1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_device.h> 19 #include <linux/iopoll.h> 20 21 /* 22 * HPNFC can work in 3 modes: 23 * - PIO - can work in master or slave DMA 24 * - CDMA - needs Master DMA for accessing command descriptors. 25 * - Generic mode - can use only slave DMA. 26 * CDMA and PIO modes can be used to execute only base commands. 27 * Generic mode can be used to execute any command 28 * on NAND flash memory. Driver uses CDMA mode for 29 * block erasing, page reading, page programing. 30 * Generic mode is used for executing rest of commands. 31 */ 32 33 #define MAX_OOB_SIZE_PER_SECTOR 32 34 #define MAX_ADDRESS_CYC 6 35 #define MAX_ERASE_ADDRESS_CYC 3 36 #define MAX_DATA_SIZE 0xFFFC 37 #define DMA_DATA_SIZE_ALIGN 8 38 39 /* Register definition. */ 40 /* 41 * Command register 0. 42 * Writing data to this register will initiate a new transaction 43 * of the NF controller. 44 */ 45 #define CMD_REG0 0x0000 46 /* Command type field mask. */ 47 #define CMD_REG0_CT GENMASK(31, 30) 48 /* Command type CDMA. */ 49 #define CMD_REG0_CT_CDMA 0uL 50 /* Command type generic. */ 51 #define CMD_REG0_CT_GEN 3uL 52 /* Command thread number field mask. */ 53 #define CMD_REG0_TN GENMASK(27, 24) 54 55 /* Command register 2. */ 56 #define CMD_REG2 0x0008 57 /* Command register 3. */ 58 #define CMD_REG3 0x000C 59 /* Pointer register to select which thread status will be selected. */ 60 #define CMD_STATUS_PTR 0x0010 61 /* Command status register for selected thread. */ 62 #define CMD_STATUS 0x0014 63 64 /* Interrupt status register. */ 65 #define INTR_STATUS 0x0110 66 #define INTR_STATUS_SDMA_ERR BIT(22) 67 #define INTR_STATUS_SDMA_TRIGG BIT(21) 68 #define INTR_STATUS_UNSUPP_CMD BIT(19) 69 #define INTR_STATUS_DDMA_TERR BIT(18) 70 #define INTR_STATUS_CDMA_TERR BIT(17) 71 #define INTR_STATUS_CDMA_IDL BIT(16) 72 73 /* Interrupt enable register. */ 74 #define INTR_ENABLE 0x0114 75 #define INTR_ENABLE_INTR_EN BIT(31) 76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 82 83 /* Controller internal state. */ 84 #define CTRL_STATUS 0x0118 85 #define CTRL_STATUS_INIT_COMP BIT(9) 86 #define CTRL_STATUS_CTRL_BUSY BIT(8) 87 88 /* Command Engine threads state. */ 89 #define TRD_STATUS 0x0120 90 91 /* Command Engine interrupt thread error status. */ 92 #define TRD_ERR_INT_STATUS 0x0128 93 /* Command Engine interrupt thread error enable. */ 94 #define TRD_ERR_INT_STATUS_EN 0x0130 95 /* Command Engine interrupt thread complete status. */ 96 #define TRD_COMP_INT_STATUS 0x0138 97 98 /* 99 * Transfer config 0 register. 100 * Configures data transfer parameters. 101 */ 102 #define TRAN_CFG_0 0x0400 103 /* Offset value from the beginning of the page. */ 104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 105 /* Numbers of sectors to transfer within singlNF device's page. */ 106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 107 108 /* 109 * Transfer config 1 register. 110 * Configures data transfer parameters. 111 */ 112 #define TRAN_CFG_1 0x0404 113 /* Size of last data sector. */ 114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 115 /* Size of not-last data sector. */ 116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 117 118 /* ECC engine configuration register 0. */ 119 #define ECC_CONFIG_0 0x0428 120 /* Correction strength. */ 121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 122 /* Enable erased pages detection mechanism. */ 123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 124 /* Enable controller ECC check bits generation and correction. */ 125 #define ECC_CONFIG_0_ECC_EN BIT(0) 126 127 /* ECC engine configuration register 1. */ 128 #define ECC_CONFIG_1 0x042C 129 130 /* Multiplane settings register. */ 131 #define MULTIPLANE_CFG 0x0434 132 /* Cache operation settings. */ 133 #define CACHE_CFG 0x0438 134 135 /* DMA settings register. */ 136 #define DMA_SETINGS 0x043C 137 /* Enable SDMA error report on access unprepared slave DMA interface. */ 138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 139 140 /* Transferred data block size for the slave DMA module. */ 141 #define SDMA_SIZE 0x0440 142 143 /* Thread number associated with transferred data block 144 * for the slave DMA module. 145 */ 146 #define SDMA_TRD_NUM 0x0444 147 /* Thread number mask. */ 148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 149 150 #define CONTROL_DATA_CTRL 0x0494 151 /* Thread number mask. */ 152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 153 154 #define CTRL_VERSION 0x800 155 #define CTRL_VERSION_REV GENMASK(7, 0) 156 157 /* Available hardware features of the controller. */ 158 #define CTRL_FEATURES 0x804 159 /* Support for NV-DDR2/3 work mode. */ 160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 161 /* Support for NV-DDR work mode. */ 162 #define CTRL_FEATURES_NVDDR BIT(27) 163 /* Support for asynchronous work mode. */ 164 #define CTRL_FEATURES_ASYNC BIT(26) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 167 /* Slave and Master DMA data width. */ 168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 169 /* Availability of Control Data feature.*/ 170 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 171 172 /* BCH Engine identification register 0 - correction strengths. */ 173 #define BCH_CFG_0 0x838 174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 178 179 /* BCH Engine identification register 1 - correction strengths. */ 180 #define BCH_CFG_1 0x83C 181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 185 186 /* BCH Engine identification register 2 - sector sizes. */ 187 #define BCH_CFG_2 0x840 188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 190 191 /* BCH Engine identification register 3. */ 192 #define BCH_CFG_3 0x844 193 194 /* Ready/Busy# line status. */ 195 #define RBN_SETINGS 0x1004 196 197 /* Common settings. */ 198 #define COMMON_SET 0x1008 199 /* 16 bit device connected to the NAND Flash interface. */ 200 #define COMMON_SET_DEVICE_16BIT BIT(8) 201 202 /* Skip_bytes registers. */ 203 #define SKIP_BYTES_CONF 0x100C 204 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 205 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 206 207 #define SKIP_BYTES_OFFSET 0x1010 208 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 209 210 /* Timings configuration. */ 211 #define ASYNC_TOGGLE_TIMINGS 0x101c 212 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 213 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 214 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 215 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 216 217 #define TIMINGS0 0x1024 218 #define TIMINGS0_TADL GENMASK(31, 24) 219 #define TIMINGS0_TCCS GENMASK(23, 16) 220 #define TIMINGS0_TWHR GENMASK(15, 8) 221 #define TIMINGS0_TRHW GENMASK(7, 0) 222 223 #define TIMINGS1 0x1028 224 #define TIMINGS1_TRHZ GENMASK(31, 24) 225 #define TIMINGS1_TWB GENMASK(23, 16) 226 #define TIMINGS1_TVDLY GENMASK(7, 0) 227 228 #define TIMINGS2 0x102c 229 #define TIMINGS2_TFEAT GENMASK(25, 16) 230 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 231 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 232 233 /* Configuration of the resynchronization of slave DLL of PHY. */ 234 #define DLL_PHY_CTRL 0x1034 235 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 236 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 237 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 238 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 239 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 240 241 /* Register controlling DQ related timing. */ 242 #define PHY_DQ_TIMING 0x2000 243 /* Register controlling DSQ related timing. */ 244 #define PHY_DQS_TIMING 0x2004 245 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 246 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 247 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 248 249 /* Register controlling the gate and loopback control related timing. */ 250 #define PHY_GATE_LPBK_CTRL 0x2008 251 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 252 253 /* Register holds the control for the master DLL logic. */ 254 #define PHY_DLL_MASTER_CTRL 0x200C 255 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 256 257 /* Register holds the control for the slave DLL logic. */ 258 #define PHY_DLL_SLAVE_CTRL 0x2010 259 260 /* This register handles the global control settings for the PHY. */ 261 #define PHY_CTRL 0x2080 262 #define PHY_CTRL_SDR_DQS BIT(14) 263 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 264 265 /* 266 * This register handles the global control settings 267 * for the termination selects for reads. 268 */ 269 #define PHY_TSEL 0x2084 270 271 /* Generic command layout. */ 272 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 273 /* 274 * This bit informs the minicotroller if it has to wait for tWB 275 * after sending the last CMD/ADDR/DATA in the sequence. 276 */ 277 #define GCMD_LAY_TWB BIT_ULL(6) 278 /* Type of generic instruction. */ 279 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 280 281 /* Generic CMD sequence type. */ 282 #define GCMD_LAY_INSTR_CMD 0 283 /* Generic ADDR sequence type. */ 284 #define GCMD_LAY_INSTR_ADDR 1 285 /* Generic data transfer sequence type. */ 286 #define GCMD_LAY_INSTR_DATA 2 287 288 /* Input part of generic command type of input is command. */ 289 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 290 291 /* Generic command address sequence - address fields. */ 292 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 293 /* Generic command address sequence - address size. */ 294 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 295 296 /* Transfer direction field of generic command data sequence. */ 297 #define GCMD_DIR BIT_ULL(11) 298 /* Read transfer direction of generic command data sequence. */ 299 #define GCMD_DIR_READ 0 300 /* Write transfer direction of generic command data sequence. */ 301 #define GCMD_DIR_WRITE 1 302 303 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 304 #define GCMD_ECC_EN BIT_ULL(12) 305 /* Generic command data sequence - sector size. */ 306 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 307 /* Generic command data sequence - sector count. */ 308 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 309 /* Generic command data sequence - last sector size. */ 310 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 311 312 /* CDMA descriptor fields. */ 313 /* Erase command type of CDMA descriptor. */ 314 #define CDMA_CT_ERASE 0x1000 315 /* Program page command type of CDMA descriptor. */ 316 #define CDMA_CT_WR 0x2100 317 /* Read page command type of CDMA descriptor. */ 318 #define CDMA_CT_RD 0x2200 319 320 /* Flash pointer memory shift. */ 321 #define CDMA_CFPTR_MEM_SHIFT 24 322 /* Flash pointer memory mask. */ 323 #define CDMA_CFPTR_MEM GENMASK(26, 24) 324 325 /* 326 * Command DMA descriptor flags. If set causes issue interrupt after 327 * the completion of descriptor processing. 328 */ 329 #define CDMA_CF_INT BIT(8) 330 /* 331 * Command DMA descriptor flags - the next descriptor 332 * address field is valid and descriptor processing should continue. 333 */ 334 #define CDMA_CF_CONT BIT(9) 335 /* DMA master flag of command DMA descriptor. */ 336 #define CDMA_CF_DMA_MASTER BIT(10) 337 338 /* Operation complete status of command descriptor. */ 339 #define CDMA_CS_COMP BIT(15) 340 /* Operation complete status of command descriptor. */ 341 /* Command descriptor status - operation fail. */ 342 #define CDMA_CS_FAIL BIT(14) 343 /* Command descriptor status - page erased. */ 344 #define CDMA_CS_ERP BIT(11) 345 /* Command descriptor status - timeout occurred. */ 346 #define CDMA_CS_TOUT BIT(10) 347 /* 348 * Maximum amount of correction applied to one ECC sector. 349 * It is part of command descriptor status. 350 */ 351 #define CDMA_CS_MAXERR GENMASK(9, 2) 352 /* Command descriptor status - uncorrectable ECC error. */ 353 #define CDMA_CS_UNCE BIT(1) 354 /* Command descriptor status - descriptor error. */ 355 #define CDMA_CS_ERR BIT(0) 356 357 /* Status of operation - OK. */ 358 #define STAT_OK 0 359 /* Status of operation - FAIL. */ 360 #define STAT_FAIL 2 361 /* Status of operation - uncorrectable ECC error. */ 362 #define STAT_ECC_UNCORR 3 363 /* Status of operation - page erased. */ 364 #define STAT_ERASED 5 365 /* Status of operation - correctable ECC error. */ 366 #define STAT_ECC_CORR 6 367 /* Status of operation - unsuspected state. */ 368 #define STAT_UNKNOWN 7 369 /* Status of operation - operation is not completed yet. */ 370 #define STAT_BUSY 0xFF 371 372 #define BCH_MAX_NUM_CORR_CAPS 8 373 #define BCH_MAX_NUM_SECTOR_SIZES 2 374 375 struct cadence_nand_timings { 376 u32 async_toggle_timings; 377 u32 timings0; 378 u32 timings1; 379 u32 timings2; 380 u32 dll_phy_ctrl; 381 u32 phy_ctrl; 382 u32 phy_dqs_timing; 383 u32 phy_gate_lpbk_ctrl; 384 }; 385 386 /* Command DMA descriptor. */ 387 struct cadence_nand_cdma_desc { 388 /* Next descriptor address. */ 389 u64 next_pointer; 390 391 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 392 u32 flash_pointer; 393 /*field appears in HPNFC version 13*/ 394 u16 bank; 395 u16 rsvd0; 396 397 /* Operation the controller needs to perform. */ 398 u16 command_type; 399 u16 rsvd1; 400 /* Flags for operation of this command. */ 401 u16 command_flags; 402 u16 rsvd2; 403 404 /* System/host memory address required for data DMA commands. */ 405 u64 memory_pointer; 406 407 /* Status of operation. */ 408 u32 status; 409 u32 rsvd3; 410 411 /* Address pointer to sync buffer location. */ 412 u64 sync_flag_pointer; 413 414 /* Controls the buffer sync mechanism. */ 415 u32 sync_arguments; 416 u32 rsvd4; 417 418 /* Control data pointer. */ 419 u64 ctrl_data_ptr; 420 }; 421 422 /* Interrupt status. */ 423 struct cadence_nand_irq_status { 424 /* Thread operation complete status. */ 425 u32 trd_status; 426 /* Thread operation error. */ 427 u32 trd_error; 428 /* Controller status. */ 429 u32 status; 430 }; 431 432 /* Cadence NAND flash controller capabilities get from driver data. */ 433 struct cadence_nand_dt_devdata { 434 /* Skew value of the output signals of the NAND Flash interface. */ 435 u32 if_skew; 436 /* It informs if slave DMA interface is connected to DMA engine. */ 437 unsigned int has_dma:1; 438 }; 439 440 /* Cadence NAND flash controller capabilities read from registers. */ 441 struct cdns_nand_caps { 442 /* Maximum number of banks supported by hardware. */ 443 u8 max_banks; 444 /* Slave and Master DMA data width in bytes (4 or 8). */ 445 u8 data_dma_width; 446 /* Control Data feature supported. */ 447 bool data_control_supp; 448 /* Is PHY type DLL. */ 449 bool is_phy_type_dll; 450 }; 451 452 struct cdns_nand_ctrl { 453 struct device *dev; 454 struct nand_controller controller; 455 struct cadence_nand_cdma_desc *cdma_desc; 456 /* IP capability. */ 457 const struct cadence_nand_dt_devdata *caps1; 458 struct cdns_nand_caps caps2; 459 u8 ctrl_rev; 460 dma_addr_t dma_cdma_desc; 461 u8 *buf; 462 u32 buf_size; 463 u8 curr_corr_str_idx; 464 465 /* Register interface. */ 466 void __iomem *reg; 467 468 struct { 469 void __iomem *virt; 470 dma_addr_t dma; 471 } io; 472 473 int irq; 474 /* Interrupts that have happened. */ 475 struct cadence_nand_irq_status irq_status; 476 /* Interrupts we are waiting for. */ 477 struct cadence_nand_irq_status irq_mask; 478 struct completion complete; 479 /* Protect irq_mask and irq_status. */ 480 spinlock_t irq_lock; 481 482 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 483 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 484 struct nand_ecc_caps ecc_caps; 485 486 int curr_trans_type; 487 488 struct dma_chan *dmac; 489 490 u32 nf_clk_rate; 491 /* 492 * Estimated Board delay. The value includes the total 493 * round trip delay for the signals and is used for deciding on values 494 * associated with data read capture. 495 */ 496 u32 board_delay; 497 498 struct nand_chip *selected_chip; 499 500 unsigned long assigned_cs; 501 struct list_head chips; 502 }; 503 504 struct cdns_nand_chip { 505 struct cadence_nand_timings timings; 506 struct nand_chip chip; 507 u8 nsels; 508 struct list_head node; 509 510 /* 511 * part of oob area of NAND flash memory page. 512 * This part is available for user to read or write. 513 */ 514 u32 avail_oob_size; 515 516 /* Sector size. There are few sectors per mtd->writesize */ 517 u32 sector_size; 518 u32 sector_count; 519 520 /* Offset of BBM. */ 521 u8 bbm_offs; 522 /* Number of bytes reserved for BBM. */ 523 u8 bbm_len; 524 /* ECC strength index. */ 525 u8 corr_str_idx; 526 527 u8 cs[]; 528 }; 529 530 struct ecc_info { 531 int (*calc_ecc_bytes)(int step_size, int strength); 532 int max_step_size; 533 }; 534 535 static inline struct 536 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 537 { 538 return container_of(chip, struct cdns_nand_chip, chip); 539 } 540 541 static inline struct 542 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 543 { 544 return container_of(controller, struct cdns_nand_ctrl, controller); 545 } 546 547 static bool 548 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 549 u32 buf_len) 550 { 551 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 552 553 return buf && virt_addr_valid(buf) && 554 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 555 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 556 } 557 558 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 559 u32 reg_offset, u32 timeout_us, 560 u32 mask, bool is_clear) 561 { 562 u32 val; 563 int ret; 564 565 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 566 val, !(val & mask) == is_clear, 567 10, timeout_us); 568 569 if (ret < 0) { 570 dev_err(cdns_ctrl->dev, 571 "Timeout while waiting for reg %x with mask %x is clear %d\n", 572 reg_offset, mask, is_clear); 573 } 574 575 return ret; 576 } 577 578 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 579 bool enable) 580 { 581 u32 reg; 582 583 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 584 1000000, 585 CTRL_STATUS_CTRL_BUSY, true)) 586 return -ETIMEDOUT; 587 588 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 589 590 if (enable) 591 reg |= ECC_CONFIG_0_ECC_EN; 592 else 593 reg &= ~ECC_CONFIG_0_ECC_EN; 594 595 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 596 597 return 0; 598 } 599 600 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 601 u8 corr_str_idx) 602 { 603 u32 reg; 604 605 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 606 return; 607 608 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 609 reg &= ~ECC_CONFIG_0_CORR_STR; 610 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 611 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 612 613 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 614 } 615 616 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 617 u8 strength) 618 { 619 int i, corr_str_idx = -1; 620 621 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 622 if (cdns_ctrl->ecc_strengths[i] == strength) { 623 corr_str_idx = i; 624 break; 625 } 626 } 627 628 return corr_str_idx; 629 } 630 631 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 632 u16 marker_value) 633 { 634 u32 reg; 635 636 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 637 1000000, 638 CTRL_STATUS_CTRL_BUSY, true)) 639 return -ETIMEDOUT; 640 641 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 642 reg &= ~SKIP_BYTES_MARKER_VALUE; 643 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 644 marker_value); 645 646 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 647 648 return 0; 649 } 650 651 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 652 u8 num_of_bytes, 653 u32 offset_value, 654 int enable) 655 { 656 u32 reg, skip_bytes_offset; 657 658 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 659 1000000, 660 CTRL_STATUS_CTRL_BUSY, true)) 661 return -ETIMEDOUT; 662 663 if (!enable) { 664 num_of_bytes = 0; 665 offset_value = 0; 666 } 667 668 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 669 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 670 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 671 num_of_bytes); 672 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 673 offset_value); 674 675 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 676 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 677 678 return 0; 679 } 680 681 /* Functions enables/disables hardware detection of erased data */ 682 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 683 bool enable, 684 u8 bitflips_threshold) 685 { 686 u32 reg; 687 688 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 689 690 if (enable) 691 reg |= ECC_CONFIG_0_ERASE_DET_EN; 692 else 693 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 694 695 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 696 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 697 } 698 699 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 700 bool bit_bus16) 701 { 702 u32 reg; 703 704 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 705 1000000, 706 CTRL_STATUS_CTRL_BUSY, true)) 707 return -ETIMEDOUT; 708 709 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 710 711 if (!bit_bus16) 712 reg &= ~COMMON_SET_DEVICE_16BIT; 713 else 714 reg |= COMMON_SET_DEVICE_16BIT; 715 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 716 717 return 0; 718 } 719 720 static void 721 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 722 struct cadence_nand_irq_status *irq_status) 723 { 724 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 725 writel_relaxed(irq_status->trd_status, 726 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 727 writel_relaxed(irq_status->trd_error, 728 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 729 } 730 731 static void 732 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 733 struct cadence_nand_irq_status *irq_status) 734 { 735 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 736 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 737 + TRD_COMP_INT_STATUS); 738 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 739 + TRD_ERR_INT_STATUS); 740 } 741 742 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 743 struct cadence_nand_irq_status *irq_status) 744 { 745 cadence_nand_read_int_status(cdns_ctrl, irq_status); 746 747 return irq_status->status || irq_status->trd_status || 748 irq_status->trd_error; 749 } 750 751 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 752 { 753 unsigned long flags; 754 755 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 756 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 757 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 758 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 759 } 760 761 /* 762 * This is the interrupt service routine. It handles all interrupts 763 * sent to this device. 764 */ 765 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 766 { 767 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 768 struct cadence_nand_irq_status irq_status; 769 irqreturn_t result = IRQ_NONE; 770 771 spin_lock(&cdns_ctrl->irq_lock); 772 773 if (irq_detected(cdns_ctrl, &irq_status)) { 774 /* Handle interrupt. */ 775 /* First acknowledge it. */ 776 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 777 /* Status in the device context for someone to read. */ 778 cdns_ctrl->irq_status.status |= irq_status.status; 779 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 780 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 781 /* Notify anyone who cares that it happened. */ 782 complete(&cdns_ctrl->complete); 783 /* Tell the OS that we've handled this. */ 784 result = IRQ_HANDLED; 785 } 786 spin_unlock(&cdns_ctrl->irq_lock); 787 788 return result; 789 } 790 791 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 792 struct cadence_nand_irq_status *irq_mask) 793 { 794 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 795 cdns_ctrl->reg + INTR_ENABLE); 796 797 writel_relaxed(irq_mask->trd_error, 798 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 799 } 800 801 static void 802 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 803 struct cadence_nand_irq_status *irq_mask, 804 struct cadence_nand_irq_status *irq_status) 805 { 806 unsigned long timeout = msecs_to_jiffies(10000); 807 unsigned long time_left; 808 809 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 810 timeout); 811 812 *irq_status = cdns_ctrl->irq_status; 813 if (time_left == 0) { 814 /* Timeout error. */ 815 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 816 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 817 irq_status->status, irq_mask->status); 818 dev_err(cdns_ctrl->dev, 819 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 820 irq_status->trd_status, irq_mask->trd_status); 821 dev_err(cdns_ctrl->dev, 822 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 823 irq_status->trd_error, irq_mask->trd_error); 824 } 825 } 826 827 /* Execute generic command on NAND controller. */ 828 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 829 u8 chip_nr, 830 u64 mini_ctrl_cmd) 831 { 832 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 833 834 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 835 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 836 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 837 838 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 839 1000000, 840 CTRL_STATUS_CTRL_BUSY, true)) 841 return -ETIMEDOUT; 842 843 cadence_nand_reset_irq(cdns_ctrl); 844 845 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 846 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 847 848 /* Select generic command. */ 849 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 850 /* Thread number. */ 851 reg |= FIELD_PREP(CMD_REG0_TN, 0); 852 853 /* Issue command. */ 854 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 855 856 return 0; 857 } 858 859 /* Wait for data on slave DMA interface. */ 860 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 861 u8 *out_sdma_trd, 862 u32 *out_sdma_size) 863 { 864 struct cadence_nand_irq_status irq_mask, irq_status; 865 866 irq_mask.trd_status = 0; 867 irq_mask.trd_error = 0; 868 irq_mask.status = INTR_STATUS_SDMA_TRIGG 869 | INTR_STATUS_SDMA_ERR 870 | INTR_STATUS_UNSUPP_CMD; 871 872 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 873 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 874 if (irq_status.status == 0) { 875 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 876 return -ETIMEDOUT; 877 } 878 879 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 880 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 881 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 882 *out_sdma_trd = 883 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 884 } else { 885 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 886 irq_status.status); 887 return -EIO; 888 } 889 890 return 0; 891 } 892 893 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 894 { 895 u32 reg; 896 897 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 898 899 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 900 901 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 902 cdns_ctrl->caps2.data_dma_width = 8; 903 else 904 cdns_ctrl->caps2.data_dma_width = 4; 905 906 if (reg & CTRL_FEATURES_CONTROL_DATA) 907 cdns_ctrl->caps2.data_control_supp = true; 908 909 if (reg & (CTRL_FEATURES_NVDDR_2_3 910 | CTRL_FEATURES_NVDDR)) 911 cdns_ctrl->caps2.is_phy_type_dll = true; 912 } 913 914 /* Prepare CDMA descriptor. */ 915 static void 916 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 917 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 918 dma_addr_t ctrl_data_ptr, u16 ctype) 919 { 920 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 921 922 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 923 924 /* Set fields for one descriptor. */ 925 cdma_desc->flash_pointer = flash_ptr; 926 if (cdns_ctrl->ctrl_rev >= 13) 927 cdma_desc->bank = nf_mem; 928 else 929 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 930 931 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 932 cdma_desc->command_flags |= CDMA_CF_INT; 933 934 cdma_desc->memory_pointer = mem_ptr; 935 cdma_desc->status = 0; 936 cdma_desc->sync_flag_pointer = 0; 937 cdma_desc->sync_arguments = 0; 938 939 cdma_desc->command_type = ctype; 940 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 941 } 942 943 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 944 u32 desc_status) 945 { 946 if (desc_status & CDMA_CS_ERP) 947 return STAT_ERASED; 948 949 if (desc_status & CDMA_CS_UNCE) 950 return STAT_ECC_UNCORR; 951 952 if (desc_status & CDMA_CS_ERR) { 953 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 954 return STAT_FAIL; 955 } 956 957 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 958 return STAT_ECC_CORR; 959 960 return STAT_FAIL; 961 } 962 963 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 964 { 965 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 966 u8 status = STAT_BUSY; 967 968 if (desc_ptr->status & CDMA_CS_FAIL) { 969 status = cadence_nand_check_desc_error(cdns_ctrl, 970 desc_ptr->status); 971 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 972 } else if (desc_ptr->status & CDMA_CS_COMP) { 973 /* Descriptor finished with no errors. */ 974 if (desc_ptr->command_flags & CDMA_CF_CONT) { 975 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 976 status = STAT_UNKNOWN; 977 } else { 978 /* Last descriptor. */ 979 status = STAT_OK; 980 } 981 } 982 983 return status; 984 } 985 986 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 987 u8 thread) 988 { 989 u32 reg; 990 int status; 991 992 /* Wait for thread ready. */ 993 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 994 1000000, 995 BIT(thread), true); 996 if (status) 997 return status; 998 999 cadence_nand_reset_irq(cdns_ctrl); 1000 1001 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1002 cdns_ctrl->reg + CMD_REG2); 1003 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1004 1005 /* Select CDMA mode. */ 1006 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1007 /* Thread number. */ 1008 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1009 /* Issue command. */ 1010 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1011 1012 return 0; 1013 } 1014 1015 /* Send SDMA command and wait for finish. */ 1016 static u32 1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1018 u8 thread) 1019 { 1020 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1021 int status; 1022 1023 irq_mask.trd_status = BIT(thread); 1024 irq_mask.trd_error = BIT(thread); 1025 irq_mask.status = INTR_STATUS_CDMA_TERR; 1026 1027 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1028 1029 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1030 if (status) 1031 return status; 1032 1033 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1034 1035 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1036 irq_status.trd_error == 0) { 1037 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1038 return -ETIMEDOUT; 1039 } 1040 if (irq_status.status & irq_mask.status) { 1041 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1042 return -EIO; 1043 } 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * ECC size depends on configured ECC strength and on maximum supported 1050 * ECC step size. 1051 */ 1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1053 { 1054 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1055 1056 return ALIGN(nbytes, 2); 1057 } 1058 1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1060 static int \ 1061 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1062 int strength)\ 1063 {\ 1064 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1065 } 1066 1067 CADENCE_NAND_CALC_ECC_BYTES(256) 1068 CADENCE_NAND_CALC_ECC_BYTES(512) 1069 CADENCE_NAND_CALC_ECC_BYTES(1024) 1070 CADENCE_NAND_CALC_ECC_BYTES(2048) 1071 CADENCE_NAND_CALC_ECC_BYTES(4096) 1072 1073 /* Function reads BCH capabilities. */ 1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1075 { 1076 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1077 int max_step_size = 0, nstrengths, i; 1078 u32 reg; 1079 1080 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1081 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1082 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1083 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1084 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1085 1086 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1087 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1088 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1089 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1090 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1091 1092 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1093 cdns_ctrl->ecc_stepinfos[0].stepsize = 1094 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1095 1096 cdns_ctrl->ecc_stepinfos[1].stepsize = 1097 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1098 1099 nstrengths = 0; 1100 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1101 if (cdns_ctrl->ecc_strengths[i] != 0) 1102 nstrengths++; 1103 } 1104 1105 ecc_caps->nstepinfos = 0; 1106 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1107 /* ECC strengths are common for all step infos. */ 1108 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1109 cdns_ctrl->ecc_stepinfos[i].strengths = 1110 cdns_ctrl->ecc_strengths; 1111 1112 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1113 ecc_caps->nstepinfos++; 1114 1115 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1116 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1117 } 1118 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1119 1120 switch (max_step_size) { 1121 case 256: 1122 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1123 break; 1124 case 512: 1125 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1126 break; 1127 case 1024: 1128 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1129 break; 1130 case 2048: 1131 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1132 break; 1133 case 4096: 1134 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1135 break; 1136 default: 1137 dev_err(cdns_ctrl->dev, 1138 "Unsupported sector size(ecc step size) %d\n", 1139 max_step_size); 1140 return -EIO; 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* Hardware initialization. */ 1147 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1148 { 1149 int status; 1150 u32 reg; 1151 1152 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1153 1000000, 1154 CTRL_STATUS_INIT_COMP, false); 1155 if (status) 1156 return status; 1157 1158 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1159 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1160 1161 dev_info(cdns_ctrl->dev, 1162 "%s: cadence nand controller version reg %x\n", 1163 __func__, reg); 1164 1165 /* Disable cache and multiplane. */ 1166 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1167 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1168 1169 /* Clear all interrupts. */ 1170 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1171 1172 cadence_nand_get_caps(cdns_ctrl); 1173 cadence_nand_read_bch_caps(cdns_ctrl); 1174 1175 /* 1176 * Set IO width access to 8. 1177 * It is because during SW device discovering width access 1178 * is expected to be 8. 1179 */ 1180 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1181 1182 return status; 1183 } 1184 1185 #define TT_MAIN_OOB_AREAS 2 1186 #define TT_RAW_PAGE 3 1187 #define TT_BBM 4 1188 #define TT_MAIN_OOB_AREA_EXT 5 1189 1190 /* Prepare size of data to transfer. */ 1191 static void 1192 cadence_nand_prepare_data_size(struct nand_chip *chip, 1193 int transfer_type) 1194 { 1195 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1196 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1197 struct mtd_info *mtd = nand_to_mtd(chip); 1198 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1199 u32 last_sec_size = cdns_chip->sector_size; 1200 u32 data_ctrl_size = 0; 1201 u32 reg = 0; 1202 1203 if (cdns_ctrl->curr_trans_type == transfer_type) 1204 return; 1205 1206 switch (transfer_type) { 1207 case TT_MAIN_OOB_AREA_EXT: 1208 sec_cnt = cdns_chip->sector_count; 1209 sec_size = cdns_chip->sector_size; 1210 data_ctrl_size = cdns_chip->avail_oob_size; 1211 break; 1212 case TT_MAIN_OOB_AREAS: 1213 sec_cnt = cdns_chip->sector_count; 1214 last_sec_size = cdns_chip->sector_size 1215 + cdns_chip->avail_oob_size; 1216 sec_size = cdns_chip->sector_size; 1217 break; 1218 case TT_RAW_PAGE: 1219 last_sec_size = mtd->writesize + mtd->oobsize; 1220 break; 1221 case TT_BBM: 1222 offset = mtd->writesize + cdns_chip->bbm_offs; 1223 last_sec_size = 8; 1224 break; 1225 } 1226 1227 reg = 0; 1228 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1229 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1230 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1231 1232 reg = 0; 1233 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1234 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1235 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1236 1237 if (cdns_ctrl->caps2.data_control_supp) { 1238 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1239 reg &= ~CONTROL_DATA_CTRL_SIZE; 1240 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1241 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1242 } 1243 1244 cdns_ctrl->curr_trans_type = transfer_type; 1245 } 1246 1247 static int 1248 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1249 int page, void *buf, void *ctrl_dat, u32 buf_size, 1250 u32 ctrl_dat_size, enum dma_data_direction dir, 1251 bool with_ecc) 1252 { 1253 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1254 u8 thread_nr = chip_nr; 1255 int status; 1256 u16 ctype; 1257 1258 if (dir == DMA_FROM_DEVICE) 1259 ctype = CDMA_CT_RD; 1260 else 1261 ctype = CDMA_CT_WR; 1262 1263 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1264 1265 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1266 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1267 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1268 return -EIO; 1269 } 1270 1271 if (ctrl_dat && ctrl_dat_size) { 1272 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1273 ctrl_dat_size, dir); 1274 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1275 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1276 buf_size, dir); 1277 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1278 return -EIO; 1279 } 1280 } 1281 1282 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1283 dma_buf, dma_ctrl_dat, ctype); 1284 1285 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1286 1287 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1288 buf_size, dir); 1289 1290 if (ctrl_dat && ctrl_dat_size) 1291 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1292 ctrl_dat_size, dir); 1293 if (status) 1294 return status; 1295 1296 return cadence_nand_cdma_finish(cdns_ctrl); 1297 } 1298 1299 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1300 struct cadence_nand_timings *t) 1301 { 1302 writel_relaxed(t->async_toggle_timings, 1303 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1304 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1305 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1306 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1307 1308 if (cdns_ctrl->caps2.is_phy_type_dll) 1309 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1310 1311 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1312 1313 if (cdns_ctrl->caps2.is_phy_type_dll) { 1314 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1315 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1316 writel_relaxed(t->phy_dqs_timing, 1317 cdns_ctrl->reg + PHY_DQS_TIMING); 1318 writel_relaxed(t->phy_gate_lpbk_ctrl, 1319 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1320 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1321 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1322 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1323 } 1324 } 1325 1326 static int cadence_nand_select_target(struct nand_chip *chip) 1327 { 1328 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1329 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1330 1331 if (chip == cdns_ctrl->selected_chip) 1332 return 0; 1333 1334 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1335 1000000, 1336 CTRL_STATUS_CTRL_BUSY, true)) 1337 return -ETIMEDOUT; 1338 1339 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1340 1341 cadence_nand_set_ecc_strength(cdns_ctrl, 1342 cdns_chip->corr_str_idx); 1343 1344 cadence_nand_set_erase_detection(cdns_ctrl, true, 1345 chip->ecc.strength); 1346 1347 cdns_ctrl->curr_trans_type = -1; 1348 cdns_ctrl->selected_chip = chip; 1349 1350 return 0; 1351 } 1352 1353 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1354 { 1355 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1356 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1357 int status; 1358 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1359 1360 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1361 cdns_chip->cs[chip->cur_cs], 1362 page, 0, 0, 1363 CDMA_CT_ERASE); 1364 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1365 if (status) { 1366 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1367 return -EIO; 1368 } 1369 1370 status = cadence_nand_cdma_finish(cdns_ctrl); 1371 if (status) 1372 return status; 1373 1374 return 0; 1375 } 1376 1377 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1378 { 1379 int status; 1380 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1381 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1382 struct mtd_info *mtd = nand_to_mtd(chip); 1383 1384 cadence_nand_prepare_data_size(chip, TT_BBM); 1385 1386 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1387 1388 /* 1389 * Read only bad block marker from offset 1390 * defined by a memory manufacturer. 1391 */ 1392 status = cadence_nand_cdma_transfer(cdns_ctrl, 1393 cdns_chip->cs[chip->cur_cs], 1394 page, cdns_ctrl->buf, NULL, 1395 mtd->oobsize, 1396 0, DMA_FROM_DEVICE, false); 1397 if (status) { 1398 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1399 return -EIO; 1400 } 1401 1402 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1403 1404 return 0; 1405 } 1406 1407 static int cadence_nand_write_page(struct nand_chip *chip, 1408 const u8 *buf, int oob_required, 1409 int page) 1410 { 1411 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1412 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1413 struct mtd_info *mtd = nand_to_mtd(chip); 1414 int status; 1415 u16 marker_val = 0xFFFF; 1416 1417 status = cadence_nand_select_target(chip); 1418 if (status) 1419 return status; 1420 1421 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1422 mtd->writesize 1423 + cdns_chip->bbm_offs, 1424 1); 1425 1426 if (oob_required) { 1427 marker_val = *(u16 *)(chip->oob_poi 1428 + cdns_chip->bbm_offs); 1429 } else { 1430 /* Set oob data to 0xFF. */ 1431 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1432 cdns_chip->avail_oob_size); 1433 } 1434 1435 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1436 1437 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1438 1439 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1440 cdns_ctrl->caps2.data_control_supp) { 1441 u8 *oob; 1442 1443 if (oob_required) 1444 oob = chip->oob_poi; 1445 else 1446 oob = cdns_ctrl->buf + mtd->writesize; 1447 1448 status = cadence_nand_cdma_transfer(cdns_ctrl, 1449 cdns_chip->cs[chip->cur_cs], 1450 page, (void *)buf, oob, 1451 mtd->writesize, 1452 cdns_chip->avail_oob_size, 1453 DMA_TO_DEVICE, true); 1454 if (status) { 1455 dev_err(cdns_ctrl->dev, "write page failed\n"); 1456 return -EIO; 1457 } 1458 1459 return 0; 1460 } 1461 1462 if (oob_required) { 1463 /* Transfer the data to the oob area. */ 1464 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1465 cdns_chip->avail_oob_size); 1466 } 1467 1468 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1469 1470 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1471 1472 return cadence_nand_cdma_transfer(cdns_ctrl, 1473 cdns_chip->cs[chip->cur_cs], 1474 page, cdns_ctrl->buf, NULL, 1475 mtd->writesize 1476 + cdns_chip->avail_oob_size, 1477 0, DMA_TO_DEVICE, true); 1478 } 1479 1480 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1481 { 1482 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1483 struct mtd_info *mtd = nand_to_mtd(chip); 1484 1485 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1486 1487 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1488 } 1489 1490 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1491 const u8 *buf, int oob_required, 1492 int page) 1493 { 1494 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1495 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1496 struct mtd_info *mtd = nand_to_mtd(chip); 1497 int writesize = mtd->writesize; 1498 int oobsize = mtd->oobsize; 1499 int ecc_steps = chip->ecc.steps; 1500 int ecc_size = chip->ecc.size; 1501 int ecc_bytes = chip->ecc.bytes; 1502 void *tmp_buf = cdns_ctrl->buf; 1503 int oob_skip = cdns_chip->bbm_len; 1504 size_t size = writesize + oobsize; 1505 int i, pos, len; 1506 int status = 0; 1507 1508 status = cadence_nand_select_target(chip); 1509 if (status) 1510 return status; 1511 1512 /* 1513 * Fill the buffer with 0xff first except the full page transfer. 1514 * This simplifies the logic. 1515 */ 1516 if (!buf || !oob_required) 1517 memset(tmp_buf, 0xff, size); 1518 1519 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1520 1521 /* Arrange the buffer for syndrome payload/ecc layout. */ 1522 if (buf) { 1523 for (i = 0; i < ecc_steps; i++) { 1524 pos = i * (ecc_size + ecc_bytes); 1525 len = ecc_size; 1526 1527 if (pos >= writesize) 1528 pos += oob_skip; 1529 else if (pos + len > writesize) 1530 len = writesize - pos; 1531 1532 memcpy(tmp_buf + pos, buf, len); 1533 buf += len; 1534 if (len < ecc_size) { 1535 len = ecc_size - len; 1536 memcpy(tmp_buf + writesize + oob_skip, buf, 1537 len); 1538 buf += len; 1539 } 1540 } 1541 } 1542 1543 if (oob_required) { 1544 const u8 *oob = chip->oob_poi; 1545 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1546 (cdns_chip->sector_size + chip->ecc.bytes) 1547 + cdns_chip->sector_size + oob_skip; 1548 1549 /* BBM at the beginning of the OOB area. */ 1550 memcpy(tmp_buf + writesize, oob, oob_skip); 1551 1552 /* OOB free. */ 1553 memcpy(tmp_buf + oob_data_offset, oob, 1554 cdns_chip->avail_oob_size); 1555 oob += cdns_chip->avail_oob_size; 1556 1557 /* OOB ECC. */ 1558 for (i = 0; i < ecc_steps; i++) { 1559 pos = ecc_size + i * (ecc_size + ecc_bytes); 1560 if (i == (ecc_steps - 1)) 1561 pos += cdns_chip->avail_oob_size; 1562 1563 len = ecc_bytes; 1564 1565 if (pos >= writesize) 1566 pos += oob_skip; 1567 else if (pos + len > writesize) 1568 len = writesize - pos; 1569 1570 memcpy(tmp_buf + pos, oob, len); 1571 oob += len; 1572 if (len < ecc_bytes) { 1573 len = ecc_bytes - len; 1574 memcpy(tmp_buf + writesize + oob_skip, oob, 1575 len); 1576 oob += len; 1577 } 1578 } 1579 } 1580 1581 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1582 1583 return cadence_nand_cdma_transfer(cdns_ctrl, 1584 cdns_chip->cs[chip->cur_cs], 1585 page, cdns_ctrl->buf, NULL, 1586 mtd->writesize + 1587 mtd->oobsize, 1588 0, DMA_TO_DEVICE, false); 1589 } 1590 1591 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1592 int page) 1593 { 1594 return cadence_nand_write_page_raw(chip, NULL, true, page); 1595 } 1596 1597 static int cadence_nand_read_page(struct nand_chip *chip, 1598 u8 *buf, int oob_required, int page) 1599 { 1600 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1601 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1602 struct mtd_info *mtd = nand_to_mtd(chip); 1603 int status = 0; 1604 int ecc_err_count = 0; 1605 1606 status = cadence_nand_select_target(chip); 1607 if (status) 1608 return status; 1609 1610 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1611 mtd->writesize 1612 + cdns_chip->bbm_offs, 1); 1613 1614 /* 1615 * If data buffer can be accessed by DMA and data_control feature 1616 * is supported then transfer data and oob directly. 1617 */ 1618 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1619 cdns_ctrl->caps2.data_control_supp) { 1620 u8 *oob; 1621 1622 if (oob_required) 1623 oob = chip->oob_poi; 1624 else 1625 oob = cdns_ctrl->buf + mtd->writesize; 1626 1627 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1628 status = cadence_nand_cdma_transfer(cdns_ctrl, 1629 cdns_chip->cs[chip->cur_cs], 1630 page, buf, oob, 1631 mtd->writesize, 1632 cdns_chip->avail_oob_size, 1633 DMA_FROM_DEVICE, true); 1634 /* Otherwise use bounce buffer. */ 1635 } else { 1636 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1637 status = cadence_nand_cdma_transfer(cdns_ctrl, 1638 cdns_chip->cs[chip->cur_cs], 1639 page, cdns_ctrl->buf, 1640 NULL, mtd->writesize 1641 + cdns_chip->avail_oob_size, 1642 0, DMA_FROM_DEVICE, true); 1643 1644 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1645 if (oob_required) 1646 memcpy(chip->oob_poi, 1647 cdns_ctrl->buf + mtd->writesize, 1648 mtd->oobsize); 1649 } 1650 1651 switch (status) { 1652 case STAT_ECC_UNCORR: 1653 mtd->ecc_stats.failed++; 1654 ecc_err_count++; 1655 break; 1656 case STAT_ECC_CORR: 1657 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1658 cdns_ctrl->cdma_desc->status); 1659 mtd->ecc_stats.corrected += ecc_err_count; 1660 break; 1661 case STAT_ERASED: 1662 case STAT_OK: 1663 break; 1664 default: 1665 dev_err(cdns_ctrl->dev, "read page failed\n"); 1666 return -EIO; 1667 } 1668 1669 if (oob_required) 1670 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1671 return -EIO; 1672 1673 return ecc_err_count; 1674 } 1675 1676 /* Reads OOB data from the device. */ 1677 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1678 { 1679 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1680 1681 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1682 } 1683 1684 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1685 u8 *buf, int oob_required, int page) 1686 { 1687 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1688 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1689 struct mtd_info *mtd = nand_to_mtd(chip); 1690 int oob_skip = cdns_chip->bbm_len; 1691 int writesize = mtd->writesize; 1692 int ecc_steps = chip->ecc.steps; 1693 int ecc_size = chip->ecc.size; 1694 int ecc_bytes = chip->ecc.bytes; 1695 void *tmp_buf = cdns_ctrl->buf; 1696 int i, pos, len; 1697 int status = 0; 1698 1699 status = cadence_nand_select_target(chip); 1700 if (status) 1701 return status; 1702 1703 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1704 1705 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1706 status = cadence_nand_cdma_transfer(cdns_ctrl, 1707 cdns_chip->cs[chip->cur_cs], 1708 page, cdns_ctrl->buf, NULL, 1709 mtd->writesize 1710 + mtd->oobsize, 1711 0, DMA_FROM_DEVICE, false); 1712 1713 switch (status) { 1714 case STAT_ERASED: 1715 case STAT_OK: 1716 break; 1717 default: 1718 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1719 return -EIO; 1720 } 1721 1722 /* Arrange the buffer for syndrome payload/ecc layout. */ 1723 if (buf) { 1724 for (i = 0; i < ecc_steps; i++) { 1725 pos = i * (ecc_size + ecc_bytes); 1726 len = ecc_size; 1727 1728 if (pos >= writesize) 1729 pos += oob_skip; 1730 else if (pos + len > writesize) 1731 len = writesize - pos; 1732 1733 memcpy(buf, tmp_buf + pos, len); 1734 buf += len; 1735 if (len < ecc_size) { 1736 len = ecc_size - len; 1737 memcpy(buf, tmp_buf + writesize + oob_skip, 1738 len); 1739 buf += len; 1740 } 1741 } 1742 } 1743 1744 if (oob_required) { 1745 u8 *oob = chip->oob_poi; 1746 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1747 (cdns_chip->sector_size + chip->ecc.bytes) 1748 + cdns_chip->sector_size + oob_skip; 1749 1750 /* OOB free. */ 1751 memcpy(oob, tmp_buf + oob_data_offset, 1752 cdns_chip->avail_oob_size); 1753 1754 /* BBM at the beginning of the OOB area. */ 1755 memcpy(oob, tmp_buf + writesize, oob_skip); 1756 1757 oob += cdns_chip->avail_oob_size; 1758 1759 /* OOB ECC */ 1760 for (i = 0; i < ecc_steps; i++) { 1761 pos = ecc_size + i * (ecc_size + ecc_bytes); 1762 len = ecc_bytes; 1763 1764 if (i == (ecc_steps - 1)) 1765 pos += cdns_chip->avail_oob_size; 1766 1767 if (pos >= writesize) 1768 pos += oob_skip; 1769 else if (pos + len > writesize) 1770 len = writesize - pos; 1771 1772 memcpy(oob, tmp_buf + pos, len); 1773 oob += len; 1774 if (len < ecc_bytes) { 1775 len = ecc_bytes - len; 1776 memcpy(oob, tmp_buf + writesize + oob_skip, 1777 len); 1778 oob += len; 1779 } 1780 } 1781 } 1782 1783 return 0; 1784 } 1785 1786 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1787 int page) 1788 { 1789 return cadence_nand_read_page_raw(chip, NULL, true, page); 1790 } 1791 1792 static void cadence_nand_slave_dma_transfer_finished(void *data) 1793 { 1794 struct completion *finished = data; 1795 1796 complete(finished); 1797 } 1798 1799 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1800 void *buf, 1801 dma_addr_t dev_dma, size_t len, 1802 enum dma_data_direction dir) 1803 { 1804 DECLARE_COMPLETION_ONSTACK(finished); 1805 struct dma_chan *chan; 1806 struct dma_device *dma_dev; 1807 dma_addr_t src_dma, dst_dma, buf_dma; 1808 struct dma_async_tx_descriptor *tx; 1809 dma_cookie_t cookie; 1810 1811 chan = cdns_ctrl->dmac; 1812 dma_dev = chan->device; 1813 1814 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1815 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1816 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1817 goto err; 1818 } 1819 1820 if (dir == DMA_FROM_DEVICE) { 1821 src_dma = cdns_ctrl->io.dma; 1822 dst_dma = buf_dma; 1823 } else { 1824 src_dma = buf_dma; 1825 dst_dma = cdns_ctrl->io.dma; 1826 } 1827 1828 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1829 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1830 if (!tx) { 1831 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1832 goto err_unmap; 1833 } 1834 1835 tx->callback = cadence_nand_slave_dma_transfer_finished; 1836 tx->callback_param = &finished; 1837 1838 cookie = dmaengine_submit(tx); 1839 if (dma_submit_error(cookie)) { 1840 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1841 goto err_unmap; 1842 } 1843 1844 dma_async_issue_pending(cdns_ctrl->dmac); 1845 wait_for_completion(&finished); 1846 1847 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1848 1849 return 0; 1850 1851 err_unmap: 1852 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1853 1854 err: 1855 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1856 1857 return -EIO; 1858 } 1859 1860 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1861 u8 *buf, int len) 1862 { 1863 u8 thread_nr = 0; 1864 u32 sdma_size; 1865 int status; 1866 1867 /* Wait until slave DMA interface is ready to data transfer. */ 1868 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1869 if (status) 1870 return status; 1871 1872 if (!cdns_ctrl->caps1->has_dma) { 1873 int len_in_words = len >> 2; 1874 1875 /* read alingment data */ 1876 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1877 if (sdma_size > len) { 1878 /* read rest data from slave DMA interface if any */ 1879 ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1880 sdma_size / 4 - len_in_words); 1881 /* copy rest of data */ 1882 memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, 1883 len - (len_in_words << 2)); 1884 } 1885 return 0; 1886 } 1887 1888 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1889 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1890 cdns_ctrl->io.dma, 1891 len, DMA_FROM_DEVICE); 1892 if (status == 0) 1893 return 0; 1894 1895 dev_warn(cdns_ctrl->dev, 1896 "Slave DMA transfer failed. Try again using bounce buffer."); 1897 } 1898 1899 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1900 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1901 cdns_ctrl->io.dma, 1902 sdma_size, DMA_FROM_DEVICE); 1903 1904 if (status) { 1905 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1906 return status; 1907 } 1908 1909 memcpy(buf, cdns_ctrl->buf, len); 1910 1911 return 0; 1912 } 1913 1914 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1915 const u8 *buf, int len) 1916 { 1917 u8 thread_nr = 0; 1918 u32 sdma_size; 1919 int status; 1920 1921 /* Wait until slave DMA interface is ready to data transfer. */ 1922 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1923 if (status) 1924 return status; 1925 1926 if (!cdns_ctrl->caps1->has_dma) { 1927 int len_in_words = len >> 2; 1928 1929 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1930 if (sdma_size > len) { 1931 /* copy rest of data */ 1932 memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), 1933 len - (len_in_words << 2)); 1934 /* write all expected by nand controller data */ 1935 iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1936 sdma_size / 4 - len_in_words); 1937 } 1938 1939 return 0; 1940 } 1941 1942 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1943 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 1944 cdns_ctrl->io.dma, 1945 len, DMA_TO_DEVICE); 1946 if (status == 0) 1947 return 0; 1948 1949 dev_warn(cdns_ctrl->dev, 1950 "Slave DMA transfer failed. Try again using bounce buffer."); 1951 } 1952 1953 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1954 memcpy(cdns_ctrl->buf, buf, len); 1955 1956 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1957 cdns_ctrl->io.dma, 1958 sdma_size, DMA_TO_DEVICE); 1959 1960 if (status) 1961 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1962 1963 return status; 1964 } 1965 1966 static int cadence_nand_force_byte_access(struct nand_chip *chip, 1967 bool force_8bit) 1968 { 1969 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1970 int status; 1971 1972 /* 1973 * Callers of this function do not verify if the NAND is using a 16-bit 1974 * an 8-bit bus for normal operations, so we need to take care of that 1975 * here by leaving the configuration unchanged if the NAND does not have 1976 * the NAND_BUSWIDTH_16 flag set. 1977 */ 1978 if (!(chip->options & NAND_BUSWIDTH_16)) 1979 return 0; 1980 1981 status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 1982 1983 return status; 1984 } 1985 1986 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 1987 const struct nand_subop *subop) 1988 { 1989 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1990 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1991 const struct nand_op_instr *instr; 1992 unsigned int op_id = 0; 1993 u64 mini_ctrl_cmd = 0; 1994 int ret; 1995 1996 instr = &subop->instrs[op_id]; 1997 1998 if (instr->delay_ns > 0) 1999 mini_ctrl_cmd |= GCMD_LAY_TWB; 2000 2001 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2002 GCMD_LAY_INSTR_CMD); 2003 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2004 instr->ctx.cmd.opcode); 2005 2006 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2007 cdns_chip->cs[chip->cur_cs], 2008 mini_ctrl_cmd); 2009 if (ret) 2010 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2011 instr->ctx.cmd.opcode); 2012 2013 return ret; 2014 } 2015 2016 static int cadence_nand_cmd_address(struct nand_chip *chip, 2017 const struct nand_subop *subop) 2018 { 2019 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2020 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2021 const struct nand_op_instr *instr; 2022 unsigned int op_id = 0; 2023 u64 mini_ctrl_cmd = 0; 2024 unsigned int offset, naddrs; 2025 u64 address = 0; 2026 const u8 *addrs; 2027 int ret; 2028 int i; 2029 2030 instr = &subop->instrs[op_id]; 2031 2032 if (instr->delay_ns > 0) 2033 mini_ctrl_cmd |= GCMD_LAY_TWB; 2034 2035 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2036 GCMD_LAY_INSTR_ADDR); 2037 2038 offset = nand_subop_get_addr_start_off(subop, op_id); 2039 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2040 addrs = &instr->ctx.addr.addrs[offset]; 2041 2042 for (i = 0; i < naddrs; i++) 2043 address |= (u64)addrs[i] << (8 * i); 2044 2045 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2046 address); 2047 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2048 naddrs - 1); 2049 2050 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2051 cdns_chip->cs[chip->cur_cs], 2052 mini_ctrl_cmd); 2053 if (ret) 2054 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2055 2056 return ret; 2057 } 2058 2059 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2060 const struct nand_subop *subop) 2061 { 2062 unsigned int op_id; 2063 2064 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2065 int i; 2066 const struct nand_op_instr *instr = NULL; 2067 unsigned int offset, naddrs; 2068 const u8 *addrs; 2069 u32 page = 0; 2070 2071 instr = &subop->instrs[1]; 2072 offset = nand_subop_get_addr_start_off(subop, 1); 2073 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2074 addrs = &instr->ctx.addr.addrs[offset]; 2075 2076 for (i = 0; i < naddrs; i++) 2077 page |= (u32)addrs[i] << (8 * i); 2078 2079 return cadence_nand_erase(chip, page); 2080 } 2081 2082 /* 2083 * If it is not an erase operation then handle operation 2084 * by calling exec_op function. 2085 */ 2086 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2087 int ret; 2088 const struct nand_operation nand_op = { 2089 .cs = chip->cur_cs, 2090 .instrs = &subop->instrs[op_id], 2091 .ninstrs = 1}; 2092 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2093 if (ret) 2094 return ret; 2095 } 2096 2097 return 0; 2098 } 2099 2100 static int cadence_nand_cmd_data(struct nand_chip *chip, 2101 const struct nand_subop *subop) 2102 { 2103 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2104 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2105 const struct nand_op_instr *instr; 2106 unsigned int offset, op_id = 0; 2107 u64 mini_ctrl_cmd = 0; 2108 int len = 0; 2109 int ret; 2110 2111 instr = &subop->instrs[op_id]; 2112 2113 if (instr->delay_ns > 0) 2114 mini_ctrl_cmd |= GCMD_LAY_TWB; 2115 2116 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2117 GCMD_LAY_INSTR_DATA); 2118 2119 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2120 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2121 GCMD_DIR_WRITE); 2122 2123 len = nand_subop_get_data_len(subop, op_id); 2124 offset = nand_subop_get_data_start_off(subop, op_id); 2125 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2126 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2127 if (instr->ctx.data.force_8bit) { 2128 ret = cadence_nand_force_byte_access(chip, true); 2129 if (ret) { 2130 dev_err(cdns_ctrl->dev, 2131 "cannot change byte access generic data cmd failed\n"); 2132 return ret; 2133 } 2134 } 2135 2136 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2137 cdns_chip->cs[chip->cur_cs], 2138 mini_ctrl_cmd); 2139 if (ret) { 2140 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2141 return ret; 2142 } 2143 2144 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2145 void *buf = instr->ctx.data.buf.in + offset; 2146 2147 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2148 } else { 2149 const void *buf = instr->ctx.data.buf.out + offset; 2150 2151 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2152 } 2153 2154 if (ret) { 2155 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2156 return ret; 2157 } 2158 2159 if (instr->ctx.data.force_8bit) { 2160 ret = cadence_nand_force_byte_access(chip, false); 2161 if (ret) { 2162 dev_err(cdns_ctrl->dev, 2163 "cannot change byte access generic data cmd failed\n"); 2164 } 2165 } 2166 2167 return ret; 2168 } 2169 2170 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2171 const struct nand_subop *subop) 2172 { 2173 int status; 2174 unsigned int op_id = 0; 2175 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2176 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2177 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2178 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2179 2180 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2181 timeout_us, 2182 BIT(cdns_chip->cs[chip->cur_cs]), 2183 false); 2184 return status; 2185 } 2186 2187 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2188 NAND_OP_PARSER_PATTERN( 2189 cadence_nand_cmd_erase, 2190 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2191 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2192 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2193 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2194 NAND_OP_PARSER_PATTERN( 2195 cadence_nand_cmd_opcode, 2196 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2197 NAND_OP_PARSER_PATTERN( 2198 cadence_nand_cmd_address, 2199 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2200 NAND_OP_PARSER_PATTERN( 2201 cadence_nand_cmd_data, 2202 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2203 NAND_OP_PARSER_PATTERN( 2204 cadence_nand_cmd_data, 2205 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2206 NAND_OP_PARSER_PATTERN( 2207 cadence_nand_cmd_waitrdy, 2208 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2209 ); 2210 2211 static int cadence_nand_exec_op(struct nand_chip *chip, 2212 const struct nand_operation *op, 2213 bool check_only) 2214 { 2215 int status = cadence_nand_select_target(chip); 2216 2217 if (status) 2218 return status; 2219 2220 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2221 check_only); 2222 } 2223 2224 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2225 struct mtd_oob_region *oobregion) 2226 { 2227 struct nand_chip *chip = mtd_to_nand(mtd); 2228 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2229 2230 if (section) 2231 return -ERANGE; 2232 2233 oobregion->offset = cdns_chip->bbm_len; 2234 oobregion->length = cdns_chip->avail_oob_size 2235 - cdns_chip->bbm_len; 2236 2237 return 0; 2238 } 2239 2240 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2241 struct mtd_oob_region *oobregion) 2242 { 2243 struct nand_chip *chip = mtd_to_nand(mtd); 2244 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2245 2246 if (section) 2247 return -ERANGE; 2248 2249 oobregion->offset = cdns_chip->avail_oob_size; 2250 oobregion->length = chip->ecc.total; 2251 2252 return 0; 2253 } 2254 2255 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2256 .free = cadence_nand_ooblayout_free, 2257 .ecc = cadence_nand_ooblayout_ecc, 2258 }; 2259 2260 static int calc_cycl(u32 timing, u32 clock) 2261 { 2262 if (timing == 0 || clock == 0) 2263 return 0; 2264 2265 if ((timing % clock) > 0) 2266 return timing / clock; 2267 else 2268 return timing / clock - 1; 2269 } 2270 2271 /* Calculate max data valid window. */ 2272 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2273 u32 board_delay_skew_min, u32 ext_mode) 2274 { 2275 if (ext_mode == 0) 2276 clk_period /= 2; 2277 2278 return (trp_cnt + 1) * clk_period + trhoh_min + 2279 board_delay_skew_min; 2280 } 2281 2282 /* Calculate data valid window. */ 2283 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2284 u32 trea_max, u32 ext_mode) 2285 { 2286 if (ext_mode == 0) 2287 clk_period /= 2; 2288 2289 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2290 } 2291 2292 static int 2293 cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr, 2294 const struct nand_data_interface *conf) 2295 { 2296 const struct nand_sdr_timings *sdr; 2297 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2298 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2299 struct cadence_nand_timings *t = &cdns_chip->timings; 2300 u32 reg; 2301 u32 board_delay = cdns_ctrl->board_delay; 2302 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2303 cdns_ctrl->nf_clk_rate); 2304 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2305 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2306 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2307 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2308 u32 if_skew = cdns_ctrl->caps1->if_skew; 2309 u32 board_delay_skew_min = board_delay - if_skew; 2310 u32 board_delay_skew_max = board_delay + if_skew; 2311 u32 dqs_sampl_res, phony_dqs_mod; 2312 u32 tdvw, tdvw_min, tdvw_max; 2313 u32 ext_rd_mode, ext_wr_mode; 2314 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2315 u32 sampling_point; 2316 2317 sdr = nand_get_sdr_timings(conf); 2318 if (IS_ERR(sdr)) 2319 return PTR_ERR(sdr); 2320 2321 memset(t, 0, sizeof(*t)); 2322 /* Sampling point calculation. */ 2323 2324 if (cdns_ctrl->caps2.is_phy_type_dll) 2325 phony_dqs_mod = 2; 2326 else 2327 phony_dqs_mod = 1; 2328 2329 dqs_sampl_res = clk_period / phony_dqs_mod; 2330 2331 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2332 /* 2333 * The idea of those calculation is to get the optimum value 2334 * for tRP and tRH timings. If it is NOT possible to sample data 2335 * with optimal tRP/tRH settings, the parameters will be extended. 2336 * If clk_period is 50ns (the lowest value) this condition is met 2337 * for asynchronous timing modes 1, 2, 3, 4 and 5. 2338 * If clk_period is 20ns the condition is met only 2339 * for asynchronous timing mode 5. 2340 */ 2341 if (sdr->tRC_min <= clk_period && 2342 sdr->tRP_min <= (clk_period / 2) && 2343 sdr->tREH_min <= (clk_period / 2)) { 2344 /* Performance mode. */ 2345 ext_rd_mode = 0; 2346 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2347 sdr->tREA_max, ext_rd_mode); 2348 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2349 board_delay_skew_min, 2350 ext_rd_mode); 2351 /* 2352 * Check if data valid window and sampling point can be found 2353 * and is not on the edge (ie. we have hold margin). 2354 * If not extend the tRP timings. 2355 */ 2356 if (tdvw > 0) { 2357 if (tdvw_max <= tdvw_min || 2358 (tdvw_max % dqs_sampl_res) == 0) { 2359 /* 2360 * No valid sampling point so the RE pulse need 2361 * to be widen widening by half clock cycle. 2362 */ 2363 ext_rd_mode = 1; 2364 } 2365 } else { 2366 /* 2367 * There is no valid window 2368 * to be able to sample data the tRP need to be widen. 2369 * Very safe calculations are performed here. 2370 */ 2371 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2372 + dqs_sampl_res) / clk_period; 2373 ext_rd_mode = 1; 2374 } 2375 2376 } else { 2377 /* Extended read mode. */ 2378 u32 trh; 2379 2380 ext_rd_mode = 1; 2381 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2382 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2383 if (sdr->tREH_min >= trh) 2384 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2385 else 2386 trh_cnt = calc_cycl(trh, clk_period); 2387 2388 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2389 sdr->tREA_max, ext_rd_mode); 2390 /* 2391 * Check if data valid window and sampling point can be found 2392 * or if it is at the edge check if previous is valid 2393 * - if not extend the tRP timings. 2394 */ 2395 if (tdvw > 0) { 2396 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2397 sdr->tRHOH_min, 2398 board_delay_skew_min, 2399 ext_rd_mode); 2400 2401 if ((((tdvw_max / dqs_sampl_res) 2402 * dqs_sampl_res) <= tdvw_min) || 2403 (((tdvw_max % dqs_sampl_res) == 0) && 2404 (((tdvw_max / dqs_sampl_res - 1) 2405 * dqs_sampl_res) <= tdvw_min))) { 2406 /* 2407 * Data valid window width is lower than 2408 * sampling resolution and do not hit any 2409 * sampling point to be sure the sampling point 2410 * will be found the RE low pulse width will be 2411 * extended by one clock cycle. 2412 */ 2413 trp_cnt = trp_cnt + 1; 2414 } 2415 } else { 2416 /* 2417 * There is no valid window to be able to sample data. 2418 * The tRP need to be widen. 2419 * Very safe calculations are performed here. 2420 */ 2421 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2422 + dqs_sampl_res) / clk_period; 2423 } 2424 } 2425 2426 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2427 sdr->tRHOH_min, 2428 board_delay_skew_min, ext_rd_mode); 2429 2430 if (sdr->tWC_min <= clk_period && 2431 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2432 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2433 ext_wr_mode = 0; 2434 } else { 2435 u32 twh; 2436 2437 ext_wr_mode = 1; 2438 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2439 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2440 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2441 clk_period); 2442 2443 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2444 if (sdr->tWH_min >= twh) 2445 twh = sdr->tWH_min; 2446 2447 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2448 } 2449 2450 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2451 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2452 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2453 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2454 t->async_toggle_timings = reg; 2455 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2456 2457 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2458 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2459 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2460 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2461 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2462 2463 /* 2464 * If timing exceeds delay field in timing register 2465 * then use maximum value. 2466 */ 2467 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2468 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2469 else 2470 reg |= TIMINGS0_TCCS; 2471 2472 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2473 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2474 t->timings0 = reg; 2475 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2476 2477 /* The following is related to single signal so skew is not needed. */ 2478 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2479 trhz_cnt = trhz_cnt + 1; 2480 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2481 /* 2482 * Because of the two stage syncflop the value must be increased by 3 2483 * first value is related with sync, second value is related 2484 * with output if delay. 2485 */ 2486 twb_cnt = twb_cnt + 3 + 5; 2487 /* 2488 * The following is related to the we edge of the random data input 2489 * sequence so skew is not needed. 2490 */ 2491 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2492 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2493 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2494 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2495 t->timings1 = reg; 2496 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2497 2498 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2499 if (tfeat_cnt < twb_cnt) 2500 tfeat_cnt = twb_cnt; 2501 2502 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2503 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2504 2505 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2506 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2507 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2508 t->timings2 = reg; 2509 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2510 2511 if (cdns_ctrl->caps2.is_phy_type_dll) { 2512 reg = DLL_PHY_CTRL_DLL_RST_N; 2513 if (ext_wr_mode) 2514 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2515 if (ext_rd_mode) 2516 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2517 2518 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2519 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2520 t->dll_phy_ctrl = reg; 2521 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2522 } 2523 2524 /* Sampling point calculation. */ 2525 if ((tdvw_max % dqs_sampl_res) > 0) 2526 sampling_point = tdvw_max / dqs_sampl_res; 2527 else 2528 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2529 2530 if (sampling_point * dqs_sampl_res > tdvw_min) { 2531 dll_phy_dqs_timing = 2532 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2533 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2534 phony_dqs_timing = sampling_point / phony_dqs_mod; 2535 2536 if ((sampling_point % 2) > 0) { 2537 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2538 if ((tdvw_max % dqs_sampl_res) == 0) 2539 /* 2540 * Calculation for sampling point at the edge 2541 * of data and being odd number. 2542 */ 2543 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2544 / phony_dqs_mod - 1; 2545 2546 if (!cdns_ctrl->caps2.is_phy_type_dll) 2547 phony_dqs_timing--; 2548 2549 } else { 2550 phony_dqs_timing--; 2551 } 2552 rd_del_sel = phony_dqs_timing + 3; 2553 } else { 2554 dev_warn(cdns_ctrl->dev, 2555 "ERROR : cannot find valid sampling point\n"); 2556 } 2557 2558 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2559 if (cdns_ctrl->caps2.is_phy_type_dll) 2560 reg |= PHY_CTRL_SDR_DQS; 2561 t->phy_ctrl = reg; 2562 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2563 2564 if (cdns_ctrl->caps2.is_phy_type_dll) { 2565 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2566 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2567 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2568 dll_phy_dqs_timing); 2569 t->phy_dqs_timing = dll_phy_dqs_timing; 2570 2571 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2572 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2573 reg); 2574 t->phy_gate_lpbk_ctrl = reg; 2575 2576 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2577 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2578 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2579 } 2580 2581 return 0; 2582 } 2583 2584 int cadence_nand_attach_chip(struct nand_chip *chip) 2585 { 2586 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2587 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2588 u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2589 struct mtd_info *mtd = nand_to_mtd(chip); 2590 u32 max_oob_data_size; 2591 int ret; 2592 2593 if (chip->options & NAND_BUSWIDTH_16) { 2594 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2595 if (ret) 2596 return ret; 2597 } 2598 2599 chip->bbt_options |= NAND_BBT_USE_FLASH; 2600 chip->bbt_options |= NAND_BBT_NO_OOB; 2601 chip->ecc.mode = NAND_ECC_HW; 2602 2603 chip->options |= NAND_NO_SUBPAGE_WRITE; 2604 2605 cdns_chip->bbm_offs = chip->badblockpos; 2606 if (chip->options & NAND_BUSWIDTH_16) { 2607 cdns_chip->bbm_offs &= ~0x01; 2608 cdns_chip->bbm_len = 2; 2609 } else { 2610 cdns_chip->bbm_len = 1; 2611 } 2612 2613 ret = nand_ecc_choose_conf(chip, 2614 &cdns_ctrl->ecc_caps, 2615 mtd->oobsize - cdns_chip->bbm_len); 2616 if (ret) { 2617 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2618 return ret; 2619 } 2620 2621 dev_dbg(cdns_ctrl->dev, 2622 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2623 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2624 2625 /* Error correction configuration. */ 2626 cdns_chip->sector_size = chip->ecc.size; 2627 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2628 2629 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2630 2631 max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR; 2632 2633 if (cdns_chip->avail_oob_size > max_oob_data_size) 2634 cdns_chip->avail_oob_size = max_oob_data_size; 2635 2636 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2637 > mtd->oobsize) 2638 cdns_chip->avail_oob_size -= 4; 2639 2640 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2641 if (ret < 0) 2642 return -EINVAL; 2643 2644 cdns_chip->corr_str_idx = (u8)ret; 2645 2646 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2647 1000000, 2648 CTRL_STATUS_CTRL_BUSY, true)) 2649 return -ETIMEDOUT; 2650 2651 cadence_nand_set_ecc_strength(cdns_ctrl, 2652 cdns_chip->corr_str_idx); 2653 2654 cadence_nand_set_erase_detection(cdns_ctrl, true, 2655 chip->ecc.strength); 2656 2657 /* Override the default read operations. */ 2658 chip->ecc.read_page = cadence_nand_read_page; 2659 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2660 chip->ecc.write_page = cadence_nand_write_page; 2661 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2662 chip->ecc.read_oob = cadence_nand_read_oob; 2663 chip->ecc.write_oob = cadence_nand_write_oob; 2664 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2665 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2666 2667 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2668 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2669 2670 /* Is 32-bit DMA supported? */ 2671 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2672 if (ret) { 2673 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2674 return ret; 2675 } 2676 2677 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2678 2679 return 0; 2680 } 2681 2682 static const struct nand_controller_ops cadence_nand_controller_ops = { 2683 .attach_chip = cadence_nand_attach_chip, 2684 .exec_op = cadence_nand_exec_op, 2685 .setup_data_interface = cadence_nand_setup_data_interface, 2686 }; 2687 2688 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2689 struct device_node *np) 2690 { 2691 struct cdns_nand_chip *cdns_chip; 2692 struct mtd_info *mtd; 2693 struct nand_chip *chip; 2694 int nsels, ret, i; 2695 u32 cs; 2696 2697 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2698 if (nsels <= 0) { 2699 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2700 return -EINVAL; 2701 } 2702 2703 /* Allocate the nand chip structure. */ 2704 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2705 (nsels * sizeof(u8)), 2706 GFP_KERNEL); 2707 if (!cdns_chip) { 2708 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2709 return -ENOMEM; 2710 } 2711 2712 cdns_chip->nsels = nsels; 2713 2714 for (i = 0; i < nsels; i++) { 2715 /* Retrieve CS id. */ 2716 ret = of_property_read_u32_index(np, "reg", i, &cs); 2717 if (ret) { 2718 dev_err(cdns_ctrl->dev, 2719 "could not retrieve reg property: %d\n", 2720 ret); 2721 return ret; 2722 } 2723 2724 if (cs >= cdns_ctrl->caps2.max_banks) { 2725 dev_err(cdns_ctrl->dev, 2726 "invalid reg value: %u (max CS = %d)\n", 2727 cs, cdns_ctrl->caps2.max_banks); 2728 return -EINVAL; 2729 } 2730 2731 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2732 dev_err(cdns_ctrl->dev, 2733 "CS %d already assigned\n", cs); 2734 return -EINVAL; 2735 } 2736 2737 cdns_chip->cs[i] = cs; 2738 } 2739 2740 chip = &cdns_chip->chip; 2741 chip->controller = &cdns_ctrl->controller; 2742 nand_set_flash_node(chip, np); 2743 2744 mtd = nand_to_mtd(chip); 2745 mtd->dev.parent = cdns_ctrl->dev; 2746 2747 /* 2748 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2749 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2750 */ 2751 chip->ecc.mode = NAND_ECC_HW; 2752 2753 ret = nand_scan(chip, cdns_chip->nsels); 2754 if (ret) { 2755 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2756 return ret; 2757 } 2758 2759 ret = mtd_device_register(mtd, NULL, 0); 2760 if (ret) { 2761 dev_err(cdns_ctrl->dev, 2762 "failed to register mtd device: %d\n", ret); 2763 nand_cleanup(chip); 2764 return ret; 2765 } 2766 2767 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2768 2769 return 0; 2770 } 2771 2772 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2773 { 2774 struct cdns_nand_chip *entry, *temp; 2775 2776 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2777 nand_release(&entry->chip); 2778 list_del(&entry->node); 2779 } 2780 } 2781 2782 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2783 { 2784 struct device_node *np = cdns_ctrl->dev->of_node; 2785 struct device_node *nand_np; 2786 int max_cs = cdns_ctrl->caps2.max_banks; 2787 int nchips, ret; 2788 2789 nchips = of_get_child_count(np); 2790 2791 if (nchips > max_cs) { 2792 dev_err(cdns_ctrl->dev, 2793 "too many NAND chips: %d (max = %d CS)\n", 2794 nchips, max_cs); 2795 return -EINVAL; 2796 } 2797 2798 for_each_child_of_node(np, nand_np) { 2799 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2800 if (ret) { 2801 of_node_put(nand_np); 2802 cadence_nand_chips_cleanup(cdns_ctrl); 2803 return ret; 2804 } 2805 } 2806 2807 return 0; 2808 } 2809 2810 static void 2811 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2812 { 2813 /* Disable interrupts. */ 2814 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2815 } 2816 2817 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2818 { 2819 dma_cap_mask_t mask; 2820 int ret; 2821 2822 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2823 sizeof(*cdns_ctrl->cdma_desc), 2824 &cdns_ctrl->dma_cdma_desc, 2825 GFP_KERNEL); 2826 if (!cdns_ctrl->dma_cdma_desc) 2827 return -ENOMEM; 2828 2829 cdns_ctrl->buf_size = SZ_16K; 2830 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2831 if (!cdns_ctrl->buf) { 2832 ret = -ENOMEM; 2833 goto free_buf_desc; 2834 } 2835 2836 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2837 IRQF_SHARED, "cadence-nand-controller", 2838 cdns_ctrl)) { 2839 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2840 ret = -ENODEV; 2841 goto free_buf; 2842 } 2843 2844 spin_lock_init(&cdns_ctrl->irq_lock); 2845 init_completion(&cdns_ctrl->complete); 2846 2847 ret = cadence_nand_hw_init(cdns_ctrl); 2848 if (ret) 2849 goto disable_irq; 2850 2851 dma_cap_zero(mask); 2852 dma_cap_set(DMA_MEMCPY, mask); 2853 2854 if (cdns_ctrl->caps1->has_dma) { 2855 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2856 if (!cdns_ctrl->dmac) { 2857 dev_err(cdns_ctrl->dev, 2858 "Unable to get a DMA channel\n"); 2859 ret = -EBUSY; 2860 goto disable_irq; 2861 } 2862 } 2863 2864 nand_controller_init(&cdns_ctrl->controller); 2865 INIT_LIST_HEAD(&cdns_ctrl->chips); 2866 2867 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2868 cdns_ctrl->curr_corr_str_idx = 0xFF; 2869 2870 ret = cadence_nand_chips_init(cdns_ctrl); 2871 if (ret) { 2872 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2873 ret); 2874 goto dma_release_chnl; 2875 } 2876 2877 kfree(cdns_ctrl->buf); 2878 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2879 if (!cdns_ctrl->buf) { 2880 ret = -ENOMEM; 2881 goto dma_release_chnl; 2882 } 2883 2884 return 0; 2885 2886 dma_release_chnl: 2887 if (cdns_ctrl->dmac) 2888 dma_release_channel(cdns_ctrl->dmac); 2889 2890 disable_irq: 2891 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2892 2893 free_buf: 2894 kfree(cdns_ctrl->buf); 2895 2896 free_buf_desc: 2897 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2898 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2899 2900 return ret; 2901 } 2902 2903 /* Driver exit point. */ 2904 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2905 { 2906 cadence_nand_chips_cleanup(cdns_ctrl); 2907 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2908 kfree(cdns_ctrl->buf); 2909 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2910 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2911 2912 if (cdns_ctrl->dmac) 2913 dma_release_channel(cdns_ctrl->dmac); 2914 } 2915 2916 struct cadence_nand_dt { 2917 struct cdns_nand_ctrl cdns_ctrl; 2918 struct clk *clk; 2919 }; 2920 2921 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2922 .if_skew = 0, 2923 .has_dma = 1, 2924 }; 2925 2926 static const struct of_device_id cadence_nand_dt_ids[] = { 2927 { 2928 .compatible = "cdns,hp-nfc", 2929 .data = &cadence_nand_default 2930 }, {} 2931 }; 2932 2933 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2934 2935 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2936 { 2937 struct resource *res; 2938 struct cadence_nand_dt *dt; 2939 struct cdns_nand_ctrl *cdns_ctrl; 2940 int ret; 2941 const struct of_device_id *of_id; 2942 const struct cadence_nand_dt_devdata *devdata; 2943 u32 val; 2944 2945 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); 2946 if (of_id) { 2947 ofdev->id_entry = of_id->data; 2948 devdata = of_id->data; 2949 } else { 2950 pr_err("Failed to find the right device id.\n"); 2951 return -ENOMEM; 2952 } 2953 2954 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 2955 if (!dt) 2956 return -ENOMEM; 2957 2958 cdns_ctrl = &dt->cdns_ctrl; 2959 cdns_ctrl->caps1 = devdata; 2960 2961 cdns_ctrl->dev = &ofdev->dev; 2962 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 2963 if (cdns_ctrl->irq < 0) 2964 return cdns_ctrl->irq; 2965 2966 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 2967 2968 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 2969 if (IS_ERR(cdns_ctrl->reg)) { 2970 dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n"); 2971 return PTR_ERR(cdns_ctrl->reg); 2972 } 2973 2974 res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); 2975 cdns_ctrl->io.dma = res->start; 2976 cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); 2977 if (IS_ERR(cdns_ctrl->io.virt)) { 2978 dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n"); 2979 return PTR_ERR(cdns_ctrl->io.virt); 2980 } 2981 2982 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 2983 if (IS_ERR(dt->clk)) 2984 return PTR_ERR(dt->clk); 2985 2986 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 2987 2988 ret = of_property_read_u32(ofdev->dev.of_node, 2989 "cdns,board-delay-ps", &val); 2990 if (ret) { 2991 val = 4830; 2992 dev_info(cdns_ctrl->dev, 2993 "missing cdns,board-delay-ps property, %d was set\n", 2994 val); 2995 } 2996 cdns_ctrl->board_delay = val; 2997 2998 ret = cadence_nand_init(cdns_ctrl); 2999 if (ret) 3000 return ret; 3001 3002 platform_set_drvdata(ofdev, dt); 3003 return 0; 3004 } 3005 3006 static int cadence_nand_dt_remove(struct platform_device *ofdev) 3007 { 3008 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3009 3010 cadence_nand_remove(&dt->cdns_ctrl); 3011 3012 return 0; 3013 } 3014 3015 static struct platform_driver cadence_nand_dt_driver = { 3016 .probe = cadence_nand_dt_probe, 3017 .remove = cadence_nand_dt_remove, 3018 .driver = { 3019 .name = "cadence-nand-controller", 3020 .of_match_table = cadence_nand_dt_ids, 3021 }, 3022 }; 3023 3024 module_platform_driver(cadence_nand_dt_driver); 3025 3026 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3027 MODULE_LICENSE("GPL v2"); 3028 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3029 3030