1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * davinci_nand.c - NAND Flash Driver for DaVinci family chips 4 * 5 * Copyright © 2006 Texas Instruments. 6 * 7 * Port to 2.6.23 Copyright © 2008 by: 8 * Sander Huijsen <Shuijsen@optelecom-nkf.com> 9 * Troy Kisky <troy.kisky@boundarydevices.com> 10 * Dirk Behme <Dirk.Behme@gmail.com> 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/err.h> 17 #include <linux/iopoll.h> 18 #include <linux/mtd/rawnand.h> 19 #include <linux/mtd/partitions.h> 20 #include <linux/slab.h> 21 #include <linux/of_device.h> 22 #include <linux/of.h> 23 24 #include <linux/platform_data/mtd-davinci.h> 25 #include <linux/platform_data/mtd-davinci-aemif.h> 26 27 /* 28 * This is a device driver for the NAND flash controller found on the 29 * various DaVinci family chips. It handles up to four SoC chipselects, 30 * and some flavors of secondary chipselect (e.g. based on A12) as used 31 * with multichip packages. 32 * 33 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC 34 * available on chips like the DM355 and OMAP-L137 and needed with the 35 * more error-prone MLC NAND chips. 36 * 37 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY 38 * outputs in a "wire-AND" configuration, with no per-chip signals. 39 */ 40 struct davinci_nand_info { 41 struct nand_controller controller; 42 struct nand_chip chip; 43 44 struct platform_device *pdev; 45 46 bool is_readmode; 47 48 void __iomem *base; 49 void __iomem *vaddr; 50 51 void __iomem *current_cs; 52 53 uint32_t mask_chipsel; 54 uint32_t mask_ale; 55 uint32_t mask_cle; 56 57 uint32_t core_chipsel; 58 59 struct davinci_aemif_timing *timing; 60 }; 61 62 static DEFINE_SPINLOCK(davinci_nand_lock); 63 static bool ecc4_busy; 64 65 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) 66 { 67 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); 68 } 69 70 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, 71 int offset) 72 { 73 return __raw_readl(info->base + offset); 74 } 75 76 static inline void davinci_nand_writel(struct davinci_nand_info *info, 77 int offset, unsigned long value) 78 { 79 __raw_writel(value, info->base + offset); 80 } 81 82 /*----------------------------------------------------------------------*/ 83 84 /* 85 * 1-bit hardware ECC ... context maintained for each core chipselect 86 */ 87 88 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) 89 { 90 struct davinci_nand_info *info = to_davinci_nand(mtd); 91 92 return davinci_nand_readl(info, NANDF1ECC_OFFSET 93 + 4 * info->core_chipsel); 94 } 95 96 static void nand_davinci_hwctl_1bit(struct nand_chip *chip, int mode) 97 { 98 struct davinci_nand_info *info; 99 uint32_t nandcfr; 100 unsigned long flags; 101 102 info = to_davinci_nand(nand_to_mtd(chip)); 103 104 /* Reset ECC hardware */ 105 nand_davinci_readecc_1bit(nand_to_mtd(chip)); 106 107 spin_lock_irqsave(&davinci_nand_lock, flags); 108 109 /* Restart ECC hardware */ 110 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); 111 nandcfr |= BIT(8 + info->core_chipsel); 112 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); 113 114 spin_unlock_irqrestore(&davinci_nand_lock, flags); 115 } 116 117 /* 118 * Read hardware ECC value and pack into three bytes 119 */ 120 static int nand_davinci_calculate_1bit(struct nand_chip *chip, 121 const u_char *dat, u_char *ecc_code) 122 { 123 unsigned int ecc_val = nand_davinci_readecc_1bit(nand_to_mtd(chip)); 124 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); 125 126 /* invert so that erased block ecc is correct */ 127 ecc24 = ~ecc24; 128 ecc_code[0] = (u_char)(ecc24); 129 ecc_code[1] = (u_char)(ecc24 >> 8); 130 ecc_code[2] = (u_char)(ecc24 >> 16); 131 132 return 0; 133 } 134 135 static int nand_davinci_correct_1bit(struct nand_chip *chip, u_char *dat, 136 u_char *read_ecc, u_char *calc_ecc) 137 { 138 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | 139 (read_ecc[2] << 16); 140 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | 141 (calc_ecc[2] << 16); 142 uint32_t diff = eccCalc ^ eccNand; 143 144 if (diff) { 145 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { 146 /* Correctable error */ 147 if ((diff >> (12 + 3)) < chip->ecc.size) { 148 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); 149 return 1; 150 } else { 151 return -EBADMSG; 152 } 153 } else if (!(diff & (diff - 1))) { 154 /* Single bit ECC error in the ECC itself, 155 * nothing to fix */ 156 return 1; 157 } else { 158 /* Uncorrectable error */ 159 return -EBADMSG; 160 } 161 162 } 163 return 0; 164 } 165 166 /*----------------------------------------------------------------------*/ 167 168 /* 169 * 4-bit hardware ECC ... context maintained over entire AEMIF 170 * 171 * This is a syndrome engine, but we avoid NAND_ECC_PLACEMENT_INTERLEAVED 172 * since that forces use of a problematic "infix OOB" layout. 173 * Among other things, it trashes manufacturer bad block markers. 174 * Also, and specific to this hardware, it ECC-protects the "prepad" 175 * in the OOB ... while having ECC protection for parts of OOB would 176 * seem useful, the current MTD stack sometimes wants to update the 177 * OOB without recomputing ECC. 178 */ 179 180 static void nand_davinci_hwctl_4bit(struct nand_chip *chip, int mode) 181 { 182 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 183 unsigned long flags; 184 u32 val; 185 186 /* Reset ECC hardware */ 187 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 188 189 spin_lock_irqsave(&davinci_nand_lock, flags); 190 191 /* Start 4-bit ECC calculation for read/write */ 192 val = davinci_nand_readl(info, NANDFCR_OFFSET); 193 val &= ~(0x03 << 4); 194 val |= (info->core_chipsel << 4) | BIT(12); 195 davinci_nand_writel(info, NANDFCR_OFFSET, val); 196 197 info->is_readmode = (mode == NAND_ECC_READ); 198 199 spin_unlock_irqrestore(&davinci_nand_lock, flags); 200 } 201 202 /* Read raw ECC code after writing to NAND. */ 203 static void 204 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) 205 { 206 const u32 mask = 0x03ff03ff; 207 208 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; 209 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; 210 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; 211 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; 212 } 213 214 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ 215 static int nand_davinci_calculate_4bit(struct nand_chip *chip, 216 const u_char *dat, u_char *ecc_code) 217 { 218 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 219 u32 raw_ecc[4], *p; 220 unsigned i; 221 222 /* After a read, terminate ECC calculation by a dummy read 223 * of some 4-bit ECC register. ECC covers everything that 224 * was read; correct() just uses the hardware state, so 225 * ecc_code is not needed. 226 */ 227 if (info->is_readmode) { 228 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); 229 return 0; 230 } 231 232 /* Pack eight raw 10-bit ecc values into ten bytes, making 233 * two passes which each convert four values (in upper and 234 * lower halves of two 32-bit words) into five bytes. The 235 * ROM boot loader uses this same packing scheme. 236 */ 237 nand_davinci_readecc_4bit(info, raw_ecc); 238 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { 239 *ecc_code++ = p[0] & 0xff; 240 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); 241 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); 242 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); 243 *ecc_code++ = (p[1] >> 18) & 0xff; 244 } 245 246 return 0; 247 } 248 249 /* Correct up to 4 bits in data we just read, using state left in the 250 * hardware plus the ecc_code computed when it was first written. 251 */ 252 static int nand_davinci_correct_4bit(struct nand_chip *chip, u_char *data, 253 u_char *ecc_code, u_char *null) 254 { 255 int i; 256 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 257 unsigned short ecc10[8]; 258 unsigned short *ecc16; 259 u32 syndrome[4]; 260 u32 ecc_state; 261 unsigned num_errors, corrected; 262 unsigned long timeo; 263 264 /* Unpack ten bytes into eight 10 bit values. We know we're 265 * little-endian, and use type punning for less shifting/masking. 266 */ 267 if (WARN_ON(0x01 & (uintptr_t)ecc_code)) 268 return -EINVAL; 269 ecc16 = (unsigned short *)ecc_code; 270 271 ecc10[0] = (ecc16[0] >> 0) & 0x3ff; 272 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); 273 ecc10[2] = (ecc16[1] >> 4) & 0x3ff; 274 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); 275 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); 276 ecc10[5] = (ecc16[3] >> 2) & 0x3ff; 277 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); 278 ecc10[7] = (ecc16[4] >> 6) & 0x3ff; 279 280 /* Tell ECC controller about the expected ECC codes. */ 281 for (i = 7; i >= 0; i--) 282 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); 283 284 /* Allow time for syndrome calculation ... then read it. 285 * A syndrome of all zeroes 0 means no detected errors. 286 */ 287 davinci_nand_readl(info, NANDFSR_OFFSET); 288 nand_davinci_readecc_4bit(info, syndrome); 289 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) 290 return 0; 291 292 /* 293 * Clear any previous address calculation by doing a dummy read of an 294 * error address register. 295 */ 296 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); 297 298 /* Start address calculation, and wait for it to complete. 299 * We _could_ start reading more data while this is working, 300 * to speed up the overall page read. 301 */ 302 davinci_nand_writel(info, NANDFCR_OFFSET, 303 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); 304 305 /* 306 * ECC_STATE field reads 0x3 (Error correction complete) immediately 307 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately 308 * begin trying to poll for the state, you may fall right out of your 309 * loop without any of the correction calculations having taken place. 310 * The recommendation from the hardware team is to initially delay as 311 * long as ECC_STATE reads less than 4. After that, ECC HW has entered 312 * correction state. 313 */ 314 timeo = jiffies + usecs_to_jiffies(100); 315 do { 316 ecc_state = (davinci_nand_readl(info, 317 NANDFSR_OFFSET) >> 8) & 0x0f; 318 cpu_relax(); 319 } while ((ecc_state < 4) && time_before(jiffies, timeo)); 320 321 for (;;) { 322 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); 323 324 switch ((fsr >> 8) & 0x0f) { 325 case 0: /* no error, should not happen */ 326 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 327 return 0; 328 case 1: /* five or more errors detected */ 329 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); 330 return -EBADMSG; 331 case 2: /* error addresses computed */ 332 case 3: 333 num_errors = 1 + ((fsr >> 16) & 0x03); 334 goto correct; 335 default: /* still working on it */ 336 cpu_relax(); 337 continue; 338 } 339 } 340 341 correct: 342 /* correct each error */ 343 for (i = 0, corrected = 0; i < num_errors; i++) { 344 int error_address, error_value; 345 346 if (i > 1) { 347 error_address = davinci_nand_readl(info, 348 NAND_ERR_ADD2_OFFSET); 349 error_value = davinci_nand_readl(info, 350 NAND_ERR_ERRVAL2_OFFSET); 351 } else { 352 error_address = davinci_nand_readl(info, 353 NAND_ERR_ADD1_OFFSET); 354 error_value = davinci_nand_readl(info, 355 NAND_ERR_ERRVAL1_OFFSET); 356 } 357 358 if (i & 1) { 359 error_address >>= 16; 360 error_value >>= 16; 361 } 362 error_address &= 0x3ff; 363 error_address = (512 + 7) - error_address; 364 365 if (error_address < 512) { 366 data[error_address] ^= error_value; 367 corrected++; 368 } 369 } 370 371 return corrected; 372 } 373 374 /*----------------------------------------------------------------------*/ 375 376 /* An ECC layout for using 4-bit ECC with small-page flash, storing 377 * ten ECC bytes plus the manufacturer's bad block marker byte, and 378 * and not overlapping the default BBT markers. 379 */ 380 static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, 381 struct mtd_oob_region *oobregion) 382 { 383 if (section > 2) 384 return -ERANGE; 385 386 if (!section) { 387 oobregion->offset = 0; 388 oobregion->length = 5; 389 } else if (section == 1) { 390 oobregion->offset = 6; 391 oobregion->length = 2; 392 } else { 393 oobregion->offset = 13; 394 oobregion->length = 3; 395 } 396 397 return 0; 398 } 399 400 static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, 401 struct mtd_oob_region *oobregion) 402 { 403 if (section > 1) 404 return -ERANGE; 405 406 if (!section) { 407 oobregion->offset = 8; 408 oobregion->length = 5; 409 } else { 410 oobregion->offset = 16; 411 oobregion->length = mtd->oobsize - 16; 412 } 413 414 return 0; 415 } 416 417 static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { 418 .ecc = hwecc4_ooblayout_small_ecc, 419 .free = hwecc4_ooblayout_small_free, 420 }; 421 422 #if defined(CONFIG_OF) 423 static const struct of_device_id davinci_nand_of_match[] = { 424 {.compatible = "ti,davinci-nand", }, 425 {.compatible = "ti,keystone-nand", }, 426 {}, 427 }; 428 MODULE_DEVICE_TABLE(of, davinci_nand_of_match); 429 430 static struct davinci_nand_pdata 431 *nand_davinci_get_pdata(struct platform_device *pdev) 432 { 433 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { 434 struct davinci_nand_pdata *pdata; 435 const char *mode; 436 u32 prop; 437 438 pdata = devm_kzalloc(&pdev->dev, 439 sizeof(struct davinci_nand_pdata), 440 GFP_KERNEL); 441 pdev->dev.platform_data = pdata; 442 if (!pdata) 443 return ERR_PTR(-ENOMEM); 444 if (!of_property_read_u32(pdev->dev.of_node, 445 "ti,davinci-chipselect", &prop)) 446 pdata->core_chipsel = prop; 447 else 448 return ERR_PTR(-EINVAL); 449 450 if (!of_property_read_u32(pdev->dev.of_node, 451 "ti,davinci-mask-ale", &prop)) 452 pdata->mask_ale = prop; 453 if (!of_property_read_u32(pdev->dev.of_node, 454 "ti,davinci-mask-cle", &prop)) 455 pdata->mask_cle = prop; 456 if (!of_property_read_u32(pdev->dev.of_node, 457 "ti,davinci-mask-chipsel", &prop)) 458 pdata->mask_chipsel = prop; 459 if (!of_property_read_string(pdev->dev.of_node, 460 "ti,davinci-ecc-mode", &mode)) { 461 if (!strncmp("none", mode, 4)) 462 pdata->engine_type = NAND_ECC_ENGINE_TYPE_NONE; 463 if (!strncmp("soft", mode, 4)) 464 pdata->engine_type = NAND_ECC_ENGINE_TYPE_SOFT; 465 if (!strncmp("hw", mode, 2)) 466 pdata->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 467 } 468 if (!of_property_read_u32(pdev->dev.of_node, 469 "ti,davinci-ecc-bits", &prop)) 470 pdata->ecc_bits = prop; 471 472 if (!of_property_read_u32(pdev->dev.of_node, 473 "ti,davinci-nand-buswidth", &prop) && prop == 16) 474 pdata->options |= NAND_BUSWIDTH_16; 475 476 if (of_property_read_bool(pdev->dev.of_node, 477 "ti,davinci-nand-use-bbt")) 478 pdata->bbt_options = NAND_BBT_USE_FLASH; 479 480 /* 481 * Since kernel v4.8, this driver has been fixed to enable 482 * use of 4-bit hardware ECC with subpages and verified on 483 * TI's keystone EVMs (K2L, K2HK and K2E). 484 * However, in the interest of not breaking systems using 485 * existing UBI partitions, sub-page writes are not being 486 * (re)enabled. If you want to use subpage writes on Keystone 487 * platforms (i.e. do not have any existing UBI partitions), 488 * then use "ti,davinci-nand" as the compatible in your 489 * device-tree file. 490 */ 491 if (of_device_is_compatible(pdev->dev.of_node, 492 "ti,keystone-nand")) { 493 pdata->options |= NAND_NO_SUBPAGE_WRITE; 494 } 495 } 496 497 return dev_get_platdata(&pdev->dev); 498 } 499 #else 500 static struct davinci_nand_pdata 501 *nand_davinci_get_pdata(struct platform_device *pdev) 502 { 503 return dev_get_platdata(&pdev->dev); 504 } 505 #endif 506 507 static int davinci_nand_attach_chip(struct nand_chip *chip) 508 { 509 struct mtd_info *mtd = nand_to_mtd(chip); 510 struct davinci_nand_info *info = to_davinci_nand(mtd); 511 struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev); 512 int ret = 0; 513 514 if (IS_ERR(pdata)) 515 return PTR_ERR(pdata); 516 517 /* Use board-specific ECC config */ 518 chip->ecc.engine_type = pdata->engine_type; 519 chip->ecc.placement = pdata->ecc_placement; 520 521 switch (chip->ecc.engine_type) { 522 case NAND_ECC_ENGINE_TYPE_NONE: 523 pdata->ecc_bits = 0; 524 break; 525 case NAND_ECC_ENGINE_TYPE_SOFT: 526 pdata->ecc_bits = 0; 527 /* 528 * This driver expects Hamming based ECC when engine_type is set 529 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to 530 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo 531 * field to davinci_nand_pdata. 532 */ 533 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 534 break; 535 case NAND_ECC_ENGINE_TYPE_ON_HOST: 536 if (pdata->ecc_bits == 4) { 537 int chunks = mtd->writesize / 512; 538 539 if (!chunks || mtd->oobsize < 16) { 540 dev_dbg(&info->pdev->dev, "too small\n"); 541 return -EINVAL; 542 } 543 544 /* 545 * No sanity checks: CPUs must support this, 546 * and the chips may not use NAND_BUSWIDTH_16. 547 */ 548 549 /* No sharing 4-bit hardware between chipselects yet */ 550 spin_lock_irq(&davinci_nand_lock); 551 if (ecc4_busy) 552 ret = -EBUSY; 553 else 554 ecc4_busy = true; 555 spin_unlock_irq(&davinci_nand_lock); 556 557 if (ret == -EBUSY) 558 return ret; 559 560 chip->ecc.calculate = nand_davinci_calculate_4bit; 561 chip->ecc.correct = nand_davinci_correct_4bit; 562 chip->ecc.hwctl = nand_davinci_hwctl_4bit; 563 chip->ecc.bytes = 10; 564 chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; 565 chip->ecc.algo = NAND_ECC_ALGO_BCH; 566 567 /* 568 * Update ECC layout if needed ... for 1-bit HW ECC, the 569 * default is OK, but it allocates 6 bytes when only 3 570 * are needed (for each 512 bytes). For 4-bit HW ECC, 571 * the default is not usable: 10 bytes needed, not 6. 572 * 573 * For small page chips, preserve the manufacturer's 574 * badblock marking data ... and make sure a flash BBT 575 * table marker fits in the free bytes. 576 */ 577 if (chunks == 1) { 578 mtd_set_ooblayout(mtd, 579 &hwecc4_small_ooblayout_ops); 580 } else if (chunks == 4 || chunks == 8) { 581 mtd_set_ooblayout(mtd, 582 nand_get_large_page_ooblayout()); 583 chip->ecc.read_page = nand_read_page_hwecc_oob_first; 584 } else { 585 return -EIO; 586 } 587 } else { 588 /* 1bit ecc hamming */ 589 chip->ecc.calculate = nand_davinci_calculate_1bit; 590 chip->ecc.correct = nand_davinci_correct_1bit; 591 chip->ecc.hwctl = nand_davinci_hwctl_1bit; 592 chip->ecc.bytes = 3; 593 chip->ecc.algo = NAND_ECC_ALGO_HAMMING; 594 } 595 chip->ecc.size = 512; 596 chip->ecc.strength = pdata->ecc_bits; 597 break; 598 default: 599 return -EINVAL; 600 } 601 602 return ret; 603 } 604 605 static void nand_davinci_data_in(struct davinci_nand_info *info, void *buf, 606 unsigned int len, bool force_8bit) 607 { 608 u32 alignment = ((uintptr_t)buf | len) & 3; 609 610 if (force_8bit || (alignment & 1)) 611 ioread8_rep(info->current_cs, buf, len); 612 else if (alignment & 3) 613 ioread16_rep(info->current_cs, buf, len >> 1); 614 else 615 ioread32_rep(info->current_cs, buf, len >> 2); 616 } 617 618 static void nand_davinci_data_out(struct davinci_nand_info *info, 619 const void *buf, unsigned int len, 620 bool force_8bit) 621 { 622 u32 alignment = ((uintptr_t)buf | len) & 3; 623 624 if (force_8bit || (alignment & 1)) 625 iowrite8_rep(info->current_cs, buf, len); 626 else if (alignment & 3) 627 iowrite16_rep(info->current_cs, buf, len >> 1); 628 else 629 iowrite32_rep(info->current_cs, buf, len >> 2); 630 } 631 632 static int davinci_nand_exec_instr(struct davinci_nand_info *info, 633 const struct nand_op_instr *instr) 634 { 635 unsigned int i, timeout_us; 636 u32 status; 637 int ret; 638 639 switch (instr->type) { 640 case NAND_OP_CMD_INSTR: 641 iowrite8(instr->ctx.cmd.opcode, 642 info->current_cs + info->mask_cle); 643 break; 644 645 case NAND_OP_ADDR_INSTR: 646 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 647 iowrite8(instr->ctx.addr.addrs[i], 648 info->current_cs + info->mask_ale); 649 } 650 break; 651 652 case NAND_OP_DATA_IN_INSTR: 653 nand_davinci_data_in(info, instr->ctx.data.buf.in, 654 instr->ctx.data.len, 655 instr->ctx.data.force_8bit); 656 break; 657 658 case NAND_OP_DATA_OUT_INSTR: 659 nand_davinci_data_out(info, instr->ctx.data.buf.out, 660 instr->ctx.data.len, 661 instr->ctx.data.force_8bit); 662 break; 663 664 case NAND_OP_WAITRDY_INSTR: 665 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 666 ret = readl_relaxed_poll_timeout(info->base + NANDFSR_OFFSET, 667 status, status & BIT(0), 100, 668 timeout_us); 669 if (ret) 670 return ret; 671 672 break; 673 } 674 675 if (instr->delay_ns) 676 ndelay(instr->delay_ns); 677 678 return 0; 679 } 680 681 static int davinci_nand_exec_op(struct nand_chip *chip, 682 const struct nand_operation *op, 683 bool check_only) 684 { 685 struct davinci_nand_info *info = to_davinci_nand(nand_to_mtd(chip)); 686 unsigned int i; 687 688 if (check_only) 689 return 0; 690 691 info->current_cs = info->vaddr + (op->cs * info->mask_chipsel); 692 693 for (i = 0; i < op->ninstrs; i++) { 694 int ret; 695 696 ret = davinci_nand_exec_instr(info, &op->instrs[i]); 697 if (ret) 698 return ret; 699 } 700 701 return 0; 702 } 703 704 static const struct nand_controller_ops davinci_nand_controller_ops = { 705 .attach_chip = davinci_nand_attach_chip, 706 .exec_op = davinci_nand_exec_op, 707 }; 708 709 static int nand_davinci_probe(struct platform_device *pdev) 710 { 711 struct davinci_nand_pdata *pdata; 712 struct davinci_nand_info *info; 713 struct resource *res1; 714 struct resource *res2; 715 void __iomem *vaddr; 716 void __iomem *base; 717 int ret; 718 uint32_t val; 719 struct mtd_info *mtd; 720 721 pdata = nand_davinci_get_pdata(pdev); 722 if (IS_ERR(pdata)) 723 return PTR_ERR(pdata); 724 725 /* insist on board-specific configuration */ 726 if (!pdata) 727 return -ENODEV; 728 729 /* which external chipselect will we be managing? */ 730 if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3) 731 return -ENODEV; 732 733 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); 734 if (!info) 735 return -ENOMEM; 736 737 platform_set_drvdata(pdev, info); 738 739 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); 740 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); 741 if (!res1 || !res2) { 742 dev_err(&pdev->dev, "resource missing\n"); 743 return -EINVAL; 744 } 745 746 vaddr = devm_ioremap_resource(&pdev->dev, res1); 747 if (IS_ERR(vaddr)) 748 return PTR_ERR(vaddr); 749 750 /* 751 * This registers range is used to setup NAND settings. In case with 752 * TI AEMIF driver, the same memory address range is requested already 753 * by AEMIF, so we cannot request it twice, just ioremap. 754 * The AEMIF and NAND drivers not use the same registers in this range. 755 */ 756 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); 757 if (!base) { 758 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); 759 return -EADDRNOTAVAIL; 760 } 761 762 info->pdev = pdev; 763 info->base = base; 764 info->vaddr = vaddr; 765 766 mtd = nand_to_mtd(&info->chip); 767 mtd->dev.parent = &pdev->dev; 768 nand_set_flash_node(&info->chip, pdev->dev.of_node); 769 770 /* options such as NAND_BBT_USE_FLASH */ 771 info->chip.bbt_options = pdata->bbt_options; 772 /* options such as 16-bit widths */ 773 info->chip.options = pdata->options; 774 info->chip.bbt_td = pdata->bbt_td; 775 info->chip.bbt_md = pdata->bbt_md; 776 info->timing = pdata->timing; 777 778 info->current_cs = info->vaddr; 779 info->core_chipsel = pdata->core_chipsel; 780 info->mask_chipsel = pdata->mask_chipsel; 781 782 /* use nandboot-capable ALE/CLE masks by default */ 783 info->mask_ale = pdata->mask_ale ? : MASK_ALE; 784 info->mask_cle = pdata->mask_cle ? : MASK_CLE; 785 786 spin_lock_irq(&davinci_nand_lock); 787 788 /* put CSxNAND into NAND mode */ 789 val = davinci_nand_readl(info, NANDFCR_OFFSET); 790 val |= BIT(info->core_chipsel); 791 davinci_nand_writel(info, NANDFCR_OFFSET, val); 792 793 spin_unlock_irq(&davinci_nand_lock); 794 795 /* Scan to find existence of the device(s) */ 796 nand_controller_init(&info->controller); 797 info->controller.ops = &davinci_nand_controller_ops; 798 info->chip.controller = &info->controller; 799 ret = nand_scan(&info->chip, pdata->mask_chipsel ? 2 : 1); 800 if (ret < 0) { 801 dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); 802 return ret; 803 } 804 805 if (pdata->parts) 806 ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts); 807 else 808 ret = mtd_device_register(mtd, NULL, 0); 809 if (ret < 0) 810 goto err_cleanup_nand; 811 812 val = davinci_nand_readl(info, NRCSR_OFFSET); 813 dev_info(&pdev->dev, "controller rev. %d.%d\n", 814 (val >> 8) & 0xff, val & 0xff); 815 816 return 0; 817 818 err_cleanup_nand: 819 nand_cleanup(&info->chip); 820 821 return ret; 822 } 823 824 static int nand_davinci_remove(struct platform_device *pdev) 825 { 826 struct davinci_nand_info *info = platform_get_drvdata(pdev); 827 struct nand_chip *chip = &info->chip; 828 int ret; 829 830 spin_lock_irq(&davinci_nand_lock); 831 if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED) 832 ecc4_busy = false; 833 spin_unlock_irq(&davinci_nand_lock); 834 835 ret = mtd_device_unregister(nand_to_mtd(chip)); 836 WARN_ON(ret); 837 nand_cleanup(chip); 838 839 return 0; 840 } 841 842 static struct platform_driver nand_davinci_driver = { 843 .probe = nand_davinci_probe, 844 .remove = nand_davinci_remove, 845 .driver = { 846 .name = "davinci_nand", 847 .of_match_table = of_match_ptr(davinci_nand_of_match), 848 }, 849 }; 850 MODULE_ALIAS("platform:davinci_nand"); 851 852 module_platform_driver(nand_davinci_driver); 853 854 MODULE_LICENSE("GPL"); 855 MODULE_AUTHOR("Texas Instruments"); 856 MODULE_DESCRIPTION("Davinci NAND flash driver"); 857 858