1 /* 2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips 3 * 4 * Copyright © 2006 Texas Instruments. 5 * 6 * Port to 2.6.23 Copyright © 2008 by: 7 * Sander Huijsen <Shuijsen@optelecom-nkf.com> 8 * Troy Kisky <troy.kisky@boundarydevices.com> 9 * Dirk Behme <Dirk.Behme@gmail.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/platform_device.h> 29 #include <linux/err.h> 30 #include <linux/clk.h> 31 #include <linux/io.h> 32 #include <linux/mtd/rawnand.h> 33 #include <linux/mtd/partitions.h> 34 #include <linux/slab.h> 35 #include <linux/of_device.h> 36 #include <linux/of.h> 37 38 #include <linux/platform_data/mtd-davinci.h> 39 #include <linux/platform_data/mtd-davinci-aemif.h> 40 41 /* 42 * This is a device driver for the NAND flash controller found on the 43 * various DaVinci family chips. It handles up to four SoC chipselects, 44 * and some flavors of secondary chipselect (e.g. based on A12) as used 45 * with multichip packages. 46 * 47 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC 48 * available on chips like the DM355 and OMAP-L137 and needed with the 49 * more error-prone MLC NAND chips. 50 * 51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY 52 * outputs in a "wire-AND" configuration, with no per-chip signals. 53 */ 54 struct davinci_nand_info { 55 struct nand_chip chip; 56 57 struct device *dev; 58 struct clk *clk; 59 60 bool is_readmode; 61 62 void __iomem *base; 63 void __iomem *vaddr; 64 65 uint32_t ioaddr; 66 uint32_t current_cs; 67 68 uint32_t mask_chipsel; 69 uint32_t mask_ale; 70 uint32_t mask_cle; 71 72 uint32_t core_chipsel; 73 74 struct davinci_aemif_timing *timing; 75 }; 76 77 static DEFINE_SPINLOCK(davinci_nand_lock); 78 static bool ecc4_busy; 79 80 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) 81 { 82 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); 83 } 84 85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, 86 int offset) 87 { 88 return __raw_readl(info->base + offset); 89 } 90 91 static inline void davinci_nand_writel(struct davinci_nand_info *info, 92 int offset, unsigned long value) 93 { 94 __raw_writel(value, info->base + offset); 95 } 96 97 /*----------------------------------------------------------------------*/ 98 99 /* 100 * Access to hardware control lines: ALE, CLE, secondary chipselect. 101 */ 102 103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, 104 unsigned int ctrl) 105 { 106 struct davinci_nand_info *info = to_davinci_nand(mtd); 107 uint32_t addr = info->current_cs; 108 struct nand_chip *nand = mtd_to_nand(mtd); 109 110 /* Did the control lines change? */ 111 if (ctrl & NAND_CTRL_CHANGE) { 112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) 113 addr |= info->mask_cle; 114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) 115 addr |= info->mask_ale; 116 117 nand->IO_ADDR_W = (void __iomem __force *)addr; 118 } 119 120 if (cmd != NAND_CMD_NONE) 121 iowrite8(cmd, nand->IO_ADDR_W); 122 } 123 124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) 125 { 126 struct davinci_nand_info *info = to_davinci_nand(mtd); 127 uint32_t addr = info->ioaddr; 128 129 /* maybe kick in a second chipselect */ 130 if (chip > 0) 131 addr |= info->mask_chipsel; 132 info->current_cs = addr; 133 134 info->chip.IO_ADDR_W = (void __iomem __force *)addr; 135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; 136 } 137 138 /*----------------------------------------------------------------------*/ 139 140 /* 141 * 1-bit hardware ECC ... context maintained for each core chipselect 142 */ 143 144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) 145 { 146 struct davinci_nand_info *info = to_davinci_nand(mtd); 147 148 return davinci_nand_readl(info, NANDF1ECC_OFFSET 149 + 4 * info->core_chipsel); 150 } 151 152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) 153 { 154 struct davinci_nand_info *info; 155 uint32_t nandcfr; 156 unsigned long flags; 157 158 info = to_davinci_nand(mtd); 159 160 /* Reset ECC hardware */ 161 nand_davinci_readecc_1bit(mtd); 162 163 spin_lock_irqsave(&davinci_nand_lock, flags); 164 165 /* Restart ECC hardware */ 166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); 167 nandcfr |= BIT(8 + info->core_chipsel); 168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); 169 170 spin_unlock_irqrestore(&davinci_nand_lock, flags); 171 } 172 173 /* 174 * Read hardware ECC value and pack into three bytes 175 */ 176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd, 177 const u_char *dat, u_char *ecc_code) 178 { 179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); 180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); 181 182 /* invert so that erased block ecc is correct */ 183 ecc24 = ~ecc24; 184 ecc_code[0] = (u_char)(ecc24); 185 ecc_code[1] = (u_char)(ecc24 >> 8); 186 ecc_code[2] = (u_char)(ecc24 >> 16); 187 188 return 0; 189 } 190 191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, 192 u_char *read_ecc, u_char *calc_ecc) 193 { 194 struct nand_chip *chip = mtd_to_nand(mtd); 195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | 196 (read_ecc[2] << 16); 197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | 198 (calc_ecc[2] << 16); 199 uint32_t diff = eccCalc ^ eccNand; 200 201 if (diff) { 202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { 203 /* Correctable error */ 204 if ((diff >> (12 + 3)) < chip->ecc.size) { 205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); 206 return 1; 207 } else { 208 return -EBADMSG; 209 } 210 } else if (!(diff & (diff - 1))) { 211 /* Single bit ECC error in the ECC itself, 212 * nothing to fix */ 213 return 1; 214 } else { 215 /* Uncorrectable error */ 216 return -EBADMSG; 217 } 218 219 } 220 return 0; 221 } 222 223 /*----------------------------------------------------------------------*/ 224 225 /* 226 * 4-bit hardware ECC ... context maintained over entire AEMIF 227 * 228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME 229 * since that forces use of a problematic "infix OOB" layout. 230 * Among other things, it trashes manufacturer bad block markers. 231 * Also, and specific to this hardware, it ECC-protects the "prepad" 232 * in the OOB ... while having ECC protection for parts of OOB would 233 * seem useful, the current MTD stack sometimes wants to update the 234 * OOB without recomputing ECC. 235 */ 236 237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) 238 { 239 struct davinci_nand_info *info = to_davinci_nand(mtd); 240 unsigned long flags; 241 u32 val; 242 243 /* Reset ECC hardware */ 244 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 245 246 spin_lock_irqsave(&davinci_nand_lock, flags); 247 248 /* Start 4-bit ECC calculation for read/write */ 249 val = davinci_nand_readl(info, NANDFCR_OFFSET); 250 val &= ~(0x03 << 4); 251 val |= (info->core_chipsel << 4) | BIT(12); 252 davinci_nand_writel(info, NANDFCR_OFFSET, val); 253 254 info->is_readmode = (mode == NAND_ECC_READ); 255 256 spin_unlock_irqrestore(&davinci_nand_lock, flags); 257 } 258 259 /* Read raw ECC code after writing to NAND. */ 260 static void 261 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) 262 { 263 const u32 mask = 0x03ff03ff; 264 265 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; 266 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; 267 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; 268 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; 269 } 270 271 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ 272 static int nand_davinci_calculate_4bit(struct mtd_info *mtd, 273 const u_char *dat, u_char *ecc_code) 274 { 275 struct davinci_nand_info *info = to_davinci_nand(mtd); 276 u32 raw_ecc[4], *p; 277 unsigned i; 278 279 /* After a read, terminate ECC calculation by a dummy read 280 * of some 4-bit ECC register. ECC covers everything that 281 * was read; correct() just uses the hardware state, so 282 * ecc_code is not needed. 283 */ 284 if (info->is_readmode) { 285 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 286 return 0; 287 } 288 289 /* Pack eight raw 10-bit ecc values into ten bytes, making 290 * two passes which each convert four values (in upper and 291 * lower halves of two 32-bit words) into five bytes. The 292 * ROM boot loader uses this same packing scheme. 293 */ 294 nand_davinci_readecc_4bit(info, raw_ecc); 295 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { 296 *ecc_code++ = p[0] & 0xff; 297 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); 298 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); 299 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); 300 *ecc_code++ = (p[1] >> 18) & 0xff; 301 } 302 303 return 0; 304 } 305 306 /* Correct up to 4 bits in data we just read, using state left in the 307 * hardware plus the ecc_code computed when it was first written. 308 */ 309 static int nand_davinci_correct_4bit(struct mtd_info *mtd, 310 u_char *data, u_char *ecc_code, u_char *null) 311 { 312 int i; 313 struct davinci_nand_info *info = to_davinci_nand(mtd); 314 unsigned short ecc10[8]; 315 unsigned short *ecc16; 316 u32 syndrome[4]; 317 u32 ecc_state; 318 unsigned num_errors, corrected; 319 unsigned long timeo; 320 321 /* Unpack ten bytes into eight 10 bit values. We know we're 322 * little-endian, and use type punning for less shifting/masking. 323 */ 324 if (WARN_ON(0x01 & (unsigned) ecc_code)) 325 return -EINVAL; 326 ecc16 = (unsigned short *)ecc_code; 327 328 ecc10[0] = (ecc16[0] >> 0) & 0x3ff; 329 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); 330 ecc10[2] = (ecc16[1] >> 4) & 0x3ff; 331 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); 332 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); 333 ecc10[5] = (ecc16[3] >> 2) & 0x3ff; 334 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); 335 ecc10[7] = (ecc16[4] >> 6) & 0x3ff; 336 337 /* Tell ECC controller about the expected ECC codes. */ 338 for (i = 7; i >= 0; i--) 339 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); 340 341 /* Allow time for syndrome calculation ... then read it. 342 * A syndrome of all zeroes 0 means no detected errors. 343 */ 344 davinci_nand_readl(info, NANDFSR_OFFSET); 345 nand_davinci_readecc_4bit(info, syndrome); 346 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) 347 return 0; 348 349 /* 350 * Clear any previous address calculation by doing a dummy read of an 351 * error address register. 352 */ 353 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); 354 355 /* Start address calculation, and wait for it to complete. 356 * We _could_ start reading more data while this is working, 357 * to speed up the overall page read. 358 */ 359 davinci_nand_writel(info, NANDFCR_OFFSET, 360 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); 361 362 /* 363 * ECC_STATE field reads 0x3 (Error correction complete) immediately 364 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately 365 * begin trying to poll for the state, you may fall right out of your 366 * loop without any of the correction calculations having taken place. 367 * The recommendation from the hardware team is to initially delay as 368 * long as ECC_STATE reads less than 4. After that, ECC HW has entered 369 * correction state. 370 */ 371 timeo = jiffies + usecs_to_jiffies(100); 372 do { 373 ecc_state = (davinci_nand_readl(info, 374 NANDFSR_OFFSET) >> 8) & 0x0f; 375 cpu_relax(); 376 } while ((ecc_state < 4) && time_before(jiffies, timeo)); 377 378 for (;;) { 379 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); 380 381 switch ((fsr >> 8) & 0x0f) { 382 case 0: /* no error, should not happen */ 383 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 384 return 0; 385 case 1: /* five or more errors detected */ 386 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 387 return -EBADMSG; 388 case 2: /* error addresses computed */ 389 case 3: 390 num_errors = 1 + ((fsr >> 16) & 0x03); 391 goto correct; 392 default: /* still working on it */ 393 cpu_relax(); 394 continue; 395 } 396 } 397 398 correct: 399 /* correct each error */ 400 for (i = 0, corrected = 0; i < num_errors; i++) { 401 int error_address, error_value; 402 403 if (i > 1) { 404 error_address = davinci_nand_readl(info, 405 NAND_ERR_ADD2_OFFSET); 406 error_value = davinci_nand_readl(info, 407 NAND_ERR_ERRVAL2_OFFSET); 408 } else { 409 error_address = davinci_nand_readl(info, 410 NAND_ERR_ADD1_OFFSET); 411 error_value = davinci_nand_readl(info, 412 NAND_ERR_ERRVAL1_OFFSET); 413 } 414 415 if (i & 1) { 416 error_address >>= 16; 417 error_value >>= 16; 418 } 419 error_address &= 0x3ff; 420 error_address = (512 + 7) - error_address; 421 422 if (error_address < 512) { 423 data[error_address] ^= error_value; 424 corrected++; 425 } 426 } 427 428 return corrected; 429 } 430 431 /*----------------------------------------------------------------------*/ 432 433 /* 434 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's 435 * how these chips are normally wired. This translates to both 8 and 16 436 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). 437 * 438 * For now we assume that configuration, or any other one which ignores 439 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes 440 * and have that transparently morphed into multiple NAND operations. 441 */ 442 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) 443 { 444 struct nand_chip *chip = mtd_to_nand(mtd); 445 446 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) 447 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); 448 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) 449 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); 450 else 451 ioread8_rep(chip->IO_ADDR_R, buf, len); 452 } 453 454 static void nand_davinci_write_buf(struct mtd_info *mtd, 455 const uint8_t *buf, int len) 456 { 457 struct nand_chip *chip = mtd_to_nand(mtd); 458 459 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) 460 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); 461 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) 462 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); 463 else 464 iowrite8_rep(chip->IO_ADDR_R, buf, len); 465 } 466 467 /* 468 * Check hardware register for wait status. Returns 1 if device is ready, 469 * 0 if it is still busy. 470 */ 471 static int nand_davinci_dev_ready(struct mtd_info *mtd) 472 { 473 struct davinci_nand_info *info = to_davinci_nand(mtd); 474 475 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); 476 } 477 478 /*----------------------------------------------------------------------*/ 479 480 /* An ECC layout for using 4-bit ECC with small-page flash, storing 481 * ten ECC bytes plus the manufacturer's bad block marker byte, and 482 * and not overlapping the default BBT markers. 483 */ 484 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, 485 struct mtd_oob_region *oobregion) 486 { 487 if (section > 2) 488 return -ERANGE; 489 490 if (!section) { 491 oobregion->offset = 0; 492 oobregion->length = 5; 493 } else if (section == 1) { 494 oobregion->offset = 6; 495 oobregion->length = 2; 496 } else { 497 oobregion->offset = 13; 498 oobregion->length = 3; 499 } 500 501 return 0; 502 } 503 504 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, 505 struct mtd_oob_region *oobregion) 506 { 507 if (section > 1) 508 return -ERANGE; 509 510 if (!section) { 511 oobregion->offset = 8; 512 oobregion->length = 5; 513 } else { 514 oobregion->offset = 16; 515 oobregion->length = mtd->oobsize - 16; 516 } 517 518 return 0; 519 } 520 521 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { 522 .ecc = hwecc4_ooblayout_small_ecc, 523 .free = hwecc4_ooblayout_small_free, 524 }; 525 526 #if defined(CONFIG_OF) 527 static const struct of_device_id davinci_nand_of_match[] = { 528 {.compatible = "ti,davinci-nand", }, 529 {.compatible = "ti,keystone-nand", }, 530 {}, 531 }; 532 MODULE_DEVICE_TABLE(of, davinci_nand_of_match); 533 534 static struct davinci_nand_pdata 535 *nand_davinci_get_pdata(struct platform_device *pdev) 536 { 537 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { 538 struct davinci_nand_pdata *pdata; 539 const char *mode; 540 u32 prop; 541 542 pdata = devm_kzalloc(&pdev->dev, 543 sizeof(struct davinci_nand_pdata), 544 GFP_KERNEL); 545 pdev->dev.platform_data = pdata; 546 if (!pdata) 547 return ERR_PTR(-ENOMEM); 548 if (!of_property_read_u32(pdev->dev.of_node, 549 "ti,davinci-chipselect", &prop)) 550 pdev->id = prop; 551 else 552 return ERR_PTR(-EINVAL); 553 554 if (!of_property_read_u32(pdev->dev.of_node, 555 "ti,davinci-mask-ale", &prop)) 556 pdata->mask_ale = prop; 557 if (!of_property_read_u32(pdev->dev.of_node, 558 "ti,davinci-mask-cle", &prop)) 559 pdata->mask_cle = prop; 560 if (!of_property_read_u32(pdev->dev.of_node, 561 "ti,davinci-mask-chipsel", &prop)) 562 pdata->mask_chipsel = prop; 563 if (!of_property_read_string(pdev->dev.of_node, 564 "ti,davinci-ecc-mode", &mode)) { 565 if (!strncmp("none", mode, 4)) 566 pdata->ecc_mode = NAND_ECC_NONE; 567 if (!strncmp("soft", mode, 4)) 568 pdata->ecc_mode = NAND_ECC_SOFT; 569 if (!strncmp("hw", mode, 2)) 570 pdata->ecc_mode = NAND_ECC_HW; 571 } 572 if (!of_property_read_u32(pdev->dev.of_node, 573 "ti,davinci-ecc-bits", &prop)) 574 pdata->ecc_bits = prop; 575 576 if (!of_property_read_u32(pdev->dev.of_node, 577 "ti,davinci-nand-buswidth", &prop) && prop == 16) 578 pdata->options |= NAND_BUSWIDTH_16; 579 580 if (of_property_read_bool(pdev->dev.of_node, 581 "ti,davinci-nand-use-bbt")) 582 pdata->bbt_options = NAND_BBT_USE_FLASH; 583 584 /* 585 * Since kernel v4.8, this driver has been fixed to enable 586 * use of 4-bit hardware ECC with subpages and verified on 587 * TI's keystone EVMs (K2L, K2HK and K2E). 588 * However, in the interest of not breaking systems using 589 * existing UBI partitions, sub-page writes are not being 590 * (re)enabled. If you want to use subpage writes on Keystone 591 * platforms (i.e. do not have any existing UBI partitions), 592 * then use "ti,davinci-nand" as the compatible in your 593 * device-tree file. 594 */ 595 if (of_device_is_compatible(pdev->dev.of_node, 596 "ti,keystone-nand")) { 597 pdata->options |= NAND_NO_SUBPAGE_WRITE; 598 } 599 } 600 601 return dev_get_platdata(&pdev->dev); 602 } 603 #else 604 static struct davinci_nand_pdata 605 *nand_davinci_get_pdata(struct platform_device *pdev) 606 { 607 return dev_get_platdata(&pdev->dev); 608 } 609 #endif 610 611 static int nand_davinci_probe(struct platform_device *pdev) 612 { 613 struct davinci_nand_pdata *pdata; 614 struct davinci_nand_info *info; 615 struct resource *res1; 616 struct resource *res2; 617 void __iomem *vaddr; 618 void __iomem *base; 619 int ret; 620 uint32_t val; 621 struct mtd_info *mtd; 622 623 pdata = nand_davinci_get_pdata(pdev); 624 if (IS_ERR(pdata)) 625 return PTR_ERR(pdata); 626 627 /* insist on board-specific configuration */ 628 if (!pdata) 629 return -ENODEV; 630 631 /* which external chipselect will we be managing? */ 632 if (pdev->id < 0 || pdev->id > 3) 633 return -ENODEV; 634 635 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 636 if (!info) 637 return -ENOMEM; 638 639 platform_set_drvdata(pdev, info); 640 641 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 642 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 643 if (!res1 || !res2) { 644 dev_err(&pdev->dev, "resource missing\n"); 645 return -EINVAL; 646 } 647 648 vaddr = devm_ioremap_resource(&pdev->dev, res1); 649 if (IS_ERR(vaddr)) 650 return PTR_ERR(vaddr); 651 652 /* 653 * This registers range is used to setup NAND settings. In case with 654 * TI AEMIF driver, the same memory address range is requested already 655 * by AEMIF, so we cannot request it twice, just ioremap. 656 * The AEMIF and NAND drivers not use the same registers in this range. 657 */ 658 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); 659 if (!base) { 660 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); 661 return -EADDRNOTAVAIL; 662 } 663 664 info->dev = &pdev->dev; 665 info->base = base; 666 info->vaddr = vaddr; 667 668 mtd = nand_to_mtd(&info->chip); 669 mtd->dev.parent = &pdev->dev; 670 nand_set_flash_node(&info->chip, pdev->dev.of_node); 671 672 info->chip.IO_ADDR_R = vaddr; 673 info->chip.IO_ADDR_W = vaddr; 674 info->chip.chip_delay = 0; 675 info->chip.select_chip = nand_davinci_select_chip; 676 677 /* options such as NAND_BBT_USE_FLASH */ 678 info->chip.bbt_options = pdata->bbt_options; 679 /* options such as 16-bit widths */ 680 info->chip.options = pdata->options; 681 info->chip.bbt_td = pdata->bbt_td; 682 info->chip.bbt_md = pdata->bbt_md; 683 info->timing = pdata->timing; 684 685 info->ioaddr = (uint32_t __force) vaddr; 686 687 info->current_cs = info->ioaddr; 688 info->core_chipsel = pdev->id; 689 info->mask_chipsel = pdata->mask_chipsel; 690 691 /* use nandboot-capable ALE/CLE masks by default */ 692 info->mask_ale = pdata->mask_ale ? : MASK_ALE; 693 info->mask_cle = pdata->mask_cle ? : MASK_CLE; 694 695 /* Set address of hardware control function */ 696 info->chip.cmd_ctrl = nand_davinci_hwcontrol; 697 info->chip.dev_ready = nand_davinci_dev_ready; 698 699 /* Speed up buffer I/O */ 700 info->chip.read_buf = nand_davinci_read_buf; 701 info->chip.write_buf = nand_davinci_write_buf; 702 703 /* Use board-specific ECC config */ 704 info->chip.ecc.mode = pdata->ecc_mode; 705 706 ret = -EINVAL; 707 708 info->clk = devm_clk_get(&pdev->dev, "aemif"); 709 if (IS_ERR(info->clk)) { 710 ret = PTR_ERR(info->clk); 711 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); 712 return ret; 713 } 714 715 ret = clk_prepare_enable(info->clk); 716 if (ret < 0) { 717 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", 718 ret); 719 goto err_clk_enable; 720 } 721 722 spin_lock_irq(&davinci_nand_lock); 723 724 /* put CSxNAND into NAND mode */ 725 val = davinci_nand_readl(info, NANDFCR_OFFSET); 726 val |= BIT(info->core_chipsel); 727 davinci_nand_writel(info, NANDFCR_OFFSET, val); 728 729 spin_unlock_irq(&davinci_nand_lock); 730 731 /* Scan to find existence of the device(s) */ 732 ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL); 733 if (ret < 0) { 734 dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); 735 goto err; 736 } 737 738 switch (info->chip.ecc.mode) { 739 case NAND_ECC_NONE: 740 pdata->ecc_bits = 0; 741 break; 742 case NAND_ECC_SOFT: 743 pdata->ecc_bits = 0; 744 /* 745 * This driver expects Hamming based ECC when ecc_mode is set 746 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to 747 * avoid adding an extra ->ecc_algo field to 748 * davinci_nand_pdata. 749 */ 750 info->chip.ecc.algo = NAND_ECC_HAMMING; 751 break; 752 case NAND_ECC_HW: 753 if (pdata->ecc_bits == 4) { 754 /* No sanity checks: CPUs must support this, 755 * and the chips may not use NAND_BUSWIDTH_16. 756 */ 757 758 /* No sharing 4-bit hardware between chipselects yet */ 759 spin_lock_irq(&davinci_nand_lock); 760 if (ecc4_busy) 761 ret = -EBUSY; 762 else 763 ecc4_busy = true; 764 spin_unlock_irq(&davinci_nand_lock); 765 766 if (ret == -EBUSY) 767 return ret; 768 769 info->chip.ecc.calculate = nand_davinci_calculate_4bit; 770 info->chip.ecc.correct = nand_davinci_correct_4bit; 771 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; 772 info->chip.ecc.bytes = 10; 773 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 774 info->chip.ecc.algo = NAND_ECC_BCH; 775 } else { 776 /* 1bit ecc hamming */ 777 info->chip.ecc.calculate = nand_davinci_calculate_1bit; 778 info->chip.ecc.correct = nand_davinci_correct_1bit; 779 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; 780 info->chip.ecc.bytes = 3; 781 info->chip.ecc.algo = NAND_ECC_HAMMING; 782 } 783 info->chip.ecc.size = 512; 784 info->chip.ecc.strength = pdata->ecc_bits; 785 break; 786 default: 787 return -EINVAL; 788 } 789 790 /* Update ECC layout if needed ... for 1-bit HW ECC, the default 791 * is OK, but it allocates 6 bytes when only 3 are needed (for 792 * each 512 bytes). For the 4-bit HW ECC, that default is not 793 * usable: 10 bytes are needed, not 6. 794 */ 795 if (pdata->ecc_bits == 4) { 796 int chunks = mtd->writesize / 512; 797 798 if (!chunks || mtd->oobsize < 16) { 799 dev_dbg(&pdev->dev, "too small\n"); 800 ret = -EINVAL; 801 goto err; 802 } 803 804 /* For small page chips, preserve the manufacturer's 805 * badblock marking data ... and make sure a flash BBT 806 * table marker fits in the free bytes. 807 */ 808 if (chunks == 1) { 809 mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops); 810 } else if (chunks == 4 || chunks == 8) { 811 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 812 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; 813 } else { 814 ret = -EIO; 815 goto err; 816 } 817 } 818 819 ret = nand_scan_tail(mtd); 820 if (ret < 0) 821 goto err; 822 823 if (pdata->parts) 824 ret = mtd_device_parse_register(mtd, NULL, NULL, 825 pdata->parts, pdata->nr_parts); 826 else 827 ret = mtd_device_register(mtd, NULL, 0); 828 if (ret < 0) 829 goto err_cleanup_nand; 830 831 val = davinci_nand_readl(info, NRCSR_OFFSET); 832 dev_info(&pdev->dev, "controller rev. %d.%d\n", 833 (val >> 8) & 0xff, val & 0xff); 834 835 return 0; 836 837 err_cleanup_nand: 838 nand_cleanup(&info->chip); 839 840 err: 841 clk_disable_unprepare(info->clk); 842 843 err_clk_enable: 844 spin_lock_irq(&davinci_nand_lock); 845 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) 846 ecc4_busy = false; 847 spin_unlock_irq(&davinci_nand_lock); 848 return ret; 849 } 850 851 static int nand_davinci_remove(struct platform_device *pdev) 852 { 853 struct davinci_nand_info *info = platform_get_drvdata(pdev); 854 855 spin_lock_irq(&davinci_nand_lock); 856 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) 857 ecc4_busy = false; 858 spin_unlock_irq(&davinci_nand_lock); 859 860 nand_release(nand_to_mtd(&info->chip)); 861 862 clk_disable_unprepare(info->clk); 863 864 return 0; 865 } 866 867 static struct platform_driver nand_davinci_driver = { 868 .probe = nand_davinci_probe, 869 .remove = nand_davinci_remove, 870 .driver = { 871 .name = "davinci_nand", 872 .of_match_table = of_match_ptr(davinci_nand_of_match), 873 }, 874 }; 875 MODULE_ALIAS("platform:davinci_nand"); 876 877 module_platform_driver(nand_davinci_driver); 878 879 MODULE_LICENSE("GPL"); 880 MODULE_AUTHOR("Texas Instruments"); 881 MODULE_DESCRIPTION("Davinci NAND flash driver"); 882 883