xref: /openbmc/linux/drivers/mtd/nand/raw/cafe_nand.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
3  *
4  * The data sheet for this device can be found at:
5  *    http://wiki.laptop.org/go/Datasheets
6  *
7  * Copyright © 2006 Red Hat, Inc.
8  * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
9  */
10 
11 #define DEBUG
12 
13 #include <linux/device.h>
14 #undef DEBUG
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/mtd/partitions.h>
18 #include <linux/rslib.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <asm/io.h>
26 
27 #define CAFE_NAND_CTRL1		0x00
28 #define CAFE_NAND_CTRL2		0x04
29 #define CAFE_NAND_CTRL3		0x08
30 #define CAFE_NAND_STATUS	0x0c
31 #define CAFE_NAND_IRQ		0x10
32 #define CAFE_NAND_IRQ_MASK	0x14
33 #define CAFE_NAND_DATA_LEN	0x18
34 #define CAFE_NAND_ADDR1		0x1c
35 #define CAFE_NAND_ADDR2		0x20
36 #define CAFE_NAND_TIMING1	0x24
37 #define CAFE_NAND_TIMING2	0x28
38 #define CAFE_NAND_TIMING3	0x2c
39 #define CAFE_NAND_NONMEM	0x30
40 #define CAFE_NAND_ECC_RESULT	0x3C
41 #define CAFE_NAND_DMA_CTRL	0x40
42 #define CAFE_NAND_DMA_ADDR0	0x44
43 #define CAFE_NAND_DMA_ADDR1	0x48
44 #define CAFE_NAND_ECC_SYN01	0x50
45 #define CAFE_NAND_ECC_SYN23	0x54
46 #define CAFE_NAND_ECC_SYN45	0x58
47 #define CAFE_NAND_ECC_SYN67	0x5c
48 #define CAFE_NAND_READ_DATA	0x1000
49 #define CAFE_NAND_WRITE_DATA	0x2000
50 
51 #define CAFE_GLOBAL_CTRL	0x3004
52 #define CAFE_GLOBAL_IRQ		0x3008
53 #define CAFE_GLOBAL_IRQ_MASK	0x300c
54 #define CAFE_NAND_RESET		0x3034
55 
56 /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
57 #define CTRL1_CHIPSELECT	(1<<19)
58 
59 struct cafe_priv {
60 	struct nand_chip nand;
61 	struct pci_dev *pdev;
62 	void __iomem *mmio;
63 	struct rs_control *rs;
64 	uint32_t ctl1;
65 	uint32_t ctl2;
66 	int datalen;
67 	int nr_data;
68 	int data_pos;
69 	int page_addr;
70 	bool usedma;
71 	dma_addr_t dmaaddr;
72 	unsigned char *dmabuf;
73 };
74 
75 static int usedma = 1;
76 module_param(usedma, int, 0644);
77 
78 static int skipbbt = 0;
79 module_param(skipbbt, int, 0644);
80 
81 static int debug = 0;
82 module_param(debug, int, 0644);
83 
84 static int regdebug = 0;
85 module_param(regdebug, int, 0644);
86 
87 static int checkecc = 1;
88 module_param(checkecc, int, 0644);
89 
90 static unsigned int numtimings;
91 static int timing[3];
92 module_param_array(timing, int, &numtimings, 0644);
93 
94 static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
95 
96 /* Hrm. Why isn't this already conditional on something in the struct device? */
97 #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
98 
99 /* Make it easier to switch to PIO if we need to */
100 #define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
101 #define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
102 
103 static int cafe_device_ready(struct nand_chip *chip)
104 {
105 	struct cafe_priv *cafe = nand_get_controller_data(chip);
106 	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
107 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
108 
109 	cafe_writel(cafe, irqs, NAND_IRQ);
110 
111 	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
112 		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
113 		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
114 
115 	return result;
116 }
117 
118 
119 static void cafe_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
120 {
121 	struct cafe_priv *cafe = nand_get_controller_data(chip);
122 
123 	if (cafe->usedma)
124 		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
125 	else
126 		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
127 
128 	cafe->datalen += len;
129 
130 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
131 		len, cafe->datalen);
132 }
133 
134 static void cafe_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
135 {
136 	struct cafe_priv *cafe = nand_get_controller_data(chip);
137 
138 	if (cafe->usedma)
139 		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
140 	else
141 		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
142 
143 	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
144 		  len, cafe->datalen);
145 	cafe->datalen += len;
146 }
147 
148 static uint8_t cafe_read_byte(struct nand_chip *chip)
149 {
150 	struct cafe_priv *cafe = nand_get_controller_data(chip);
151 	uint8_t d;
152 
153 	cafe_read_buf(chip, &d, 1);
154 	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
155 
156 	return d;
157 }
158 
159 static void cafe_nand_cmdfunc(struct nand_chip *chip, unsigned command,
160 			      int column, int page_addr)
161 {
162 	struct mtd_info *mtd = nand_to_mtd(chip);
163 	struct cafe_priv *cafe = nand_get_controller_data(chip);
164 	int adrbytes = 0;
165 	uint32_t ctl1;
166 	uint32_t doneint = 0x80000000;
167 
168 	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
169 		command, column, page_addr);
170 
171 	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
172 		/* Second half of a command we already calculated */
173 		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
174 		ctl1 = cafe->ctl1;
175 		cafe->ctl2 &= ~(1<<30);
176 		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
177 			  cafe->ctl1, cafe->nr_data);
178 		goto do_command;
179 	}
180 	/* Reset ECC engine */
181 	cafe_writel(cafe, 0, NAND_CTRL2);
182 
183 	/* Emulate NAND_CMD_READOOB on large-page chips */
184 	if (mtd->writesize > 512 &&
185 	    command == NAND_CMD_READOOB) {
186 		column += mtd->writesize;
187 		command = NAND_CMD_READ0;
188 	}
189 
190 	/* FIXME: Do we need to send read command before sending data
191 	   for small-page chips, to position the buffer correctly? */
192 
193 	if (column != -1) {
194 		cafe_writel(cafe, column, NAND_ADDR1);
195 		adrbytes = 2;
196 		if (page_addr != -1)
197 			goto write_adr2;
198 	} else if (page_addr != -1) {
199 		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
200 		page_addr >>= 16;
201 	write_adr2:
202 		cafe_writel(cafe, page_addr, NAND_ADDR2);
203 		adrbytes += 2;
204 		if (mtd->size > mtd->writesize << 16)
205 			adrbytes++;
206 	}
207 
208 	cafe->data_pos = cafe->datalen = 0;
209 
210 	/* Set command valid bit, mask in the chip select bit  */
211 	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
212 
213 	/* Set RD or WR bits as appropriate */
214 	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
215 		ctl1 |= (1<<26); /* rd */
216 		/* Always 5 bytes, for now */
217 		cafe->datalen = 4;
218 		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
219 		adrbytes = 1;
220 	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
221 		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
222 		ctl1 |= 1<<26; /* rd */
223 		/* For now, assume just read to end of page */
224 		cafe->datalen = mtd->writesize + mtd->oobsize - column;
225 	} else if (command == NAND_CMD_SEQIN)
226 		ctl1 |= 1<<25; /* wr */
227 
228 	/* Set number of address bytes */
229 	if (adrbytes)
230 		ctl1 |= ((adrbytes-1)|8) << 27;
231 
232 	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
233 		/* Ignore the first command of a pair; the hardware
234 		   deals with them both at once, later */
235 		cafe->ctl1 = ctl1;
236 		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
237 			  cafe->ctl1, cafe->datalen);
238 		return;
239 	}
240 	/* RNDOUT and READ0 commands need a following byte */
241 	if (command == NAND_CMD_RNDOUT)
242 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
243 	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
244 		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
245 
246  do_command:
247 	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
248 		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
249 
250 	/* NB: The datasheet lies -- we really should be subtracting 1 here */
251 	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
252 	cafe_writel(cafe, 0x90000000, NAND_IRQ);
253 	if (cafe->usedma && (ctl1 & (3<<25))) {
254 		uint32_t dmactl = 0xc0000000 + cafe->datalen;
255 		/* If WR or RD bits set, set up DMA */
256 		if (ctl1 & (1<<26)) {
257 			/* It's a read */
258 			dmactl |= (1<<29);
259 			/* ... so it's done when the DMA is done, not just
260 			   the command. */
261 			doneint = 0x10000000;
262 		}
263 		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
264 	}
265 	cafe->datalen = 0;
266 
267 	if (unlikely(regdebug)) {
268 		int i;
269 		printk("About to write command %08x to register 0\n", ctl1);
270 		for (i=4; i< 0x5c; i+=4)
271 			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
272 	}
273 
274 	cafe_writel(cafe, ctl1, NAND_CTRL1);
275 	/* Apply this short delay always to ensure that we do wait tWB in
276 	 * any case on any machine. */
277 	ndelay(100);
278 
279 	if (1) {
280 		int c;
281 		uint32_t irqs;
282 
283 		for (c = 500000; c != 0; c--) {
284 			irqs = cafe_readl(cafe, NAND_IRQ);
285 			if (irqs & doneint)
286 				break;
287 			udelay(1);
288 			if (!(c % 100000))
289 				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
290 			cpu_relax();
291 		}
292 		cafe_writel(cafe, doneint, NAND_IRQ);
293 		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
294 			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
295 	}
296 
297 	WARN_ON(cafe->ctl2 & (1<<30));
298 
299 	switch (command) {
300 
301 	case NAND_CMD_CACHEDPROG:
302 	case NAND_CMD_PAGEPROG:
303 	case NAND_CMD_ERASE1:
304 	case NAND_CMD_ERASE2:
305 	case NAND_CMD_SEQIN:
306 	case NAND_CMD_RNDIN:
307 	case NAND_CMD_STATUS:
308 	case NAND_CMD_RNDOUT:
309 		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
310 		return;
311 	}
312 	nand_wait_ready(chip);
313 	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
314 }
315 
316 static void cafe_select_chip(struct nand_chip *chip, int chipnr)
317 {
318 	struct cafe_priv *cafe = nand_get_controller_data(chip);
319 
320 	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
321 
322 	/* Mask the appropriate bit into the stored value of ctl1
323 	   which will be used by cafe_nand_cmdfunc() */
324 	if (chipnr)
325 		cafe->ctl1 |= CTRL1_CHIPSELECT;
326 	else
327 		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
328 }
329 
330 static irqreturn_t cafe_nand_interrupt(int irq, void *id)
331 {
332 	struct mtd_info *mtd = id;
333 	struct nand_chip *chip = mtd_to_nand(mtd);
334 	struct cafe_priv *cafe = nand_get_controller_data(chip);
335 	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
336 	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
337 	if (!irqs)
338 		return IRQ_NONE;
339 
340 	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
341 	return IRQ_HANDLED;
342 }
343 
344 static int cafe_nand_write_oob(struct nand_chip *chip, int page)
345 {
346 	struct mtd_info *mtd = nand_to_mtd(chip);
347 
348 	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
349 				 mtd->oobsize);
350 }
351 
352 /* Don't use -- use nand_read_oob_std for now */
353 static int cafe_nand_read_oob(struct nand_chip *chip, int page)
354 {
355 	struct mtd_info *mtd = nand_to_mtd(chip);
356 
357 	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
358 }
359 /**
360  * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
361  * @mtd:	mtd info structure
362  * @chip:	nand chip info structure
363  * @buf:	buffer to store read data
364  * @oob_required:	caller expects OOB data read to chip->oob_poi
365  *
366  * The hw generator calculates the error syndrome automatically. Therefore
367  * we need a special oob layout and handling.
368  */
369 static int cafe_nand_read_page(struct nand_chip *chip, uint8_t *buf,
370 			       int oob_required, int page)
371 {
372 	struct mtd_info *mtd = nand_to_mtd(chip);
373 	struct cafe_priv *cafe = nand_get_controller_data(chip);
374 	unsigned int max_bitflips = 0;
375 
376 	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
377 		     cafe_readl(cafe, NAND_ECC_RESULT),
378 		     cafe_readl(cafe, NAND_ECC_SYN01));
379 
380 	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
381 	chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
382 
383 	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
384 		unsigned short syn[8], pat[4];
385 		int pos[4];
386 		u8 *oob = chip->oob_poi;
387 		int i, n;
388 
389 		for (i=0; i<8; i+=2) {
390 			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
391 
392 			syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
393 			syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
394 		}
395 
396 		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
397 				pat);
398 
399 		for (i = 0; i < n; i++) {
400 			int p = pos[i];
401 
402 			/* The 12-bit symbols are mapped to bytes here */
403 
404 			if (p > 1374) {
405 				/* out of range */
406 				n = -1374;
407 			} else if (p == 0) {
408 				/* high four bits do not correspond to data */
409 				if (pat[i] > 0xff)
410 					n = -2048;
411 				else
412 					buf[0] ^= pat[i];
413 			} else if (p == 1365) {
414 				buf[2047] ^= pat[i] >> 4;
415 				oob[0] ^= pat[i] << 4;
416 			} else if (p > 1365) {
417 				if ((p & 1) == 1) {
418 					oob[3*p/2 - 2048] ^= pat[i] >> 4;
419 					oob[3*p/2 - 2047] ^= pat[i] << 4;
420 				} else {
421 					oob[3*p/2 - 2049] ^= pat[i] >> 8;
422 					oob[3*p/2 - 2048] ^= pat[i];
423 				}
424 			} else if ((p & 1) == 1) {
425 				buf[3*p/2] ^= pat[i] >> 4;
426 				buf[3*p/2 + 1] ^= pat[i] << 4;
427 			} else {
428 				buf[3*p/2 - 1] ^= pat[i] >> 8;
429 				buf[3*p/2] ^= pat[i];
430 			}
431 		}
432 
433 		if (n < 0) {
434 			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
435 				cafe_readl(cafe, NAND_ADDR2) * 2048);
436 			for (i = 0; i < 0x5c; i += 4)
437 				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
438 			mtd->ecc_stats.failed++;
439 		} else {
440 			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
441 			mtd->ecc_stats.corrected += n;
442 			max_bitflips = max_t(unsigned int, max_bitflips, n);
443 		}
444 	}
445 
446 	return max_bitflips;
447 }
448 
449 static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
450 			      struct mtd_oob_region *oobregion)
451 {
452 	struct nand_chip *chip = mtd_to_nand(mtd);
453 
454 	if (section)
455 		return -ERANGE;
456 
457 	oobregion->offset = 0;
458 	oobregion->length = chip->ecc.total;
459 
460 	return 0;
461 }
462 
463 static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
464 			       struct mtd_oob_region *oobregion)
465 {
466 	struct nand_chip *chip = mtd_to_nand(mtd);
467 
468 	if (section)
469 		return -ERANGE;
470 
471 	oobregion->offset = chip->ecc.total;
472 	oobregion->length = mtd->oobsize - chip->ecc.total;
473 
474 	return 0;
475 }
476 
477 static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
478 	.ecc = cafe_ooblayout_ecc,
479 	.free = cafe_ooblayout_free,
480 };
481 
482 /* Ick. The BBT code really ought to be able to work this bit out
483    for itself from the above, at least for the 2KiB case */
484 static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
485 static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
486 
487 static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
488 static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
489 
490 
491 static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
492 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
493 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
494 	.offs =	14,
495 	.len = 4,
496 	.veroffs = 18,
497 	.maxblocks = 4,
498 	.pattern = cafe_bbt_pattern_2048
499 };
500 
501 static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
502 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
503 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
504 	.offs =	14,
505 	.len = 4,
506 	.veroffs = 18,
507 	.maxblocks = 4,
508 	.pattern = cafe_mirror_pattern_2048
509 };
510 
511 static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
512 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
513 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
514 	.offs =	14,
515 	.len = 1,
516 	.veroffs = 15,
517 	.maxblocks = 4,
518 	.pattern = cafe_bbt_pattern_512
519 };
520 
521 static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
522 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
523 		| NAND_BBT_2BIT | NAND_BBT_VERSION,
524 	.offs =	14,
525 	.len = 1,
526 	.veroffs = 15,
527 	.maxblocks = 4,
528 	.pattern = cafe_mirror_pattern_512
529 };
530 
531 
532 static int cafe_nand_write_page_lowlevel(struct nand_chip *chip,
533 					 const uint8_t *buf, int oob_required,
534 					 int page)
535 {
536 	struct mtd_info *mtd = nand_to_mtd(chip);
537 	struct cafe_priv *cafe = nand_get_controller_data(chip);
538 
539 	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
540 	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
541 
542 	/* Set up ECC autogeneration */
543 	cafe->ctl2 |= (1<<30);
544 
545 	return nand_prog_page_end_op(chip);
546 }
547 
548 static int cafe_nand_block_bad(struct nand_chip *chip, loff_t ofs)
549 {
550 	return 0;
551 }
552 
553 /* F_2[X]/(X**6+X+1)  */
554 static unsigned short gf64_mul(u8 a, u8 b)
555 {
556 	u8 c;
557 	unsigned int i;
558 
559 	c = 0;
560 	for (i = 0; i < 6; i++) {
561 		if (a & 1)
562 			c ^= b;
563 		a >>= 1;
564 		b <<= 1;
565 		if ((b & 0x40) != 0)
566 			b ^= 0x43;
567 	}
568 
569 	return c;
570 }
571 
572 /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
573 static u16 gf4096_mul(u16 a, u16 b)
574 {
575 	u8 ah, al, bh, bl, ch, cl;
576 
577 	ah = a >> 6;
578 	al = a & 0x3f;
579 	bh = b >> 6;
580 	bl = b & 0x3f;
581 
582 	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
583 	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
584 
585 	return (ch << 6) ^ cl;
586 }
587 
588 static int cafe_mul(int x)
589 {
590 	if (x == 0)
591 		return 1;
592 	return gf4096_mul(x, 0xe01);
593 }
594 
595 static int cafe_nand_attach_chip(struct nand_chip *chip)
596 {
597 	struct mtd_info *mtd = nand_to_mtd(chip);
598 	struct cafe_priv *cafe = nand_get_controller_data(chip);
599 	int err = 0;
600 
601 	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
602 					  &cafe->dmaaddr, GFP_KERNEL);
603 	if (!cafe->dmabuf)
604 		return -ENOMEM;
605 
606 	/* Set up DMA address */
607 	cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
608 	cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
609 
610 	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
611 		     cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
612 
613 	/* Restore the DMA flag */
614 	cafe->usedma = usedma;
615 
616 	cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
617 	if (mtd->writesize == 2048)
618 		cafe->ctl2 |= BIT(29); /* 2KiB page size */
619 
620 	/* Set up ECC according to the type of chip we found */
621 	mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
622 	if (mtd->writesize == 2048) {
623 		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
624 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
625 	} else if (mtd->writesize == 512) {
626 		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
627 		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
628 	} else {
629 		dev_warn(&cafe->pdev->dev,
630 			 "Unexpected NAND flash writesize %d. Aborting\n",
631 			 mtd->writesize);
632 		err = -ENOTSUPP;
633 		goto out_free_dma;
634 	}
635 
636 	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
637 	cafe->nand.ecc.size = mtd->writesize;
638 	cafe->nand.ecc.bytes = 14;
639 	cafe->nand.ecc.strength = 4;
640 	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
641 	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
642 	cafe->nand.ecc.read_page = cafe_nand_read_page;
643 	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
644 
645 	return 0;
646 
647  out_free_dma:
648 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
649 
650 	return err;
651 }
652 
653 static void cafe_nand_detach_chip(struct nand_chip *chip)
654 {
655 	struct cafe_priv *cafe = nand_get_controller_data(chip);
656 
657 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
658 }
659 
660 static const struct nand_controller_ops cafe_nand_controller_ops = {
661 	.attach_chip = cafe_nand_attach_chip,
662 	.detach_chip = cafe_nand_detach_chip,
663 };
664 
665 static int cafe_nand_probe(struct pci_dev *pdev,
666 				     const struct pci_device_id *ent)
667 {
668 	struct mtd_info *mtd;
669 	struct cafe_priv *cafe;
670 	uint32_t ctrl;
671 	int err = 0;
672 
673 	/* Very old versions shared the same PCI ident for all three
674 	   functions on the chip. Verify the class too... */
675 	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
676 		return -ENODEV;
677 
678 	err = pci_enable_device(pdev);
679 	if (err)
680 		return err;
681 
682 	pci_set_master(pdev);
683 
684 	cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
685 	if (!cafe)
686 		return  -ENOMEM;
687 
688 	mtd = nand_to_mtd(&cafe->nand);
689 	mtd->dev.parent = &pdev->dev;
690 	nand_set_controller_data(&cafe->nand, cafe);
691 
692 	cafe->pdev = pdev;
693 	cafe->mmio = pci_iomap(pdev, 0, 0);
694 	if (!cafe->mmio) {
695 		dev_warn(&pdev->dev, "failed to iomap\n");
696 		err = -ENOMEM;
697 		goto out_free_mtd;
698 	}
699 
700 	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
701 	if (!cafe->rs) {
702 		err = -ENOMEM;
703 		goto out_ior;
704 	}
705 
706 	cafe->nand.legacy.cmdfunc = cafe_nand_cmdfunc;
707 	cafe->nand.legacy.dev_ready = cafe_device_ready;
708 	cafe->nand.legacy.read_byte = cafe_read_byte;
709 	cafe->nand.legacy.read_buf = cafe_read_buf;
710 	cafe->nand.legacy.write_buf = cafe_write_buf;
711 	cafe->nand.select_chip = cafe_select_chip;
712 	cafe->nand.legacy.set_features = nand_get_set_features_notsupp;
713 	cafe->nand.legacy.get_features = nand_get_set_features_notsupp;
714 
715 	cafe->nand.legacy.chip_delay = 0;
716 
717 	/* Enable the following for a flash based bad block table */
718 	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
719 
720 	if (skipbbt) {
721 		cafe->nand.options |= NAND_SKIP_BBTSCAN;
722 		cafe->nand.legacy.block_bad = cafe_nand_block_bad;
723 	}
724 
725 	if (numtimings && numtimings != 3) {
726 		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
727 	}
728 
729 	if (numtimings == 3) {
730 		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
731 			     timing[0], timing[1], timing[2]);
732 	} else {
733 		timing[0] = cafe_readl(cafe, NAND_TIMING1);
734 		timing[1] = cafe_readl(cafe, NAND_TIMING2);
735 		timing[2] = cafe_readl(cafe, NAND_TIMING3);
736 
737 		if (timing[0] | timing[1] | timing[2]) {
738 			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
739 				     timing[0], timing[1], timing[2]);
740 		} else {
741 			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
742 			timing[0] = timing[1] = timing[2] = 0xffffffff;
743 		}
744 	}
745 
746 	/* Start off by resetting the NAND controller completely */
747 	cafe_writel(cafe, 1, NAND_RESET);
748 	cafe_writel(cafe, 0, NAND_RESET);
749 
750 	cafe_writel(cafe, timing[0], NAND_TIMING1);
751 	cafe_writel(cafe, timing[1], NAND_TIMING2);
752 	cafe_writel(cafe, timing[2], NAND_TIMING3);
753 
754 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
755 	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
756 			  "CAFE NAND", mtd);
757 	if (err) {
758 		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
759 		goto out_ior;
760 	}
761 
762 	/* Disable master reset, enable NAND clock */
763 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
764 	ctrl &= 0xffffeff0;
765 	ctrl |= 0x00007000;
766 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
767 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
768 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
769 
770 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
771 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
772 
773 	/* Enable NAND IRQ in global IRQ mask register */
774 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
775 	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
776 		cafe_readl(cafe, GLOBAL_CTRL),
777 		cafe_readl(cafe, GLOBAL_IRQ_MASK));
778 
779 	/* Do not use the DMA during the NAND identification */
780 	cafe->usedma = 0;
781 
782 	/* Scan to find existence of the device */
783 	cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
784 	err = nand_scan(&cafe->nand, 2);
785 	if (err)
786 		goto out_irq;
787 
788 	pci_set_drvdata(pdev, mtd);
789 
790 	mtd->name = "cafe_nand";
791 	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
792 	if (err)
793 		goto out_cleanup_nand;
794 
795 	goto out;
796 
797  out_cleanup_nand:
798 	nand_cleanup(&cafe->nand);
799  out_irq:
800 	/* Disable NAND IRQ in global IRQ mask register */
801 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
802 	free_irq(pdev->irq, mtd);
803  out_ior:
804 	pci_iounmap(pdev, cafe->mmio);
805  out_free_mtd:
806 	kfree(cafe);
807  out:
808 	return err;
809 }
810 
811 static void cafe_nand_remove(struct pci_dev *pdev)
812 {
813 	struct mtd_info *mtd = pci_get_drvdata(pdev);
814 	struct nand_chip *chip = mtd_to_nand(mtd);
815 	struct cafe_priv *cafe = nand_get_controller_data(chip);
816 
817 	/* Disable NAND IRQ in global IRQ mask register */
818 	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
819 	free_irq(pdev->irq, mtd);
820 	nand_release(chip);
821 	free_rs(cafe->rs);
822 	pci_iounmap(pdev, cafe->mmio);
823 	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
824 	kfree(cafe);
825 }
826 
827 static const struct pci_device_id cafe_nand_tbl[] = {
828 	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
829 	  PCI_ANY_ID, PCI_ANY_ID },
830 	{ }
831 };
832 
833 MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
834 
835 static int cafe_nand_resume(struct pci_dev *pdev)
836 {
837 	uint32_t ctrl;
838 	struct mtd_info *mtd = pci_get_drvdata(pdev);
839 	struct nand_chip *chip = mtd_to_nand(mtd);
840 	struct cafe_priv *cafe = nand_get_controller_data(chip);
841 
842        /* Start off by resetting the NAND controller completely */
843 	cafe_writel(cafe, 1, NAND_RESET);
844 	cafe_writel(cafe, 0, NAND_RESET);
845 	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
846 
847 	/* Restore timing configuration */
848 	cafe_writel(cafe, timing[0], NAND_TIMING1);
849 	cafe_writel(cafe, timing[1], NAND_TIMING2);
850 	cafe_writel(cafe, timing[2], NAND_TIMING3);
851 
852         /* Disable master reset, enable NAND clock */
853 	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
854 	ctrl &= 0xffffeff0;
855 	ctrl |= 0x00007000;
856 	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
857 	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
858 	cafe_writel(cafe, 0, NAND_DMA_CTRL);
859 	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
860 	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
861 
862 	/* Set up DMA address */
863 	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
864 	if (sizeof(cafe->dmaaddr) > 4)
865 	/* Shift in two parts to shut the compiler up */
866 		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
867 	else
868 		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
869 
870 	/* Enable NAND IRQ in global IRQ mask register */
871 	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
872 	return 0;
873 }
874 
875 static struct pci_driver cafe_nand_pci_driver = {
876 	.name = "CAFÉ NAND",
877 	.id_table = cafe_nand_tbl,
878 	.probe = cafe_nand_probe,
879 	.remove = cafe_nand_remove,
880 	.resume = cafe_nand_resume,
881 };
882 
883 module_pci_driver(cafe_nand_pci_driver);
884 
885 MODULE_LICENSE("GPL");
886 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
887 MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
888