xref: /openbmc/linux/drivers/mtd/nand/raw/diskonchip.c (revision 2359ccdd)
1 /*
2  * (C) 2003 Red Hat, Inc.
3  * (C) 2004 Dan Brown <dan_brown@ieee.org>
4  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
5  *
6  * Author: David Woodhouse <dwmw2@infradead.org>
7  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
8  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
9  *
10  * Error correction code lifted from the old docecc code
11  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
12  * Copyright (C) 2000 Netgem S.A.
13  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
14  *
15  * Interface to generic NAND code for M-Systems DiskOnChip devices
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/rslib.h>
23 #include <linux/moduleparam.h>
24 #include <linux/slab.h>
25 #include <linux/io.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/doc2000.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/inftl.h>
32 #include <linux/module.h>
33 
34 /* Where to look for the devices? */
35 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
36 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
37 #endif
38 
39 static unsigned long doc_locations[] __initdata = {
40 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
41 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
42 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
43 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
44 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
45 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
46 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
47 #else
48 	0xc8000, 0xca000, 0xcc000, 0xce000,
49 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
50 	0xd8000, 0xda000, 0xdc000, 0xde000,
51 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
52 	0xe8000, 0xea000, 0xec000, 0xee000,
53 #endif
54 #endif
55 	0xffffffff };
56 
57 static struct mtd_info *doclist = NULL;
58 
59 struct doc_priv {
60 	void __iomem *virtadr;
61 	unsigned long physadr;
62 	u_char ChipID;
63 	u_char CDSNControl;
64 	int chips_per_floor;	/* The number of chips detected on each floor */
65 	int curfloor;
66 	int curchip;
67 	int mh0_page;
68 	int mh1_page;
69 	struct mtd_info *nextdoc;
70 
71 	/* Handle the last stage of initialization (BBT scan, partitioning) */
72 	int (*late_init)(struct mtd_info *mtd);
73 };
74 
75 /* This is the ecc value computed by the HW ecc generator upon writing an empty
76    page, one with all 0xff for data. */
77 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
78 
79 #define INFTL_BBT_RESERVED_BLOCKS 4
80 
81 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
82 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
83 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
84 
85 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
86 			      unsigned int bitmask);
87 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
88 
89 static int debug = 0;
90 module_param(debug, int, 0);
91 
92 static int try_dword = 1;
93 module_param(try_dword, int, 0);
94 
95 static int no_ecc_failures = 0;
96 module_param(no_ecc_failures, int, 0);
97 
98 static int no_autopart = 0;
99 module_param(no_autopart, int, 0);
100 
101 static int show_firmware_partition = 0;
102 module_param(show_firmware_partition, int, 0);
103 
104 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
105 static int inftl_bbt_write = 1;
106 #else
107 static int inftl_bbt_write = 0;
108 #endif
109 module_param(inftl_bbt_write, int, 0);
110 
111 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
112 module_param(doc_config_location, ulong, 0);
113 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
114 
115 /* Sector size for HW ECC */
116 #define SECTOR_SIZE 512
117 /* The sector bytes are packed into NB_DATA 10 bit words */
118 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
119 /* Number of roots */
120 #define NROOTS 4
121 /* First consective root */
122 #define FCR 510
123 /* Number of symbols */
124 #define NN 1023
125 
126 /* the Reed Solomon control structure */
127 static struct rs_control *rs_decoder;
128 
129 /*
130  * The HW decoder in the DoC ASIC's provides us a error syndrome,
131  * which we must convert to a standard syndrome usable by the generic
132  * Reed-Solomon library code.
133  *
134  * Fabrice Bellard figured this out in the old docecc code. I added
135  * some comments, improved a minor bit and converted it to make use
136  * of the generic Reed-Solomon library. tglx
137  */
138 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
139 {
140 	int i, j, nerr, errpos[8];
141 	uint8_t parity;
142 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
143 
144 	memset(syn, 0, sizeof(syn));
145 	/* Convert the ecc bytes into words */
146 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
147 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
148 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
149 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
150 	parity = ecc[1];
151 
152 	/* Initialize the syndrome buffer */
153 	for (i = 0; i < NROOTS; i++)
154 		s[i] = ds[0];
155 	/*
156 	 *  Evaluate
157 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
158 	 *  where x = alpha^(FCR + i)
159 	 */
160 	for (j = 1; j < NROOTS; j++) {
161 		if (ds[j] == 0)
162 			continue;
163 		tmp = rs->index_of[ds[j]];
164 		for (i = 0; i < NROOTS; i++)
165 			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
166 	}
167 
168 	/* Calc syn[i] = s[i] / alpha^(v + i) */
169 	for (i = 0; i < NROOTS; i++) {
170 		if (s[i])
171 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
172 	}
173 	/* Call the decoder library */
174 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
175 
176 	/* Incorrectable errors ? */
177 	if (nerr < 0)
178 		return nerr;
179 
180 	/*
181 	 * Correct the errors. The bitpositions are a bit of magic,
182 	 * but they are given by the design of the de/encoder circuit
183 	 * in the DoC ASIC's.
184 	 */
185 	for (i = 0; i < nerr; i++) {
186 		int index, bitpos, pos = 1015 - errpos[i];
187 		uint8_t val;
188 		if (pos >= NB_DATA && pos < 1019)
189 			continue;
190 		if (pos < NB_DATA) {
191 			/* extract bit position (MSB first) */
192 			pos = 10 * (NB_DATA - 1 - pos) - 6;
193 			/* now correct the following 10 bits. At most two bytes
194 			   can be modified since pos is even */
195 			index = (pos >> 3) ^ 1;
196 			bitpos = pos & 7;
197 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
198 				val = (uint8_t) (errval[i] >> (2 + bitpos));
199 				parity ^= val;
200 				if (index < SECTOR_SIZE)
201 					data[index] ^= val;
202 			}
203 			index = ((pos >> 3) + 1) ^ 1;
204 			bitpos = (bitpos + 10) & 7;
205 			if (bitpos == 0)
206 				bitpos = 8;
207 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
208 				val = (uint8_t) (errval[i] << (8 - bitpos));
209 				parity ^= val;
210 				if (index < SECTOR_SIZE)
211 					data[index] ^= val;
212 			}
213 		}
214 	}
215 	/* If the parity is wrong, no rescue possible */
216 	return parity ? -EBADMSG : nerr;
217 }
218 
219 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
220 {
221 	volatile char dummy;
222 	int i;
223 
224 	for (i = 0; i < cycles; i++) {
225 		if (DoC_is_Millennium(doc))
226 			dummy = ReadDOC(doc->virtadr, NOP);
227 		else if (DoC_is_MillenniumPlus(doc))
228 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
229 		else
230 			dummy = ReadDOC(doc->virtadr, DOCStatus);
231 	}
232 
233 }
234 
235 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
236 
237 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
238 static int _DoC_WaitReady(struct doc_priv *doc)
239 {
240 	void __iomem *docptr = doc->virtadr;
241 	unsigned long timeo = jiffies + (HZ * 10);
242 
243 	if (debug)
244 		printk("_DoC_WaitReady...\n");
245 	/* Out-of-line routine to wait for chip response */
246 	if (DoC_is_MillenniumPlus(doc)) {
247 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
248 			if (time_after(jiffies, timeo)) {
249 				printk("_DoC_WaitReady timed out.\n");
250 				return -EIO;
251 			}
252 			udelay(1);
253 			cond_resched();
254 		}
255 	} else {
256 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
257 			if (time_after(jiffies, timeo)) {
258 				printk("_DoC_WaitReady timed out.\n");
259 				return -EIO;
260 			}
261 			udelay(1);
262 			cond_resched();
263 		}
264 	}
265 
266 	return 0;
267 }
268 
269 static inline int DoC_WaitReady(struct doc_priv *doc)
270 {
271 	void __iomem *docptr = doc->virtadr;
272 	int ret = 0;
273 
274 	if (DoC_is_MillenniumPlus(doc)) {
275 		DoC_Delay(doc, 4);
276 
277 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
278 			/* Call the out-of-line routine to wait */
279 			ret = _DoC_WaitReady(doc);
280 	} else {
281 		DoC_Delay(doc, 4);
282 
283 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
284 			/* Call the out-of-line routine to wait */
285 			ret = _DoC_WaitReady(doc);
286 		DoC_Delay(doc, 2);
287 	}
288 
289 	if (debug)
290 		printk("DoC_WaitReady OK\n");
291 	return ret;
292 }
293 
294 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
295 {
296 	struct nand_chip *this = mtd_to_nand(mtd);
297 	struct doc_priv *doc = nand_get_controller_data(this);
298 	void __iomem *docptr = doc->virtadr;
299 
300 	if (debug)
301 		printk("write_byte %02x\n", datum);
302 	WriteDOC(datum, docptr, CDSNSlowIO);
303 	WriteDOC(datum, docptr, 2k_CDSN_IO);
304 }
305 
306 static u_char doc2000_read_byte(struct mtd_info *mtd)
307 {
308 	struct nand_chip *this = mtd_to_nand(mtd);
309 	struct doc_priv *doc = nand_get_controller_data(this);
310 	void __iomem *docptr = doc->virtadr;
311 	u_char ret;
312 
313 	ReadDOC(docptr, CDSNSlowIO);
314 	DoC_Delay(doc, 2);
315 	ret = ReadDOC(docptr, 2k_CDSN_IO);
316 	if (debug)
317 		printk("read_byte returns %02x\n", ret);
318 	return ret;
319 }
320 
321 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
322 {
323 	struct nand_chip *this = mtd_to_nand(mtd);
324 	struct doc_priv *doc = nand_get_controller_data(this);
325 	void __iomem *docptr = doc->virtadr;
326 	int i;
327 	if (debug)
328 		printk("writebuf of %d bytes: ", len);
329 	for (i = 0; i < len; i++) {
330 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
331 		if (debug && i < 16)
332 			printk("%02x ", buf[i]);
333 	}
334 	if (debug)
335 		printk("\n");
336 }
337 
338 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
339 {
340 	struct nand_chip *this = mtd_to_nand(mtd);
341 	struct doc_priv *doc = nand_get_controller_data(this);
342 	void __iomem *docptr = doc->virtadr;
343 	int i;
344 
345 	if (debug)
346 		printk("readbuf of %d bytes: ", len);
347 
348 	for (i = 0; i < len; i++) {
349 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
350 	}
351 }
352 
353 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
354 {
355 	struct nand_chip *this = mtd_to_nand(mtd);
356 	struct doc_priv *doc = nand_get_controller_data(this);
357 	void __iomem *docptr = doc->virtadr;
358 	int i;
359 
360 	if (debug)
361 		printk("readbuf_dword of %d bytes: ", len);
362 
363 	if (unlikely((((unsigned long)buf) | len) & 3)) {
364 		for (i = 0; i < len; i++) {
365 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
366 		}
367 	} else {
368 		for (i = 0; i < len; i += 4) {
369 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
370 		}
371 	}
372 }
373 
374 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
375 {
376 	struct nand_chip *this = mtd_to_nand(mtd);
377 	struct doc_priv *doc = nand_get_controller_data(this);
378 	uint16_t ret;
379 
380 	doc200x_select_chip(mtd, nr);
381 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
382 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
383 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
384 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
385 
386 	/* We can't use dev_ready here, but at least we wait for the
387 	 * command to complete
388 	 */
389 	udelay(50);
390 
391 	ret = this->read_byte(mtd) << 8;
392 	ret |= this->read_byte(mtd);
393 
394 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
395 		/* First chip probe. See if we get same results by 32-bit access */
396 		union {
397 			uint32_t dword;
398 			uint8_t byte[4];
399 		} ident;
400 		void __iomem *docptr = doc->virtadr;
401 
402 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
403 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
404 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
405 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
406 				  NAND_NCE | NAND_CTRL_CHANGE);
407 
408 		udelay(50);
409 
410 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
411 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
412 			pr_info("DiskOnChip 2000 responds to DWORD access\n");
413 			this->read_buf = &doc2000_readbuf_dword;
414 		}
415 	}
416 
417 	return ret;
418 }
419 
420 static void __init doc2000_count_chips(struct mtd_info *mtd)
421 {
422 	struct nand_chip *this = mtd_to_nand(mtd);
423 	struct doc_priv *doc = nand_get_controller_data(this);
424 	uint16_t mfrid;
425 	int i;
426 
427 	/* Max 4 chips per floor on DiskOnChip 2000 */
428 	doc->chips_per_floor = 4;
429 
430 	/* Find out what the first chip is */
431 	mfrid = doc200x_ident_chip(mtd, 0);
432 
433 	/* Find how many chips in each floor. */
434 	for (i = 1; i < 4; i++) {
435 		if (doc200x_ident_chip(mtd, i) != mfrid)
436 			break;
437 	}
438 	doc->chips_per_floor = i;
439 	pr_debug("Detected %d chips per floor.\n", i);
440 }
441 
442 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
443 {
444 	struct doc_priv *doc = nand_get_controller_data(this);
445 
446 	int status;
447 
448 	DoC_WaitReady(doc);
449 	nand_status_op(this, NULL);
450 	DoC_WaitReady(doc);
451 	status = (int)this->read_byte(mtd);
452 
453 	return status;
454 }
455 
456 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
457 {
458 	struct nand_chip *this = mtd_to_nand(mtd);
459 	struct doc_priv *doc = nand_get_controller_data(this);
460 	void __iomem *docptr = doc->virtadr;
461 
462 	WriteDOC(datum, docptr, CDSNSlowIO);
463 	WriteDOC(datum, docptr, Mil_CDSN_IO);
464 	WriteDOC(datum, docptr, WritePipeTerm);
465 }
466 
467 static u_char doc2001_read_byte(struct mtd_info *mtd)
468 {
469 	struct nand_chip *this = mtd_to_nand(mtd);
470 	struct doc_priv *doc = nand_get_controller_data(this);
471 	void __iomem *docptr = doc->virtadr;
472 
473 	//ReadDOC(docptr, CDSNSlowIO);
474 	/* 11.4.5 -- delay twice to allow extended length cycle */
475 	DoC_Delay(doc, 2);
476 	ReadDOC(docptr, ReadPipeInit);
477 	//return ReadDOC(docptr, Mil_CDSN_IO);
478 	return ReadDOC(docptr, LastDataRead);
479 }
480 
481 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
482 {
483 	struct nand_chip *this = mtd_to_nand(mtd);
484 	struct doc_priv *doc = nand_get_controller_data(this);
485 	void __iomem *docptr = doc->virtadr;
486 	int i;
487 
488 	for (i = 0; i < len; i++)
489 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
490 	/* Terminate write pipeline */
491 	WriteDOC(0x00, docptr, WritePipeTerm);
492 }
493 
494 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
495 {
496 	struct nand_chip *this = mtd_to_nand(mtd);
497 	struct doc_priv *doc = nand_get_controller_data(this);
498 	void __iomem *docptr = doc->virtadr;
499 	int i;
500 
501 	/* Start read pipeline */
502 	ReadDOC(docptr, ReadPipeInit);
503 
504 	for (i = 0; i < len - 1; i++)
505 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
506 
507 	/* Terminate read pipeline */
508 	buf[i] = ReadDOC(docptr, LastDataRead);
509 }
510 
511 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
512 {
513 	struct nand_chip *this = mtd_to_nand(mtd);
514 	struct doc_priv *doc = nand_get_controller_data(this);
515 	void __iomem *docptr = doc->virtadr;
516 	u_char ret;
517 
518 	ReadDOC(docptr, Mplus_ReadPipeInit);
519 	ReadDOC(docptr, Mplus_ReadPipeInit);
520 	ret = ReadDOC(docptr, Mplus_LastDataRead);
521 	if (debug)
522 		printk("read_byte returns %02x\n", ret);
523 	return ret;
524 }
525 
526 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
527 {
528 	struct nand_chip *this = mtd_to_nand(mtd);
529 	struct doc_priv *doc = nand_get_controller_data(this);
530 	void __iomem *docptr = doc->virtadr;
531 	int i;
532 
533 	if (debug)
534 		printk("writebuf of %d bytes: ", len);
535 	for (i = 0; i < len; i++) {
536 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
537 		if (debug && i < 16)
538 			printk("%02x ", buf[i]);
539 	}
540 	if (debug)
541 		printk("\n");
542 }
543 
544 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
545 {
546 	struct nand_chip *this = mtd_to_nand(mtd);
547 	struct doc_priv *doc = nand_get_controller_data(this);
548 	void __iomem *docptr = doc->virtadr;
549 	int i;
550 
551 	if (debug)
552 		printk("readbuf of %d bytes: ", len);
553 
554 	/* Start read pipeline */
555 	ReadDOC(docptr, Mplus_ReadPipeInit);
556 	ReadDOC(docptr, Mplus_ReadPipeInit);
557 
558 	for (i = 0; i < len - 2; i++) {
559 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
560 		if (debug && i < 16)
561 			printk("%02x ", buf[i]);
562 	}
563 
564 	/* Terminate read pipeline */
565 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
566 	if (debug && i < 16)
567 		printk("%02x ", buf[len - 2]);
568 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
569 	if (debug && i < 16)
570 		printk("%02x ", buf[len - 1]);
571 	if (debug)
572 		printk("\n");
573 }
574 
575 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
576 {
577 	struct nand_chip *this = mtd_to_nand(mtd);
578 	struct doc_priv *doc = nand_get_controller_data(this);
579 	void __iomem *docptr = doc->virtadr;
580 	int floor = 0;
581 
582 	if (debug)
583 		printk("select chip (%d)\n", chip);
584 
585 	if (chip == -1) {
586 		/* Disable flash internally */
587 		WriteDOC(0, docptr, Mplus_FlashSelect);
588 		return;
589 	}
590 
591 	floor = chip / doc->chips_per_floor;
592 	chip -= (floor * doc->chips_per_floor);
593 
594 	/* Assert ChipEnable and deassert WriteProtect */
595 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
596 	nand_reset_op(this);
597 
598 	doc->curchip = chip;
599 	doc->curfloor = floor;
600 }
601 
602 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
603 {
604 	struct nand_chip *this = mtd_to_nand(mtd);
605 	struct doc_priv *doc = nand_get_controller_data(this);
606 	void __iomem *docptr = doc->virtadr;
607 	int floor = 0;
608 
609 	if (debug)
610 		printk("select chip (%d)\n", chip);
611 
612 	if (chip == -1)
613 		return;
614 
615 	floor = chip / doc->chips_per_floor;
616 	chip -= (floor * doc->chips_per_floor);
617 
618 	/* 11.4.4 -- deassert CE before changing chip */
619 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
620 
621 	WriteDOC(floor, docptr, FloorSelect);
622 	WriteDOC(chip, docptr, CDSNDeviceSelect);
623 
624 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
625 
626 	doc->curchip = chip;
627 	doc->curfloor = floor;
628 }
629 
630 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
631 
632 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
633 			      unsigned int ctrl)
634 {
635 	struct nand_chip *this = mtd_to_nand(mtd);
636 	struct doc_priv *doc = nand_get_controller_data(this);
637 	void __iomem *docptr = doc->virtadr;
638 
639 	if (ctrl & NAND_CTRL_CHANGE) {
640 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
641 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
642 		if (debug)
643 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
644 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
645 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
646 		DoC_Delay(doc, 4);
647 	}
648 	if (cmd != NAND_CMD_NONE) {
649 		if (DoC_is_2000(doc))
650 			doc2000_write_byte(mtd, cmd);
651 		else
652 			doc2001_write_byte(mtd, cmd);
653 	}
654 }
655 
656 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
657 {
658 	struct nand_chip *this = mtd_to_nand(mtd);
659 	struct doc_priv *doc = nand_get_controller_data(this);
660 	void __iomem *docptr = doc->virtadr;
661 
662 	/*
663 	 * Must terminate write pipeline before sending any commands
664 	 * to the device.
665 	 */
666 	if (command == NAND_CMD_PAGEPROG) {
667 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
668 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
669 	}
670 
671 	/*
672 	 * Write out the command to the device.
673 	 */
674 	if (command == NAND_CMD_SEQIN) {
675 		int readcmd;
676 
677 		if (column >= mtd->writesize) {
678 			/* OOB area */
679 			column -= mtd->writesize;
680 			readcmd = NAND_CMD_READOOB;
681 		} else if (column < 256) {
682 			/* First 256 bytes --> READ0 */
683 			readcmd = NAND_CMD_READ0;
684 		} else {
685 			column -= 256;
686 			readcmd = NAND_CMD_READ1;
687 		}
688 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
689 	}
690 	WriteDOC(command, docptr, Mplus_FlashCmd);
691 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
692 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
693 
694 	if (column != -1 || page_addr != -1) {
695 		/* Serially input address */
696 		if (column != -1) {
697 			/* Adjust columns for 16 bit buswidth */
698 			if (this->options & NAND_BUSWIDTH_16 &&
699 					!nand_opcode_8bits(command))
700 				column >>= 1;
701 			WriteDOC(column, docptr, Mplus_FlashAddress);
702 		}
703 		if (page_addr != -1) {
704 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
705 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
706 			if (this->options & NAND_ROW_ADDR_3) {
707 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
708 				printk("high density\n");
709 			}
710 		}
711 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
712 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
713 		/* deassert ALE */
714 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
715 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
716 			WriteDOC(0, docptr, Mplus_FlashControl);
717 	}
718 
719 	/*
720 	 * program and erase have their own busy handlers
721 	 * status and sequential in needs no delay
722 	 */
723 	switch (command) {
724 
725 	case NAND_CMD_PAGEPROG:
726 	case NAND_CMD_ERASE1:
727 	case NAND_CMD_ERASE2:
728 	case NAND_CMD_SEQIN:
729 	case NAND_CMD_STATUS:
730 		return;
731 
732 	case NAND_CMD_RESET:
733 		if (this->dev_ready)
734 			break;
735 		udelay(this->chip_delay);
736 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
737 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
738 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
739 		while (!(this->read_byte(mtd) & 0x40)) ;
740 		return;
741 
742 		/* This applies to read commands */
743 	default:
744 		/*
745 		 * If we don't have access to the busy pin, we apply the given
746 		 * command delay
747 		 */
748 		if (!this->dev_ready) {
749 			udelay(this->chip_delay);
750 			return;
751 		}
752 	}
753 
754 	/* Apply this short delay always to ensure that we do wait tWB in
755 	 * any case on any machine. */
756 	ndelay(100);
757 	/* wait until command is processed */
758 	while (!this->dev_ready(mtd)) ;
759 }
760 
761 static int doc200x_dev_ready(struct mtd_info *mtd)
762 {
763 	struct nand_chip *this = mtd_to_nand(mtd);
764 	struct doc_priv *doc = nand_get_controller_data(this);
765 	void __iomem *docptr = doc->virtadr;
766 
767 	if (DoC_is_MillenniumPlus(doc)) {
768 		/* 11.4.2 -- must NOP four times before checking FR/B# */
769 		DoC_Delay(doc, 4);
770 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
771 			if (debug)
772 				printk("not ready\n");
773 			return 0;
774 		}
775 		if (debug)
776 			printk("was ready\n");
777 		return 1;
778 	} else {
779 		/* 11.4.2 -- must NOP four times before checking FR/B# */
780 		DoC_Delay(doc, 4);
781 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
782 			if (debug)
783 				printk("not ready\n");
784 			return 0;
785 		}
786 		/* 11.4.2 -- Must NOP twice if it's ready */
787 		DoC_Delay(doc, 2);
788 		if (debug)
789 			printk("was ready\n");
790 		return 1;
791 	}
792 }
793 
794 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
795 {
796 	/* This is our last resort if we couldn't find or create a BBT.  Just
797 	   pretend all blocks are good. */
798 	return 0;
799 }
800 
801 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
802 {
803 	struct nand_chip *this = mtd_to_nand(mtd);
804 	struct doc_priv *doc = nand_get_controller_data(this);
805 	void __iomem *docptr = doc->virtadr;
806 
807 	/* Prime the ECC engine */
808 	switch (mode) {
809 	case NAND_ECC_READ:
810 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
811 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
812 		break;
813 	case NAND_ECC_WRITE:
814 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
815 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
816 		break;
817 	}
818 }
819 
820 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
821 {
822 	struct nand_chip *this = mtd_to_nand(mtd);
823 	struct doc_priv *doc = nand_get_controller_data(this);
824 	void __iomem *docptr = doc->virtadr;
825 
826 	/* Prime the ECC engine */
827 	switch (mode) {
828 	case NAND_ECC_READ:
829 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
830 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
831 		break;
832 	case NAND_ECC_WRITE:
833 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
834 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
835 		break;
836 	}
837 }
838 
839 /* This code is only called on write */
840 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
841 {
842 	struct nand_chip *this = mtd_to_nand(mtd);
843 	struct doc_priv *doc = nand_get_controller_data(this);
844 	void __iomem *docptr = doc->virtadr;
845 	int i;
846 	int emptymatch = 1;
847 
848 	/* flush the pipeline */
849 	if (DoC_is_2000(doc)) {
850 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
851 		WriteDOC(0, docptr, 2k_CDSN_IO);
852 		WriteDOC(0, docptr, 2k_CDSN_IO);
853 		WriteDOC(0, docptr, 2k_CDSN_IO);
854 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
855 	} else if (DoC_is_MillenniumPlus(doc)) {
856 		WriteDOC(0, docptr, Mplus_NOP);
857 		WriteDOC(0, docptr, Mplus_NOP);
858 		WriteDOC(0, docptr, Mplus_NOP);
859 	} else {
860 		WriteDOC(0, docptr, NOP);
861 		WriteDOC(0, docptr, NOP);
862 		WriteDOC(0, docptr, NOP);
863 	}
864 
865 	for (i = 0; i < 6; i++) {
866 		if (DoC_is_MillenniumPlus(doc))
867 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
868 		else
869 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
870 		if (ecc_code[i] != empty_write_ecc[i])
871 			emptymatch = 0;
872 	}
873 	if (DoC_is_MillenniumPlus(doc))
874 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
875 	else
876 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
877 #if 0
878 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
879 	if (emptymatch) {
880 		/* Note: this somewhat expensive test should not be triggered
881 		   often.  It could be optimized away by examining the data in
882 		   the writebuf routine, and remembering the result. */
883 		for (i = 0; i < 512; i++) {
884 			if (dat[i] == 0xff)
885 				continue;
886 			emptymatch = 0;
887 			break;
888 		}
889 	}
890 	/* If emptymatch still =1, we do have an all-0xff data buffer.
891 	   Return all-0xff ecc value instead of the computed one, so
892 	   it'll look just like a freshly-erased page. */
893 	if (emptymatch)
894 		memset(ecc_code, 0xff, 6);
895 #endif
896 	return 0;
897 }
898 
899 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
900 				u_char *read_ecc, u_char *isnull)
901 {
902 	int i, ret = 0;
903 	struct nand_chip *this = mtd_to_nand(mtd);
904 	struct doc_priv *doc = nand_get_controller_data(this);
905 	void __iomem *docptr = doc->virtadr;
906 	uint8_t calc_ecc[6];
907 	volatile u_char dummy;
908 
909 	/* flush the pipeline */
910 	if (DoC_is_2000(doc)) {
911 		dummy = ReadDOC(docptr, 2k_ECCStatus);
912 		dummy = ReadDOC(docptr, 2k_ECCStatus);
913 		dummy = ReadDOC(docptr, 2k_ECCStatus);
914 	} else if (DoC_is_MillenniumPlus(doc)) {
915 		dummy = ReadDOC(docptr, Mplus_ECCConf);
916 		dummy = ReadDOC(docptr, Mplus_ECCConf);
917 		dummy = ReadDOC(docptr, Mplus_ECCConf);
918 	} else {
919 		dummy = ReadDOC(docptr, ECCConf);
920 		dummy = ReadDOC(docptr, ECCConf);
921 		dummy = ReadDOC(docptr, ECCConf);
922 	}
923 
924 	/* Error occurred ? */
925 	if (dummy & 0x80) {
926 		for (i = 0; i < 6; i++) {
927 			if (DoC_is_MillenniumPlus(doc))
928 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
929 			else
930 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
931 		}
932 
933 		ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
934 		if (ret > 0)
935 			pr_err("doc200x_correct_data corrected %d errors\n",
936 			       ret);
937 	}
938 	if (DoC_is_MillenniumPlus(doc))
939 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
940 	else
941 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
942 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
943 		pr_err("suppressing ECC failure\n");
944 		ret = 0;
945 	}
946 	return ret;
947 }
948 
949 //u_char mydatabuf[528];
950 
951 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
952 				 struct mtd_oob_region *oobregion)
953 {
954 	if (section)
955 		return -ERANGE;
956 
957 	oobregion->offset = 0;
958 	oobregion->length = 6;
959 
960 	return 0;
961 }
962 
963 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
964 				  struct mtd_oob_region *oobregion)
965 {
966 	if (section > 1)
967 		return -ERANGE;
968 
969 	/*
970 	 * The strange out-of-order free bytes definition is a (possibly
971 	 * unneeded) attempt to retain compatibility.  It used to read:
972 	 *	.oobfree = { {8, 8} }
973 	 * Since that leaves two bytes unusable, it was changed.  But the
974 	 * following scheme might affect existing jffs2 installs by moving the
975 	 * cleanmarker:
976 	 *	.oobfree = { {6, 10} }
977 	 * jffs2 seems to handle the above gracefully, but the current scheme
978 	 * seems safer. The only problem with it is that any code retrieving
979 	 * free bytes position must be able to handle out-of-order segments.
980 	 */
981 	if (!section) {
982 		oobregion->offset = 8;
983 		oobregion->length = 8;
984 	} else {
985 		oobregion->offset = 6;
986 		oobregion->length = 2;
987 	}
988 
989 	return 0;
990 }
991 
992 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
993 	.ecc = doc200x_ooblayout_ecc,
994 	.free = doc200x_ooblayout_free,
995 };
996 
997 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
998    On successful return, buf will contain a copy of the media header for
999    further processing.  id is the string to scan for, and will presumably be
1000    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1001    header.  The page #s of the found media headers are placed in mh0_page and
1002    mh1_page in the DOC private structure. */
1003 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1004 {
1005 	struct nand_chip *this = mtd_to_nand(mtd);
1006 	struct doc_priv *doc = nand_get_controller_data(this);
1007 	unsigned offs;
1008 	int ret;
1009 	size_t retlen;
1010 
1011 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1012 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1013 		if (retlen != mtd->writesize)
1014 			continue;
1015 		if (ret) {
1016 			pr_warn("ECC error scanning DOC at 0x%x\n", offs);
1017 		}
1018 		if (memcmp(buf, id, 6))
1019 			continue;
1020 		pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1021 		if (doc->mh0_page == -1) {
1022 			doc->mh0_page = offs >> this->page_shift;
1023 			if (!findmirror)
1024 				return 1;
1025 			continue;
1026 		}
1027 		doc->mh1_page = offs >> this->page_shift;
1028 		return 2;
1029 	}
1030 	if (doc->mh0_page == -1) {
1031 		pr_warn("DiskOnChip %s Media Header not found.\n", id);
1032 		return 0;
1033 	}
1034 	/* Only one mediaheader was found.  We want buf to contain a
1035 	   mediaheader on return, so we'll have to re-read the one we found. */
1036 	offs = doc->mh0_page << this->page_shift;
1037 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1038 	if (retlen != mtd->writesize) {
1039 		/* Insanity.  Give up. */
1040 		pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
1041 		return 0;
1042 	}
1043 	return 1;
1044 }
1045 
1046 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1047 {
1048 	struct nand_chip *this = mtd_to_nand(mtd);
1049 	struct doc_priv *doc = nand_get_controller_data(this);
1050 	int ret = 0;
1051 	u_char *buf;
1052 	struct NFTLMediaHeader *mh;
1053 	const unsigned psize = 1 << this->page_shift;
1054 	int numparts = 0;
1055 	unsigned blocks, maxblocks;
1056 	int offs, numheaders;
1057 
1058 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1059 	if (!buf) {
1060 		return 0;
1061 	}
1062 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1063 		goto out;
1064 	mh = (struct NFTLMediaHeader *)buf;
1065 
1066 	le16_to_cpus(&mh->NumEraseUnits);
1067 	le16_to_cpus(&mh->FirstPhysicalEUN);
1068 	le32_to_cpus(&mh->FormattedSize);
1069 
1070 	pr_info("    DataOrgID        = %s\n"
1071 		"    NumEraseUnits    = %d\n"
1072 		"    FirstPhysicalEUN = %d\n"
1073 		"    FormattedSize    = %d\n"
1074 		"    UnitSizeFactor   = %d\n",
1075 		mh->DataOrgID, mh->NumEraseUnits,
1076 		mh->FirstPhysicalEUN, mh->FormattedSize,
1077 		mh->UnitSizeFactor);
1078 
1079 	blocks = mtd->size >> this->phys_erase_shift;
1080 	maxblocks = min(32768U, mtd->erasesize - psize);
1081 
1082 	if (mh->UnitSizeFactor == 0x00) {
1083 		/* Auto-determine UnitSizeFactor.  The constraints are:
1084 		   - There can be at most 32768 virtual blocks.
1085 		   - There can be at most (virtual block size - page size)
1086 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1087 		 */
1088 		mh->UnitSizeFactor = 0xff;
1089 		while (blocks > maxblocks) {
1090 			blocks >>= 1;
1091 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1092 			mh->UnitSizeFactor--;
1093 		}
1094 		pr_warn("UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1095 	}
1096 
1097 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1098 	   layers; variables with have already been configured by nand_scan.
1099 	   Unfortunately, we didn't know before this point what these values
1100 	   should be.  Thus, this code is somewhat dependent on the exact
1101 	   implementation of the NAND layer.  */
1102 	if (mh->UnitSizeFactor != 0xff) {
1103 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1104 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1105 		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
1106 		blocks = mtd->size >> this->bbt_erase_shift;
1107 		maxblocks = min(32768U, mtd->erasesize - psize);
1108 	}
1109 
1110 	if (blocks > maxblocks) {
1111 		pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1112 		goto out;
1113 	}
1114 
1115 	/* Skip past the media headers. */
1116 	offs = max(doc->mh0_page, doc->mh1_page);
1117 	offs <<= this->page_shift;
1118 	offs += mtd->erasesize;
1119 
1120 	if (show_firmware_partition == 1) {
1121 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1122 		parts[0].offset = 0;
1123 		parts[0].size = offs;
1124 		numparts = 1;
1125 	}
1126 
1127 	parts[numparts].name = " DiskOnChip BDTL partition";
1128 	parts[numparts].offset = offs;
1129 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1130 
1131 	offs += parts[numparts].size;
1132 	numparts++;
1133 
1134 	if (offs < mtd->size) {
1135 		parts[numparts].name = " DiskOnChip Remainder partition";
1136 		parts[numparts].offset = offs;
1137 		parts[numparts].size = mtd->size - offs;
1138 		numparts++;
1139 	}
1140 
1141 	ret = numparts;
1142  out:
1143 	kfree(buf);
1144 	return ret;
1145 }
1146 
1147 /* This is a stripped-down copy of the code in inftlmount.c */
1148 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1149 {
1150 	struct nand_chip *this = mtd_to_nand(mtd);
1151 	struct doc_priv *doc = nand_get_controller_data(this);
1152 	int ret = 0;
1153 	u_char *buf;
1154 	struct INFTLMediaHeader *mh;
1155 	struct INFTLPartition *ip;
1156 	int numparts = 0;
1157 	int blocks;
1158 	int vshift, lastvunit = 0;
1159 	int i;
1160 	int end = mtd->size;
1161 
1162 	if (inftl_bbt_write)
1163 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1164 
1165 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1166 	if (!buf) {
1167 		return 0;
1168 	}
1169 
1170 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1171 		goto out;
1172 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1173 	mh = (struct INFTLMediaHeader *)buf;
1174 
1175 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1176 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1177 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1178 	le32_to_cpus(&mh->BlockMultiplierBits);
1179 	le32_to_cpus(&mh->FormatFlags);
1180 	le32_to_cpus(&mh->PercentUsed);
1181 
1182 	pr_info("    bootRecordID          = %s\n"
1183 		"    NoOfBootImageBlocks   = %d\n"
1184 		"    NoOfBinaryPartitions  = %d\n"
1185 		"    NoOfBDTLPartitions    = %d\n"
1186 		"    BlockMultiplerBits    = %d\n"
1187 		"    FormatFlgs            = %d\n"
1188 		"    OsakVersion           = %d.%d.%d.%d\n"
1189 		"    PercentUsed           = %d\n",
1190 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1191 		mh->NoOfBinaryPartitions,
1192 		mh->NoOfBDTLPartitions,
1193 		mh->BlockMultiplierBits, mh->FormatFlags,
1194 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1195 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1196 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1197 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1198 		mh->PercentUsed);
1199 
1200 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1201 
1202 	blocks = mtd->size >> vshift;
1203 	if (blocks > 32768) {
1204 		pr_err("BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1205 		goto out;
1206 	}
1207 
1208 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1209 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1210 		pr_err("Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1211 		goto out;
1212 	}
1213 
1214 	/* Scan the partitions */
1215 	for (i = 0; (i < 4); i++) {
1216 		ip = &(mh->Partitions[i]);
1217 		le32_to_cpus(&ip->virtualUnits);
1218 		le32_to_cpus(&ip->firstUnit);
1219 		le32_to_cpus(&ip->lastUnit);
1220 		le32_to_cpus(&ip->flags);
1221 		le32_to_cpus(&ip->spareUnits);
1222 		le32_to_cpus(&ip->Reserved0);
1223 
1224 		pr_info("    PARTITION[%d] ->\n"
1225 			"        virtualUnits    = %d\n"
1226 			"        firstUnit       = %d\n"
1227 			"        lastUnit        = %d\n"
1228 			"        flags           = 0x%x\n"
1229 			"        spareUnits      = %d\n",
1230 			i, ip->virtualUnits, ip->firstUnit,
1231 			ip->lastUnit, ip->flags,
1232 			ip->spareUnits);
1233 
1234 		if ((show_firmware_partition == 1) &&
1235 		    (i == 0) && (ip->firstUnit > 0)) {
1236 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1237 			parts[0].offset = 0;
1238 			parts[0].size = mtd->erasesize * ip->firstUnit;
1239 			numparts = 1;
1240 		}
1241 
1242 		if (ip->flags & INFTL_BINARY)
1243 			parts[numparts].name = " DiskOnChip BDK partition";
1244 		else
1245 			parts[numparts].name = " DiskOnChip BDTL partition";
1246 		parts[numparts].offset = ip->firstUnit << vshift;
1247 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1248 		numparts++;
1249 		if (ip->lastUnit > lastvunit)
1250 			lastvunit = ip->lastUnit;
1251 		if (ip->flags & INFTL_LAST)
1252 			break;
1253 	}
1254 	lastvunit++;
1255 	if ((lastvunit << vshift) < end) {
1256 		parts[numparts].name = " DiskOnChip Remainder partition";
1257 		parts[numparts].offset = lastvunit << vshift;
1258 		parts[numparts].size = end - parts[numparts].offset;
1259 		numparts++;
1260 	}
1261 	ret = numparts;
1262  out:
1263 	kfree(buf);
1264 	return ret;
1265 }
1266 
1267 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1268 {
1269 	int ret, numparts;
1270 	struct nand_chip *this = mtd_to_nand(mtd);
1271 	struct doc_priv *doc = nand_get_controller_data(this);
1272 	struct mtd_partition parts[2];
1273 
1274 	memset((char *)parts, 0, sizeof(parts));
1275 	/* On NFTL, we have to find the media headers before we can read the
1276 	   BBTs, since they're stored in the media header eraseblocks. */
1277 	numparts = nftl_partscan(mtd, parts);
1278 	if (!numparts)
1279 		return -EIO;
1280 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1281 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1282 				NAND_BBT_VERSION;
1283 	this->bbt_td->veroffs = 7;
1284 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1285 	if (doc->mh1_page != -1) {
1286 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1287 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1288 					NAND_BBT_VERSION;
1289 		this->bbt_md->veroffs = 7;
1290 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1291 	} else {
1292 		this->bbt_md = NULL;
1293 	}
1294 
1295 	ret = this->scan_bbt(mtd);
1296 	if (ret)
1297 		return ret;
1298 
1299 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1300 }
1301 
1302 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1303 {
1304 	int ret, numparts;
1305 	struct nand_chip *this = mtd_to_nand(mtd);
1306 	struct doc_priv *doc = nand_get_controller_data(this);
1307 	struct mtd_partition parts[5];
1308 
1309 	if (this->numchips > doc->chips_per_floor) {
1310 		pr_err("Multi-floor INFTL devices not yet supported.\n");
1311 		return -EIO;
1312 	}
1313 
1314 	if (DoC_is_MillenniumPlus(doc)) {
1315 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1316 		if (inftl_bbt_write)
1317 			this->bbt_td->options |= NAND_BBT_WRITE;
1318 		this->bbt_td->pages[0] = 2;
1319 		this->bbt_md = NULL;
1320 	} else {
1321 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1322 		if (inftl_bbt_write)
1323 			this->bbt_td->options |= NAND_BBT_WRITE;
1324 		this->bbt_td->offs = 8;
1325 		this->bbt_td->len = 8;
1326 		this->bbt_td->veroffs = 7;
1327 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1328 		this->bbt_td->reserved_block_code = 0x01;
1329 		this->bbt_td->pattern = "MSYS_BBT";
1330 
1331 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1332 		if (inftl_bbt_write)
1333 			this->bbt_md->options |= NAND_BBT_WRITE;
1334 		this->bbt_md->offs = 8;
1335 		this->bbt_md->len = 8;
1336 		this->bbt_md->veroffs = 7;
1337 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1338 		this->bbt_md->reserved_block_code = 0x01;
1339 		this->bbt_md->pattern = "TBB_SYSM";
1340 	}
1341 
1342 	ret = this->scan_bbt(mtd);
1343 	if (ret)
1344 		return ret;
1345 
1346 	memset((char *)parts, 0, sizeof(parts));
1347 	numparts = inftl_partscan(mtd, parts);
1348 	/* At least for now, require the INFTL Media Header.  We could probably
1349 	   do without it for non-INFTL use, since all it gives us is
1350 	   autopartitioning, but I want to give it more thought. */
1351 	if (!numparts)
1352 		return -EIO;
1353 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1354 }
1355 
1356 static inline int __init doc2000_init(struct mtd_info *mtd)
1357 {
1358 	struct nand_chip *this = mtd_to_nand(mtd);
1359 	struct doc_priv *doc = nand_get_controller_data(this);
1360 
1361 	this->read_byte = doc2000_read_byte;
1362 	this->write_buf = doc2000_writebuf;
1363 	this->read_buf = doc2000_readbuf;
1364 	doc->late_init = nftl_scan_bbt;
1365 
1366 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1367 	doc2000_count_chips(mtd);
1368 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1369 	return (4 * doc->chips_per_floor);
1370 }
1371 
1372 static inline int __init doc2001_init(struct mtd_info *mtd)
1373 {
1374 	struct nand_chip *this = mtd_to_nand(mtd);
1375 	struct doc_priv *doc = nand_get_controller_data(this);
1376 
1377 	this->read_byte = doc2001_read_byte;
1378 	this->write_buf = doc2001_writebuf;
1379 	this->read_buf = doc2001_readbuf;
1380 
1381 	ReadDOC(doc->virtadr, ChipID);
1382 	ReadDOC(doc->virtadr, ChipID);
1383 	ReadDOC(doc->virtadr, ChipID);
1384 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1385 		/* It's not a Millennium; it's one of the newer
1386 		   DiskOnChip 2000 units with a similar ASIC.
1387 		   Treat it like a Millennium, except that it
1388 		   can have multiple chips. */
1389 		doc2000_count_chips(mtd);
1390 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1391 		doc->late_init = inftl_scan_bbt;
1392 		return (4 * doc->chips_per_floor);
1393 	} else {
1394 		/* Bog-standard Millennium */
1395 		doc->chips_per_floor = 1;
1396 		mtd->name = "DiskOnChip Millennium";
1397 		doc->late_init = nftl_scan_bbt;
1398 		return 1;
1399 	}
1400 }
1401 
1402 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1403 {
1404 	struct nand_chip *this = mtd_to_nand(mtd);
1405 	struct doc_priv *doc = nand_get_controller_data(this);
1406 
1407 	this->read_byte = doc2001plus_read_byte;
1408 	this->write_buf = doc2001plus_writebuf;
1409 	this->read_buf = doc2001plus_readbuf;
1410 	doc->late_init = inftl_scan_bbt;
1411 	this->cmd_ctrl = NULL;
1412 	this->select_chip = doc2001plus_select_chip;
1413 	this->cmdfunc = doc2001plus_command;
1414 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1415 
1416 	doc->chips_per_floor = 1;
1417 	mtd->name = "DiskOnChip Millennium Plus";
1418 
1419 	return 1;
1420 }
1421 
1422 static int __init doc_probe(unsigned long physadr)
1423 {
1424 	unsigned char ChipID;
1425 	struct mtd_info *mtd;
1426 	struct nand_chip *nand;
1427 	struct doc_priv *doc;
1428 	void __iomem *virtadr;
1429 	unsigned char save_control;
1430 	unsigned char tmp, tmpb, tmpc;
1431 	int reg, len, numchips;
1432 	int ret = 0;
1433 
1434 	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1435 		return -EBUSY;
1436 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1437 	if (!virtadr) {
1438 		pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
1439 		       DOC_IOREMAP_LEN, physadr);
1440 		ret = -EIO;
1441 		goto error_ioremap;
1442 	}
1443 
1444 	/* It's not possible to cleanly detect the DiskOnChip - the
1445 	 * bootup procedure will put the device into reset mode, and
1446 	 * it's not possible to talk to it without actually writing
1447 	 * to the DOCControl register. So we store the current contents
1448 	 * of the DOCControl register's location, in case we later decide
1449 	 * that it's not a DiskOnChip, and want to put it back how we
1450 	 * found it.
1451 	 */
1452 	save_control = ReadDOC(virtadr, DOCControl);
1453 
1454 	/* Reset the DiskOnChip ASIC */
1455 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1456 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1457 
1458 	/* Enable the DiskOnChip ASIC */
1459 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1460 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1461 
1462 	ChipID = ReadDOC(virtadr, ChipID);
1463 
1464 	switch (ChipID) {
1465 	case DOC_ChipID_Doc2k:
1466 		reg = DoC_2k_ECCStatus;
1467 		break;
1468 	case DOC_ChipID_DocMil:
1469 		reg = DoC_ECCConf;
1470 		break;
1471 	case DOC_ChipID_DocMilPlus16:
1472 	case DOC_ChipID_DocMilPlus32:
1473 	case 0:
1474 		/* Possible Millennium Plus, need to do more checks */
1475 		/* Possibly release from power down mode */
1476 		for (tmp = 0; (tmp < 4); tmp++)
1477 			ReadDOC(virtadr, Mplus_Power);
1478 
1479 		/* Reset the Millennium Plus ASIC */
1480 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1481 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1482 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1483 
1484 		mdelay(1);
1485 		/* Enable the Millennium Plus ASIC */
1486 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1487 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1488 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1489 		mdelay(1);
1490 
1491 		ChipID = ReadDOC(virtadr, ChipID);
1492 
1493 		switch (ChipID) {
1494 		case DOC_ChipID_DocMilPlus16:
1495 			reg = DoC_Mplus_Toggle;
1496 			break;
1497 		case DOC_ChipID_DocMilPlus32:
1498 			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1499 		default:
1500 			ret = -ENODEV;
1501 			goto notfound;
1502 		}
1503 		break;
1504 
1505 	default:
1506 		ret = -ENODEV;
1507 		goto notfound;
1508 	}
1509 	/* Check the TOGGLE bit in the ECC register */
1510 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1511 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1512 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1513 	if ((tmp == tmpb) || (tmp != tmpc)) {
1514 		pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1515 		ret = -ENODEV;
1516 		goto notfound;
1517 	}
1518 
1519 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1520 		unsigned char oldval;
1521 		unsigned char newval;
1522 		nand = mtd_to_nand(mtd);
1523 		doc = nand_get_controller_data(nand);
1524 		/* Use the alias resolution register to determine if this is
1525 		   in fact the same DOC aliased to a new address.  If writes
1526 		   to one chip's alias resolution register change the value on
1527 		   the other chip, they're the same chip. */
1528 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1529 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1530 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1531 		} else {
1532 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1533 			newval = ReadDOC(virtadr, AliasResolution);
1534 		}
1535 		if (oldval != newval)
1536 			continue;
1537 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1538 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1539 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1540 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1541 		} else {
1542 			WriteDOC(~newval, virtadr, AliasResolution);
1543 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1544 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1545 		}
1546 		newval = ~newval;
1547 		if (oldval == newval) {
1548 			pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
1549 				 doc->physadr, physadr);
1550 			goto notfound;
1551 		}
1552 	}
1553 
1554 	pr_notice("DiskOnChip found at 0x%lx\n", physadr);
1555 
1556 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1557 	      (2 * sizeof(struct nand_bbt_descr));
1558 	nand = kzalloc(len, GFP_KERNEL);
1559 	if (!nand) {
1560 		ret = -ENOMEM;
1561 		goto fail;
1562 	}
1563 
1564 	mtd			= nand_to_mtd(nand);
1565 	doc			= (struct doc_priv *) (nand + 1);
1566 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1567 	nand->bbt_md		= nand->bbt_td + 1;
1568 
1569 	mtd->owner		= THIS_MODULE;
1570 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1571 
1572 	nand_set_controller_data(nand, doc);
1573 	nand->select_chip	= doc200x_select_chip;
1574 	nand->cmd_ctrl		= doc200x_hwcontrol;
1575 	nand->dev_ready		= doc200x_dev_ready;
1576 	nand->waitfunc		= doc200x_wait;
1577 	nand->block_bad		= doc200x_block_bad;
1578 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1579 	nand->ecc.calculate	= doc200x_calculate_ecc;
1580 	nand->ecc.correct	= doc200x_correct_data;
1581 
1582 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1583 	nand->ecc.size		= 512;
1584 	nand->ecc.bytes		= 6;
1585 	nand->ecc.strength	= 2;
1586 	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
1587 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1588 	/* Skip the automatic BBT scan so we can run it manually */
1589 	nand->options		|= NAND_SKIP_BBTSCAN;
1590 
1591 	doc->physadr		= physadr;
1592 	doc->virtadr		= virtadr;
1593 	doc->ChipID		= ChipID;
1594 	doc->curfloor		= -1;
1595 	doc->curchip		= -1;
1596 	doc->mh0_page		= -1;
1597 	doc->mh1_page		= -1;
1598 	doc->nextdoc		= doclist;
1599 
1600 	if (ChipID == DOC_ChipID_Doc2k)
1601 		numchips = doc2000_init(mtd);
1602 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1603 		numchips = doc2001plus_init(mtd);
1604 	else
1605 		numchips = doc2001_init(mtd);
1606 
1607 	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
1608 		/* DBB note: i believe nand_release is necessary here, as
1609 		   buffers may have been allocated in nand_base.  Check with
1610 		   Thomas. FIX ME! */
1611 		/* nand_release will call mtd_device_unregister, but we
1612 		   haven't yet added it.  This is handled without incident by
1613 		   mtd_device_unregister, as far as I can tell. */
1614 		nand_release(mtd);
1615 		kfree(nand);
1616 		goto fail;
1617 	}
1618 
1619 	/* Success! */
1620 	doclist = mtd;
1621 	return 0;
1622 
1623  notfound:
1624 	/* Put back the contents of the DOCControl register, in case it's not
1625 	   actually a DiskOnChip.  */
1626 	WriteDOC(save_control, virtadr, DOCControl);
1627  fail:
1628 	iounmap(virtadr);
1629 
1630 error_ioremap:
1631 	release_mem_region(physadr, DOC_IOREMAP_LEN);
1632 
1633 	return ret;
1634 }
1635 
1636 static void release_nanddoc(void)
1637 {
1638 	struct mtd_info *mtd, *nextmtd;
1639 	struct nand_chip *nand;
1640 	struct doc_priv *doc;
1641 
1642 	for (mtd = doclist; mtd; mtd = nextmtd) {
1643 		nand = mtd_to_nand(mtd);
1644 		doc = nand_get_controller_data(nand);
1645 
1646 		nextmtd = doc->nextdoc;
1647 		nand_release(mtd);
1648 		iounmap(doc->virtadr);
1649 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1650 		kfree(nand);
1651 	}
1652 }
1653 
1654 static int __init init_nanddoc(void)
1655 {
1656 	int i, ret = 0;
1657 
1658 	/* We could create the decoder on demand, if memory is a concern.
1659 	 * This way we have it handy, if an error happens
1660 	 *
1661 	 * Symbolsize is 10 (bits)
1662 	 * Primitve polynomial is x^10+x^3+1
1663 	 * first consecutive root is 510
1664 	 * primitve element to generate roots = 1
1665 	 * generator polinomial degree = 4
1666 	 */
1667 	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668 	if (!rs_decoder) {
1669 		pr_err("DiskOnChip: Could not create a RS decoder\n");
1670 		return -ENOMEM;
1671 	}
1672 
1673 	if (doc_config_location) {
1674 		pr_info("Using configured DiskOnChip probe address 0x%lx\n",
1675 			doc_config_location);
1676 		ret = doc_probe(doc_config_location);
1677 		if (ret < 0)
1678 			goto outerr;
1679 	} else {
1680 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1681 			doc_probe(doc_locations[i]);
1682 		}
1683 	}
1684 	/* No banner message any more. Print a message if no DiskOnChip
1685 	   found, so the user knows we at least tried. */
1686 	if (!doclist) {
1687 		pr_info("No valid DiskOnChip devices found\n");
1688 		ret = -ENODEV;
1689 		goto outerr;
1690 	}
1691 	return 0;
1692  outerr:
1693 	free_rs(rs_decoder);
1694 	return ret;
1695 }
1696 
1697 static void __exit cleanup_nanddoc(void)
1698 {
1699 	/* Cleanup the nand/DoC resources */
1700 	release_nanddoc();
1701 
1702 	/* Free the reed solomon resources */
1703 	if (rs_decoder) {
1704 		free_rs(rs_decoder);
1705 	}
1706 }
1707 
1708 module_init(init_nanddoc);
1709 module_exit(cleanup_nanddoc);
1710 
1711 MODULE_LICENSE("GPL");
1712 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1713 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1714