xref: /openbmc/linux/drivers/mtd/nand/raw/denali.c (revision ba61bb17)
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitfield.h>
16 #include <linux/completion.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 #include "denali.h"
27 
28 MODULE_LICENSE("GPL");
29 
30 #define DENALI_NAND_NAME    "denali-nand"
31 
32 /* for Indexed Addressing */
33 #define DENALI_INDEXED_CTRL	0x00
34 #define DENALI_INDEXED_DATA	0x10
35 
36 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
37 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
38 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
39 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
40 
41 /* MAP11 access cycle type */
42 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
43 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
44 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
45 
46 /* MAP10 commands */
47 #define DENALI_ERASE		0x01
48 
49 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
50 
51 #define DENALI_INVALID_BANK	-1
52 #define DENALI_NR_BANKS		4
53 
54 /*
55  * The bus interface clock, clk_x, is phase aligned with the core clock.  The
56  * clk_x is an integral multiple N of the core clk.  The value N is configured
57  * at IP delivery time, and its available value is 4, 5, or 6.  We need to align
58  * to the largest value to make it work with any possible configuration.
59  */
60 #define DENALI_CLK_X_MULT	6
61 
62 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
63 {
64 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
65 }
66 
67 /*
68  * Direct Addressing - the slave address forms the control information (command
69  * type, bank, block, and page address).  The slave data is the actual data to
70  * be transferred.  This mode requires 28 bits of address region allocated.
71  */
72 static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
73 {
74 	return ioread32(denali->host + addr);
75 }
76 
77 static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
78 				u32 data)
79 {
80 	iowrite32(data, denali->host + addr);
81 }
82 
83 /*
84  * Indexed Addressing - address translation module intervenes in passing the
85  * control information.  This mode reduces the required address range.  The
86  * control information and transferred data are latched by the registers in
87  * the translation module.
88  */
89 static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
90 {
91 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
92 	return ioread32(denali->host + DENALI_INDEXED_DATA);
93 }
94 
95 static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
96 				 u32 data)
97 {
98 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
99 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
100 }
101 
102 /*
103  * Use the configuration feature register to determine the maximum number of
104  * banks that the hardware supports.
105  */
106 static void denali_detect_max_banks(struct denali_nand_info *denali)
107 {
108 	uint32_t features = ioread32(denali->reg + FEATURES);
109 
110 	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
111 
112 	/* the encoding changed from rev 5.0 to 5.1 */
113 	if (denali->revision < 0x0501)
114 		denali->max_banks <<= 1;
115 }
116 
117 static void denali_enable_irq(struct denali_nand_info *denali)
118 {
119 	int i;
120 
121 	for (i = 0; i < DENALI_NR_BANKS; i++)
122 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
123 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
124 }
125 
126 static void denali_disable_irq(struct denali_nand_info *denali)
127 {
128 	int i;
129 
130 	for (i = 0; i < DENALI_NR_BANKS; i++)
131 		iowrite32(0, denali->reg + INTR_EN(i));
132 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
133 }
134 
135 static void denali_clear_irq(struct denali_nand_info *denali,
136 			     int bank, uint32_t irq_status)
137 {
138 	/* write one to clear bits */
139 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
140 }
141 
142 static void denali_clear_irq_all(struct denali_nand_info *denali)
143 {
144 	int i;
145 
146 	for (i = 0; i < DENALI_NR_BANKS; i++)
147 		denali_clear_irq(denali, i, U32_MAX);
148 }
149 
150 static irqreturn_t denali_isr(int irq, void *dev_id)
151 {
152 	struct denali_nand_info *denali = dev_id;
153 	irqreturn_t ret = IRQ_NONE;
154 	uint32_t irq_status;
155 	int i;
156 
157 	spin_lock(&denali->irq_lock);
158 
159 	for (i = 0; i < DENALI_NR_BANKS; i++) {
160 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
161 		if (irq_status)
162 			ret = IRQ_HANDLED;
163 
164 		denali_clear_irq(denali, i, irq_status);
165 
166 		if (i != denali->active_bank)
167 			continue;
168 
169 		denali->irq_status |= irq_status;
170 
171 		if (denali->irq_status & denali->irq_mask)
172 			complete(&denali->complete);
173 	}
174 
175 	spin_unlock(&denali->irq_lock);
176 
177 	return ret;
178 }
179 
180 static void denali_reset_irq(struct denali_nand_info *denali)
181 {
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&denali->irq_lock, flags);
185 	denali->irq_status = 0;
186 	denali->irq_mask = 0;
187 	spin_unlock_irqrestore(&denali->irq_lock, flags);
188 }
189 
190 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
191 				    uint32_t irq_mask)
192 {
193 	unsigned long time_left, flags;
194 	uint32_t irq_status;
195 
196 	spin_lock_irqsave(&denali->irq_lock, flags);
197 
198 	irq_status = denali->irq_status;
199 
200 	if (irq_mask & irq_status) {
201 		/* return immediately if the IRQ has already happened. */
202 		spin_unlock_irqrestore(&denali->irq_lock, flags);
203 		return irq_status;
204 	}
205 
206 	denali->irq_mask = irq_mask;
207 	reinit_completion(&denali->complete);
208 	spin_unlock_irqrestore(&denali->irq_lock, flags);
209 
210 	time_left = wait_for_completion_timeout(&denali->complete,
211 						msecs_to_jiffies(1000));
212 	if (!time_left) {
213 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
214 			irq_mask);
215 		return 0;
216 	}
217 
218 	return denali->irq_status;
219 }
220 
221 static uint32_t denali_check_irq(struct denali_nand_info *denali)
222 {
223 	unsigned long flags;
224 	uint32_t irq_status;
225 
226 	spin_lock_irqsave(&denali->irq_lock, flags);
227 	irq_status = denali->irq_status;
228 	spin_unlock_irqrestore(&denali->irq_lock, flags);
229 
230 	return irq_status;
231 }
232 
233 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
234 {
235 	struct denali_nand_info *denali = mtd_to_denali(mtd);
236 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
237 	int i;
238 
239 	for (i = 0; i < len; i++)
240 		buf[i] = denali->host_read(denali, addr);
241 }
242 
243 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
244 {
245 	struct denali_nand_info *denali = mtd_to_denali(mtd);
246 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
247 	int i;
248 
249 	for (i = 0; i < len; i++)
250 		denali->host_write(denali, addr, buf[i]);
251 }
252 
253 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
254 {
255 	struct denali_nand_info *denali = mtd_to_denali(mtd);
256 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
257 	uint16_t *buf16 = (uint16_t *)buf;
258 	int i;
259 
260 	for (i = 0; i < len / 2; i++)
261 		buf16[i] = denali->host_read(denali, addr);
262 }
263 
264 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
265 			       int len)
266 {
267 	struct denali_nand_info *denali = mtd_to_denali(mtd);
268 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
269 	const uint16_t *buf16 = (const uint16_t *)buf;
270 	int i;
271 
272 	for (i = 0; i < len / 2; i++)
273 		denali->host_write(denali, addr, buf16[i]);
274 }
275 
276 static uint8_t denali_read_byte(struct mtd_info *mtd)
277 {
278 	uint8_t byte;
279 
280 	denali_read_buf(mtd, &byte, 1);
281 
282 	return byte;
283 }
284 
285 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
286 {
287 	denali_write_buf(mtd, &byte, 1);
288 }
289 
290 static uint16_t denali_read_word(struct mtd_info *mtd)
291 {
292 	uint16_t word;
293 
294 	denali_read_buf16(mtd, (uint8_t *)&word, 2);
295 
296 	return word;
297 }
298 
299 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
300 {
301 	struct denali_nand_info *denali = mtd_to_denali(mtd);
302 	uint32_t type;
303 
304 	if (ctrl & NAND_CLE)
305 		type = DENALI_MAP11_CMD;
306 	else if (ctrl & NAND_ALE)
307 		type = DENALI_MAP11_ADDR;
308 	else
309 		return;
310 
311 	/*
312 	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
313 	 * irq_status must be cleared here to catch the R/B# interrupt later.
314 	 */
315 	if (ctrl & NAND_CTRL_CHANGE)
316 		denali_reset_irq(denali);
317 
318 	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
319 }
320 
321 static int denali_dev_ready(struct mtd_info *mtd)
322 {
323 	struct denali_nand_info *denali = mtd_to_denali(mtd);
324 
325 	return !!(denali_check_irq(denali) & INTR__INT_ACT);
326 }
327 
328 static int denali_check_erased_page(struct mtd_info *mtd,
329 				    struct nand_chip *chip, uint8_t *buf,
330 				    unsigned long uncor_ecc_flags,
331 				    unsigned int max_bitflips)
332 {
333 	struct denali_nand_info *denali = mtd_to_denali(mtd);
334 	uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
335 	int ecc_steps = chip->ecc.steps;
336 	int ecc_size = chip->ecc.size;
337 	int ecc_bytes = chip->ecc.bytes;
338 	int i, stat;
339 
340 	for (i = 0; i < ecc_steps; i++) {
341 		if (!(uncor_ecc_flags & BIT(i)))
342 			continue;
343 
344 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
345 						  ecc_code, ecc_bytes,
346 						  NULL, 0,
347 						  chip->ecc.strength);
348 		if (stat < 0) {
349 			mtd->ecc_stats.failed++;
350 		} else {
351 			mtd->ecc_stats.corrected += stat;
352 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
353 		}
354 
355 		buf += ecc_size;
356 		ecc_code += ecc_bytes;
357 	}
358 
359 	return max_bitflips;
360 }
361 
362 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
363 			       struct denali_nand_info *denali,
364 			       unsigned long *uncor_ecc_flags)
365 {
366 	struct nand_chip *chip = mtd_to_nand(mtd);
367 	int bank = denali->active_bank;
368 	uint32_t ecc_cor;
369 	unsigned int max_bitflips;
370 
371 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
372 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
373 
374 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
375 		/*
376 		 * This flag is set when uncorrectable error occurs at least in
377 		 * one ECC sector.  We can not know "how many sectors", or
378 		 * "which sector(s)".  We need erase-page check for all sectors.
379 		 */
380 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
381 		return 0;
382 	}
383 
384 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
385 
386 	/*
387 	 * The register holds the maximum of per-sector corrected bitflips.
388 	 * This is suitable for the return value of the ->read_page() callback.
389 	 * Unfortunately, we can not know the total number of corrected bits in
390 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
391 	 */
392 	mtd->ecc_stats.corrected += max_bitflips;
393 
394 	return max_bitflips;
395 }
396 
397 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
398 			       struct denali_nand_info *denali,
399 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
400 {
401 	unsigned int ecc_size = denali->nand.ecc.size;
402 	unsigned int bitflips = 0;
403 	unsigned int max_bitflips = 0;
404 	uint32_t err_addr, err_cor_info;
405 	unsigned int err_byte, err_sector, err_device;
406 	uint8_t err_cor_value;
407 	unsigned int prev_sector = 0;
408 	uint32_t irq_status;
409 
410 	denali_reset_irq(denali);
411 
412 	do {
413 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
414 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
415 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
416 
417 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
418 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
419 					  err_cor_info);
420 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
421 				       err_cor_info);
422 
423 		/* reset the bitflip counter when crossing ECC sector */
424 		if (err_sector != prev_sector)
425 			bitflips = 0;
426 
427 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
428 			/*
429 			 * Check later if this is a real ECC error, or
430 			 * an erased sector.
431 			 */
432 			*uncor_ecc_flags |= BIT(err_sector);
433 		} else if (err_byte < ecc_size) {
434 			/*
435 			 * If err_byte is larger than ecc_size, means error
436 			 * happened in OOB, so we ignore it. It's no need for
437 			 * us to correct it err_device is represented the NAND
438 			 * error bits are happened in if there are more than
439 			 * one NAND connected.
440 			 */
441 			int offset;
442 			unsigned int flips_in_byte;
443 
444 			offset = (err_sector * ecc_size + err_byte) *
445 					denali->devs_per_cs + err_device;
446 
447 			/* correct the ECC error */
448 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
449 			buf[offset] ^= err_cor_value;
450 			mtd->ecc_stats.corrected += flips_in_byte;
451 			bitflips += flips_in_byte;
452 
453 			max_bitflips = max(max_bitflips, bitflips);
454 		}
455 
456 		prev_sector = err_sector;
457 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
458 
459 	/*
460 	 * Once handle all ECC errors, controller will trigger an
461 	 * ECC_TRANSACTION_DONE interrupt.
462 	 */
463 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
464 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
465 		return -EIO;
466 
467 	return max_bitflips;
468 }
469 
470 static void denali_setup_dma64(struct denali_nand_info *denali,
471 			       dma_addr_t dma_addr, int page, int write)
472 {
473 	uint32_t mode;
474 	const int page_count = 1;
475 
476 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
477 
478 	/* DMA is a three step process */
479 
480 	/*
481 	 * 1. setup transfer type, interrupt when complete,
482 	 *    burst len = 64 bytes, the number of pages
483 	 */
484 	denali->host_write(denali, mode,
485 			   0x01002000 | (64 << 16) | (write << 8) | page_count);
486 
487 	/* 2. set memory low address */
488 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
489 
490 	/* 3. set memory high address */
491 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
492 }
493 
494 static void denali_setup_dma32(struct denali_nand_info *denali,
495 			       dma_addr_t dma_addr, int page, int write)
496 {
497 	uint32_t mode;
498 	const int page_count = 1;
499 
500 	mode = DENALI_MAP10 | DENALI_BANK(denali);
501 
502 	/* DMA is a four step process */
503 
504 	/* 1. setup transfer type and # of pages */
505 	denali->host_write(denali, mode | page,
506 			   0x2000 | (write << 8) | page_count);
507 
508 	/* 2. set memory high address bits 23:8 */
509 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
510 
511 	/* 3. set memory low address bits 23:8 */
512 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
513 
514 	/* 4. interrupt when complete, burst len = 64 bytes */
515 	denali->host_write(denali, mode | 0x14000, 0x2400);
516 }
517 
518 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
519 			   size_t size, int page, int raw)
520 {
521 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
522 	uint32_t *buf32 = (uint32_t *)buf;
523 	uint32_t irq_status, ecc_err_mask;
524 	int i;
525 
526 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
527 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
528 	else
529 		ecc_err_mask = INTR__ECC_ERR;
530 
531 	denali_reset_irq(denali);
532 
533 	for (i = 0; i < size / 4; i++)
534 		*buf32++ = denali->host_read(denali, addr);
535 
536 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
537 	if (!(irq_status & INTR__PAGE_XFER_INC))
538 		return -EIO;
539 
540 	if (irq_status & INTR__ERASED_PAGE)
541 		memset(buf, 0xff, size);
542 
543 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
544 }
545 
546 static int denali_pio_write(struct denali_nand_info *denali,
547 			    const void *buf, size_t size, int page, int raw)
548 {
549 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
550 	const uint32_t *buf32 = (uint32_t *)buf;
551 	uint32_t irq_status;
552 	int i;
553 
554 	denali_reset_irq(denali);
555 
556 	for (i = 0; i < size / 4; i++)
557 		denali->host_write(denali, addr, *buf32++);
558 
559 	irq_status = denali_wait_for_irq(denali,
560 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
561 	if (!(irq_status & INTR__PROGRAM_COMP))
562 		return -EIO;
563 
564 	return 0;
565 }
566 
567 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
568 			   size_t size, int page, int raw, int write)
569 {
570 	if (write)
571 		return denali_pio_write(denali, buf, size, page, raw);
572 	else
573 		return denali_pio_read(denali, buf, size, page, raw);
574 }
575 
576 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
577 			   size_t size, int page, int raw, int write)
578 {
579 	dma_addr_t dma_addr;
580 	uint32_t irq_mask, irq_status, ecc_err_mask;
581 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
582 	int ret = 0;
583 
584 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
585 	if (dma_mapping_error(denali->dev, dma_addr)) {
586 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
587 		return denali_pio_xfer(denali, buf, size, page, raw, write);
588 	}
589 
590 	if (write) {
591 		/*
592 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
593 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
594 		 * when the page program is completed.
595 		 */
596 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
597 		ecc_err_mask = 0;
598 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
599 		irq_mask = INTR__DMA_CMD_COMP;
600 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
601 	} else {
602 		irq_mask = INTR__DMA_CMD_COMP;
603 		ecc_err_mask = INTR__ECC_ERR;
604 	}
605 
606 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
607 
608 	denali_reset_irq(denali);
609 	denali->setup_dma(denali, dma_addr, page, write);
610 
611 	irq_status = denali_wait_for_irq(denali, irq_mask);
612 	if (!(irq_status & INTR__DMA_CMD_COMP))
613 		ret = -EIO;
614 	else if (irq_status & ecc_err_mask)
615 		ret = -EBADMSG;
616 
617 	iowrite32(0, denali->reg + DMA_ENABLE);
618 
619 	dma_unmap_single(denali->dev, dma_addr, size, dir);
620 
621 	if (irq_status & INTR__ERASED_PAGE)
622 		memset(buf, 0xff, size);
623 
624 	return ret;
625 }
626 
627 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
628 			    size_t size, int page, int raw, int write)
629 {
630 	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
631 	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
632 		  denali->reg + TRANSFER_SPARE_REG);
633 
634 	if (denali->dma_avail)
635 		return denali_dma_xfer(denali, buf, size, page, raw, write);
636 	else
637 		return denali_pio_xfer(denali, buf, size, page, raw, write);
638 }
639 
640 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
641 			    int page, int write)
642 {
643 	struct denali_nand_info *denali = mtd_to_denali(mtd);
644 	int writesize = mtd->writesize;
645 	int oobsize = mtd->oobsize;
646 	uint8_t *bufpoi = chip->oob_poi;
647 	int ecc_steps = chip->ecc.steps;
648 	int ecc_size = chip->ecc.size;
649 	int ecc_bytes = chip->ecc.bytes;
650 	int oob_skip = denali->oob_skip_bytes;
651 	size_t size = writesize + oobsize;
652 	int i, pos, len;
653 
654 	/* BBM at the beginning of the OOB area */
655 	if (write)
656 		nand_prog_page_begin_op(chip, page, writesize, bufpoi,
657 					oob_skip);
658 	else
659 		nand_read_page_op(chip, page, writesize, bufpoi, oob_skip);
660 	bufpoi += oob_skip;
661 
662 	/* OOB ECC */
663 	for (i = 0; i < ecc_steps; i++) {
664 		pos = ecc_size + i * (ecc_size + ecc_bytes);
665 		len = ecc_bytes;
666 
667 		if (pos >= writesize)
668 			pos += oob_skip;
669 		else if (pos + len > writesize)
670 			len = writesize - pos;
671 
672 		if (write)
673 			nand_change_write_column_op(chip, pos, bufpoi, len,
674 						    false);
675 		else
676 			nand_change_read_column_op(chip, pos, bufpoi, len,
677 						   false);
678 		bufpoi += len;
679 		if (len < ecc_bytes) {
680 			len = ecc_bytes - len;
681 			if (write)
682 				nand_change_write_column_op(chip, writesize +
683 							    oob_skip, bufpoi,
684 							    len, false);
685 			else
686 				nand_change_read_column_op(chip, writesize +
687 							   oob_skip, bufpoi,
688 							   len, false);
689 			bufpoi += len;
690 		}
691 	}
692 
693 	/* OOB free */
694 	len = oobsize - (bufpoi - chip->oob_poi);
695 	if (write)
696 		nand_change_write_column_op(chip, size - len, bufpoi, len,
697 					    false);
698 	else
699 		nand_change_read_column_op(chip, size - len, bufpoi, len,
700 					   false);
701 }
702 
703 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
704 				uint8_t *buf, int oob_required, int page)
705 {
706 	struct denali_nand_info *denali = mtd_to_denali(mtd);
707 	int writesize = mtd->writesize;
708 	int oobsize = mtd->oobsize;
709 	int ecc_steps = chip->ecc.steps;
710 	int ecc_size = chip->ecc.size;
711 	int ecc_bytes = chip->ecc.bytes;
712 	void *tmp_buf = denali->buf;
713 	int oob_skip = denali->oob_skip_bytes;
714 	size_t size = writesize + oobsize;
715 	int ret, i, pos, len;
716 
717 	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
718 	if (ret)
719 		return ret;
720 
721 	/* Arrange the buffer for syndrome payload/ecc layout */
722 	if (buf) {
723 		for (i = 0; i < ecc_steps; i++) {
724 			pos = i * (ecc_size + ecc_bytes);
725 			len = ecc_size;
726 
727 			if (pos >= writesize)
728 				pos += oob_skip;
729 			else if (pos + len > writesize)
730 				len = writesize - pos;
731 
732 			memcpy(buf, tmp_buf + pos, len);
733 			buf += len;
734 			if (len < ecc_size) {
735 				len = ecc_size - len;
736 				memcpy(buf, tmp_buf + writesize + oob_skip,
737 				       len);
738 				buf += len;
739 			}
740 		}
741 	}
742 
743 	if (oob_required) {
744 		uint8_t *oob = chip->oob_poi;
745 
746 		/* BBM at the beginning of the OOB area */
747 		memcpy(oob, tmp_buf + writesize, oob_skip);
748 		oob += oob_skip;
749 
750 		/* OOB ECC */
751 		for (i = 0; i < ecc_steps; i++) {
752 			pos = ecc_size + i * (ecc_size + ecc_bytes);
753 			len = ecc_bytes;
754 
755 			if (pos >= writesize)
756 				pos += oob_skip;
757 			else if (pos + len > writesize)
758 				len = writesize - pos;
759 
760 			memcpy(oob, tmp_buf + pos, len);
761 			oob += len;
762 			if (len < ecc_bytes) {
763 				len = ecc_bytes - len;
764 				memcpy(oob, tmp_buf + writesize + oob_skip,
765 				       len);
766 				oob += len;
767 			}
768 		}
769 
770 		/* OOB free */
771 		len = oobsize - (oob - chip->oob_poi);
772 		memcpy(oob, tmp_buf + size - len, len);
773 	}
774 
775 	return 0;
776 }
777 
778 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
779 			   int page)
780 {
781 	denali_oob_xfer(mtd, chip, page, 0);
782 
783 	return 0;
784 }
785 
786 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
787 			    int page)
788 {
789 	struct denali_nand_info *denali = mtd_to_denali(mtd);
790 
791 	denali_reset_irq(denali);
792 
793 	denali_oob_xfer(mtd, chip, page, 1);
794 
795 	return nand_prog_page_end_op(chip);
796 }
797 
798 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
799 			    uint8_t *buf, int oob_required, int page)
800 {
801 	struct denali_nand_info *denali = mtd_to_denali(mtd);
802 	unsigned long uncor_ecc_flags = 0;
803 	int stat = 0;
804 	int ret;
805 
806 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
807 	if (ret && ret != -EBADMSG)
808 		return ret;
809 
810 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
811 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
812 	else if (ret == -EBADMSG)
813 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
814 
815 	if (stat < 0)
816 		return stat;
817 
818 	if (uncor_ecc_flags) {
819 		ret = denali_read_oob(mtd, chip, page);
820 		if (ret)
821 			return ret;
822 
823 		stat = denali_check_erased_page(mtd, chip, buf,
824 						uncor_ecc_flags, stat);
825 	}
826 
827 	return stat;
828 }
829 
830 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
831 				 const uint8_t *buf, int oob_required, int page)
832 {
833 	struct denali_nand_info *denali = mtd_to_denali(mtd);
834 	int writesize = mtd->writesize;
835 	int oobsize = mtd->oobsize;
836 	int ecc_steps = chip->ecc.steps;
837 	int ecc_size = chip->ecc.size;
838 	int ecc_bytes = chip->ecc.bytes;
839 	void *tmp_buf = denali->buf;
840 	int oob_skip = denali->oob_skip_bytes;
841 	size_t size = writesize + oobsize;
842 	int i, pos, len;
843 
844 	/*
845 	 * Fill the buffer with 0xff first except the full page transfer.
846 	 * This simplifies the logic.
847 	 */
848 	if (!buf || !oob_required)
849 		memset(tmp_buf, 0xff, size);
850 
851 	/* Arrange the buffer for syndrome payload/ecc layout */
852 	if (buf) {
853 		for (i = 0; i < ecc_steps; i++) {
854 			pos = i * (ecc_size + ecc_bytes);
855 			len = ecc_size;
856 
857 			if (pos >= writesize)
858 				pos += oob_skip;
859 			else if (pos + len > writesize)
860 				len = writesize - pos;
861 
862 			memcpy(tmp_buf + pos, buf, len);
863 			buf += len;
864 			if (len < ecc_size) {
865 				len = ecc_size - len;
866 				memcpy(tmp_buf + writesize + oob_skip, buf,
867 				       len);
868 				buf += len;
869 			}
870 		}
871 	}
872 
873 	if (oob_required) {
874 		const uint8_t *oob = chip->oob_poi;
875 
876 		/* BBM at the beginning of the OOB area */
877 		memcpy(tmp_buf + writesize, oob, oob_skip);
878 		oob += oob_skip;
879 
880 		/* OOB ECC */
881 		for (i = 0; i < ecc_steps; i++) {
882 			pos = ecc_size + i * (ecc_size + ecc_bytes);
883 			len = ecc_bytes;
884 
885 			if (pos >= writesize)
886 				pos += oob_skip;
887 			else if (pos + len > writesize)
888 				len = writesize - pos;
889 
890 			memcpy(tmp_buf + pos, oob, len);
891 			oob += len;
892 			if (len < ecc_bytes) {
893 				len = ecc_bytes - len;
894 				memcpy(tmp_buf + writesize + oob_skip, oob,
895 				       len);
896 				oob += len;
897 			}
898 		}
899 
900 		/* OOB free */
901 		len = oobsize - (oob - chip->oob_poi);
902 		memcpy(tmp_buf + size - len, oob, len);
903 	}
904 
905 	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
906 }
907 
908 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
909 			     const uint8_t *buf, int oob_required, int page)
910 {
911 	struct denali_nand_info *denali = mtd_to_denali(mtd);
912 
913 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
914 				page, 0, 1);
915 }
916 
917 static void denali_select_chip(struct mtd_info *mtd, int chip)
918 {
919 	struct denali_nand_info *denali = mtd_to_denali(mtd);
920 
921 	denali->active_bank = chip;
922 }
923 
924 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
925 {
926 	struct denali_nand_info *denali = mtd_to_denali(mtd);
927 	uint32_t irq_status;
928 
929 	/* R/B# pin transitioned from low to high? */
930 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
931 
932 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
933 }
934 
935 static int denali_erase(struct mtd_info *mtd, int page)
936 {
937 	struct denali_nand_info *denali = mtd_to_denali(mtd);
938 	uint32_t irq_status;
939 
940 	denali_reset_irq(denali);
941 
942 	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
943 			   DENALI_ERASE);
944 
945 	/* wait for erase to complete or failure to occur */
946 	irq_status = denali_wait_for_irq(denali,
947 					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
948 
949 	return irq_status & INTR__ERASE_COMP ? 0 : -EIO;
950 }
951 
952 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
953 				       const struct nand_data_interface *conf)
954 {
955 	struct denali_nand_info *denali = mtd_to_denali(mtd);
956 	const struct nand_sdr_timings *timings;
957 	unsigned long t_clk;
958 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
959 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
960 	int addr_2_data_mask;
961 	uint32_t tmp;
962 
963 	timings = nand_get_sdr_timings(conf);
964 	if (IS_ERR(timings))
965 		return PTR_ERR(timings);
966 
967 	/* clk_x period in picoseconds */
968 	t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
969 	if (!t_clk)
970 		return -EINVAL;
971 
972 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
973 		return 0;
974 
975 	/* tREA -> ACC_CLKS */
976 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk);
977 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
978 
979 	tmp = ioread32(denali->reg + ACC_CLKS);
980 	tmp &= ~ACC_CLKS__VALUE;
981 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
982 	iowrite32(tmp, denali->reg + ACC_CLKS);
983 
984 	/* tRWH -> RE_2_WE */
985 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk);
986 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
987 
988 	tmp = ioread32(denali->reg + RE_2_WE);
989 	tmp &= ~RE_2_WE__VALUE;
990 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
991 	iowrite32(tmp, denali->reg + RE_2_WE);
992 
993 	/* tRHZ -> RE_2_RE */
994 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk);
995 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
996 
997 	tmp = ioread32(denali->reg + RE_2_RE);
998 	tmp &= ~RE_2_RE__VALUE;
999 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
1000 	iowrite32(tmp, denali->reg + RE_2_RE);
1001 
1002 	/*
1003 	 * tCCS, tWHR -> WE_2_RE
1004 	 *
1005 	 * With WE_2_RE properly set, the Denali controller automatically takes
1006 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
1007 	 */
1008 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
1009 			       t_clk);
1010 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
1011 
1012 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
1013 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
1014 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
1015 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
1016 
1017 	/* tADL -> ADDR_2_DATA */
1018 
1019 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
1020 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1021 	if (denali->revision < 0x0501)
1022 		addr_2_data_mask >>= 1;
1023 
1024 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk);
1025 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1026 
1027 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1028 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1029 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
1030 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1031 
1032 	/* tREH, tWH -> RDWR_EN_HI_CNT */
1033 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1034 				  t_clk);
1035 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1036 
1037 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1038 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
1039 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
1040 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1041 
1042 	/* tRP, tWP -> RDWR_EN_LO_CNT */
1043 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min),
1044 				  t_clk);
1045 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1046 				     t_clk);
1047 	rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT);
1048 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1049 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1050 
1051 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1052 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1053 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
1054 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1055 
1056 	/* tCS, tCEA -> CS_SETUP_CNT */
1057 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo,
1058 			(int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks,
1059 			0);
1060 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1061 
1062 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1063 	tmp &= ~CS_SETUP_CNT__VALUE;
1064 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
1065 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1066 
1067 	return 0;
1068 }
1069 
1070 static void denali_reset_banks(struct denali_nand_info *denali)
1071 {
1072 	u32 irq_status;
1073 	int i;
1074 
1075 	for (i = 0; i < denali->max_banks; i++) {
1076 		denali->active_bank = i;
1077 
1078 		denali_reset_irq(denali);
1079 
1080 		iowrite32(DEVICE_RESET__BANK(i),
1081 			  denali->reg + DEVICE_RESET);
1082 
1083 		irq_status = denali_wait_for_irq(denali,
1084 			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1085 		if (!(irq_status & INTR__INT_ACT))
1086 			break;
1087 	}
1088 
1089 	dev_dbg(denali->dev, "%d chips connected\n", i);
1090 	denali->max_banks = i;
1091 }
1092 
1093 static void denali_hw_init(struct denali_nand_info *denali)
1094 {
1095 	/*
1096 	 * The REVISION register may not be reliable.  Platforms are allowed to
1097 	 * override it.
1098 	 */
1099 	if (!denali->revision)
1100 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1101 
1102 	/*
1103 	 * tell driver how many bit controller will skip before
1104 	 * writing ECC code in OOB, this register may be already
1105 	 * set by firmware. So we read this value out.
1106 	 * if this value is 0, just let it be.
1107 	 */
1108 	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1109 	denali_detect_max_banks(denali);
1110 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1111 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1112 
1113 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1114 }
1115 
1116 int denali_calc_ecc_bytes(int step_size, int strength)
1117 {
1118 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1119 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1120 }
1121 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1122 
1123 static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
1124 			    struct denali_nand_info *denali)
1125 {
1126 	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
1127 	int ret;
1128 
1129 	/*
1130 	 * If .size and .strength are already set (usually by DT),
1131 	 * check if they are supported by this controller.
1132 	 */
1133 	if (chip->ecc.size && chip->ecc.strength)
1134 		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
1135 
1136 	/*
1137 	 * We want .size and .strength closest to the chip's requirement
1138 	 * unless NAND_ECC_MAXIMIZE is requested.
1139 	 */
1140 	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
1141 		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
1142 		if (!ret)
1143 			return 0;
1144 	}
1145 
1146 	/* Max ECC strength is the last thing we can do */
1147 	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
1148 }
1149 
1150 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1151 				struct mtd_oob_region *oobregion)
1152 {
1153 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1154 	struct nand_chip *chip = mtd_to_nand(mtd);
1155 
1156 	if (section)
1157 		return -ERANGE;
1158 
1159 	oobregion->offset = denali->oob_skip_bytes;
1160 	oobregion->length = chip->ecc.total;
1161 
1162 	return 0;
1163 }
1164 
1165 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1166 				 struct mtd_oob_region *oobregion)
1167 {
1168 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1169 	struct nand_chip *chip = mtd_to_nand(mtd);
1170 
1171 	if (section)
1172 		return -ERANGE;
1173 
1174 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1175 	oobregion->length = mtd->oobsize - oobregion->offset;
1176 
1177 	return 0;
1178 }
1179 
1180 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1181 	.ecc = denali_ooblayout_ecc,
1182 	.free = denali_ooblayout_free,
1183 };
1184 
1185 static int denali_multidev_fixup(struct denali_nand_info *denali)
1186 {
1187 	struct nand_chip *chip = &denali->nand;
1188 	struct mtd_info *mtd = nand_to_mtd(chip);
1189 
1190 	/*
1191 	 * Support for multi device:
1192 	 * When the IP configuration is x16 capable and two x8 chips are
1193 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1194 	 * In this case, the core framework knows nothing about this fact,
1195 	 * so we should tell it the _logical_ pagesize and anything necessary.
1196 	 */
1197 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1198 
1199 	/*
1200 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1201 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1202 	 */
1203 	if (denali->devs_per_cs == 0) {
1204 		denali->devs_per_cs = 1;
1205 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1206 	}
1207 
1208 	if (denali->devs_per_cs == 1)
1209 		return 0;
1210 
1211 	if (denali->devs_per_cs != 2) {
1212 		dev_err(denali->dev, "unsupported number of devices %d\n",
1213 			denali->devs_per_cs);
1214 		return -EINVAL;
1215 	}
1216 
1217 	/* 2 chips in parallel */
1218 	mtd->size <<= 1;
1219 	mtd->erasesize <<= 1;
1220 	mtd->writesize <<= 1;
1221 	mtd->oobsize <<= 1;
1222 	chip->chipsize <<= 1;
1223 	chip->page_shift += 1;
1224 	chip->phys_erase_shift += 1;
1225 	chip->bbt_erase_shift += 1;
1226 	chip->chip_shift += 1;
1227 	chip->pagemask <<= 1;
1228 	chip->ecc.size <<= 1;
1229 	chip->ecc.bytes <<= 1;
1230 	chip->ecc.strength <<= 1;
1231 	denali->oob_skip_bytes <<= 1;
1232 
1233 	return 0;
1234 }
1235 
1236 int denali_init(struct denali_nand_info *denali)
1237 {
1238 	struct nand_chip *chip = &denali->nand;
1239 	struct mtd_info *mtd = nand_to_mtd(chip);
1240 	u32 features = ioread32(denali->reg + FEATURES);
1241 	int ret;
1242 
1243 	mtd->dev.parent = denali->dev;
1244 	denali_hw_init(denali);
1245 
1246 	init_completion(&denali->complete);
1247 	spin_lock_init(&denali->irq_lock);
1248 
1249 	denali_clear_irq_all(denali);
1250 
1251 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1252 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1253 	if (ret) {
1254 		dev_err(denali->dev, "Unable to request IRQ\n");
1255 		return ret;
1256 	}
1257 
1258 	denali_enable_irq(denali);
1259 	denali_reset_banks(denali);
1260 
1261 	denali->active_bank = DENALI_INVALID_BANK;
1262 
1263 	nand_set_flash_node(chip, denali->dev->of_node);
1264 	/* Fallback to the default name if DT did not give "label" property */
1265 	if (!mtd->name)
1266 		mtd->name = "denali-nand";
1267 
1268 	chip->select_chip = denali_select_chip;
1269 	chip->read_byte = denali_read_byte;
1270 	chip->write_byte = denali_write_byte;
1271 	chip->read_word = denali_read_word;
1272 	chip->cmd_ctrl = denali_cmd_ctrl;
1273 	chip->dev_ready = denali_dev_ready;
1274 	chip->waitfunc = denali_waitfunc;
1275 
1276 	if (features & FEATURES__INDEX_ADDR) {
1277 		denali->host_read = denali_indexed_read;
1278 		denali->host_write = denali_indexed_write;
1279 	} else {
1280 		denali->host_read = denali_direct_read;
1281 		denali->host_write = denali_direct_write;
1282 	}
1283 
1284 	/* clk rate info is needed for setup_data_interface */
1285 	if (denali->clk_x_rate)
1286 		chip->setup_data_interface = denali_setup_data_interface;
1287 
1288 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1289 	if (ret)
1290 		goto disable_irq;
1291 
1292 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1293 		denali->dma_avail = 1;
1294 
1295 	if (denali->dma_avail) {
1296 		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1297 
1298 		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1299 		if (ret) {
1300 			dev_info(denali->dev,
1301 				 "Failed to set DMA mask. Disabling DMA.\n");
1302 			denali->dma_avail = 0;
1303 		}
1304 	}
1305 
1306 	if (denali->dma_avail) {
1307 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1308 		chip->buf_align = 16;
1309 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1310 			denali->setup_dma = denali_setup_dma64;
1311 		else
1312 			denali->setup_dma = denali_setup_dma32;
1313 	}
1314 
1315 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1316 	chip->bbt_options |= NAND_BBT_NO_OOB;
1317 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1318 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1319 
1320 	ret = denali_ecc_setup(mtd, chip, denali);
1321 	if (ret) {
1322 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1323 		goto disable_irq;
1324 	}
1325 
1326 	dev_dbg(denali->dev,
1327 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1328 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1329 
1330 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
1331 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
1332 		  denali->reg + ECC_CORRECTION);
1333 	iowrite32(mtd->erasesize / mtd->writesize,
1334 		  denali->reg + PAGES_PER_BLOCK);
1335 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1336 		  denali->reg + DEVICE_WIDTH);
1337 	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
1338 		  denali->reg + TWO_ROW_ADDR_CYCLES);
1339 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1340 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1341 
1342 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1343 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1344 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1345 	iowrite32(mtd->writesize / chip->ecc.size,
1346 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1347 
1348 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1349 
1350 	if (chip->options & NAND_BUSWIDTH_16) {
1351 		chip->read_buf = denali_read_buf16;
1352 		chip->write_buf = denali_write_buf16;
1353 	} else {
1354 		chip->read_buf = denali_read_buf;
1355 		chip->write_buf = denali_write_buf;
1356 	}
1357 	chip->ecc.read_page = denali_read_page;
1358 	chip->ecc.read_page_raw = denali_read_page_raw;
1359 	chip->ecc.write_page = denali_write_page;
1360 	chip->ecc.write_page_raw = denali_write_page_raw;
1361 	chip->ecc.read_oob = denali_read_oob;
1362 	chip->ecc.write_oob = denali_write_oob;
1363 	chip->erase = denali_erase;
1364 
1365 	ret = denali_multidev_fixup(denali);
1366 	if (ret)
1367 		goto disable_irq;
1368 
1369 	/*
1370 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1371 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1372 	 * guarantee DMA-safe alignment.
1373 	 */
1374 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1375 	if (!denali->buf) {
1376 		ret = -ENOMEM;
1377 		goto disable_irq;
1378 	}
1379 
1380 	ret = nand_scan_tail(mtd);
1381 	if (ret)
1382 		goto free_buf;
1383 
1384 	ret = mtd_device_register(mtd, NULL, 0);
1385 	if (ret) {
1386 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1387 		goto cleanup_nand;
1388 	}
1389 	return 0;
1390 
1391 cleanup_nand:
1392 	nand_cleanup(chip);
1393 free_buf:
1394 	kfree(denali->buf);
1395 disable_irq:
1396 	denali_disable_irq(denali);
1397 
1398 	return ret;
1399 }
1400 EXPORT_SYMBOL(denali_init);
1401 
1402 void denali_remove(struct denali_nand_info *denali)
1403 {
1404 	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
1405 
1406 	nand_release(mtd);
1407 	kfree(denali->buf);
1408 	denali_disable_irq(denali);
1409 }
1410 EXPORT_SYMBOL(denali_remove);
1411