1 /*
2  * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3  *
4  * Copyright © 2006 Texas Instruments.
5  *
6  * Port to 2.6.23 Copyright © 2008 by:
7  *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
8  *   Troy Kisky <troy.kisky@boundarydevices.com>
9  *   Dirk Behme <Dirk.Behme@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/io.h>
31 #include <linux/mtd/rawnand.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/slab.h>
34 #include <linux/of_device.h>
35 #include <linux/of.h>
36 
37 #include <linux/platform_data/mtd-davinci.h>
38 #include <linux/platform_data/mtd-davinci-aemif.h>
39 
40 /*
41  * This is a device driver for the NAND flash controller found on the
42  * various DaVinci family chips.  It handles up to four SoC chipselects,
43  * and some flavors of secondary chipselect (e.g. based on A12) as used
44  * with multichip packages.
45  *
46  * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47  * available on chips like the DM355 and OMAP-L137 and needed with the
48  * more error-prone MLC NAND chips.
49  *
50  * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51  * outputs in a "wire-AND" configuration, with no per-chip signals.
52  */
53 struct davinci_nand_info {
54 	struct nand_chip	chip;
55 
56 	struct platform_device	*pdev;
57 
58 	bool			is_readmode;
59 
60 	void __iomem		*base;
61 	void __iomem		*vaddr;
62 
63 	void __iomem		*current_cs;
64 
65 	uint32_t		mask_chipsel;
66 	uint32_t		mask_ale;
67 	uint32_t		mask_cle;
68 
69 	uint32_t		core_chipsel;
70 
71 	struct davinci_aemif_timing	*timing;
72 };
73 
74 static DEFINE_SPINLOCK(davinci_nand_lock);
75 static bool ecc4_busy;
76 
77 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
78 {
79 	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
80 }
81 
82 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
83 		int offset)
84 {
85 	return __raw_readl(info->base + offset);
86 }
87 
88 static inline void davinci_nand_writel(struct davinci_nand_info *info,
89 		int offset, unsigned long value)
90 {
91 	__raw_writel(value, info->base + offset);
92 }
93 
94 /*----------------------------------------------------------------------*/
95 
96 /*
97  * Access to hardware control lines:  ALE, CLE, secondary chipselect.
98  */
99 
100 static void nand_davinci_hwcontrol(struct nand_chip *nand, int cmd,
101 				   unsigned int ctrl)
102 {
103 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
104 	void __iomem			*addr = info->current_cs;
105 
106 	/* Did the control lines change? */
107 	if (ctrl & NAND_CTRL_CHANGE) {
108 		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
109 			addr += info->mask_cle;
110 		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
111 			addr += info->mask_ale;
112 
113 		nand->legacy.IO_ADDR_W = addr;
114 	}
115 
116 	if (cmd != NAND_CMD_NONE)
117 		iowrite8(cmd, nand->legacy.IO_ADDR_W);
118 }
119 
120 static void nand_davinci_select_chip(struct nand_chip *nand, int chip)
121 {
122 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(nand));
123 
124 	info->current_cs = info->vaddr;
125 
126 	/* maybe kick in a second chipselect */
127 	if (chip > 0)
128 		info->current_cs += info->mask_chipsel;
129 
130 	info->chip.legacy.IO_ADDR_W = info->current_cs;
131 	info->chip.legacy.IO_ADDR_R = info->chip.legacy.IO_ADDR_W;
132 }
133 
134 /*----------------------------------------------------------------------*/
135 
136 /*
137  * 1-bit hardware ECC ... context maintained for each core chipselect
138  */
139 
140 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
141 {
142 	struct davinci_nand_info *info = to_davinci_nand(mtd);
143 
144 	return davinci_nand_readl(info, NANDF1ECC_OFFSET
145 			+ 4 * info->core_chipsel);
146 }
147 
148 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode)
149 {
150 	struct davinci_nand_info *info;
151 	uint32_t nandcfr;
152 	unsigned long flags;
153 
154 	info = to_davinci_nand(nand_to_mtd(chip));
155 
156 	/* Reset ECC hardware */
157 	nand_davinci_readecc_1bit(nand_to_mtd(chip));
158 
159 	spin_lock_irqsave(&davinci_nand_lock, flags);
160 
161 	/* Restart ECC hardware */
162 	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
163 	nandcfr |= BIT(8 + info->core_chipsel);
164 	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
165 
166 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
167 }
168 
169 /*
170  * Read hardware ECC value and pack into three bytes
171  */
172 static int nand_davinci_calculate_1bit(struct nand_chip *chip,
173 				       const u_char *dat, u_char *ecc_code)
174 {
175 	unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip));
176 	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
177 
178 	/* invert so that erased block ecc is correct */
179 	ecc24 = ~ecc24;
180 	ecc_code[0] = (u_char)(ecc24);
181 	ecc_code[1] = (u_char)(ecc24 >> 8);
182 	ecc_code[2] = (u_char)(ecc24 >> 16);
183 
184 	return 0;
185 }
186 
187 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat,
188 				     u_char *read_ecc, u_char *calc_ecc)
189 {
190 	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
191 					  (read_ecc[2] << 16);
192 	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
193 					  (calc_ecc[2] << 16);
194 	uint32_t diff = eccCalc ^ eccNand;
195 
196 	if (diff) {
197 		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
198 			/* Correctable error */
199 			if ((diff >> (12 + 3)) < chip->ecc.size) {
200 				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
201 				return 1;
202 			} else {
203 				return -EBADMSG;
204 			}
205 		} else if (!(diff & (diff - 1))) {
206 			/* Single bit ECC error in the ECC itself,
207 			 * nothing to fix */
208 			return 1;
209 		} else {
210 			/* Uncorrectable error */
211 			return -EBADMSG;
212 		}
213 
214 	}
215 	return 0;
216 }
217 
218 /*----------------------------------------------------------------------*/
219 
220 /*
221  * 4-bit hardware ECC ... context maintained over entire AEMIF
222  *
223  * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
224  * since that forces use of a problematic "infix OOB" layout.
225  * Among other things, it trashes manufacturer bad block markers.
226  * Also, and specific to this hardware, it ECC-protects the "prepad"
227  * in the OOB ... while having ECC protection for parts of OOB would
228  * seem useful, the current MTD stack sometimes wants to update the
229  * OOB without recomputing ECC.
230  */
231 
232 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode)
233 {
234 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
235 	unsigned long flags;
236 	u32 val;
237 
238 	/* Reset ECC hardware */
239 	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
240 
241 	spin_lock_irqsave(&davinci_nand_lock, flags);
242 
243 	/* Start 4-bit ECC calculation for read/write */
244 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
245 	val &= ~(0x03 << 4);
246 	val |= (info->core_chipsel << 4) | BIT(12);
247 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
248 
249 	info->is_readmode = (mode == NAND_ECC_READ);
250 
251 	spin_unlock_irqrestore(&davinci_nand_lock, flags);
252 }
253 
254 /* Read raw ECC code after writing to NAND. */
255 static void
256 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
257 {
258 	const u32 mask = 0x03ff03ff;
259 
260 	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
261 	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
262 	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
263 	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
264 }
265 
266 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
267 static int nand_davinci_calculate_4bit(struct nand_chip *chip,
268 				       const u_char *dat, u_char *ecc_code)
269 {
270 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
271 	u32 raw_ecc[4], *p;
272 	unsigned i;
273 
274 	/* After a read, terminate ECC calculation by a dummy read
275 	 * of some 4-bit ECC register.  ECC covers everything that
276 	 * was read; correct() just uses the hardware state, so
277 	 * ecc_code is not needed.
278 	 */
279 	if (info->is_readmode) {
280 		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
281 		return 0;
282 	}
283 
284 	/* Pack eight raw 10-bit ecc values into ten bytes, making
285 	 * two passes which each convert four values (in upper and
286 	 * lower halves of two 32-bit words) into five bytes.  The
287 	 * ROM boot loader uses this same packing scheme.
288 	 */
289 	nand_davinci_readecc_4bit(info, raw_ecc);
290 	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
291 		*ecc_code++ =   p[0]        & 0xff;
292 		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
293 		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
294 		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
295 		*ecc_code++ =  (p[1] >> 18) & 0xff;
296 	}
297 
298 	return 0;
299 }
300 
301 /* Correct up to 4 bits in data we just read, using state left in the
302  * hardware plus the ecc_code computed when it was first written.
303  */
304 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data,
305 				     u_char *ecc_code, u_char *null)
306 {
307 	int i;
308 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
309 	unsigned short ecc10[8];
310 	unsigned short *ecc16;
311 	u32 syndrome[4];
312 	u32 ecc_state;
313 	unsigned num_errors, corrected;
314 	unsigned long timeo;
315 
316 	/* Unpack ten bytes into eight 10 bit values.  We know we're
317 	 * little-endian, and use type punning for less shifting/masking.
318 	 */
319 	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
320 		return -EINVAL;
321 	ecc16 = (unsigned short *)ecc_code;
322 
323 	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
324 	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
325 	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
326 	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
327 	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
328 	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
329 	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
330 	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
331 
332 	/* Tell ECC controller about the expected ECC codes. */
333 	for (i = 7; i >= 0; i--)
334 		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
335 
336 	/* Allow time for syndrome calculation ... then read it.
337 	 * A syndrome of all zeroes 0 means no detected errors.
338 	 */
339 	davinci_nand_readl(info, NANDFSR_OFFSET);
340 	nand_davinci_readecc_4bit(info, syndrome);
341 	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
342 		return 0;
343 
344 	/*
345 	 * Clear any previous address calculation by doing a dummy read of an
346 	 * error address register.
347 	 */
348 	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
349 
350 	/* Start address calculation, and wait for it to complete.
351 	 * We _could_ start reading more data while this is working,
352 	 * to speed up the overall page read.
353 	 */
354 	davinci_nand_writel(info, NANDFCR_OFFSET,
355 			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
356 
357 	/*
358 	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
359 	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
360 	 * begin trying to poll for the state, you may fall right out of your
361 	 * loop without any of the correction calculations having taken place.
362 	 * The recommendation from the hardware team is to initially delay as
363 	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
364 	 * correction state.
365 	 */
366 	timeo = jiffies + usecs_to_jiffies(100);
367 	do {
368 		ecc_state = (davinci_nand_readl(info,
369 				NANDFSR_OFFSET) >> 8) & 0x0f;
370 		cpu_relax();
371 	} while ((ecc_state < 4) && time_before(jiffies, timeo));
372 
373 	for (;;) {
374 		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
375 
376 		switch ((fsr >> 8) & 0x0f) {
377 		case 0:		/* no error, should not happen */
378 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
379 			return 0;
380 		case 1:		/* five or more errors detected */
381 			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
382 			return -EBADMSG;
383 		case 2:		/* error addresses computed */
384 		case 3:
385 			num_errors = 1 + ((fsr >> 16) & 0x03);
386 			goto correct;
387 		default:	/* still working on it */
388 			cpu_relax();
389 			continue;
390 		}
391 	}
392 
393 correct:
394 	/* correct each error */
395 	for (i = 0, corrected = 0; i < num_errors; i++) {
396 		int error_address, error_value;
397 
398 		if (i > 1) {
399 			error_address = davinci_nand_readl(info,
400 						NAND_ERR_ADD2_OFFSET);
401 			error_value = davinci_nand_readl(info,
402 						NAND_ERR_ERRVAL2_OFFSET);
403 		} else {
404 			error_address = davinci_nand_readl(info,
405 						NAND_ERR_ADD1_OFFSET);
406 			error_value = davinci_nand_readl(info,
407 						NAND_ERR_ERRVAL1_OFFSET);
408 		}
409 
410 		if (i & 1) {
411 			error_address >>= 16;
412 			error_value >>= 16;
413 		}
414 		error_address &= 0x3ff;
415 		error_address = (512 + 7) - error_address;
416 
417 		if (error_address < 512) {
418 			data[error_address] ^= error_value;
419 			corrected++;
420 		}
421 	}
422 
423 	return corrected;
424 }
425 
426 /*----------------------------------------------------------------------*/
427 
428 /*
429  * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
430  * how these chips are normally wired.  This translates to both 8 and 16
431  * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
432  *
433  * For now we assume that configuration, or any other one which ignores
434  * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
435  * and have that transparently morphed into multiple NAND operations.
436  */
437 static void nand_davinci_read_buf(struct nand_chip *chip, uint8_t *buf,
438 				  int len)
439 {
440 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
441 		ioread32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
442 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
443 		ioread16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
444 	else
445 		ioread8_rep(chip->legacy.IO_ADDR_R, buf, len);
446 }
447 
448 static void nand_davinci_write_buf(struct nand_chip *chip, const uint8_t *buf,
449 				   int len)
450 {
451 	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
452 		iowrite32_rep(chip->legacy.IO_ADDR_R, buf, len >> 2);
453 	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
454 		iowrite16_rep(chip->legacy.IO_ADDR_R, buf, len >> 1);
455 	else
456 		iowrite8_rep(chip->legacy.IO_ADDR_R, buf, len);
457 }
458 
459 /*
460  * Check hardware register for wait status. Returns 1 if device is ready,
461  * 0 if it is still busy.
462  */
463 static int nand_davinci_dev_ready(struct nand_chip *chip)
464 {
465 	struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip));
466 
467 	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
468 }
469 
470 /*----------------------------------------------------------------------*/
471 
472 /* An ECC layout for using 4-bit ECC with small-page flash, storing
473  * ten ECC bytes plus the manufacturer's bad block marker byte, and
474  * and not overlapping the default BBT markers.
475  */
476 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
477 				      struct mtd_oob_region *oobregion)
478 {
479 	if (section > 2)
480 		return -ERANGE;
481 
482 	if (!section) {
483 		oobregion->offset = 0;
484 		oobregion->length = 5;
485 	} else if (section == 1) {
486 		oobregion->offset = 6;
487 		oobregion->length = 2;
488 	} else {
489 		oobregion->offset = 13;
490 		oobregion->length = 3;
491 	}
492 
493 	return 0;
494 }
495 
496 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
497 				       struct mtd_oob_region *oobregion)
498 {
499 	if (section > 1)
500 		return -ERANGE;
501 
502 	if (!section) {
503 		oobregion->offset = 8;
504 		oobregion->length = 5;
505 	} else {
506 		oobregion->offset = 16;
507 		oobregion->length = mtd->oobsize - 16;
508 	}
509 
510 	return 0;
511 }
512 
513 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
514 	.ecc = hwecc4_ooblayout_small_ecc,
515 	.free = hwecc4_ooblayout_small_free,
516 };
517 
518 #if defined(CONFIG_OF)
519 static const struct of_device_id davinci_nand_of_match[] = {
520 	{.compatible = "ti,davinci-nand", },
521 	{.compatible = "ti,keystone-nand", },
522 	{},
523 };
524 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
525 
526 static struct davinci_nand_pdata
527 	*nand_davinci_get_pdata(struct platform_device *pdev)
528 {
529 	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
530 		struct davinci_nand_pdata *pdata;
531 		const char *mode;
532 		u32 prop;
533 
534 		pdata =  devm_kzalloc(&pdev->dev,
535 				sizeof(struct davinci_nand_pdata),
536 				GFP_KERNEL);
537 		pdev->dev.platform_data = pdata;
538 		if (!pdata)
539 			return ERR_PTR(-ENOMEM);
540 		if (!of_property_read_u32(pdev->dev.of_node,
541 			"ti,davinci-chipselect", &prop))
542 			pdata->core_chipsel = prop;
543 		else
544 			return ERR_PTR(-EINVAL);
545 
546 		if (!of_property_read_u32(pdev->dev.of_node,
547 			"ti,davinci-mask-ale", &prop))
548 			pdata->mask_ale = prop;
549 		if (!of_property_read_u32(pdev->dev.of_node,
550 			"ti,davinci-mask-cle", &prop))
551 			pdata->mask_cle = prop;
552 		if (!of_property_read_u32(pdev->dev.of_node,
553 			"ti,davinci-mask-chipsel", &prop))
554 			pdata->mask_chipsel = prop;
555 		if (!of_property_read_string(pdev->dev.of_node,
556 			"ti,davinci-ecc-mode", &mode)) {
557 			if (!strncmp("none", mode, 4))
558 				pdata->ecc_mode = NAND_ECC_NONE;
559 			if (!strncmp("soft", mode, 4))
560 				pdata->ecc_mode = NAND_ECC_SOFT;
561 			if (!strncmp("hw", mode, 2))
562 				pdata->ecc_mode = NAND_ECC_HW;
563 		}
564 		if (!of_property_read_u32(pdev->dev.of_node,
565 			"ti,davinci-ecc-bits", &prop))
566 			pdata->ecc_bits = prop;
567 
568 		if (!of_property_read_u32(pdev->dev.of_node,
569 			"ti,davinci-nand-buswidth", &prop) && prop == 16)
570 			pdata->options |= NAND_BUSWIDTH_16;
571 
572 		if (of_property_read_bool(pdev->dev.of_node,
573 			"ti,davinci-nand-use-bbt"))
574 			pdata->bbt_options = NAND_BBT_USE_FLASH;
575 
576 		/*
577 		 * Since kernel v4.8, this driver has been fixed to enable
578 		 * use of 4-bit hardware ECC with subpages and verified on
579 		 * TI's keystone EVMs (K2L, K2HK and K2E).
580 		 * However, in the interest of not breaking systems using
581 		 * existing UBI partitions, sub-page writes are not being
582 		 * (re)enabled. If you want to use subpage writes on Keystone
583 		 * platforms (i.e. do not have any existing UBI partitions),
584 		 * then use "ti,davinci-nand" as the compatible in your
585 		 * device-tree file.
586 		 */
587 		if (of_device_is_compatible(pdev->dev.of_node,
588 					    "ti,keystone-nand")) {
589 			pdata->options |= NAND_NO_SUBPAGE_WRITE;
590 		}
591 	}
592 
593 	return dev_get_platdata(&pdev->dev);
594 }
595 #else
596 static struct davinci_nand_pdata
597 	*nand_davinci_get_pdata(struct platform_device *pdev)
598 {
599 	return dev_get_platdata(&pdev->dev);
600 }
601 #endif
602 
603 static int davinci_nand_attach_chip(struct nand_chip *chip)
604 {
605 	struct mtd_info *mtd = nand_to_mtd(chip);
606 	struct davinci_nand_info *info = to_davinci_nand(mtd);
607 	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
608 	int ret = 0;
609 
610 	if (IS_ERR(pdata))
611 		return PTR_ERR(pdata);
612 
613 	switch (info->chip.ecc.mode) {
614 	case NAND_ECC_NONE:
615 		pdata->ecc_bits = 0;
616 		break;
617 	case NAND_ECC_SOFT:
618 		pdata->ecc_bits = 0;
619 		/*
620 		 * This driver expects Hamming based ECC when ecc_mode is set
621 		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
622 		 * avoid adding an extra ->ecc_algo field to
623 		 * davinci_nand_pdata.
624 		 */
625 		info->chip.ecc.algo = NAND_ECC_HAMMING;
626 		break;
627 	case NAND_ECC_HW:
628 		if (pdata->ecc_bits == 4) {
629 			/*
630 			 * No sanity checks:  CPUs must support this,
631 			 * and the chips may not use NAND_BUSWIDTH_16.
632 			 */
633 
634 			/* No sharing 4-bit hardware between chipselects yet */
635 			spin_lock_irq(&davinci_nand_lock);
636 			if (ecc4_busy)
637 				ret = -EBUSY;
638 			else
639 				ecc4_busy = true;
640 			spin_unlock_irq(&davinci_nand_lock);
641 
642 			if (ret == -EBUSY)
643 				return ret;
644 
645 			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
646 			info->chip.ecc.correct = nand_davinci_correct_4bit;
647 			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
648 			info->chip.ecc.bytes = 10;
649 			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
650 			info->chip.ecc.algo = NAND_ECC_BCH;
651 		} else {
652 			/* 1bit ecc hamming */
653 			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
654 			info->chip.ecc.correct = nand_davinci_correct_1bit;
655 			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
656 			info->chip.ecc.bytes = 3;
657 			info->chip.ecc.algo = NAND_ECC_HAMMING;
658 		}
659 		info->chip.ecc.size = 512;
660 		info->chip.ecc.strength = pdata->ecc_bits;
661 		break;
662 	default:
663 		return -EINVAL;
664 	}
665 
666 	/*
667 	 * Update ECC layout if needed ... for 1-bit HW ECC, the default
668 	 * is OK, but it allocates 6 bytes when only 3 are needed (for
669 	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
670 	 * usable:  10 bytes are needed, not 6.
671 	 */
672 	if (pdata->ecc_bits == 4) {
673 		int chunks = mtd->writesize / 512;
674 
675 		if (!chunks || mtd->oobsize < 16) {
676 			dev_dbg(&info->pdev->dev, "too small\n");
677 			return -EINVAL;
678 		}
679 
680 		/* For small page chips, preserve the manufacturer's
681 		 * badblock marking data ... and make sure a flash BBT
682 		 * table marker fits in the free bytes.
683 		 */
684 		if (chunks == 1) {
685 			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
686 		} else if (chunks == 4 || chunks == 8) {
687 			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
688 			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
689 		} else {
690 			return -EIO;
691 		}
692 	}
693 
694 	return ret;
695 }
696 
697 static const struct nand_controller_ops davinci_nand_controller_ops = {
698 	.attach_chip = davinci_nand_attach_chip,
699 };
700 
701 static int nand_davinci_probe(struct platform_device *pdev)
702 {
703 	struct davinci_nand_pdata	*pdata;
704 	struct davinci_nand_info	*info;
705 	struct resource			*res1;
706 	struct resource			*res2;
707 	void __iomem			*vaddr;
708 	void __iomem			*base;
709 	int				ret;
710 	uint32_t			val;
711 	struct mtd_info			*mtd;
712 
713 	pdata = nand_davinci_get_pdata(pdev);
714 	if (IS_ERR(pdata))
715 		return PTR_ERR(pdata);
716 
717 	/* insist on board-specific configuration */
718 	if (!pdata)
719 		return -ENODEV;
720 
721 	/* which external chipselect will we be managing? */
722 	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
723 		return -ENODEV;
724 
725 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
726 	if (!info)
727 		return -ENOMEM;
728 
729 	platform_set_drvdata(pdev, info);
730 
731 	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
732 	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
733 	if (!res1 || !res2) {
734 		dev_err(&pdev->dev, "resource missing\n");
735 		return -EINVAL;
736 	}
737 
738 	vaddr = devm_ioremap_resource(&pdev->dev, res1);
739 	if (IS_ERR(vaddr))
740 		return PTR_ERR(vaddr);
741 
742 	/*
743 	 * This registers range is used to setup NAND settings. In case with
744 	 * TI AEMIF driver, the same memory address range is requested already
745 	 * by AEMIF, so we cannot request it twice, just ioremap.
746 	 * The AEMIF and NAND drivers not use the same registers in this range.
747 	 */
748 	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
749 	if (!base) {
750 		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
751 		return -EADDRNOTAVAIL;
752 	}
753 
754 	info->pdev		= pdev;
755 	info->base		= base;
756 	info->vaddr		= vaddr;
757 
758 	mtd			= nand_to_mtd(&info->chip);
759 	mtd->dev.parent		= &pdev->dev;
760 	nand_set_flash_node(&info->chip, pdev->dev.of_node);
761 
762 	info->chip.legacy.IO_ADDR_R	= vaddr;
763 	info->chip.legacy.IO_ADDR_W	= vaddr;
764 	info->chip.legacy.chip_delay	= 0;
765 	info->chip.legacy.select_chip	= nand_davinci_select_chip;
766 
767 	/* options such as NAND_BBT_USE_FLASH */
768 	info->chip.bbt_options	= pdata->bbt_options;
769 	/* options such as 16-bit widths */
770 	info->chip.options	= pdata->options;
771 	info->chip.bbt_td	= pdata->bbt_td;
772 	info->chip.bbt_md	= pdata->bbt_md;
773 	info->timing		= pdata->timing;
774 
775 	info->current_cs	= info->vaddr;
776 	info->core_chipsel	= pdata->core_chipsel;
777 	info->mask_chipsel	= pdata->mask_chipsel;
778 
779 	/* use nandboot-capable ALE/CLE masks by default */
780 	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
781 	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
782 
783 	/* Set address of hardware control function */
784 	info->chip.legacy.cmd_ctrl	= nand_davinci_hwcontrol;
785 	info->chip.legacy.dev_ready	= nand_davinci_dev_ready;
786 
787 	/* Speed up buffer I/O */
788 	info->chip.legacy.read_buf     = nand_davinci_read_buf;
789 	info->chip.legacy.write_buf    = nand_davinci_write_buf;
790 
791 	/* Use board-specific ECC config */
792 	info->chip.ecc.mode	= pdata->ecc_mode;
793 
794 	spin_lock_irq(&davinci_nand_lock);
795 
796 	/* put CSxNAND into NAND mode */
797 	val = davinci_nand_readl(info, NANDFCR_OFFSET);
798 	val |= BIT(info->core_chipsel);
799 	davinci_nand_writel(info, NANDFCR_OFFSET, val);
800 
801 	spin_unlock_irq(&davinci_nand_lock);
802 
803 	/* Scan to find existence of the device(s) */
804 	info->chip.legacy.dummy_controller.ops = &davinci_nand_controller_ops;
805 	ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1);
806 	if (ret < 0) {
807 		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
808 		return ret;
809 	}
810 
811 	if (pdata->parts)
812 		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
813 	else
814 		ret = mtd_device_register(mtd, NULL, 0);
815 	if (ret < 0)
816 		goto err_cleanup_nand;
817 
818 	val = davinci_nand_readl(info, NRCSR_OFFSET);
819 	dev_info(&pdev->dev, "controller rev. %d.%d\n",
820 	       (val >> 8) & 0xff, val & 0xff);
821 
822 	return 0;
823 
824 err_cleanup_nand:
825 	nand_cleanup(&info->chip);
826 
827 	return ret;
828 }
829 
830 static int nand_davinci_remove(struct platform_device *pdev)
831 {
832 	struct davinci_nand_info *info = platform_get_drvdata(pdev);
833 
834 	spin_lock_irq(&davinci_nand_lock);
835 	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
836 		ecc4_busy = false;
837 	spin_unlock_irq(&davinci_nand_lock);
838 
839 	nand_release(&info->chip);
840 
841 	return 0;
842 }
843 
844 static struct platform_driver nand_davinci_driver = {
845 	.probe		= nand_davinci_probe,
846 	.remove		= nand_davinci_remove,
847 	.driver		= {
848 		.name	= "davinci_nand",
849 		.of_match_table = of_match_ptr(davinci_nand_of_match),
850 	},
851 };
852 MODULE_ALIAS("platform:davinci_nand");
853 
854 module_platform_driver(nand_davinci_driver);
855 
856 MODULE_LICENSE("GPL");
857 MODULE_AUTHOR("Texas Instruments");
858 MODULE_DESCRIPTION("Davinci NAND flash driver");
859 
860