xref: /openbmc/linux/drivers/mtd/nand/raw/davinci_nand.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 
38 #include <linux/platform_data/mtd-davinci.h>
39 #include <linux/platform_data/mtd-davinci-aemif.h>
40 
41 /*
42  * This is a device driver for the NAND flash controller found on the
43  * various DaVinci family chips.  It handles up to four SoC chipselects,
44  * and some flavors of secondary chipselect (e.g. based on A12) as used
45  * with multichip packages.
46  *
47  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
48  * available on chips like the DM355 and OMAP-L137 and needed with the
49  * more error-prone MLC NAND chips.
50  *
51  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52  * outputs in a "wire-AND" configuration, with no per-chip signals.
53  */
54 struct davinci_nand_info {
55 	struct nand_chip	chip;
56 
57 	struct device		*dev;
58 	struct clk		*clk;
59 
60 	bool			is_readmode;
61 
62 	void __iomem		*base;
63 	void __iomem		*vaddr;
64 
65 	uint32_t		ioaddr;
66 	uint32_t		current_cs;
67 
68 	uint32_t		mask_chipsel;
69 	uint32_t		mask_ale;
70 	uint32_t		mask_cle;
71 
72 	uint32_t		core_chipsel;
73 
74 	struct davinci_aemif_timing	*timing;
75 };
76 
77 static DEFINE_SPINLOCK(davinci_nand_lock);
78 static bool ecc4_busy;
79 
80 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
81 {
82 	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
83 }
84 
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 		int offset)
87 {
88 	return __raw_readl(info->base + offset);
89 }
90 
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 		int offset, unsigned long value)
93 {
94 	__raw_writel(value, info->base + offset);
95 }
96 
97 /*----------------------------------------------------------------------*/
98 
99 /*
100  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
101  */
102 
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 				   unsigned int ctrl)
105 {
106 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
107 	uint32_t			addr = info->current_cs;
108 	struct nand_chip		*nand = mtd_to_nand(mtd);
109 
110 	/* Did the control lines change? */
111 	if (ctrl & NAND_CTRL_CHANGE) {
112 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 			addr |= info->mask_cle;
114 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 			addr |= info->mask_ale;
116 
117 		nand->IO_ADDR_W = (void __iomem __force *)addr;
118 	}
119 
120 	if (cmd != NAND_CMD_NONE)
121 		iowrite8(cmd, nand->IO_ADDR_W);
122 }
123 
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125 {
126 	struct davinci_nand_info	*info = to_davinci_nand(mtd);
127 	uint32_t			addr = info->ioaddr;
128 
129 	/* maybe kick in a second chipselect */
130 	if (chip > 0)
131 		addr |= info->mask_chipsel;
132 	info->current_cs = addr;
133 
134 	info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
136 }
137 
138 /*----------------------------------------------------------------------*/
139 
140 /*
141  * 1-bit hardware ECC ... context maintained for each core chipselect
142  */
143 
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145 {
146 	struct davinci_nand_info *info = to_davinci_nand(mtd);
147 
148 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 			+ 4 * info->core_chipsel);
150 }
151 
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153 {
154 	struct davinci_nand_info *info;
155 	uint32_t nandcfr;
156 	unsigned long flags;
157 
158 	info = to_davinci_nand(mtd);
159 
160 	/* Reset ECC hardware */
161 	nand_davinci_readecc_1bit(mtd);
162 
163 	spin_lock_irqsave(&davinci_nand_lock, flags);
164 
165 	/* Restart ECC hardware */
166 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 	nandcfr |= BIT(8 + info->core_chipsel);
168 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169 
170 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
171 }
172 
173 /*
174  * Read hardware ECC value and pack into three bytes
175  */
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 				      const u_char *dat, u_char *ecc_code)
178 {
179 	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181 
182 	/* invert so that erased block ecc is correct */
183 	ecc24 = ~ecc24;
184 	ecc_code[0] = (u_char)(ecc24);
185 	ecc_code[1] = (u_char)(ecc24 >> 8);
186 	ecc_code[2] = (u_char)(ecc24 >> 16);
187 
188 	return 0;
189 }
190 
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 				     u_char *read_ecc, u_char *calc_ecc)
193 {
194 	struct nand_chip *chip = mtd_to_nand(mtd);
195 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 					  (read_ecc[2] << 16);
197 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 					  (calc_ecc[2] << 16);
199 	uint32_t diff = eccCalc ^ eccNand;
200 
201 	if (diff) {
202 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 			/* Correctable error */
204 			if ((diff >> (12 + 3)) < chip->ecc.size) {
205 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 				return 1;
207 			} else {
208 				return -EBADMSG;
209 			}
210 		} else if (!(diff & (diff - 1))) {
211 			/* Single bit ECC error in the ECC itself,
212 			 * nothing to fix */
213 			return 1;
214 		} else {
215 			/* Uncorrectable error */
216 			return -EBADMSG;
217 		}
218 
219 	}
220 	return 0;
221 }
222 
223 /*----------------------------------------------------------------------*/
224 
225 /*
226  * 4-bit hardware ECC ... context maintained over entire AEMIF
227  *
228  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229  * since that forces use of a problematic "infix OOB" layout.
230  * Among other things, it trashes manufacturer bad block markers.
231  * Also, and specific to this hardware, it ECC-protects the "prepad"
232  * in the OOB ... while having ECC protection for parts of OOB would
233  * seem useful, the current MTD stack sometimes wants to update the
234  * OOB without recomputing ECC.
235  */
236 
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238 {
239 	struct davinci_nand_info *info = to_davinci_nand(mtd);
240 	unsigned long flags;
241 	u32 val;
242 
243 	/* Reset ECC hardware */
244 	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
245 
246 	spin_lock_irqsave(&davinci_nand_lock, flags);
247 
248 	/* Start 4-bit ECC calculation for read/write */
249 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
250 	val &= ~(0x03 << 4);
251 	val |= (info->core_chipsel << 4) | BIT(12);
252 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
253 
254 	info->is_readmode = (mode == NAND_ECC_READ);
255 
256 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
257 }
258 
259 /* Read raw ECC code after writing to NAND. */
260 static void
261 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
262 {
263 	const u32 mask = 0x03ff03ff;
264 
265 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
266 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
267 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
268 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
269 }
270 
271 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
272 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
273 		const u_char *dat, u_char *ecc_code)
274 {
275 	struct davinci_nand_info *info = to_davinci_nand(mtd);
276 	u32 raw_ecc[4], *p;
277 	unsigned i;
278 
279 	/* After a read, terminate ECC calculation by a dummy read
280 	 * of some 4-bit ECC register.  ECC covers everything that
281 	 * was read; correct() just uses the hardware state, so
282 	 * ecc_code is not needed.
283 	 */
284 	if (info->is_readmode) {
285 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
286 		return 0;
287 	}
288 
289 	/* Pack eight raw 10-bit ecc values into ten bytes, making
290 	 * two passes which each convert four values (in upper and
291 	 * lower halves of two 32-bit words) into five bytes.  The
292 	 * ROM boot loader uses this same packing scheme.
293 	 */
294 	nand_davinci_readecc_4bit(info, raw_ecc);
295 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
296 		*ecc_code++ =   p[0]        & 0xff;
297 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
298 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
299 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
300 		*ecc_code++ =  (p[1] >> 18) & 0xff;
301 	}
302 
303 	return 0;
304 }
305 
306 /* Correct up to 4 bits in data we just read, using state left in the
307  * hardware plus the ecc_code computed when it was first written.
308  */
309 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
310 		u_char *data, u_char *ecc_code, u_char *null)
311 {
312 	int i;
313 	struct davinci_nand_info *info = to_davinci_nand(mtd);
314 	unsigned short ecc10[8];
315 	unsigned short *ecc16;
316 	u32 syndrome[4];
317 	u32 ecc_state;
318 	unsigned num_errors, corrected;
319 	unsigned long timeo;
320 
321 	/* Unpack ten bytes into eight 10 bit values.  We know we're
322 	 * little-endian, and use type punning for less shifting/masking.
323 	 */
324 	if (WARN_ON(0x01 & (unsigned) ecc_code))
325 		return -EINVAL;
326 	ecc16 = (unsigned short *)ecc_code;
327 
328 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
329 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
330 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
331 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
332 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
333 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
334 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
335 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
336 
337 	/* Tell ECC controller about the expected ECC codes. */
338 	for (i = 7; i >= 0; i--)
339 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
340 
341 	/* Allow time for syndrome calculation ... then read it.
342 	 * A syndrome of all zeroes 0 means no detected errors.
343 	 */
344 	davinci_nand_readl(info, NANDFSR_OFFSET);
345 	nand_davinci_readecc_4bit(info, syndrome);
346 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
347 		return 0;
348 
349 	/*
350 	 * Clear any previous address calculation by doing a dummy read of an
351 	 * error address register.
352 	 */
353 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
354 
355 	/* Start address calculation, and wait for it to complete.
356 	 * We _could_ start reading more data while this is working,
357 	 * to speed up the overall page read.
358 	 */
359 	davinci_nand_writel(info, NANDFCR_OFFSET,
360 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
361 
362 	/*
363 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
364 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
365 	 * begin trying to poll for the state, you may fall right out of your
366 	 * loop without any of the correction calculations having taken place.
367 	 * The recommendation from the hardware team is to initially delay as
368 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
369 	 * correction state.
370 	 */
371 	timeo = jiffies + usecs_to_jiffies(100);
372 	do {
373 		ecc_state = (davinci_nand_readl(info,
374 				NANDFSR_OFFSET) >> 8) & 0x0f;
375 		cpu_relax();
376 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
377 
378 	for (;;) {
379 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
380 
381 		switch ((fsr >> 8) & 0x0f) {
382 		case 0:		/* no error, should not happen */
383 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
384 			return 0;
385 		case 1:		/* five or more errors detected */
386 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
387 			return -EBADMSG;
388 		case 2:		/* error addresses computed */
389 		case 3:
390 			num_errors = 1 + ((fsr >> 16) & 0x03);
391 			goto correct;
392 		default:	/* still working on it */
393 			cpu_relax();
394 			continue;
395 		}
396 	}
397 
398 correct:
399 	/* correct each error */
400 	for (i = 0, corrected = 0; i < num_errors; i++) {
401 		int error_address, error_value;
402 
403 		if (i > 1) {
404 			error_address = davinci_nand_readl(info,
405 						NAND_ERR_ADD2_OFFSET);
406 			error_value = davinci_nand_readl(info,
407 						NAND_ERR_ERRVAL2_OFFSET);
408 		} else {
409 			error_address = davinci_nand_readl(info,
410 						NAND_ERR_ADD1_OFFSET);
411 			error_value = davinci_nand_readl(info,
412 						NAND_ERR_ERRVAL1_OFFSET);
413 		}
414 
415 		if (i & 1) {
416 			error_address >>= 16;
417 			error_value >>= 16;
418 		}
419 		error_address &= 0x3ff;
420 		error_address = (512 + 7) - error_address;
421 
422 		if (error_address < 512) {
423 			data[error_address] ^= error_value;
424 			corrected++;
425 		}
426 	}
427 
428 	return corrected;
429 }
430 
431 /*----------------------------------------------------------------------*/
432 
433 /*
434  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
435  * how these chips are normally wired.  This translates to both 8 and 16
436  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
437  *
438  * For now we assume that configuration, or any other one which ignores
439  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
440  * and have that transparently morphed into multiple NAND operations.
441  */
442 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
443 {
444 	struct nand_chip *chip = mtd_to_nand(mtd);
445 
446 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
447 		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
448 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
449 		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
450 	else
451 		ioread8_rep(chip->IO_ADDR_R, buf, len);
452 }
453 
454 static void nand_davinci_write_buf(struct mtd_info *mtd,
455 		const uint8_t *buf, int len)
456 {
457 	struct nand_chip *chip = mtd_to_nand(mtd);
458 
459 	if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
460 		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
461 	else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
462 		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
463 	else
464 		iowrite8_rep(chip->IO_ADDR_R, buf, len);
465 }
466 
467 /*
468  * Check hardware register for wait status. Returns 1 if device is ready,
469  * 0 if it is still busy.
470  */
471 static int nand_davinci_dev_ready(struct mtd_info *mtd)
472 {
473 	struct davinci_nand_info *info = to_davinci_nand(mtd);
474 
475 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
476 }
477 
478 /*----------------------------------------------------------------------*/
479 
480 /* An ECC layout for using 4-bit ECC with small-page flash, storing
481  * ten ECC bytes plus the manufacturer's bad block marker byte, and
482  * and not overlapping the default BBT markers.
483  */
484 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
485 				      struct mtd_oob_region *oobregion)
486 {
487 	if (section > 2)
488 		return -ERANGE;
489 
490 	if (!section) {
491 		oobregion->offset = 0;
492 		oobregion->length = 5;
493 	} else if (section == 1) {
494 		oobregion->offset = 6;
495 		oobregion->length = 2;
496 	} else {
497 		oobregion->offset = 13;
498 		oobregion->length = 3;
499 	}
500 
501 	return 0;
502 }
503 
504 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
505 				       struct mtd_oob_region *oobregion)
506 {
507 	if (section > 1)
508 		return -ERANGE;
509 
510 	if (!section) {
511 		oobregion->offset = 8;
512 		oobregion->length = 5;
513 	} else {
514 		oobregion->offset = 16;
515 		oobregion->length = mtd->oobsize - 16;
516 	}
517 
518 	return 0;
519 }
520 
521 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
522 	.ecc = hwecc4_ooblayout_small_ecc,
523 	.free = hwecc4_ooblayout_small_free,
524 };
525 
526 #if defined(CONFIG_OF)
527 static const struct of_device_id davinci_nand_of_match[] = {
528 	{.compatible = "ti,davinci-nand", },
529 	{.compatible = "ti,keystone-nand", },
530 	{},
531 };
532 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
533 
534 static struct davinci_nand_pdata
535 	*nand_davinci_get_pdata(struct platform_device *pdev)
536 {
537 	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
538 		struct davinci_nand_pdata *pdata;
539 		const char *mode;
540 		u32 prop;
541 
542 		pdata =  devm_kzalloc(&pdev->dev,
543 				sizeof(struct davinci_nand_pdata),
544 				GFP_KERNEL);
545 		pdev->dev.platform_data = pdata;
546 		if (!pdata)
547 			return ERR_PTR(-ENOMEM);
548 		if (!of_property_read_u32(pdev->dev.of_node,
549 			"ti,davinci-chipselect", &prop))
550 			pdev->id = prop;
551 		else
552 			return ERR_PTR(-EINVAL);
553 
554 		if (!of_property_read_u32(pdev->dev.of_node,
555 			"ti,davinci-mask-ale", &prop))
556 			pdata->mask_ale = prop;
557 		if (!of_property_read_u32(pdev->dev.of_node,
558 			"ti,davinci-mask-cle", &prop))
559 			pdata->mask_cle = prop;
560 		if (!of_property_read_u32(pdev->dev.of_node,
561 			"ti,davinci-mask-chipsel", &prop))
562 			pdata->mask_chipsel = prop;
563 		if (!of_property_read_string(pdev->dev.of_node,
564 			"ti,davinci-ecc-mode", &mode)) {
565 			if (!strncmp("none", mode, 4))
566 				pdata->ecc_mode = NAND_ECC_NONE;
567 			if (!strncmp("soft", mode, 4))
568 				pdata->ecc_mode = NAND_ECC_SOFT;
569 			if (!strncmp("hw", mode, 2))
570 				pdata->ecc_mode = NAND_ECC_HW;
571 		}
572 		if (!of_property_read_u32(pdev->dev.of_node,
573 			"ti,davinci-ecc-bits", &prop))
574 			pdata->ecc_bits = prop;
575 
576 		if (!of_property_read_u32(pdev->dev.of_node,
577 			"ti,davinci-nand-buswidth", &prop) && prop == 16)
578 			pdata->options |= NAND_BUSWIDTH_16;
579 
580 		if (of_property_read_bool(pdev->dev.of_node,
581 			"ti,davinci-nand-use-bbt"))
582 			pdata->bbt_options = NAND_BBT_USE_FLASH;
583 
584 		/*
585 		 * Since kernel v4.8, this driver has been fixed to enable
586 		 * use of 4-bit hardware ECC with subpages and verified on
587 		 * TI's keystone EVMs (K2L, K2HK and K2E).
588 		 * However, in the interest of not breaking systems using
589 		 * existing UBI partitions, sub-page writes are not being
590 		 * (re)enabled. If you want to use subpage writes on Keystone
591 		 * platforms (i.e. do not have any existing UBI partitions),
592 		 * then use "ti,davinci-nand" as the compatible in your
593 		 * device-tree file.
594 		 */
595 		if (of_device_is_compatible(pdev->dev.of_node,
596 					    "ti,keystone-nand")) {
597 			pdata->options |= NAND_NO_SUBPAGE_WRITE;
598 		}
599 	}
600 
601 	return dev_get_platdata(&pdev->dev);
602 }
603 #else
604 static struct davinci_nand_pdata
605 	*nand_davinci_get_pdata(struct platform_device *pdev)
606 {
607 	return dev_get_platdata(&pdev->dev);
608 }
609 #endif
610 
611 static int nand_davinci_probe(struct platform_device *pdev)
612 {
613 	struct davinci_nand_pdata	*pdata;
614 	struct davinci_nand_info	*info;
615 	struct resource			*res1;
616 	struct resource			*res2;
617 	void __iomem			*vaddr;
618 	void __iomem			*base;
619 	int				ret;
620 	uint32_t			val;
621 	struct mtd_info			*mtd;
622 
623 	pdata = nand_davinci_get_pdata(pdev);
624 	if (IS_ERR(pdata))
625 		return PTR_ERR(pdata);
626 
627 	/* insist on board-specific configuration */
628 	if (!pdata)
629 		return -ENODEV;
630 
631 	/* which external chipselect will we be managing? */
632 	if (pdev->id < 0 || pdev->id > 3)
633 		return -ENODEV;
634 
635 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
636 	if (!info)
637 		return -ENOMEM;
638 
639 	platform_set_drvdata(pdev, info);
640 
641 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
642 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
643 	if (!res1 || !res2) {
644 		dev_err(&pdev->dev, "resource missing\n");
645 		return -EINVAL;
646 	}
647 
648 	vaddr = devm_ioremap_resource(&pdev->dev, res1);
649 	if (IS_ERR(vaddr))
650 		return PTR_ERR(vaddr);
651 
652 	/*
653 	 * This registers range is used to setup NAND settings. In case with
654 	 * TI AEMIF driver, the same memory address range is requested already
655 	 * by AEMIF, so we cannot request it twice, just ioremap.
656 	 * The AEMIF and NAND drivers not use the same registers in this range.
657 	 */
658 	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
659 	if (!base) {
660 		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
661 		return -EADDRNOTAVAIL;
662 	}
663 
664 	info->dev		= &pdev->dev;
665 	info->base		= base;
666 	info->vaddr		= vaddr;
667 
668 	mtd			= nand_to_mtd(&info->chip);
669 	mtd->dev.parent		= &pdev->dev;
670 	nand_set_flash_node(&info->chip, pdev->dev.of_node);
671 
672 	info->chip.IO_ADDR_R	= vaddr;
673 	info->chip.IO_ADDR_W	= vaddr;
674 	info->chip.chip_delay	= 0;
675 	info->chip.select_chip	= nand_davinci_select_chip;
676 
677 	/* options such as NAND_BBT_USE_FLASH */
678 	info->chip.bbt_options	= pdata->bbt_options;
679 	/* options such as 16-bit widths */
680 	info->chip.options	= pdata->options;
681 	info->chip.bbt_td	= pdata->bbt_td;
682 	info->chip.bbt_md	= pdata->bbt_md;
683 	info->timing		= pdata->timing;
684 
685 	info->ioaddr		= (uint32_t __force) vaddr;
686 
687 	info->current_cs	= info->ioaddr;
688 	info->core_chipsel	= pdev->id;
689 	info->mask_chipsel	= pdata->mask_chipsel;
690 
691 	/* use nandboot-capable ALE/CLE masks by default */
692 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
693 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
694 
695 	/* Set address of hardware control function */
696 	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
697 	info->chip.dev_ready	= nand_davinci_dev_ready;
698 
699 	/* Speed up buffer I/O */
700 	info->chip.read_buf     = nand_davinci_read_buf;
701 	info->chip.write_buf    = nand_davinci_write_buf;
702 
703 	/* Use board-specific ECC config */
704 	info->chip.ecc.mode	= pdata->ecc_mode;
705 
706 	ret = -EINVAL;
707 
708 	info->clk = devm_clk_get(&pdev->dev, "aemif");
709 	if (IS_ERR(info->clk)) {
710 		ret = PTR_ERR(info->clk);
711 		dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
712 		return ret;
713 	}
714 
715 	ret = clk_prepare_enable(info->clk);
716 	if (ret < 0) {
717 		dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
718 			ret);
719 		goto err_clk_enable;
720 	}
721 
722 	spin_lock_irq(&davinci_nand_lock);
723 
724 	/* put CSxNAND into NAND mode */
725 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
726 	val |= BIT(info->core_chipsel);
727 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
728 
729 	spin_unlock_irq(&davinci_nand_lock);
730 
731 	/* Scan to find existence of the device(s) */
732 	ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
733 	if (ret < 0) {
734 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
735 		goto err;
736 	}
737 
738 	switch (info->chip.ecc.mode) {
739 	case NAND_ECC_NONE:
740 		pdata->ecc_bits = 0;
741 		break;
742 	case NAND_ECC_SOFT:
743 		pdata->ecc_bits = 0;
744 		/*
745 		 * This driver expects Hamming based ECC when ecc_mode is set
746 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
747 		 * avoid adding an extra ->ecc_algo field to
748 		 * davinci_nand_pdata.
749 		 */
750 		info->chip.ecc.algo = NAND_ECC_HAMMING;
751 		break;
752 	case NAND_ECC_HW:
753 		if (pdata->ecc_bits == 4) {
754 			/* No sanity checks:  CPUs must support this,
755 			 * and the chips may not use NAND_BUSWIDTH_16.
756 			 */
757 
758 			/* No sharing 4-bit hardware between chipselects yet */
759 			spin_lock_irq(&davinci_nand_lock);
760 			if (ecc4_busy)
761 				ret = -EBUSY;
762 			else
763 				ecc4_busy = true;
764 			spin_unlock_irq(&davinci_nand_lock);
765 
766 			if (ret == -EBUSY)
767 				return ret;
768 
769 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
770 			info->chip.ecc.correct = nand_davinci_correct_4bit;
771 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
772 			info->chip.ecc.bytes = 10;
773 			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
774 			info->chip.ecc.algo = NAND_ECC_BCH;
775 		} else {
776 			/* 1bit ecc hamming */
777 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
778 			info->chip.ecc.correct = nand_davinci_correct_1bit;
779 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
780 			info->chip.ecc.bytes = 3;
781 			info->chip.ecc.algo = NAND_ECC_HAMMING;
782 		}
783 		info->chip.ecc.size = 512;
784 		info->chip.ecc.strength = pdata->ecc_bits;
785 		break;
786 	default:
787 		return -EINVAL;
788 	}
789 
790 	/* Update ECC layout if needed ... for 1-bit HW ECC, the default
791 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
792 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
793 	 * usable:  10 bytes are needed, not 6.
794 	 */
795 	if (pdata->ecc_bits == 4) {
796 		int	chunks = mtd->writesize / 512;
797 
798 		if (!chunks || mtd->oobsize < 16) {
799 			dev_dbg(&pdev->dev, "too small\n");
800 			ret = -EINVAL;
801 			goto err;
802 		}
803 
804 		/* For small page chips, preserve the manufacturer's
805 		 * badblock marking data ... and make sure a flash BBT
806 		 * table marker fits in the free bytes.
807 		 */
808 		if (chunks == 1) {
809 			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
810 		} else if (chunks == 4 || chunks == 8) {
811 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
812 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
813 		} else {
814 			ret = -EIO;
815 			goto err;
816 		}
817 	}
818 
819 	ret = nand_scan_tail(mtd);
820 	if (ret < 0)
821 		goto err;
822 
823 	if (pdata->parts)
824 		ret = mtd_device_parse_register(mtd, NULL, NULL,
825 					pdata->parts, pdata->nr_parts);
826 	else
827 		ret = mtd_device_register(mtd, NULL, 0);
828 	if (ret < 0)
829 		goto err_cleanup_nand;
830 
831 	val = davinci_nand_readl(info, NRCSR_OFFSET);
832 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
833 	       (val >> 8) & 0xff, val & 0xff);
834 
835 	return 0;
836 
837 err_cleanup_nand:
838 	nand_cleanup(&info->chip);
839 
840 err:
841 	clk_disable_unprepare(info->clk);
842 
843 err_clk_enable:
844 	spin_lock_irq(&davinci_nand_lock);
845 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
846 		ecc4_busy = false;
847 	spin_unlock_irq(&davinci_nand_lock);
848 	return ret;
849 }
850 
851 static int nand_davinci_remove(struct platform_device *pdev)
852 {
853 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
854 
855 	spin_lock_irq(&davinci_nand_lock);
856 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
857 		ecc4_busy = false;
858 	spin_unlock_irq(&davinci_nand_lock);
859 
860 	nand_release(nand_to_mtd(&info->chip));
861 
862 	clk_disable_unprepare(info->clk);
863 
864 	return 0;
865 }
866 
867 static struct platform_driver nand_davinci_driver = {
868 	.probe		= nand_davinci_probe,
869 	.remove		= nand_davinci_remove,
870 	.driver		= {
871 		.name	= "davinci_nand",
872 		.of_match_table = of_match_ptr(davinci_nand_of_match),
873 	},
874 };
875 MODULE_ALIAS("platform:davinci_nand");
876 
877 module_platform_driver(nand_davinci_driver);
878 
879 MODULE_LICENSE("GPL");
880 MODULE_AUTHOR("Texas Instruments");
881 MODULE_DESCRIPTION("Davinci NAND flash driver");
882 
883