int __init nftl_scan_bbt(struct mtd_info *mtd) 1254 { 1255 int ret, numparts; 1256 struct nand_chip *this = mtd_to_nand(mtd); 1257 struct doc_priv *doc = nand_get_controller_data(this); 1258 struct mtd_partition parts[2]; 1259 1260 memset((char *)parts, 0, sizeof(parts)); 1261 /* On NFTL, we have to find the media headers before we can read the 1262 BBTs, since they're stored in the media header eraseblocks. */ 1263 numparts = nftl_partscan(mtd, parts); 1264 if (!numparts) 1265 return -EIO; 1266 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1267 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1268 NAND_BBT_VERSION; 1269 this->bbt_td->veroffs = 7; 1270 this->bbt_td->pages[0] = doc->mh0_page + 1; 1271 if (doc->mh1_page != -1) { 1272 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | 1273 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | 1274 NAND_BBT_VERSION; 1275 this->bbt_md->veroffs = 7; 1276 this->bbt_md->pages[0] = doc->mh1_page + 1; 1277 } else { 1278 this->bbt_md = NULL; 1279 } 1280 1281 ret = nand_create_bbt(this); 1282 if (ret) 1283 return ret; 1284 1285 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1286 } 1287 1288 static int __init inftl_scan_bbt(struct mtd_info *mtd) 1289 { 1290 int ret, numparts; 1291 struct nand_chip *this = mtd_to_nand(mtd); 1292 struct doc_priv *doc = nand_get_controller_data(this); 1293 struct mtd_partition parts[5]; 1294 1295 if (nanddev_ntargets(&this->base) > doc->chips_per_floor) { 1296 pr_err("Multi-floor INFTL devices not yet supported.\n"); 1297 return -EIO; 1298 } 1299 1300 if (DoC_is_MillenniumPlus(doc)) { 1301 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; 1302 if (inftl_bbt_write) 1303 this->bbt_td->options |= NAND_BBT_WRITE; 1304 this->bbt_td->pages[0] = 2; 1305 this->bbt_md = NULL; 1306 } else { 1307 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1308 if (inftl_bbt_write) 1309 this->bbt_td->options |= NAND_BBT_WRITE; 1310 this->bbt_td->offs = 8; 1311 this->bbt_td->len = 8; 1312 this->bbt_td->veroffs = 7; 1313 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1314 this->bbt_td->reserved_block_code = 0x01; 1315 this->bbt_td->pattern = "MSYS_BBT"; 1316 1317 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; 1318 if (inftl_bbt_write) 1319 this->bbt_md->options |= NAND_BBT_WRITE; 1320 this->bbt_md->offs = 8; 1321 this->bbt_md->len = 8; 1322 this->bbt_md->veroffs = 7; 1323 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; 1324 this->bbt_md->reserved_block_code = 0x01; 1325 this->bbt_md->pattern = "TBB_SYSM"; 1326 } 1327 1328 ret = nand_create_bbt(this); 1329 if (ret) 1330 return ret; 1331 1332 memset((char *)parts, 0, sizeof(parts)); 1333 numparts = inftl_partscan(mtd, parts); 1334 /* At least for now, require the INFTL Media Header. We could probably 1335 do without it for non-INFTL use, since all it gives us is 1336 autopartitioning, but I want to give it more thought. */ 1337 if (!numparts) 1338 return -EIO; 1339 return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); 1340 } 1341 1342 static inline int __init doc2000_init(struct mtd_info *mtd) 1343 { 1344 struct nand_chip *this = mtd_to_nand(mtd); 1345 struct doc_priv *doc = nand_get_controller_data(this); 1346 1347 this->legacy.read_byte = doc2000_read_byte; 1348 this->legacy.write_buf = doc2000_writebuf; 1349 this->legacy.read_buf = doc2000_readbuf; 1350 doc->late_init = nftl_scan_bbt; 1351 1352 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; 1353 doc2000_count_chips(mtd); 1354 mtd->name = "DiskOnChip 2000 (NFTL Model)"; 1355 return (4 * doc->chips_per_floor); 1356 } 1357 1358 static inline int __init doc2001_init(struct mtd_info *mtd) 1359 { 1360 struct nand_chip *this = mtd_to_nand(mtd); 1361 struct doc_priv *doc = nand_get_controller_data(this); 1362 1363 this->legacy.read_byte = doc2001_read_byte; 1364 this->legacy.write_buf = doc2001_writebuf; 1365 this->legacy.read_buf = doc2001_readbuf; 1366 1367 ReadDOC(doc->virtadr, ChipID); 1368 ReadDOC(doc->virtadr, ChipID); 1369 ReadDOC(doc->virtadr, ChipID); 1370 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { 1371 /* It's not a Millennium; it's one of the newer 1372 DiskOnChip 2000 units with a similar ASIC. 1373 Treat it like a Millennium, except that it 1374 can have multiple chips. */ 1375 doc2000_count_chips(mtd); 1376 mtd->name = "DiskOnChip 2000 (INFTL Model)"; 1377 doc->late_init = inftl_scan_bbt; 1378 return (4 * doc->chips_per_floor); 1379 } else { 1380 /* Bog-standard Millennium */ 1381 doc->chips_per_floor = 1; 1382 mtd->name = "DiskOnChip Millennium"; 1383 doc->late_init = nftl_scan_bbt; 1384 return 1; 1385 } 1386 } 1387 1388 static inline int __init doc2001plus_init(struct mtd_info *mtd) 1389 { 1390 struct nand_chip *this = mtd_to_nand(mtd); 1391 struct doc_priv *doc = nand_get_controller_data(this); 1392 1393 this->legacy.read_byte = doc2001plus_read_byte; 1394 this->legacy.write_buf = doc2001plus_writebuf; 1395 this->legacy.read_buf = doc2001plus_readbuf; 1396 doc->late_init = inftl_scan_bbt; 1397 this->legacy.cmd_ctrl = NULL; 1398 this->legacy.select_chip = doc2001plus_select_chip; 1399 this->legacy.cmdfunc = doc2001plus_command; 1400 this->ecc.hwctl = doc2001plus_enable_hwecc; 1401 1402 doc->chips_per_floor = 1; 1403 mtd->name = "DiskOnChip Millennium Plus"; 1404 1405 return 1; 1406 } 1407 1408 static int __init doc_probe(unsigned long physadr) 1409 { 1410 struct nand_chip *nand = NULL; 1411 struct doc_priv *doc = NULL; 1412 unsigned char ChipID; 1413 struct mtd_info *mtd; 1414 void __iomem *virtadr; 1415 unsigned char save_control; 1416 unsigned char tmp, tmpb, tmpc; 1417 int reg, len, numchips; 1418 int ret = 0; 1419 1420 if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) 1421 return -EBUSY; 1422 virtadr = ioremap(physadr, DOC_IOREMAP_LEN); 1423 if (!virtadr) { 1424 pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", 1425 DOC_IOREMAP_LEN, physadr); 1426 ret = -EIO; 1427 goto error_ioremap; 1428 } 1429 1430 /* It's not possible to cleanly detect the DiskOnChip - the 1431 * bootup procedure will put the device into reset mode, and 1432 * it's not possible to talk to it without actually writing 1433 * to the DOCControl register. So we store the current contents 1434 * of the DOCControl register's location, in case we later decide 1435 * that it's not a DiskOnChip, and want to put it back how we 1436 * found it. 1437 */ 1438 save_control = ReadDOC(virtadr, DOCControl); 1439 1440 /* Reset the DiskOnChip ASIC */ 1441 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1442 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); 1443 1444 /* Enable the DiskOnChip ASIC */ 1445 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1446 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); 1447 1448 ChipID = ReadDOC(virtadr, ChipID); 1449 1450 switch (ChipID) { 1451 case DOC_ChipID_Doc2k: 1452 reg = DoC_2k_ECCStatus; 1453 break; 1454 case DOC_ChipID_DocMil: 1455 reg = DoC_ECCConf; 1456 break; 1457 case DOC_ChipID_DocMilPlus16: 1458 case DOC_ChipID_DocMilPlus32: 1459 case 0: 1460 /* Possible Millennium Plus, need to do more checks */ 1461 /* Possibly release from power down mode */ 1462 for (tmp = 0; (tmp < 4); tmp++) 1463 ReadDOC(virtadr, Mplus_Power); 1464 1465 /* Reset the Millennium Plus ASIC */ 1466 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1467 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1468 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1469 1470 usleep_range(1000, 2000); 1471 /* Enable the Millennium Plus ASIC */ 1472 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; 1473 WriteDOC(tmp, virtadr, Mplus_DOCControl); 1474 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); 1475 usleep_range(1000, 2000); 1476 1477 ChipID = ReadDOC(virtadr, ChipID); 1478 1479 switch (ChipID) { 1480 case DOC_ChipID_DocMilPlus16: 1481 reg = DoC_Mplus_Toggle; 1482 break; 1483 case DOC_ChipID_DocMilPlus32: 1484 pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); 1485 /* fall through */ 1486 default: 1487 ret = -ENODEV; 1488 goto notfound; 1489 } 1490 break; 1491 1492 default: 1493 ret = -ENODEV; 1494 goto notfound; 1495 } 1496 /* Check the TOGGLE bit in the ECC register */ 1497 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1498 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1499 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; 1500 if ((tmp == tmpb) || (tmp != tmpc)) { 1501 pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); 1502 ret = -ENODEV; 1503 goto notfound; 1504 } 1505 1506 for (mtd = doclist; mtd; mtd = doc->nextdoc) { 1507 unsigned char oldval; 1508 unsigned char newval; 1509 nand = mtd_to_nand(mtd); 1510 doc = nand_get_controller_data(nand); 1511 /* Use the alias resolution register to determine if this is 1512 in fact the same DOC aliased to a new address. If writes 1513 to one chip's alias resolution register change the value on 1514 the other chip, they're the same chip. */ 1515 if (ChipID == DOC_ChipID_DocMilPlus16) { 1516 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1517 newval = ReadDOC(virtadr, Mplus_AliasResolution); 1518 } else { 1519 oldval = ReadDOC(doc->virtadr, AliasResolution); 1520 newval = ReadDOC(virtadr, AliasResolution); 1521 } 1522 if (oldval != newval) 1523 continue; 1524 if (ChipID == DOC_ChipID_DocMilPlus16) { 1525 WriteDOC(~newval, virtadr, Mplus_AliasResolution); 1526 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); 1527 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it 1528 } else { 1529 WriteDOC(~newval, virtadr, AliasResolution); 1530 oldval = ReadDOC(doc->virtadr, AliasResolution); 1531 WriteDOC(newval, virtadr, AliasResolution); // restore it 1532 } 1533 newval = ~newval; 1534 if (oldval == newval) { 1535 pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", 1536 doc->physadr, physadr); 1537 goto notfound; 1538 } 1539 } 1540 1541 pr_notice("DiskOnChip found at 0x%lx\n", physadr); 1542 1543 len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + 1544 (2 * sizeof(struct nand_bbt_descr)); 1545 nand = kzalloc(len, GFP_KERNEL); 1546 if (!nand) { 1547 ret = -ENOMEM; 1548 goto fail; 1549 } 1550 1551 1552 /* 1553 * Allocate a RS codec instance 1554 * 1555 * Symbolsize is 10 (bits) 1556 * Primitve polynomial is x^10+x^3+1 1557 * First consecutive root is 510 1558 * Primitve element to generate roots = 1 1559 * Generator polinomial degree = 4 1560 */ 1561 doc = (struct doc_priv *) (nand + 1); 1562 doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); 1563 if (!doc->rs_decoder) { 1564 pr_err("DiskOnChip: Could not create a RS codec\n"); 1565 ret = -ENOMEM; 1566 goto fail; 1567 } 1568 1569 mtd = nand_to_mtd(nand); 1570 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); 1571 nand->bbt_md = nand->bbt_td + 1; 1572 1573 mtd->owner = THIS_MODULE; 1574 mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); 1575 1576 nand_set_controller_data(nand, doc); 1577 nand->legacy.select_chip = doc200x_select_chip; 1578 nand->legacy.cmd_ctrl = doc200x_hwcontrol; 1579 nand->legacy.dev_ready = doc200x_dev_ready; 1580 nand->legacy.waitfunc = doc200x_wait; 1581 nand->legacy.block_bad = doc200x_block_bad; 1582 nand->ecc.hwctl = doc200x_enable_hwecc; 1583 nand->ecc.calculate = doc200x_calculate_ecc; 1584 nand->ecc.correct = doc200x_correct_data; 1585 1586 nand->ecc.mode = NAND_ECC_HW_SYNDROME; 1587 nand->ecc.size = 512; 1588 nand->ecc.bytes = 6; 1589 nand->ecc.strength = 2; 1590 nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 1591 nand->bbt_options = NAND_BBT_USE_FLASH; 1592 /* Skip the automatic BBT scan so we can run it manually */ 1593 nand->options |= NAND_SKIP_BBTSCAN; 1594 1595 doc->physadr = physadr; 1596 doc->virtadr = virtadr; 1597 doc->ChipID = ChipID; 1598 doc->curfloor = -1; 1599 doc->curchip = -1; 1600 doc->mh0_page = -1; 1601 doc->mh1_page = -1; 1602 doc->nextdoc = doclist; 1603 1604 if (ChipID == DOC_ChipID_Doc2k) 1605 numchips = doc2000_init(mtd); 1606 else if (ChipID == DOC_ChipID_DocMilPlus16) 1607 numchips = doc2001plus_init(mtd); 1608 else 1609 numchips = doc2001_init(mtd); 1610 1611 if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) { 1612 /* DBB note: i believe nand_release is necessary here, as 1613 buffers may have been allocated in nand_base. Check with 1614 Thomas. FIX ME! */ 1615 /* nand_release will call mtd_device_unregister, but we 1616 haven't yet added it. This is handled without incident by 1617 mtd_device_unregister, as far as I can tell. */ 1618 nand_release(nand); 1619 goto fail; 1620 } 1621 1622 /* Success! */ 1623 doclist = mtd; 1624 return 0; 1625 1626 notfound: 1627 /* Put back the contents of the DOCControl register, in case it's not 1628 actually a DiskOnChip. */ 1629 WriteDOC(save_control, virtadr, DOCControl); 1630 fail: 1631 if (doc) 1632 free_rs(doc->rs_decoder); 1633 kfree(nand); 1634 iounmap(virtadr); 1635 1636 error_ioremap: 1637 release_mem_region(physadr, DOC_IOREMAP_LEN); 1638 1639 return ret; 1640 } 1641 1642 static void release_nanddoc(void) 1643 { 1644 struct mtd_info *mtd, *nextmtd; 1645 struct nand_chip *nand; 1646 struct doc_priv *doc; 1647 1648 for (mtd = doclist; mtd; mtd = nextmtd) { 1649 nand = mtd_to_nand(mtd); 1650 doc = nand_get_controller_data(nand); 1651 1652 nextmtd = doc->nextdoc; 1653 nand_release(nand); 1654 iounmap(doc->virtadr); 1655 release_mem_region(doc->physadr, DOC_IOREMAP_LEN); 1656 free_rs(doc->rs_decoder); 1657 kfree(nand); 1658 } 1659 } 1660 1661 static int __init init_nanddoc(void) 1662 { 1663 int i, ret = 0; 1664 1665 if (doc_config_location) { 1666 pr_info("Using configured DiskOnChip probe address 0x%lx\n", 1667 doc_config_location); 1668 ret = doc_probe(doc_config_location); 1669 if (ret < 0) 1670 return ret; 1671 } else { 1672 for (i = 0; (doc_locations[i] != 0xffffffff); i++) { 1673 doc_probe(doc_locations[i]); 1674 } 1675 } 1676 /* No banner message any more. Print a message if no DiskOnChip 1677 found, so the user knows we at least tried. */ 1678 if (!doclist) { 1679 pr_info("No valid DiskOnChip devices found\n"); 1680 ret = -ENODEV; 1681 } 1682 return ret; 1683 } 1684 1685 static void __exit cleanup_nanddoc(void) 1686 { 1687 /* Cleanup the nand/DoC resources */ 1688 release_nanddoc(); 1689 } 1690 1691 module_init(init_nanddoc); 1692 module_exit(cleanup_nanddoc); 1693 1694 MODULE_LICENSE("GPL"); 1695 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1696 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); 1697