1 /* 2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips 3 * 4 * Copyright © 2006 Texas Instruments. 5 * 6 * Port to 2.6.23 Copyright © 2008 by: 7 * Sander Huijsen <Shuijsen@optelecom-nkf.com> 8 * Troy Kisky <troy.kisky@boundarydevices.com> 9 * Dirk Behme <Dirk.Behme@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> 29 #include <linux/err.h> 30 #include <linux/io.h> 31 #include <linux/mtd/rawnand.h> 32 #include <linux/mtd/partitions.h> 33 #include <linux/slab.h> 34 #include <linux/of_device.h> 35 #include <linux/of.h> 36 37 #include <linux/platform_data/mtd-davinci.h> 38 #include <linux/platform_data/mtd-davinci-aemif.h> 39 40 /* 41 * This is a device driver for the NAND flash controller found on the 42 * various DaVinci family chips. It handles up to four SoC chipselects, 43 * and some flavors of secondary chipselect (e.g. based on A12) as used 44 * with multichip packages. 45 * 46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC 47 * available on chips like the DM355 and OMAP-L137 and needed with the 48 * more error-prone MLC NAND chips. 49 * 50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY 51 * outputs in a "wire-AND" configuration, with no per-chip signals. 52 */ 53 struct davinci_nand_info { 54 struct nand_chip chip; 55 56 struct platform_device *pdev; 57 58 bool is_readmode; 59 60 void __iomem *base; 61 void __iomem *vaddr; 62 63 void __iomem *current_cs; 64 65 uint32_t mask_chipsel; 66 uint32_t mask_ale; 67 uint32_t mask_cle; 68 69 uint32_t core_chipsel; 70 71 struct davinci_aemif_timing *timing; 72 }; 73 74 static DEFINE_SPINLOCK(davinci_nand_lock); 75 static bool ecc4_busy; 76 77 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) 78 { 79 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); 80 } 81 82 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, 83 int offset) 84 { 85 return __raw_readl(info->base + offset); 86 } 87 88 static inline void davinci_nand_writel(struct davinci_nand_info *info, 89 int offset, unsigned long value) 90 { 91 __raw_writel(value, info->base + offset); 92 } 93 94 /*----------------------------------------------------------------------*/ 95 96 /* 97 * Access to hardware control lines: ALE, CLE, secondary chipselect. 98 */ 99 100 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, 101 unsigned int ctrl) 102 { 103 struct davinci_nand_info *info = to_davinci_nand(mtd); 104 void __iomem *addr = info->current_cs; 105 struct nand_chip *nand = mtd_to_nand(mtd); 106 107 /* Did the control lines change? */ 108 if (ctrl & NAND_CTRL_CHANGE) { 109 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) 110 addr += info->mask_cle; 111 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) 112 addr += info->mask_ale; 113 114 nand->IO_ADDR_W = addr; 115 } 116 117 if (cmd != NAND_CMD_NONE) 118 iowrite8(cmd, nand->IO_ADDR_W); 119 } 120 121 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) 122 { 123 struct davinci_nand_info *info = to_davinci_nand(mtd); 124 125 info->current_cs = info->vaddr; 126 127 /* maybe kick in a second chipselect */ 128 if (chip > 0) 129 info->current_cs += info->mask_chipsel; 130 131 info->chip.IO_ADDR_W = info->current_cs; 132 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; 133 } 134 135 /*----------------------------------------------------------------------*/ 136 137 /* 138 * 1-bit hardware ECC ... context maintained for each core chipselect 139 */ 140 141 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) 142 { 143 struct davinci_nand_info *info = to_davinci_nand(mtd); 144 145 return davinci_nand_readl(info, NANDF1ECC_OFFSET 146 + 4 * info->core_chipsel); 147 } 148 149 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) 150 { 151 struct davinci_nand_info *info; 152 uint32_t nandcfr; 153 unsigned long flags; 154 155 info = to_davinci_nand(mtd); 156 157 /* Reset ECC hardware */ 158 nand_davinci_readecc_1bit(mtd); 159 160 spin_lock_irqsave(&davinci_nand_lock, flags); 161 162 /* Restart ECC hardware */ 163 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); 164 nandcfr |= BIT(8 + info->core_chipsel); 165 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); 166 167 spin_unlock_irqrestore(&davinci_nand_lock, flags); 168 } 169 170 /* 171 * Read hardware ECC value and pack into three bytes 172 */ 173 static int nand_davinci_calculate_1bit(struct mtd_info *mtd, 174 const u_char *dat, u_char *ecc_code) 175 { 176 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); 177 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); 178 179 /* invert so that erased block ecc is correct */ 180 ecc24 = ~ecc24; 181 ecc_code[0] = (u_char)(ecc24); 182 ecc_code[1] = (u_char)(ecc24 >> 8); 183 ecc_code[2] = (u_char)(ecc24 >> 16); 184 185 return 0; 186 } 187 188 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, 189 u_char *read_ecc, u_char *calc_ecc) 190 { 191 struct nand_chip *chip = mtd_to_nand(mtd); 192 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | 193 (read_ecc[2] << 16); 194 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | 195 (calc_ecc[2] << 16); 196 uint32_t diff = eccCalc ^ eccNand; 197 198 if (diff) { 199 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { 200 /* Correctable error */ 201 if ((diff >> (12 + 3)) < chip->ecc.size) { 202 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); 203 return 1; 204 } else { 205 return -EBADMSG; 206 } 207 } else if (!(diff & (diff - 1))) { 208 /* Single bit ECC error in the ECC itself, 209 * nothing to fix */ 210 return 1; 211 } else { 212 /* Uncorrectable error */ 213 return -EBADMSG; 214 } 215 216 } 217 return 0; 218 } 219 220 /*----------------------------------------------------------------------*/ 221 222 /* 223 * 4-bit hardware ECC ... context maintained over entire AEMIF 224 * 225 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME 226 * since that forces use of a problematic "infix OOB" layout. 227 * Among other things, it trashes manufacturer bad block markers. 228 * Also, and specific to this hardware, it ECC-protects the "prepad" 229 * in the OOB ... while having ECC protection for parts of OOB would 230 * seem useful, the current MTD stack sometimes wants to update the 231 * OOB without recomputing ECC. 232 */ 233 234 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) 235 { 236 struct davinci_nand_info *info = to_davinci_nand(mtd); 237 unsigned long flags; 238 u32 val; 239 240 /* Reset ECC hardware */ 241 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 242 243 spin_lock_irqsave(&davinci_nand_lock, flags); 244 245 /* Start 4-bit ECC calculation for read/write */ 246 val = davinci_nand_readl(info, NANDFCR_OFFSET); 247 val &= ~(0x03 << 4); 248 val |= (info->core_chipsel << 4) | BIT(12); 249 davinci_nand_writel(info, NANDFCR_OFFSET, val); 250 251 info->is_readmode = (mode == NAND_ECC_READ); 252 253 spin_unlock_irqrestore(&davinci_nand_lock, flags); 254 } 255 256 /* Read raw ECC code after writing to NAND. */ 257 static void 258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) 259 { 260 const u32 mask = 0x03ff03ff; 261 262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; 263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; 264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; 265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; 266 } 267 268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ 269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd, 270 const u_char *dat, u_char *ecc_code) 271 { 272 struct davinci_nand_info *info = to_davinci_nand(mtd); 273 u32 raw_ecc[4], *p; 274 unsigned i; 275 276 /* After a read, terminate ECC calculation by a dummy read 277 * of some 4-bit ECC register. ECC covers everything that 278 * was read; correct() just uses the hardware state, so 279 * ecc_code is not needed. 280 */ 281 if (info->is_readmode) { 282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 283 return 0; 284 } 285 286 /* Pack eight raw 10-bit ecc values into ten bytes, making 287 * two passes which each convert four values (in upper and 288 * lower halves of two 32-bit words) into five bytes. The 289 * ROM boot loader uses this same packing scheme. 290 */ 291 nand_davinci_readecc_4bit(info, raw_ecc); 292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { 293 *ecc_code++ = p[0] & 0xff; 294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); 295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); 296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); 297 *ecc_code++ = (p[1] >> 18) & 0xff; 298 } 299 300 return 0; 301 } 302 303 /* Correct up to 4 bits in data we just read, using state left in the 304 * hardware plus the ecc_code computed when it was first written. 305 */ 306 static int nand_davinci_correct_4bit(struct mtd_info *mtd, 307 u_char *data, u_char *ecc_code, u_char *null) 308 { 309 int i; 310 struct davinci_nand_info *info = to_davinci_nand(mtd); 311 unsigned short ecc10[8]; 312 unsigned short *ecc16; 313 u32 syndrome[4]; 314 u32 ecc_state; 315 unsigned num_errors, corrected; 316 unsigned long timeo; 317 318 /* Unpack ten bytes into eight 10 bit values. We know we're 319 * little-endian, and use type punning for less shifting/masking. 320 */ 321 if (WARN_ON(0x01 & (uintptr_t)ecc_code)) 322 return -EINVAL; 323 ecc16 = (unsigned short *)ecc_code; 324 325 ecc10[0] = (ecc16[0] >> 0) & 0x3ff; 326 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); 327 ecc10[2] = (ecc16[1] >> 4) & 0x3ff; 328 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); 329 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); 330 ecc10[5] = (ecc16[3] >> 2) & 0x3ff; 331 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); 332 ecc10[7] = (ecc16[4] >> 6) & 0x3ff; 333 334 /* Tell ECC controller about the expected ECC codes. */ 335 for (i = 7; i >= 0; i--) 336 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); 337 338 /* Allow time for syndrome calculation ... then read it. 339 * A syndrome of all zeroes 0 means no detected errors. 340 */ 341 davinci_nand_readl(info, NANDFSR_OFFSET); 342 nand_davinci_readecc_4bit(info, syndrome); 343 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) 344 return 0; 345 346 /* 347 * Clear any previous address calculation by doing a dummy read of an 348 * error address register. 349 */ 350 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); 351 352 /* Start address calculation, and wait for it to complete. 353 * We _could_ start reading more data while this is working, 354 * to speed up the overall page read. 355 */ 356 davinci_nand_writel(info, NANDFCR_OFFSET, 357 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); 358 359 /* 360 * ECC_STATE field reads 0x3 (Error correction complete) immediately 361 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately 362 * begin trying to poll for the state, you may fall right out of your 363 * loop without any of the correction calculations having taken place. 364 * The recommendation from the hardware team is to initially delay as 365 * long as ECC_STATE reads less than 4. After that, ECC HW has entered 366 * correction state. 367 */ 368 timeo = jiffies + usecs_to_jiffies(100); 369 do { 370 ecc_state = (davinci_nand_readl(info, 371 NANDFSR_OFFSET) >> 8) & 0x0f; 372 cpu_relax(); 373 } while ((ecc_state < 4) && time_before(jiffies, timeo)); 374 375 for (;;) { 376 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); 377 378 switch ((fsr >> 8) & 0x0f) { 379 case 0: /* no error, should not happen */ 380 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 381 return 0; 382 case 1: /* five or more errors detected */ 383 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 384 return -EBADMSG; 385 case 2: /* error addresses computed */ 386 case 3: 387 num_errors = 1 + ((fsr >> 16) & 0x03); 388 goto correct; 389 default: /* still working on it */ 390 cpu_relax(); 391 continue; 392 } 393 } 394 395 correct: 396 /* correct each error */ 397 for (i = 0, corrected = 0; i < num_errors; i++) { 398 int error_address, error_value; 399 400 if (i > 1) { 401 error_address = davinci_nand_readl(info, 402 NAND_ERR_ADD2_OFFSET); 403 error_value = davinci_nand_readl(info, 404 NAND_ERR_ERRVAL2_OFFSET); 405 } else { 406 error_address = davinci_nand_readl(info, 407 NAND_ERR_ADD1_OFFSET); 408 error_value = davinci_nand_readl(info, 409 NAND_ERR_ERRVAL1_OFFSET); 410 } 411 412 if (i & 1) { 413 error_address >>= 16; 414 error_value >>= 16; 415 } 416 error_address &= 0x3ff; 417 error_address = (512 + 7) - error_address; 418 419 if (error_address < 512) { 420 data[error_address] ^= error_value; 421 corrected++; 422 } 423 } 424 425 return corrected; 426 } 427 428 /*----------------------------------------------------------------------*/ 429 430 /* 431 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's 432 * how these chips are normally wired. This translates to both 8 and 16 433 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). 434 * 435 * For now we assume that configuration, or any other one which ignores 436 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes 437 * and have that transparently morphed into multiple NAND operations. 438 */ 439 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 440 { 441 struct nand_chip *chip = mtd_to_nand(mtd); 442 443 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0) 444 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); 445 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0) 446 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); 447 else 448 ioread8_rep(chip->IO_ADDR_R, buf, len); 449 } 450 451 static void nand_davinci_write_buf(struct mtd_info *mtd, 452 const uint8_t *buf, int len) 453 { 454 struct nand_chip *chip = mtd_to_nand(mtd); 455 456 if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0) 457 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); 458 else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0) 459 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); 460 else 461 iowrite8_rep(chip->IO_ADDR_R, buf, len); 462 } 463 464 /* 465 * Check hardware register for wait status. Returns 1 if device is ready, 466 * 0 if it is still busy. 467 */ 468 static int nand_davinci_dev_ready(struct mtd_info *mtd) 469 { 470 struct davinci_nand_info *info = to_davinci_nand(mtd); 471 472 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); 473 } 474 475 /*----------------------------------------------------------------------*/ 476 477 /* An ECC layout for using 4-bit ECC with small-page flash, storing 478 * ten ECC bytes plus the manufacturer's bad block marker byte, and 479 * and not overlapping the default BBT markers. 480 */ 481 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, 482 struct mtd_oob_region *oobregion) 483 { 484 if (section > 2) 485 return -ERANGE; 486 487 if (!section) { 488 oobregion->offset = 0; 489 oobregion->length = 5; 490 } else if (section == 1) { 491 oobregion->offset = 6; 492 oobregion->length = 2; 493 } else { 494 oobregion->offset = 13; 495 oobregion->length = 3; 496 } 497 498 return 0; 499 } 500 501 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, 502 struct mtd_oob_region *oobregion) 503 { 504 if (section > 1) 505 return -ERANGE; 506 507 if (!section) { 508 oobregion->offset = 8; 509 oobregion->length = 5; 510 } else { 511 oobregion->offset = 16; 512 oobregion->length = mtd->oobsize - 16; 513 } 514 515 return 0; 516 } 517 518 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { 519 .ecc = hwecc4_ooblayout_small_ecc, 520 .free = hwecc4_ooblayout_small_free, 521 }; 522 523 #if defined(CONFIG_OF) 524 static const struct of_device_id davinci_nand_of_match[] = { 525 {.compatible = "ti,davinci-nand", }, 526 {.compatible = "ti,keystone-nand", }, 527 {}, 528 }; 529 MODULE_DEVICE_TABLE(of, davinci_nand_of_match); 530 531 static struct davinci_nand_pdata 532 *nand_davinci_get_pdata(struct platform_device *pdev) 533 { 534 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { 535 struct davinci_nand_pdata *pdata; 536 const char *mode; 537 u32 prop; 538 539 pdata = devm_kzalloc(&pdev->dev, 540 sizeof(struct davinci_nand_pdata), 541 GFP_KERNEL); 542 pdev->dev.platform_data = pdata; 543 if (!pdata) 544 return ERR_PTR(-ENOMEM); 545 if (!of_property_read_u32(pdev->dev.of_node, 546 "ti,davinci-chipselect", &prop)) 547 pdata->core_chipsel = prop; 548 else 549 return ERR_PTR(-EINVAL); 550 551 if (!of_property_read_u32(pdev->dev.of_node, 552 "ti,davinci-mask-ale", &prop)) 553 pdata->mask_ale = prop; 554 if (!of_property_read_u32(pdev->dev.of_node, 555 "ti,davinci-mask-cle", &prop)) 556 pdata->mask_cle = prop; 557 if (!of_property_read_u32(pdev->dev.of_node, 558 "ti,davinci-mask-chipsel", &prop)) 559 pdata->mask_chipsel = prop; 560 if (!of_property_read_string(pdev->dev.of_node, 561 "ti,davinci-ecc-mode", &mode)) { 562 if (!strncmp("none", mode, 4)) 563 pdata->ecc_mode = NAND_ECC_NONE; 564 if (!strncmp("soft", mode, 4)) 565 pdata->ecc_mode = NAND_ECC_SOFT; 566 if (!strncmp("hw", mode, 2)) 567 pdata->ecc_mode = NAND_ECC_HW; 568 } 569 if (!of_property_read_u32(pdev->dev.of_node, 570 "ti,davinci-ecc-bits", &prop)) 571 pdata->ecc_bits = prop; 572 573 if (!of_property_read_u32(pdev->dev.of_node, 574 "ti,davinci-nand-buswidth", &prop) && prop == 16) 575 pdata->options |= NAND_BUSWIDTH_16; 576 577 if (of_property_read_bool(pdev->dev.of_node, 578 "ti,davinci-nand-use-bbt")) 579 pdata->bbt_options = NAND_BBT_USE_FLASH; 580 581 /* 582 * Since kernel v4.8, this driver has been fixed to enable 583 * use of 4-bit hardware ECC with subpages and verified on 584 * TI's keystone EVMs (K2L, K2HK and K2E). 585 * However, in the interest of not breaking systems using 586 * existing UBI partitions, sub-page writes are not being 587 * (re)enabled. If you want to use subpage writes on Keystone 588 * platforms (i.e. do not have any existing UBI partitions), 589 * then use "ti,davinci-nand" as the compatible in your 590 * device-tree file. 591 */ 592 if (of_device_is_compatible(pdev->dev.of_node, 593 "ti,keystone-nand")) { 594 pdata->options |= NAND_NO_SUBPAGE_WRITE; 595 } 596 } 597 598 return dev_get_platdata(&pdev->dev); 599 } 600 #else 601 static struct davinci_nand_pdata 602 *nand_davinci_get_pdata(struct platform_device *pdev) 603 { 604 return dev_get_platdata(&pdev->dev); 605 } 606 #endif 607 608 static int davinci_nand_attach_chip(struct nand_chip *chip) 609 { 610 struct mtd_info *mtd = nand_to_mtd(chip); 611 struct davinci_nand_info *info = to_davinci_nand(mtd); 612 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); 613 int ret = 0; 614 615 if (IS_ERR(pdata)) 616 return PTR_ERR(pdata); 617 618 switch (info->chip.ecc.mode) { 619 case NAND_ECC_NONE: 620 pdata->ecc_bits = 0; 621 break; 622 case NAND_ECC_SOFT: 623 pdata->ecc_bits = 0; 624 /* 625 * This driver expects Hamming based ECC when ecc_mode is set 626 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to 627 * avoid adding an extra ->ecc_algo field to 628 * davinci_nand_pdata. 629 */ 630 info->chip.ecc.algo = NAND_ECC_HAMMING; 631 break; 632 case NAND_ECC_HW: 633 if (pdata->ecc_bits == 4) { 634 /* 635 * No sanity checks: CPUs must support this, 636 * and the chips may not use NAND_BUSWIDTH_16. 637 */ 638 639 /* No sharing 4-bit hardware between chipselects yet */ 640 spin_lock_irq(&davinci_nand_lock); 641 if (ecc4_busy) 642 ret = -EBUSY; 643 else 644 ecc4_busy = true; 645 spin_unlock_irq(&davinci_nand_lock); 646 647 if (ret == -EBUSY) 648 return ret; 649 650 info->chip.ecc.calculate = nand_davinci_calculate_4bit; 651 info->chip.ecc.correct = nand_davinci_correct_4bit; 652 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; 653 info->chip.ecc.bytes = 10; 654 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 655 info->chip.ecc.algo = NAND_ECC_BCH; 656 } else { 657 /* 1bit ecc hamming */ 658 info->chip.ecc.calculate = nand_davinci_calculate_1bit; 659 info->chip.ecc.correct = nand_davinci_correct_1bit; 660 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; 661 info->chip.ecc.bytes = 3; 662 info->chip.ecc.algo = NAND_ECC_HAMMING; 663 } 664 info->chip.ecc.size = 512; 665 info->chip.ecc.strength = pdata->ecc_bits; 666 break; 667 default: 668 return -EINVAL; 669 } 670 671 /* 672 * Update ECC layout if needed ... for 1-bit HW ECC, the default 673 * is OK, but it allocates 6 bytes when only 3 are needed (for 674 * each 512 bytes). For the 4-bit HW ECC, that default is not 675 * usable: 10 bytes are needed, not 6. 676 */ 677 if (pdata->ecc_bits == 4) { 678 int chunks = mtd->writesize / 512; 679 680 if (!chunks || mtd->oobsize < 16) { 681 dev_dbg(&info->pdev->dev, "too small\n"); 682 return -EINVAL; 683 } 684 685 /* For small page chips, preserve the manufacturer's 686 * badblock marking data ... and make sure a flash BBT 687 * table marker fits in the free bytes. 688 */ 689 if (chunks == 1) { 690 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops); 691 } else if (chunks == 4 || chunks == 8) { 692 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 693 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; 694 } else { 695 return -EIO; 696 } 697 } 698 699 return ret; 700 } 701 702 static const struct nand_controller_ops davinci_nand_controller_ops = { 703 .attach_chip = davinci_nand_attach_chip, 704 }; 705 706 static int nand_davinci_probe(struct platform_device *pdev) 707 { 708 struct davinci_nand_pdata *pdata; 709 struct davinci_nand_info *info; 710 struct resource *res1; 711 struct resource *res2; 712 void __iomem *vaddr; 713 void __iomem *base; 714 int ret; 715 uint32_t val; 716 struct mtd_info *mtd; 717 718 pdata = nand_davinci_get_pdata(pdev); 719 if (IS_ERR(pdata)) 720 return PTR_ERR(pdata); 721 722 /* insist on board-specific configuration */ 723 if (!pdata) 724 return -ENODEV; 725 726 /* which external chipselect will we be managing? */ 727 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3) 728 return -ENODEV; 729 730 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 731 if (!info) 732 return -ENOMEM; 733 734 platform_set_drvdata(pdev, info); 735 736 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 737 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 738 if (!res1 || !res2) { 739 dev_err(&pdev->dev, "resource missing\n"); 740 return -EINVAL; 741 } 742 743 vaddr = devm_ioremap_resource(&pdev->dev, res1); 744 if (IS_ERR(vaddr)) 745 return PTR_ERR(vaddr); 746 747 /* 748 * This registers range is used to setup NAND settings. In case with 749 * TI AEMIF driver, the same memory address range is requested already 750 * by AEMIF, so we cannot request it twice, just ioremap. 751 * The AEMIF and NAND drivers not use the same registers in this range. 752 */ 753 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); 754 if (!base) { 755 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); 756 return -EADDRNOTAVAIL; 757 } 758 759 info->pdev = pdev; 760 info->base = base; 761 info->vaddr = vaddr; 762 763 mtd = nand_to_mtd(&info->chip); 764 mtd->dev.parent = &pdev->dev; 765 nand_set_flash_node(&info->chip, pdev->dev.of_node); 766 767 info->chip.IO_ADDR_R = vaddr; 768 info->chip.IO_ADDR_W = vaddr; 769 info->chip.chip_delay = 0; 770 info->chip.select_chip = nand_davinci_select_chip; 771 772 /* options such as NAND_BBT_USE_FLASH */ 773 info->chip.bbt_options = pdata->bbt_options; 774 /* options such as 16-bit widths */ 775 info->chip.options = pdata->options; 776 info->chip.bbt_td = pdata->bbt_td; 777 info->chip.bbt_md = pdata->bbt_md; 778 info->timing = pdata->timing; 779 780 info->current_cs = info->vaddr; 781 info->core_chipsel = pdata->core_chipsel; 782 info->mask_chipsel = pdata->mask_chipsel; 783 784 /* use nandboot-capable ALE/CLE masks by default */ 785 info->mask_ale = pdata->mask_ale ? : MASK_ALE; 786 info->mask_cle = pdata->mask_cle ? : MASK_CLE; 787 788 /* Set address of hardware control function */ 789 info->chip.cmd_ctrl = nand_davinci_hwcontrol; 790 info->chip.dev_ready = nand_davinci_dev_ready; 791 792 /* Speed up buffer I/O */ 793 info->chip.read_buf = nand_davinci_read_buf; 794 info->chip.write_buf = nand_davinci_write_buf; 795 796 /* Use board-specific ECC config */ 797 info->chip.ecc.mode = pdata->ecc_mode; 798 799 spin_lock_irq(&davinci_nand_lock); 800 801 /* put CSxNAND into NAND mode */ 802 val = davinci_nand_readl(info, NANDFCR_OFFSET); 803 val |= BIT(info->core_chipsel); 804 davinci_nand_writel(info, NANDFCR_OFFSET, val); 805 806 spin_unlock_irq(&davinci_nand_lock); 807 808 /* Scan to find existence of the device(s) */ 809 info->chip.dummy_controller.ops = &davinci_nand_controller_ops; 810 ret = nand_scan(mtd, pdata->mask_chipsel ? 2 : 1); 811 if (ret < 0) { 812 dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); 813 return ret; 814 } 815 816 if (pdata->parts) 817 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 818 else 819 ret = mtd_device_register(mtd, NULL, 0); 820 if (ret < 0) 821 goto err_cleanup_nand; 822 823 val = davinci_nand_readl(info, NRCSR_OFFSET); 824 dev_info(&pdev->dev, "controller rev. %d.%d\n", 825 (val >> 8) & 0xff, val & 0xff); 826 827 return 0; 828 829 err_cleanup_nand: 830 nand_cleanup(&info->chip); 831 832 return ret; 833 } 834 835 static int nand_davinci_remove(struct platform_device *pdev) 836 { 837 struct davinci_nand_info *info = platform_get_drvdata(pdev); 838 839 spin_lock_irq(&davinci_nand_lock); 840 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) 841 ecc4_busy = false; 842 spin_unlock_irq(&davinci_nand_lock); 843 844 nand_release(nand_to_mtd(&info->chip)); 845 846 return 0; 847 } 848 849 static struct platform_driver nand_davinci_driver = { 850 .probe = nand_davinci_probe, 851 .remove = nand_davinci_remove, 852 .driver = { 853 .name = "davinci_nand", 854 .of_match_table = of_match_ptr(davinci_nand_of_match), 855 }, 856 }; 857 MODULE_ALIAS("platform:davinci_nand"); 858 859 module_platform_driver(nand_davinci_driver); 860 861 MODULE_LICENSE("GPL"); 862 MODULE_AUTHOR("Texas Instruments"); 863 MODULE_DESCRIPTION("Davinci NAND flash driver"); 864 865