1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_device.h> 19 #include <linux/iopoll.h> 20 #include <linux/slab.h> 21 22 /* 23 * HPNFC can work in 3 modes: 24 * - PIO - can work in master or slave DMA 25 * - CDMA - needs Master DMA for accessing command descriptors. 26 * - Generic mode - can use only slave DMA. 27 * CDMA and PIO modes can be used to execute only base commands. 28 * Generic mode can be used to execute any command 29 * on NAND flash memory. Driver uses CDMA mode for 30 * block erasing, page reading, page programing. 31 * Generic mode is used for executing rest of commands. 32 */ 33 34 #define MAX_ADDRESS_CYC 6 35 #define MAX_ERASE_ADDRESS_CYC 3 36 #define MAX_DATA_SIZE 0xFFFC 37 #define DMA_DATA_SIZE_ALIGN 8 38 39 /* Register definition. */ 40 /* 41 * Command register 0. 42 * Writing data to this register will initiate a new transaction 43 * of the NF controller. 44 */ 45 #define CMD_REG0 0x0000 46 /* Command type field mask. */ 47 #define CMD_REG0_CT GENMASK(31, 30) 48 /* Command type CDMA. */ 49 #define CMD_REG0_CT_CDMA 0uL 50 /* Command type generic. */ 51 #define CMD_REG0_CT_GEN 3uL 52 /* Command thread number field mask. */ 53 #define CMD_REG0_TN GENMASK(27, 24) 54 55 /* Command register 2. */ 56 #define CMD_REG2 0x0008 57 /* Command register 3. */ 58 #define CMD_REG3 0x000C 59 /* Pointer register to select which thread status will be selected. */ 60 #define CMD_STATUS_PTR 0x0010 61 /* Command status register for selected thread. */ 62 #define CMD_STATUS 0x0014 63 64 /* Interrupt status register. */ 65 #define INTR_STATUS 0x0110 66 #define INTR_STATUS_SDMA_ERR BIT(22) 67 #define INTR_STATUS_SDMA_TRIGG BIT(21) 68 #define INTR_STATUS_UNSUPP_CMD BIT(19) 69 #define INTR_STATUS_DDMA_TERR BIT(18) 70 #define INTR_STATUS_CDMA_TERR BIT(17) 71 #define INTR_STATUS_CDMA_IDL BIT(16) 72 73 /* Interrupt enable register. */ 74 #define INTR_ENABLE 0x0114 75 #define INTR_ENABLE_INTR_EN BIT(31) 76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 82 83 /* Controller internal state. */ 84 #define CTRL_STATUS 0x0118 85 #define CTRL_STATUS_INIT_COMP BIT(9) 86 #define CTRL_STATUS_CTRL_BUSY BIT(8) 87 88 /* Command Engine threads state. */ 89 #define TRD_STATUS 0x0120 90 91 /* Command Engine interrupt thread error status. */ 92 #define TRD_ERR_INT_STATUS 0x0128 93 /* Command Engine interrupt thread error enable. */ 94 #define TRD_ERR_INT_STATUS_EN 0x0130 95 /* Command Engine interrupt thread complete status. */ 96 #define TRD_COMP_INT_STATUS 0x0138 97 98 /* 99 * Transfer config 0 register. 100 * Configures data transfer parameters. 101 */ 102 #define TRAN_CFG_0 0x0400 103 /* Offset value from the beginning of the page. */ 104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 105 /* Numbers of sectors to transfer within singlNF device's page. */ 106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 107 108 /* 109 * Transfer config 1 register. 110 * Configures data transfer parameters. 111 */ 112 #define TRAN_CFG_1 0x0404 113 /* Size of last data sector. */ 114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 115 /* Size of not-last data sector. */ 116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 117 118 /* ECC engine configuration register 0. */ 119 #define ECC_CONFIG_0 0x0428 120 /* Correction strength. */ 121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 122 /* Enable erased pages detection mechanism. */ 123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 124 /* Enable controller ECC check bits generation and correction. */ 125 #define ECC_CONFIG_0_ECC_EN BIT(0) 126 127 /* ECC engine configuration register 1. */ 128 #define ECC_CONFIG_1 0x042C 129 130 /* Multiplane settings register. */ 131 #define MULTIPLANE_CFG 0x0434 132 /* Cache operation settings. */ 133 #define CACHE_CFG 0x0438 134 135 /* DMA settings register. */ 136 #define DMA_SETINGS 0x043C 137 /* Enable SDMA error report on access unprepared slave DMA interface. */ 138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 139 140 /* Transferred data block size for the slave DMA module. */ 141 #define SDMA_SIZE 0x0440 142 143 /* Thread number associated with transferred data block 144 * for the slave DMA module. 145 */ 146 #define SDMA_TRD_NUM 0x0444 147 /* Thread number mask. */ 148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 149 150 #define CONTROL_DATA_CTRL 0x0494 151 /* Thread number mask. */ 152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 153 154 #define CTRL_VERSION 0x800 155 #define CTRL_VERSION_REV GENMASK(7, 0) 156 157 /* Available hardware features of the controller. */ 158 #define CTRL_FEATURES 0x804 159 /* Support for NV-DDR2/3 work mode. */ 160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 161 /* Support for NV-DDR work mode. */ 162 #define CTRL_FEATURES_NVDDR BIT(27) 163 /* Support for asynchronous work mode. */ 164 #define CTRL_FEATURES_ASYNC BIT(26) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 167 /* Slave and Master DMA data width. */ 168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 169 /* Availability of Control Data feature.*/ 170 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 171 172 /* BCH Engine identification register 0 - correction strengths. */ 173 #define BCH_CFG_0 0x838 174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 178 179 /* BCH Engine identification register 1 - correction strengths. */ 180 #define BCH_CFG_1 0x83C 181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 185 186 /* BCH Engine identification register 2 - sector sizes. */ 187 #define BCH_CFG_2 0x840 188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 190 191 /* BCH Engine identification register 3. */ 192 #define BCH_CFG_3 0x844 193 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) 194 195 /* Ready/Busy# line status. */ 196 #define RBN_SETINGS 0x1004 197 198 /* Common settings. */ 199 #define COMMON_SET 0x1008 200 /* 16 bit device connected to the NAND Flash interface. */ 201 #define COMMON_SET_DEVICE_16BIT BIT(8) 202 203 /* Skip_bytes registers. */ 204 #define SKIP_BYTES_CONF 0x100C 205 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 206 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 207 208 #define SKIP_BYTES_OFFSET 0x1010 209 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 210 211 /* Timings configuration. */ 212 #define ASYNC_TOGGLE_TIMINGS 0x101c 213 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 214 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 215 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 216 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 217 218 #define TIMINGS0 0x1024 219 #define TIMINGS0_TADL GENMASK(31, 24) 220 #define TIMINGS0_TCCS GENMASK(23, 16) 221 #define TIMINGS0_TWHR GENMASK(15, 8) 222 #define TIMINGS0_TRHW GENMASK(7, 0) 223 224 #define TIMINGS1 0x1028 225 #define TIMINGS1_TRHZ GENMASK(31, 24) 226 #define TIMINGS1_TWB GENMASK(23, 16) 227 #define TIMINGS1_TVDLY GENMASK(7, 0) 228 229 #define TIMINGS2 0x102c 230 #define TIMINGS2_TFEAT GENMASK(25, 16) 231 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 232 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 233 234 /* Configuration of the resynchronization of slave DLL of PHY. */ 235 #define DLL_PHY_CTRL 0x1034 236 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 237 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 238 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 239 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 240 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 241 242 /* Register controlling DQ related timing. */ 243 #define PHY_DQ_TIMING 0x2000 244 /* Register controlling DSQ related timing. */ 245 #define PHY_DQS_TIMING 0x2004 246 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 247 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 248 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 249 250 /* Register controlling the gate and loopback control related timing. */ 251 #define PHY_GATE_LPBK_CTRL 0x2008 252 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 253 254 /* Register holds the control for the master DLL logic. */ 255 #define PHY_DLL_MASTER_CTRL 0x200C 256 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 257 258 /* Register holds the control for the slave DLL logic. */ 259 #define PHY_DLL_SLAVE_CTRL 0x2010 260 261 /* This register handles the global control settings for the PHY. */ 262 #define PHY_CTRL 0x2080 263 #define PHY_CTRL_SDR_DQS BIT(14) 264 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 265 266 /* 267 * This register handles the global control settings 268 * for the termination selects for reads. 269 */ 270 #define PHY_TSEL 0x2084 271 272 /* Generic command layout. */ 273 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 274 /* 275 * This bit informs the minicotroller if it has to wait for tWB 276 * after sending the last CMD/ADDR/DATA in the sequence. 277 */ 278 #define GCMD_LAY_TWB BIT_ULL(6) 279 /* Type of generic instruction. */ 280 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 281 282 /* Generic CMD sequence type. */ 283 #define GCMD_LAY_INSTR_CMD 0 284 /* Generic ADDR sequence type. */ 285 #define GCMD_LAY_INSTR_ADDR 1 286 /* Generic data transfer sequence type. */ 287 #define GCMD_LAY_INSTR_DATA 2 288 289 /* Input part of generic command type of input is command. */ 290 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 291 292 /* Generic command address sequence - address fields. */ 293 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 294 /* Generic command address sequence - address size. */ 295 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 296 297 /* Transfer direction field of generic command data sequence. */ 298 #define GCMD_DIR BIT_ULL(11) 299 /* Read transfer direction of generic command data sequence. */ 300 #define GCMD_DIR_READ 0 301 /* Write transfer direction of generic command data sequence. */ 302 #define GCMD_DIR_WRITE 1 303 304 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 305 #define GCMD_ECC_EN BIT_ULL(12) 306 /* Generic command data sequence - sector size. */ 307 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 308 /* Generic command data sequence - sector count. */ 309 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 310 /* Generic command data sequence - last sector size. */ 311 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 312 313 /* CDMA descriptor fields. */ 314 /* Erase command type of CDMA descriptor. */ 315 #define CDMA_CT_ERASE 0x1000 316 /* Program page command type of CDMA descriptor. */ 317 #define CDMA_CT_WR 0x2100 318 /* Read page command type of CDMA descriptor. */ 319 #define CDMA_CT_RD 0x2200 320 321 /* Flash pointer memory shift. */ 322 #define CDMA_CFPTR_MEM_SHIFT 24 323 /* Flash pointer memory mask. */ 324 #define CDMA_CFPTR_MEM GENMASK(26, 24) 325 326 /* 327 * Command DMA descriptor flags. If set causes issue interrupt after 328 * the completion of descriptor processing. 329 */ 330 #define CDMA_CF_INT BIT(8) 331 /* 332 * Command DMA descriptor flags - the next descriptor 333 * address field is valid and descriptor processing should continue. 334 */ 335 #define CDMA_CF_CONT BIT(9) 336 /* DMA master flag of command DMA descriptor. */ 337 #define CDMA_CF_DMA_MASTER BIT(10) 338 339 /* Operation complete status of command descriptor. */ 340 #define CDMA_CS_COMP BIT(15) 341 /* Operation complete status of command descriptor. */ 342 /* Command descriptor status - operation fail. */ 343 #define CDMA_CS_FAIL BIT(14) 344 /* Command descriptor status - page erased. */ 345 #define CDMA_CS_ERP BIT(11) 346 /* Command descriptor status - timeout occurred. */ 347 #define CDMA_CS_TOUT BIT(10) 348 /* 349 * Maximum amount of correction applied to one ECC sector. 350 * It is part of command descriptor status. 351 */ 352 #define CDMA_CS_MAXERR GENMASK(9, 2) 353 /* Command descriptor status - uncorrectable ECC error. */ 354 #define CDMA_CS_UNCE BIT(1) 355 /* Command descriptor status - descriptor error. */ 356 #define CDMA_CS_ERR BIT(0) 357 358 /* Status of operation - OK. */ 359 #define STAT_OK 0 360 /* Status of operation - FAIL. */ 361 #define STAT_FAIL 2 362 /* Status of operation - uncorrectable ECC error. */ 363 #define STAT_ECC_UNCORR 3 364 /* Status of operation - page erased. */ 365 #define STAT_ERASED 5 366 /* Status of operation - correctable ECC error. */ 367 #define STAT_ECC_CORR 6 368 /* Status of operation - unsuspected state. */ 369 #define STAT_UNKNOWN 7 370 /* Status of operation - operation is not completed yet. */ 371 #define STAT_BUSY 0xFF 372 373 #define BCH_MAX_NUM_CORR_CAPS 8 374 #define BCH_MAX_NUM_SECTOR_SIZES 2 375 376 struct cadence_nand_timings { 377 u32 async_toggle_timings; 378 u32 timings0; 379 u32 timings1; 380 u32 timings2; 381 u32 dll_phy_ctrl; 382 u32 phy_ctrl; 383 u32 phy_dqs_timing; 384 u32 phy_gate_lpbk_ctrl; 385 }; 386 387 /* Command DMA descriptor. */ 388 struct cadence_nand_cdma_desc { 389 /* Next descriptor address. */ 390 u64 next_pointer; 391 392 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 393 u32 flash_pointer; 394 /*field appears in HPNFC version 13*/ 395 u16 bank; 396 u16 rsvd0; 397 398 /* Operation the controller needs to perform. */ 399 u16 command_type; 400 u16 rsvd1; 401 /* Flags for operation of this command. */ 402 u16 command_flags; 403 u16 rsvd2; 404 405 /* System/host memory address required for data DMA commands. */ 406 u64 memory_pointer; 407 408 /* Status of operation. */ 409 u32 status; 410 u32 rsvd3; 411 412 /* Address pointer to sync buffer location. */ 413 u64 sync_flag_pointer; 414 415 /* Controls the buffer sync mechanism. */ 416 u32 sync_arguments; 417 u32 rsvd4; 418 419 /* Control data pointer. */ 420 u64 ctrl_data_ptr; 421 }; 422 423 /* Interrupt status. */ 424 struct cadence_nand_irq_status { 425 /* Thread operation complete status. */ 426 u32 trd_status; 427 /* Thread operation error. */ 428 u32 trd_error; 429 /* Controller status. */ 430 u32 status; 431 }; 432 433 /* Cadence NAND flash controller capabilities get from driver data. */ 434 struct cadence_nand_dt_devdata { 435 /* Skew value of the output signals of the NAND Flash interface. */ 436 u32 if_skew; 437 /* It informs if slave DMA interface is connected to DMA engine. */ 438 unsigned int has_dma:1; 439 }; 440 441 /* Cadence NAND flash controller capabilities read from registers. */ 442 struct cdns_nand_caps { 443 /* Maximum number of banks supported by hardware. */ 444 u8 max_banks; 445 /* Slave and Master DMA data width in bytes (4 or 8). */ 446 u8 data_dma_width; 447 /* Control Data feature supported. */ 448 bool data_control_supp; 449 /* Is PHY type DLL. */ 450 bool is_phy_type_dll; 451 }; 452 453 struct cdns_nand_ctrl { 454 struct device *dev; 455 struct nand_controller controller; 456 struct cadence_nand_cdma_desc *cdma_desc; 457 /* IP capability. */ 458 const struct cadence_nand_dt_devdata *caps1; 459 struct cdns_nand_caps caps2; 460 u8 ctrl_rev; 461 dma_addr_t dma_cdma_desc; 462 u8 *buf; 463 u32 buf_size; 464 u8 curr_corr_str_idx; 465 466 /* Register interface. */ 467 void __iomem *reg; 468 469 struct { 470 void __iomem *virt; 471 dma_addr_t dma; 472 } io; 473 474 int irq; 475 /* Interrupts that have happened. */ 476 struct cadence_nand_irq_status irq_status; 477 /* Interrupts we are waiting for. */ 478 struct cadence_nand_irq_status irq_mask; 479 struct completion complete; 480 /* Protect irq_mask and irq_status. */ 481 spinlock_t irq_lock; 482 483 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 484 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 485 struct nand_ecc_caps ecc_caps; 486 487 int curr_trans_type; 488 489 struct dma_chan *dmac; 490 491 u32 nf_clk_rate; 492 /* 493 * Estimated Board delay. The value includes the total 494 * round trip delay for the signals and is used for deciding on values 495 * associated with data read capture. 496 */ 497 u32 board_delay; 498 499 struct nand_chip *selected_chip; 500 501 unsigned long assigned_cs; 502 struct list_head chips; 503 u8 bch_metadata_size; 504 }; 505 506 struct cdns_nand_chip { 507 struct cadence_nand_timings timings; 508 struct nand_chip chip; 509 u8 nsels; 510 struct list_head node; 511 512 /* 513 * part of oob area of NAND flash memory page. 514 * This part is available for user to read or write. 515 */ 516 u32 avail_oob_size; 517 518 /* Sector size. There are few sectors per mtd->writesize */ 519 u32 sector_size; 520 u32 sector_count; 521 522 /* Offset of BBM. */ 523 u8 bbm_offs; 524 /* Number of bytes reserved for BBM. */ 525 u8 bbm_len; 526 /* ECC strength index. */ 527 u8 corr_str_idx; 528 529 u8 cs[]; 530 }; 531 532 struct ecc_info { 533 int (*calc_ecc_bytes)(int step_size, int strength); 534 int max_step_size; 535 }; 536 537 static inline struct 538 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 539 { 540 return container_of(chip, struct cdns_nand_chip, chip); 541 } 542 543 static inline struct 544 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 545 { 546 return container_of(controller, struct cdns_nand_ctrl, controller); 547 } 548 549 static bool 550 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 551 u32 buf_len) 552 { 553 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 554 555 return buf && virt_addr_valid(buf) && 556 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 557 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 558 } 559 560 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 561 u32 reg_offset, u32 timeout_us, 562 u32 mask, bool is_clear) 563 { 564 u32 val; 565 int ret; 566 567 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 568 val, !(val & mask) == is_clear, 569 10, timeout_us); 570 571 if (ret < 0) { 572 dev_err(cdns_ctrl->dev, 573 "Timeout while waiting for reg %x with mask %x is clear %d\n", 574 reg_offset, mask, is_clear); 575 } 576 577 return ret; 578 } 579 580 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 581 bool enable) 582 { 583 u32 reg; 584 585 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 586 1000000, 587 CTRL_STATUS_CTRL_BUSY, true)) 588 return -ETIMEDOUT; 589 590 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 591 592 if (enable) 593 reg |= ECC_CONFIG_0_ECC_EN; 594 else 595 reg &= ~ECC_CONFIG_0_ECC_EN; 596 597 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 598 599 return 0; 600 } 601 602 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 603 u8 corr_str_idx) 604 { 605 u32 reg; 606 607 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 608 return; 609 610 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 611 reg &= ~ECC_CONFIG_0_CORR_STR; 612 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 613 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 614 615 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 616 } 617 618 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 619 u8 strength) 620 { 621 int i, corr_str_idx = -1; 622 623 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 624 if (cdns_ctrl->ecc_strengths[i] == strength) { 625 corr_str_idx = i; 626 break; 627 } 628 } 629 630 return corr_str_idx; 631 } 632 633 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 634 u16 marker_value) 635 { 636 u32 reg; 637 638 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 639 1000000, 640 CTRL_STATUS_CTRL_BUSY, true)) 641 return -ETIMEDOUT; 642 643 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 644 reg &= ~SKIP_BYTES_MARKER_VALUE; 645 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 646 marker_value); 647 648 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 649 650 return 0; 651 } 652 653 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 654 u8 num_of_bytes, 655 u32 offset_value, 656 int enable) 657 { 658 u32 reg, skip_bytes_offset; 659 660 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 661 1000000, 662 CTRL_STATUS_CTRL_BUSY, true)) 663 return -ETIMEDOUT; 664 665 if (!enable) { 666 num_of_bytes = 0; 667 offset_value = 0; 668 } 669 670 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 671 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 672 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 673 num_of_bytes); 674 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 675 offset_value); 676 677 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 678 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 679 680 return 0; 681 } 682 683 /* Functions enables/disables hardware detection of erased data */ 684 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 685 bool enable, 686 u8 bitflips_threshold) 687 { 688 u32 reg; 689 690 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 691 692 if (enable) 693 reg |= ECC_CONFIG_0_ERASE_DET_EN; 694 else 695 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 696 697 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 698 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 699 } 700 701 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 702 bool bit_bus16) 703 { 704 u32 reg; 705 706 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 707 1000000, 708 CTRL_STATUS_CTRL_BUSY, true)) 709 return -ETIMEDOUT; 710 711 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 712 713 if (!bit_bus16) 714 reg &= ~COMMON_SET_DEVICE_16BIT; 715 else 716 reg |= COMMON_SET_DEVICE_16BIT; 717 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 718 719 return 0; 720 } 721 722 static void 723 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 724 struct cadence_nand_irq_status *irq_status) 725 { 726 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 727 writel_relaxed(irq_status->trd_status, 728 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 729 writel_relaxed(irq_status->trd_error, 730 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 731 } 732 733 static void 734 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 735 struct cadence_nand_irq_status *irq_status) 736 { 737 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 738 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 739 + TRD_COMP_INT_STATUS); 740 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 741 + TRD_ERR_INT_STATUS); 742 } 743 744 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 745 struct cadence_nand_irq_status *irq_status) 746 { 747 cadence_nand_read_int_status(cdns_ctrl, irq_status); 748 749 return irq_status->status || irq_status->trd_status || 750 irq_status->trd_error; 751 } 752 753 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 754 { 755 unsigned long flags; 756 757 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 758 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 759 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 760 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 761 } 762 763 /* 764 * This is the interrupt service routine. It handles all interrupts 765 * sent to this device. 766 */ 767 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 768 { 769 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 770 struct cadence_nand_irq_status irq_status; 771 irqreturn_t result = IRQ_NONE; 772 773 spin_lock(&cdns_ctrl->irq_lock); 774 775 if (irq_detected(cdns_ctrl, &irq_status)) { 776 /* Handle interrupt. */ 777 /* First acknowledge it. */ 778 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 779 /* Status in the device context for someone to read. */ 780 cdns_ctrl->irq_status.status |= irq_status.status; 781 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 782 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 783 /* Notify anyone who cares that it happened. */ 784 complete(&cdns_ctrl->complete); 785 /* Tell the OS that we've handled this. */ 786 result = IRQ_HANDLED; 787 } 788 spin_unlock(&cdns_ctrl->irq_lock); 789 790 return result; 791 } 792 793 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 794 struct cadence_nand_irq_status *irq_mask) 795 { 796 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 797 cdns_ctrl->reg + INTR_ENABLE); 798 799 writel_relaxed(irq_mask->trd_error, 800 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 801 } 802 803 static void 804 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 805 struct cadence_nand_irq_status *irq_mask, 806 struct cadence_nand_irq_status *irq_status) 807 { 808 unsigned long timeout = msecs_to_jiffies(10000); 809 unsigned long time_left; 810 811 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 812 timeout); 813 814 *irq_status = cdns_ctrl->irq_status; 815 if (time_left == 0) { 816 /* Timeout error. */ 817 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 818 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 819 irq_status->status, irq_mask->status); 820 dev_err(cdns_ctrl->dev, 821 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 822 irq_status->trd_status, irq_mask->trd_status); 823 dev_err(cdns_ctrl->dev, 824 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 825 irq_status->trd_error, irq_mask->trd_error); 826 } 827 } 828 829 /* Execute generic command on NAND controller. */ 830 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 831 u8 chip_nr, 832 u64 mini_ctrl_cmd) 833 { 834 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 835 836 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 837 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 838 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 839 840 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 841 1000000, 842 CTRL_STATUS_CTRL_BUSY, true)) 843 return -ETIMEDOUT; 844 845 cadence_nand_reset_irq(cdns_ctrl); 846 847 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 848 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 849 850 /* Select generic command. */ 851 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 852 /* Thread number. */ 853 reg |= FIELD_PREP(CMD_REG0_TN, 0); 854 855 /* Issue command. */ 856 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 857 858 return 0; 859 } 860 861 /* Wait for data on slave DMA interface. */ 862 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 863 u8 *out_sdma_trd, 864 u32 *out_sdma_size) 865 { 866 struct cadence_nand_irq_status irq_mask, irq_status; 867 868 irq_mask.trd_status = 0; 869 irq_mask.trd_error = 0; 870 irq_mask.status = INTR_STATUS_SDMA_TRIGG 871 | INTR_STATUS_SDMA_ERR 872 | INTR_STATUS_UNSUPP_CMD; 873 874 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 875 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 876 if (irq_status.status == 0) { 877 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 878 return -ETIMEDOUT; 879 } 880 881 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 882 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 883 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 884 *out_sdma_trd = 885 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 886 } else { 887 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 888 irq_status.status); 889 return -EIO; 890 } 891 892 return 0; 893 } 894 895 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 896 { 897 u32 reg; 898 899 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 900 901 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 902 903 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 904 cdns_ctrl->caps2.data_dma_width = 8; 905 else 906 cdns_ctrl->caps2.data_dma_width = 4; 907 908 if (reg & CTRL_FEATURES_CONTROL_DATA) 909 cdns_ctrl->caps2.data_control_supp = true; 910 911 if (reg & (CTRL_FEATURES_NVDDR_2_3 912 | CTRL_FEATURES_NVDDR)) 913 cdns_ctrl->caps2.is_phy_type_dll = true; 914 } 915 916 /* Prepare CDMA descriptor. */ 917 static void 918 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 919 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 920 dma_addr_t ctrl_data_ptr, u16 ctype) 921 { 922 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 923 924 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 925 926 /* Set fields for one descriptor. */ 927 cdma_desc->flash_pointer = flash_ptr; 928 if (cdns_ctrl->ctrl_rev >= 13) 929 cdma_desc->bank = nf_mem; 930 else 931 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 932 933 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 934 cdma_desc->command_flags |= CDMA_CF_INT; 935 936 cdma_desc->memory_pointer = mem_ptr; 937 cdma_desc->status = 0; 938 cdma_desc->sync_flag_pointer = 0; 939 cdma_desc->sync_arguments = 0; 940 941 cdma_desc->command_type = ctype; 942 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 943 } 944 945 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 946 u32 desc_status) 947 { 948 if (desc_status & CDMA_CS_ERP) 949 return STAT_ERASED; 950 951 if (desc_status & CDMA_CS_UNCE) 952 return STAT_ECC_UNCORR; 953 954 if (desc_status & CDMA_CS_ERR) { 955 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 956 return STAT_FAIL; 957 } 958 959 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 960 return STAT_ECC_CORR; 961 962 return STAT_FAIL; 963 } 964 965 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 966 { 967 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 968 u8 status = STAT_BUSY; 969 970 if (desc_ptr->status & CDMA_CS_FAIL) { 971 status = cadence_nand_check_desc_error(cdns_ctrl, 972 desc_ptr->status); 973 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 974 } else if (desc_ptr->status & CDMA_CS_COMP) { 975 /* Descriptor finished with no errors. */ 976 if (desc_ptr->command_flags & CDMA_CF_CONT) { 977 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 978 status = STAT_UNKNOWN; 979 } else { 980 /* Last descriptor. */ 981 status = STAT_OK; 982 } 983 } 984 985 return status; 986 } 987 988 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 989 u8 thread) 990 { 991 u32 reg; 992 int status; 993 994 /* Wait for thread ready. */ 995 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 996 1000000, 997 BIT(thread), true); 998 if (status) 999 return status; 1000 1001 cadence_nand_reset_irq(cdns_ctrl); 1002 reinit_completion(&cdns_ctrl->complete); 1003 1004 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1005 cdns_ctrl->reg + CMD_REG2); 1006 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1007 1008 /* Select CDMA mode. */ 1009 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1010 /* Thread number. */ 1011 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1012 /* Issue command. */ 1013 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1014 1015 return 0; 1016 } 1017 1018 /* Send SDMA command and wait for finish. */ 1019 static u32 1020 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1021 u8 thread) 1022 { 1023 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1024 int status; 1025 1026 irq_mask.trd_status = BIT(thread); 1027 irq_mask.trd_error = BIT(thread); 1028 irq_mask.status = INTR_STATUS_CDMA_TERR; 1029 1030 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1031 1032 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1033 if (status) 1034 return status; 1035 1036 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1037 1038 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1039 irq_status.trd_error == 0) { 1040 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1041 return -ETIMEDOUT; 1042 } 1043 if (irq_status.status & irq_mask.status) { 1044 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1045 return -EIO; 1046 } 1047 1048 return 0; 1049 } 1050 1051 /* 1052 * ECC size depends on configured ECC strength and on maximum supported 1053 * ECC step size. 1054 */ 1055 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1056 { 1057 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1058 1059 return ALIGN(nbytes, 2); 1060 } 1061 1062 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1063 static int \ 1064 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1065 int strength)\ 1066 {\ 1067 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1068 } 1069 1070 CADENCE_NAND_CALC_ECC_BYTES(256) 1071 CADENCE_NAND_CALC_ECC_BYTES(512) 1072 CADENCE_NAND_CALC_ECC_BYTES(1024) 1073 CADENCE_NAND_CALC_ECC_BYTES(2048) 1074 CADENCE_NAND_CALC_ECC_BYTES(4096) 1075 1076 /* Function reads BCH capabilities. */ 1077 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1078 { 1079 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1080 int max_step_size = 0, nstrengths, i; 1081 u32 reg; 1082 1083 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); 1084 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); 1085 if (cdns_ctrl->bch_metadata_size < 4) { 1086 dev_err(cdns_ctrl->dev, 1087 "Driver needs at least 4 bytes of BCH meta data\n"); 1088 return -EIO; 1089 } 1090 1091 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1092 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1093 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1094 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1095 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1096 1097 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1098 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1099 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1100 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1101 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1102 1103 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1104 cdns_ctrl->ecc_stepinfos[0].stepsize = 1105 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1106 1107 cdns_ctrl->ecc_stepinfos[1].stepsize = 1108 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1109 1110 nstrengths = 0; 1111 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1112 if (cdns_ctrl->ecc_strengths[i] != 0) 1113 nstrengths++; 1114 } 1115 1116 ecc_caps->nstepinfos = 0; 1117 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1118 /* ECC strengths are common for all step infos. */ 1119 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1120 cdns_ctrl->ecc_stepinfos[i].strengths = 1121 cdns_ctrl->ecc_strengths; 1122 1123 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1124 ecc_caps->nstepinfos++; 1125 1126 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1127 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1128 } 1129 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1130 1131 switch (max_step_size) { 1132 case 256: 1133 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1134 break; 1135 case 512: 1136 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1137 break; 1138 case 1024: 1139 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1140 break; 1141 case 2048: 1142 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1143 break; 1144 case 4096: 1145 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1146 break; 1147 default: 1148 dev_err(cdns_ctrl->dev, 1149 "Unsupported sector size(ecc step size) %d\n", 1150 max_step_size); 1151 return -EIO; 1152 } 1153 1154 return 0; 1155 } 1156 1157 /* Hardware initialization. */ 1158 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1159 { 1160 int status; 1161 u32 reg; 1162 1163 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1164 1000000, 1165 CTRL_STATUS_INIT_COMP, false); 1166 if (status) 1167 return status; 1168 1169 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1170 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1171 1172 dev_info(cdns_ctrl->dev, 1173 "%s: cadence nand controller version reg %x\n", 1174 __func__, reg); 1175 1176 /* Disable cache and multiplane. */ 1177 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1178 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1179 1180 /* Clear all interrupts. */ 1181 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1182 1183 cadence_nand_get_caps(cdns_ctrl); 1184 if (cadence_nand_read_bch_caps(cdns_ctrl)) 1185 return -EIO; 1186 1187 #ifndef CONFIG_64BIT 1188 if (cdns_ctrl->caps2.data_dma_width == 8) { 1189 dev_err(cdns_ctrl->dev, 1190 "cannot access 64-bit dma on !64-bit architectures"); 1191 return -EIO; 1192 } 1193 #endif 1194 1195 /* 1196 * Set IO width access to 8. 1197 * It is because during SW device discovering width access 1198 * is expected to be 8. 1199 */ 1200 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1201 1202 return status; 1203 } 1204 1205 #define TT_MAIN_OOB_AREAS 2 1206 #define TT_RAW_PAGE 3 1207 #define TT_BBM 4 1208 #define TT_MAIN_OOB_AREA_EXT 5 1209 1210 /* Prepare size of data to transfer. */ 1211 static void 1212 cadence_nand_prepare_data_size(struct nand_chip *chip, 1213 int transfer_type) 1214 { 1215 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1216 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1217 struct mtd_info *mtd = nand_to_mtd(chip); 1218 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1219 u32 last_sec_size = cdns_chip->sector_size; 1220 u32 data_ctrl_size = 0; 1221 u32 reg = 0; 1222 1223 if (cdns_ctrl->curr_trans_type == transfer_type) 1224 return; 1225 1226 switch (transfer_type) { 1227 case TT_MAIN_OOB_AREA_EXT: 1228 sec_cnt = cdns_chip->sector_count; 1229 sec_size = cdns_chip->sector_size; 1230 data_ctrl_size = cdns_chip->avail_oob_size; 1231 break; 1232 case TT_MAIN_OOB_AREAS: 1233 sec_cnt = cdns_chip->sector_count; 1234 last_sec_size = cdns_chip->sector_size 1235 + cdns_chip->avail_oob_size; 1236 sec_size = cdns_chip->sector_size; 1237 break; 1238 case TT_RAW_PAGE: 1239 last_sec_size = mtd->writesize + mtd->oobsize; 1240 break; 1241 case TT_BBM: 1242 offset = mtd->writesize + cdns_chip->bbm_offs; 1243 last_sec_size = 8; 1244 break; 1245 } 1246 1247 reg = 0; 1248 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1249 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1250 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1251 1252 reg = 0; 1253 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1254 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1255 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1256 1257 if (cdns_ctrl->caps2.data_control_supp) { 1258 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1259 reg &= ~CONTROL_DATA_CTRL_SIZE; 1260 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1261 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1262 } 1263 1264 cdns_ctrl->curr_trans_type = transfer_type; 1265 } 1266 1267 static int 1268 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1269 int page, void *buf, void *ctrl_dat, u32 buf_size, 1270 u32 ctrl_dat_size, enum dma_data_direction dir, 1271 bool with_ecc) 1272 { 1273 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1274 u8 thread_nr = chip_nr; 1275 int status; 1276 u16 ctype; 1277 1278 if (dir == DMA_FROM_DEVICE) 1279 ctype = CDMA_CT_RD; 1280 else 1281 ctype = CDMA_CT_WR; 1282 1283 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1284 1285 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1286 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1287 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1288 return -EIO; 1289 } 1290 1291 if (ctrl_dat && ctrl_dat_size) { 1292 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1293 ctrl_dat_size, dir); 1294 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1295 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1296 buf_size, dir); 1297 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1298 return -EIO; 1299 } 1300 } 1301 1302 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1303 dma_buf, dma_ctrl_dat, ctype); 1304 1305 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1306 1307 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1308 buf_size, dir); 1309 1310 if (ctrl_dat && ctrl_dat_size) 1311 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1312 ctrl_dat_size, dir); 1313 if (status) 1314 return status; 1315 1316 return cadence_nand_cdma_finish(cdns_ctrl); 1317 } 1318 1319 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1320 struct cadence_nand_timings *t) 1321 { 1322 writel_relaxed(t->async_toggle_timings, 1323 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1324 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1325 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1326 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1327 1328 if (cdns_ctrl->caps2.is_phy_type_dll) 1329 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1330 1331 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1332 1333 if (cdns_ctrl->caps2.is_phy_type_dll) { 1334 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1335 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1336 writel_relaxed(t->phy_dqs_timing, 1337 cdns_ctrl->reg + PHY_DQS_TIMING); 1338 writel_relaxed(t->phy_gate_lpbk_ctrl, 1339 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1340 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1341 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1342 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1343 } 1344 } 1345 1346 static int cadence_nand_select_target(struct nand_chip *chip) 1347 { 1348 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1349 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1350 1351 if (chip == cdns_ctrl->selected_chip) 1352 return 0; 1353 1354 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1355 1000000, 1356 CTRL_STATUS_CTRL_BUSY, true)) 1357 return -ETIMEDOUT; 1358 1359 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1360 1361 cadence_nand_set_ecc_strength(cdns_ctrl, 1362 cdns_chip->corr_str_idx); 1363 1364 cadence_nand_set_erase_detection(cdns_ctrl, true, 1365 chip->ecc.strength); 1366 1367 cdns_ctrl->curr_trans_type = -1; 1368 cdns_ctrl->selected_chip = chip; 1369 1370 return 0; 1371 } 1372 1373 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1374 { 1375 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1376 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1377 int status; 1378 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1379 1380 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1381 cdns_chip->cs[chip->cur_cs], 1382 page, 0, 0, 1383 CDMA_CT_ERASE); 1384 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1385 if (status) { 1386 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1387 return -EIO; 1388 } 1389 1390 status = cadence_nand_cdma_finish(cdns_ctrl); 1391 if (status) 1392 return status; 1393 1394 return 0; 1395 } 1396 1397 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1398 { 1399 int status; 1400 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1401 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1402 struct mtd_info *mtd = nand_to_mtd(chip); 1403 1404 cadence_nand_prepare_data_size(chip, TT_BBM); 1405 1406 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1407 1408 /* 1409 * Read only bad block marker from offset 1410 * defined by a memory manufacturer. 1411 */ 1412 status = cadence_nand_cdma_transfer(cdns_ctrl, 1413 cdns_chip->cs[chip->cur_cs], 1414 page, cdns_ctrl->buf, NULL, 1415 mtd->oobsize, 1416 0, DMA_FROM_DEVICE, false); 1417 if (status) { 1418 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1419 return -EIO; 1420 } 1421 1422 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1423 1424 return 0; 1425 } 1426 1427 static int cadence_nand_write_page(struct nand_chip *chip, 1428 const u8 *buf, int oob_required, 1429 int page) 1430 { 1431 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1432 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1433 struct mtd_info *mtd = nand_to_mtd(chip); 1434 int status; 1435 u16 marker_val = 0xFFFF; 1436 1437 status = cadence_nand_select_target(chip); 1438 if (status) 1439 return status; 1440 1441 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1442 mtd->writesize 1443 + cdns_chip->bbm_offs, 1444 1); 1445 1446 if (oob_required) { 1447 marker_val = *(u16 *)(chip->oob_poi 1448 + cdns_chip->bbm_offs); 1449 } else { 1450 /* Set oob data to 0xFF. */ 1451 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1452 cdns_chip->avail_oob_size); 1453 } 1454 1455 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1456 1457 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1458 1459 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1460 cdns_ctrl->caps2.data_control_supp) { 1461 u8 *oob; 1462 1463 if (oob_required) 1464 oob = chip->oob_poi; 1465 else 1466 oob = cdns_ctrl->buf + mtd->writesize; 1467 1468 status = cadence_nand_cdma_transfer(cdns_ctrl, 1469 cdns_chip->cs[chip->cur_cs], 1470 page, (void *)buf, oob, 1471 mtd->writesize, 1472 cdns_chip->avail_oob_size, 1473 DMA_TO_DEVICE, true); 1474 if (status) { 1475 dev_err(cdns_ctrl->dev, "write page failed\n"); 1476 return -EIO; 1477 } 1478 1479 return 0; 1480 } 1481 1482 if (oob_required) { 1483 /* Transfer the data to the oob area. */ 1484 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1485 cdns_chip->avail_oob_size); 1486 } 1487 1488 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1489 1490 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1491 1492 return cadence_nand_cdma_transfer(cdns_ctrl, 1493 cdns_chip->cs[chip->cur_cs], 1494 page, cdns_ctrl->buf, NULL, 1495 mtd->writesize 1496 + cdns_chip->avail_oob_size, 1497 0, DMA_TO_DEVICE, true); 1498 } 1499 1500 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1501 { 1502 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1503 struct mtd_info *mtd = nand_to_mtd(chip); 1504 1505 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1506 1507 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1508 } 1509 1510 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1511 const u8 *buf, int oob_required, 1512 int page) 1513 { 1514 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1515 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1516 struct mtd_info *mtd = nand_to_mtd(chip); 1517 int writesize = mtd->writesize; 1518 int oobsize = mtd->oobsize; 1519 int ecc_steps = chip->ecc.steps; 1520 int ecc_size = chip->ecc.size; 1521 int ecc_bytes = chip->ecc.bytes; 1522 void *tmp_buf = cdns_ctrl->buf; 1523 int oob_skip = cdns_chip->bbm_len; 1524 size_t size = writesize + oobsize; 1525 int i, pos, len; 1526 int status = 0; 1527 1528 status = cadence_nand_select_target(chip); 1529 if (status) 1530 return status; 1531 1532 /* 1533 * Fill the buffer with 0xff first except the full page transfer. 1534 * This simplifies the logic. 1535 */ 1536 if (!buf || !oob_required) 1537 memset(tmp_buf, 0xff, size); 1538 1539 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1540 1541 /* Arrange the buffer for syndrome payload/ecc layout. */ 1542 if (buf) { 1543 for (i = 0; i < ecc_steps; i++) { 1544 pos = i * (ecc_size + ecc_bytes); 1545 len = ecc_size; 1546 1547 if (pos >= writesize) 1548 pos += oob_skip; 1549 else if (pos + len > writesize) 1550 len = writesize - pos; 1551 1552 memcpy(tmp_buf + pos, buf, len); 1553 buf += len; 1554 if (len < ecc_size) { 1555 len = ecc_size - len; 1556 memcpy(tmp_buf + writesize + oob_skip, buf, 1557 len); 1558 buf += len; 1559 } 1560 } 1561 } 1562 1563 if (oob_required) { 1564 const u8 *oob = chip->oob_poi; 1565 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1566 (cdns_chip->sector_size + chip->ecc.bytes) 1567 + cdns_chip->sector_size + oob_skip; 1568 1569 /* BBM at the beginning of the OOB area. */ 1570 memcpy(tmp_buf + writesize, oob, oob_skip); 1571 1572 /* OOB free. */ 1573 memcpy(tmp_buf + oob_data_offset, oob, 1574 cdns_chip->avail_oob_size); 1575 oob += cdns_chip->avail_oob_size; 1576 1577 /* OOB ECC. */ 1578 for (i = 0; i < ecc_steps; i++) { 1579 pos = ecc_size + i * (ecc_size + ecc_bytes); 1580 if (i == (ecc_steps - 1)) 1581 pos += cdns_chip->avail_oob_size; 1582 1583 len = ecc_bytes; 1584 1585 if (pos >= writesize) 1586 pos += oob_skip; 1587 else if (pos + len > writesize) 1588 len = writesize - pos; 1589 1590 memcpy(tmp_buf + pos, oob, len); 1591 oob += len; 1592 if (len < ecc_bytes) { 1593 len = ecc_bytes - len; 1594 memcpy(tmp_buf + writesize + oob_skip, oob, 1595 len); 1596 oob += len; 1597 } 1598 } 1599 } 1600 1601 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1602 1603 return cadence_nand_cdma_transfer(cdns_ctrl, 1604 cdns_chip->cs[chip->cur_cs], 1605 page, cdns_ctrl->buf, NULL, 1606 mtd->writesize + 1607 mtd->oobsize, 1608 0, DMA_TO_DEVICE, false); 1609 } 1610 1611 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1612 int page) 1613 { 1614 return cadence_nand_write_page_raw(chip, NULL, true, page); 1615 } 1616 1617 static int cadence_nand_read_page(struct nand_chip *chip, 1618 u8 *buf, int oob_required, int page) 1619 { 1620 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1621 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1622 struct mtd_info *mtd = nand_to_mtd(chip); 1623 int status = 0; 1624 int ecc_err_count = 0; 1625 1626 status = cadence_nand_select_target(chip); 1627 if (status) 1628 return status; 1629 1630 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1631 mtd->writesize 1632 + cdns_chip->bbm_offs, 1); 1633 1634 /* 1635 * If data buffer can be accessed by DMA and data_control feature 1636 * is supported then transfer data and oob directly. 1637 */ 1638 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1639 cdns_ctrl->caps2.data_control_supp) { 1640 u8 *oob; 1641 1642 if (oob_required) 1643 oob = chip->oob_poi; 1644 else 1645 oob = cdns_ctrl->buf + mtd->writesize; 1646 1647 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1648 status = cadence_nand_cdma_transfer(cdns_ctrl, 1649 cdns_chip->cs[chip->cur_cs], 1650 page, buf, oob, 1651 mtd->writesize, 1652 cdns_chip->avail_oob_size, 1653 DMA_FROM_DEVICE, true); 1654 /* Otherwise use bounce buffer. */ 1655 } else { 1656 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1657 status = cadence_nand_cdma_transfer(cdns_ctrl, 1658 cdns_chip->cs[chip->cur_cs], 1659 page, cdns_ctrl->buf, 1660 NULL, mtd->writesize 1661 + cdns_chip->avail_oob_size, 1662 0, DMA_FROM_DEVICE, true); 1663 1664 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1665 if (oob_required) 1666 memcpy(chip->oob_poi, 1667 cdns_ctrl->buf + mtd->writesize, 1668 mtd->oobsize); 1669 } 1670 1671 switch (status) { 1672 case STAT_ECC_UNCORR: 1673 mtd->ecc_stats.failed++; 1674 ecc_err_count++; 1675 break; 1676 case STAT_ECC_CORR: 1677 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1678 cdns_ctrl->cdma_desc->status); 1679 mtd->ecc_stats.corrected += ecc_err_count; 1680 break; 1681 case STAT_ERASED: 1682 case STAT_OK: 1683 break; 1684 default: 1685 dev_err(cdns_ctrl->dev, "read page failed\n"); 1686 return -EIO; 1687 } 1688 1689 if (oob_required) 1690 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1691 return -EIO; 1692 1693 return ecc_err_count; 1694 } 1695 1696 /* Reads OOB data from the device. */ 1697 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1698 { 1699 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1700 1701 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1702 } 1703 1704 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1705 u8 *buf, int oob_required, int page) 1706 { 1707 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1708 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1709 struct mtd_info *mtd = nand_to_mtd(chip); 1710 int oob_skip = cdns_chip->bbm_len; 1711 int writesize = mtd->writesize; 1712 int ecc_steps = chip->ecc.steps; 1713 int ecc_size = chip->ecc.size; 1714 int ecc_bytes = chip->ecc.bytes; 1715 void *tmp_buf = cdns_ctrl->buf; 1716 int i, pos, len; 1717 int status = 0; 1718 1719 status = cadence_nand_select_target(chip); 1720 if (status) 1721 return status; 1722 1723 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1724 1725 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1726 status = cadence_nand_cdma_transfer(cdns_ctrl, 1727 cdns_chip->cs[chip->cur_cs], 1728 page, cdns_ctrl->buf, NULL, 1729 mtd->writesize 1730 + mtd->oobsize, 1731 0, DMA_FROM_DEVICE, false); 1732 1733 switch (status) { 1734 case STAT_ERASED: 1735 case STAT_OK: 1736 break; 1737 default: 1738 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1739 return -EIO; 1740 } 1741 1742 /* Arrange the buffer for syndrome payload/ecc layout. */ 1743 if (buf) { 1744 for (i = 0; i < ecc_steps; i++) { 1745 pos = i * (ecc_size + ecc_bytes); 1746 len = ecc_size; 1747 1748 if (pos >= writesize) 1749 pos += oob_skip; 1750 else if (pos + len > writesize) 1751 len = writesize - pos; 1752 1753 memcpy(buf, tmp_buf + pos, len); 1754 buf += len; 1755 if (len < ecc_size) { 1756 len = ecc_size - len; 1757 memcpy(buf, tmp_buf + writesize + oob_skip, 1758 len); 1759 buf += len; 1760 } 1761 } 1762 } 1763 1764 if (oob_required) { 1765 u8 *oob = chip->oob_poi; 1766 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1767 (cdns_chip->sector_size + chip->ecc.bytes) 1768 + cdns_chip->sector_size + oob_skip; 1769 1770 /* OOB free. */ 1771 memcpy(oob, tmp_buf + oob_data_offset, 1772 cdns_chip->avail_oob_size); 1773 1774 /* BBM at the beginning of the OOB area. */ 1775 memcpy(oob, tmp_buf + writesize, oob_skip); 1776 1777 oob += cdns_chip->avail_oob_size; 1778 1779 /* OOB ECC */ 1780 for (i = 0; i < ecc_steps; i++) { 1781 pos = ecc_size + i * (ecc_size + ecc_bytes); 1782 len = ecc_bytes; 1783 1784 if (i == (ecc_steps - 1)) 1785 pos += cdns_chip->avail_oob_size; 1786 1787 if (pos >= writesize) 1788 pos += oob_skip; 1789 else if (pos + len > writesize) 1790 len = writesize - pos; 1791 1792 memcpy(oob, tmp_buf + pos, len); 1793 oob += len; 1794 if (len < ecc_bytes) { 1795 len = ecc_bytes - len; 1796 memcpy(oob, tmp_buf + writesize + oob_skip, 1797 len); 1798 oob += len; 1799 } 1800 } 1801 } 1802 1803 return 0; 1804 } 1805 1806 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1807 int page) 1808 { 1809 return cadence_nand_read_page_raw(chip, NULL, true, page); 1810 } 1811 1812 static void cadence_nand_slave_dma_transfer_finished(void *data) 1813 { 1814 struct completion *finished = data; 1815 1816 complete(finished); 1817 } 1818 1819 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1820 void *buf, 1821 dma_addr_t dev_dma, size_t len, 1822 enum dma_data_direction dir) 1823 { 1824 DECLARE_COMPLETION_ONSTACK(finished); 1825 struct dma_chan *chan; 1826 struct dma_device *dma_dev; 1827 dma_addr_t src_dma, dst_dma, buf_dma; 1828 struct dma_async_tx_descriptor *tx; 1829 dma_cookie_t cookie; 1830 1831 chan = cdns_ctrl->dmac; 1832 dma_dev = chan->device; 1833 1834 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1835 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1836 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1837 goto err; 1838 } 1839 1840 if (dir == DMA_FROM_DEVICE) { 1841 src_dma = cdns_ctrl->io.dma; 1842 dst_dma = buf_dma; 1843 } else { 1844 src_dma = buf_dma; 1845 dst_dma = cdns_ctrl->io.dma; 1846 } 1847 1848 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1849 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1850 if (!tx) { 1851 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1852 goto err_unmap; 1853 } 1854 1855 tx->callback = cadence_nand_slave_dma_transfer_finished; 1856 tx->callback_param = &finished; 1857 1858 cookie = dmaengine_submit(tx); 1859 if (dma_submit_error(cookie)) { 1860 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1861 goto err_unmap; 1862 } 1863 1864 dma_async_issue_pending(cdns_ctrl->dmac); 1865 wait_for_completion(&finished); 1866 1867 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1868 1869 return 0; 1870 1871 err_unmap: 1872 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1873 1874 err: 1875 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1876 1877 return -EIO; 1878 } 1879 1880 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1881 u8 *buf, int len) 1882 { 1883 u8 thread_nr = 0; 1884 u32 sdma_size; 1885 int status; 1886 1887 /* Wait until slave DMA interface is ready to data transfer. */ 1888 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1889 if (status) 1890 return status; 1891 1892 if (!cdns_ctrl->caps1->has_dma) { 1893 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1894 1895 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1896 1897 /* read alingment data */ 1898 if (data_dma_width == 4) 1899 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1900 #ifdef CONFIG_64BIT 1901 else 1902 readsq(cdns_ctrl->io.virt, buf, len_in_words); 1903 #endif 1904 1905 if (sdma_size > len) { 1906 int read_bytes = (data_dma_width == 4) ? 1907 len_in_words << 2 : len_in_words << 3; 1908 1909 /* read rest data from slave DMA interface if any */ 1910 if (data_dma_width == 4) 1911 ioread32_rep(cdns_ctrl->io.virt, 1912 cdns_ctrl->buf, 1913 sdma_size / 4 - len_in_words); 1914 #ifdef CONFIG_64BIT 1915 else 1916 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1917 sdma_size / 8 - len_in_words); 1918 #endif 1919 1920 /* copy rest of data */ 1921 memcpy(buf + read_bytes, cdns_ctrl->buf, 1922 len - read_bytes); 1923 } 1924 return 0; 1925 } 1926 1927 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1928 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1929 cdns_ctrl->io.dma, 1930 len, DMA_FROM_DEVICE); 1931 if (status == 0) 1932 return 0; 1933 1934 dev_warn(cdns_ctrl->dev, 1935 "Slave DMA transfer failed. Try again using bounce buffer."); 1936 } 1937 1938 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1939 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1940 cdns_ctrl->io.dma, 1941 sdma_size, DMA_FROM_DEVICE); 1942 1943 if (status) { 1944 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1945 return status; 1946 } 1947 1948 memcpy(buf, cdns_ctrl->buf, len); 1949 1950 return 0; 1951 } 1952 1953 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1954 const u8 *buf, int len) 1955 { 1956 u8 thread_nr = 0; 1957 u32 sdma_size; 1958 int status; 1959 1960 /* Wait until slave DMA interface is ready to data transfer. */ 1961 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1962 if (status) 1963 return status; 1964 1965 if (!cdns_ctrl->caps1->has_dma) { 1966 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 1967 1968 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3; 1969 1970 if (data_dma_width == 4) 1971 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1972 #ifdef CONFIG_64BIT 1973 else 1974 writesq(cdns_ctrl->io.virt, buf, len_in_words); 1975 #endif 1976 1977 if (sdma_size > len) { 1978 int written_bytes = (data_dma_width == 4) ? 1979 len_in_words << 2 : len_in_words << 3; 1980 1981 /* copy rest of data */ 1982 memcpy(cdns_ctrl->buf, buf + written_bytes, 1983 len - written_bytes); 1984 1985 /* write all expected by nand controller data */ 1986 if (data_dma_width == 4) 1987 iowrite32_rep(cdns_ctrl->io.virt, 1988 cdns_ctrl->buf, 1989 sdma_size / 4 - len_in_words); 1990 #ifdef CONFIG_64BIT 1991 else 1992 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf, 1993 sdma_size / 8 - len_in_words); 1994 #endif 1995 } 1996 1997 return 0; 1998 } 1999 2000 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 2001 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 2002 cdns_ctrl->io.dma, 2003 len, DMA_TO_DEVICE); 2004 if (status == 0) 2005 return 0; 2006 2007 dev_warn(cdns_ctrl->dev, 2008 "Slave DMA transfer failed. Try again using bounce buffer."); 2009 } 2010 2011 /* If DMA transfer is not possible or failed then use bounce buffer. */ 2012 memcpy(cdns_ctrl->buf, buf, len); 2013 2014 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 2015 cdns_ctrl->io.dma, 2016 sdma_size, DMA_TO_DEVICE); 2017 2018 if (status) 2019 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 2020 2021 return status; 2022 } 2023 2024 static int cadence_nand_force_byte_access(struct nand_chip *chip, 2025 bool force_8bit) 2026 { 2027 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2028 2029 /* 2030 * Callers of this function do not verify if the NAND is using a 16-bit 2031 * an 8-bit bus for normal operations, so we need to take care of that 2032 * here by leaving the configuration unchanged if the NAND does not have 2033 * the NAND_BUSWIDTH_16 flag set. 2034 */ 2035 if (!(chip->options & NAND_BUSWIDTH_16)) 2036 return 0; 2037 2038 return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 2039 } 2040 2041 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 2042 const struct nand_subop *subop) 2043 { 2044 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2045 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2046 const struct nand_op_instr *instr; 2047 unsigned int op_id = 0; 2048 u64 mini_ctrl_cmd = 0; 2049 int ret; 2050 2051 instr = &subop->instrs[op_id]; 2052 2053 if (instr->delay_ns > 0) 2054 mini_ctrl_cmd |= GCMD_LAY_TWB; 2055 2056 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2057 GCMD_LAY_INSTR_CMD); 2058 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2059 instr->ctx.cmd.opcode); 2060 2061 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2062 cdns_chip->cs[chip->cur_cs], 2063 mini_ctrl_cmd); 2064 if (ret) 2065 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2066 instr->ctx.cmd.opcode); 2067 2068 return ret; 2069 } 2070 2071 static int cadence_nand_cmd_address(struct nand_chip *chip, 2072 const struct nand_subop *subop) 2073 { 2074 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2075 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2076 const struct nand_op_instr *instr; 2077 unsigned int op_id = 0; 2078 u64 mini_ctrl_cmd = 0; 2079 unsigned int offset, naddrs; 2080 u64 address = 0; 2081 const u8 *addrs; 2082 int ret; 2083 int i; 2084 2085 instr = &subop->instrs[op_id]; 2086 2087 if (instr->delay_ns > 0) 2088 mini_ctrl_cmd |= GCMD_LAY_TWB; 2089 2090 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2091 GCMD_LAY_INSTR_ADDR); 2092 2093 offset = nand_subop_get_addr_start_off(subop, op_id); 2094 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2095 addrs = &instr->ctx.addr.addrs[offset]; 2096 2097 for (i = 0; i < naddrs; i++) 2098 address |= (u64)addrs[i] << (8 * i); 2099 2100 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2101 address); 2102 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2103 naddrs - 1); 2104 2105 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2106 cdns_chip->cs[chip->cur_cs], 2107 mini_ctrl_cmd); 2108 if (ret) 2109 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2110 2111 return ret; 2112 } 2113 2114 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2115 const struct nand_subop *subop) 2116 { 2117 unsigned int op_id; 2118 2119 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2120 int i; 2121 const struct nand_op_instr *instr = NULL; 2122 unsigned int offset, naddrs; 2123 const u8 *addrs; 2124 u32 page = 0; 2125 2126 instr = &subop->instrs[1]; 2127 offset = nand_subop_get_addr_start_off(subop, 1); 2128 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2129 addrs = &instr->ctx.addr.addrs[offset]; 2130 2131 for (i = 0; i < naddrs; i++) 2132 page |= (u32)addrs[i] << (8 * i); 2133 2134 return cadence_nand_erase(chip, page); 2135 } 2136 2137 /* 2138 * If it is not an erase operation then handle operation 2139 * by calling exec_op function. 2140 */ 2141 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2142 int ret; 2143 const struct nand_operation nand_op = { 2144 .cs = chip->cur_cs, 2145 .instrs = &subop->instrs[op_id], 2146 .ninstrs = 1}; 2147 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2148 if (ret) 2149 return ret; 2150 } 2151 2152 return 0; 2153 } 2154 2155 static int cadence_nand_cmd_data(struct nand_chip *chip, 2156 const struct nand_subop *subop) 2157 { 2158 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2159 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2160 const struct nand_op_instr *instr; 2161 unsigned int offset, op_id = 0; 2162 u64 mini_ctrl_cmd = 0; 2163 int len = 0; 2164 int ret; 2165 2166 instr = &subop->instrs[op_id]; 2167 2168 if (instr->delay_ns > 0) 2169 mini_ctrl_cmd |= GCMD_LAY_TWB; 2170 2171 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2172 GCMD_LAY_INSTR_DATA); 2173 2174 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2175 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2176 GCMD_DIR_WRITE); 2177 2178 len = nand_subop_get_data_len(subop, op_id); 2179 offset = nand_subop_get_data_start_off(subop, op_id); 2180 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2181 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2182 if (instr->ctx.data.force_8bit) { 2183 ret = cadence_nand_force_byte_access(chip, true); 2184 if (ret) { 2185 dev_err(cdns_ctrl->dev, 2186 "cannot change byte access generic data cmd failed\n"); 2187 return ret; 2188 } 2189 } 2190 2191 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2192 cdns_chip->cs[chip->cur_cs], 2193 mini_ctrl_cmd); 2194 if (ret) { 2195 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2196 return ret; 2197 } 2198 2199 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2200 void *buf = instr->ctx.data.buf.in + offset; 2201 2202 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2203 } else { 2204 const void *buf = instr->ctx.data.buf.out + offset; 2205 2206 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2207 } 2208 2209 if (ret) { 2210 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2211 return ret; 2212 } 2213 2214 if (instr->ctx.data.force_8bit) { 2215 ret = cadence_nand_force_byte_access(chip, false); 2216 if (ret) { 2217 dev_err(cdns_ctrl->dev, 2218 "cannot change byte access generic data cmd failed\n"); 2219 } 2220 } 2221 2222 return ret; 2223 } 2224 2225 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2226 const struct nand_subop *subop) 2227 { 2228 int status; 2229 unsigned int op_id = 0; 2230 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2231 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2232 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2233 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2234 2235 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2236 timeout_us, 2237 BIT(cdns_chip->cs[chip->cur_cs]), 2238 false); 2239 return status; 2240 } 2241 2242 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2243 NAND_OP_PARSER_PATTERN( 2244 cadence_nand_cmd_erase, 2245 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2246 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2247 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2248 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2249 NAND_OP_PARSER_PATTERN( 2250 cadence_nand_cmd_opcode, 2251 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2252 NAND_OP_PARSER_PATTERN( 2253 cadence_nand_cmd_address, 2254 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2255 NAND_OP_PARSER_PATTERN( 2256 cadence_nand_cmd_data, 2257 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2258 NAND_OP_PARSER_PATTERN( 2259 cadence_nand_cmd_data, 2260 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2261 NAND_OP_PARSER_PATTERN( 2262 cadence_nand_cmd_waitrdy, 2263 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2264 ); 2265 2266 static int cadence_nand_exec_op(struct nand_chip *chip, 2267 const struct nand_operation *op, 2268 bool check_only) 2269 { 2270 if (!check_only) { 2271 int status = cadence_nand_select_target(chip); 2272 2273 if (status) 2274 return status; 2275 } 2276 2277 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2278 check_only); 2279 } 2280 2281 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2282 struct mtd_oob_region *oobregion) 2283 { 2284 struct nand_chip *chip = mtd_to_nand(mtd); 2285 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2286 2287 if (section) 2288 return -ERANGE; 2289 2290 oobregion->offset = cdns_chip->bbm_len; 2291 oobregion->length = cdns_chip->avail_oob_size 2292 - cdns_chip->bbm_len; 2293 2294 return 0; 2295 } 2296 2297 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2298 struct mtd_oob_region *oobregion) 2299 { 2300 struct nand_chip *chip = mtd_to_nand(mtd); 2301 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2302 2303 if (section) 2304 return -ERANGE; 2305 2306 oobregion->offset = cdns_chip->avail_oob_size; 2307 oobregion->length = chip->ecc.total; 2308 2309 return 0; 2310 } 2311 2312 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2313 .free = cadence_nand_ooblayout_free, 2314 .ecc = cadence_nand_ooblayout_ecc, 2315 }; 2316 2317 static int calc_cycl(u32 timing, u32 clock) 2318 { 2319 if (timing == 0 || clock == 0) 2320 return 0; 2321 2322 if ((timing % clock) > 0) 2323 return timing / clock; 2324 else 2325 return timing / clock - 1; 2326 } 2327 2328 /* Calculate max data valid window. */ 2329 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2330 u32 board_delay_skew_min, u32 ext_mode) 2331 { 2332 if (ext_mode == 0) 2333 clk_period /= 2; 2334 2335 return (trp_cnt + 1) * clk_period + trhoh_min + 2336 board_delay_skew_min; 2337 } 2338 2339 /* Calculate data valid window. */ 2340 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2341 u32 trea_max, u32 ext_mode) 2342 { 2343 if (ext_mode == 0) 2344 clk_period /= 2; 2345 2346 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2347 } 2348 2349 static int 2350 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, 2351 const struct nand_interface_config *conf) 2352 { 2353 const struct nand_sdr_timings *sdr; 2354 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2355 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2356 struct cadence_nand_timings *t = &cdns_chip->timings; 2357 u32 reg; 2358 u32 board_delay = cdns_ctrl->board_delay; 2359 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2360 cdns_ctrl->nf_clk_rate); 2361 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2362 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2363 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2364 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2365 u32 if_skew = cdns_ctrl->caps1->if_skew; 2366 u32 board_delay_skew_min = board_delay - if_skew; 2367 u32 board_delay_skew_max = board_delay + if_skew; 2368 u32 dqs_sampl_res, phony_dqs_mod; 2369 u32 tdvw, tdvw_min, tdvw_max; 2370 u32 ext_rd_mode, ext_wr_mode; 2371 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2372 u32 sampling_point; 2373 2374 sdr = nand_get_sdr_timings(conf); 2375 if (IS_ERR(sdr)) 2376 return PTR_ERR(sdr); 2377 2378 memset(t, 0, sizeof(*t)); 2379 /* Sampling point calculation. */ 2380 2381 if (cdns_ctrl->caps2.is_phy_type_dll) 2382 phony_dqs_mod = 2; 2383 else 2384 phony_dqs_mod = 1; 2385 2386 dqs_sampl_res = clk_period / phony_dqs_mod; 2387 2388 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2389 /* 2390 * The idea of those calculation is to get the optimum value 2391 * for tRP and tRH timings. If it is NOT possible to sample data 2392 * with optimal tRP/tRH settings, the parameters will be extended. 2393 * If clk_period is 50ns (the lowest value) this condition is met 2394 * for SDR timing modes 1, 2, 3, 4 and 5. 2395 * If clk_period is 20ns the condition is met only for SDR timing 2396 * mode 5. 2397 */ 2398 if (sdr->tRC_min <= clk_period && 2399 sdr->tRP_min <= (clk_period / 2) && 2400 sdr->tREH_min <= (clk_period / 2)) { 2401 /* Performance mode. */ 2402 ext_rd_mode = 0; 2403 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2404 sdr->tREA_max, ext_rd_mode); 2405 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2406 board_delay_skew_min, 2407 ext_rd_mode); 2408 /* 2409 * Check if data valid window and sampling point can be found 2410 * and is not on the edge (ie. we have hold margin). 2411 * If not extend the tRP timings. 2412 */ 2413 if (tdvw > 0) { 2414 if (tdvw_max <= tdvw_min || 2415 (tdvw_max % dqs_sampl_res) == 0) { 2416 /* 2417 * No valid sampling point so the RE pulse need 2418 * to be widen widening by half clock cycle. 2419 */ 2420 ext_rd_mode = 1; 2421 } 2422 } else { 2423 /* 2424 * There is no valid window 2425 * to be able to sample data the tRP need to be widen. 2426 * Very safe calculations are performed here. 2427 */ 2428 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2429 + dqs_sampl_res) / clk_period; 2430 ext_rd_mode = 1; 2431 } 2432 2433 } else { 2434 /* Extended read mode. */ 2435 u32 trh; 2436 2437 ext_rd_mode = 1; 2438 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2439 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2440 if (sdr->tREH_min >= trh) 2441 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2442 else 2443 trh_cnt = calc_cycl(trh, clk_period); 2444 2445 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2446 sdr->tREA_max, ext_rd_mode); 2447 /* 2448 * Check if data valid window and sampling point can be found 2449 * or if it is at the edge check if previous is valid 2450 * - if not extend the tRP timings. 2451 */ 2452 if (tdvw > 0) { 2453 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2454 sdr->tRHOH_min, 2455 board_delay_skew_min, 2456 ext_rd_mode); 2457 2458 if ((((tdvw_max / dqs_sampl_res) 2459 * dqs_sampl_res) <= tdvw_min) || 2460 (((tdvw_max % dqs_sampl_res) == 0) && 2461 (((tdvw_max / dqs_sampl_res - 1) 2462 * dqs_sampl_res) <= tdvw_min))) { 2463 /* 2464 * Data valid window width is lower than 2465 * sampling resolution and do not hit any 2466 * sampling point to be sure the sampling point 2467 * will be found the RE low pulse width will be 2468 * extended by one clock cycle. 2469 */ 2470 trp_cnt = trp_cnt + 1; 2471 } 2472 } else { 2473 /* 2474 * There is no valid window to be able to sample data. 2475 * The tRP need to be widen. 2476 * Very safe calculations are performed here. 2477 */ 2478 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2479 + dqs_sampl_res) / clk_period; 2480 } 2481 } 2482 2483 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2484 sdr->tRHOH_min, 2485 board_delay_skew_min, ext_rd_mode); 2486 2487 if (sdr->tWC_min <= clk_period && 2488 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2489 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2490 ext_wr_mode = 0; 2491 } else { 2492 u32 twh; 2493 2494 ext_wr_mode = 1; 2495 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2496 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2497 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2498 clk_period); 2499 2500 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2501 if (sdr->tWH_min >= twh) 2502 twh = sdr->tWH_min; 2503 2504 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2505 } 2506 2507 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2508 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2509 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2510 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2511 t->async_toggle_timings = reg; 2512 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2513 2514 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2515 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2516 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2517 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2518 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2519 2520 /* 2521 * If timing exceeds delay field in timing register 2522 * then use maximum value. 2523 */ 2524 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2525 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2526 else 2527 reg |= TIMINGS0_TCCS; 2528 2529 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2530 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2531 t->timings0 = reg; 2532 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2533 2534 /* The following is related to single signal so skew is not needed. */ 2535 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2536 trhz_cnt = trhz_cnt + 1; 2537 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2538 /* 2539 * Because of the two stage syncflop the value must be increased by 3 2540 * first value is related with sync, second value is related 2541 * with output if delay. 2542 */ 2543 twb_cnt = twb_cnt + 3 + 5; 2544 /* 2545 * The following is related to the we edge of the random data input 2546 * sequence so skew is not needed. 2547 */ 2548 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2549 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2550 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2551 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2552 t->timings1 = reg; 2553 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2554 2555 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2556 if (tfeat_cnt < twb_cnt) 2557 tfeat_cnt = twb_cnt; 2558 2559 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2560 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2561 2562 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2563 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2564 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2565 t->timings2 = reg; 2566 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2567 2568 if (cdns_ctrl->caps2.is_phy_type_dll) { 2569 reg = DLL_PHY_CTRL_DLL_RST_N; 2570 if (ext_wr_mode) 2571 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2572 if (ext_rd_mode) 2573 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2574 2575 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2576 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2577 t->dll_phy_ctrl = reg; 2578 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2579 } 2580 2581 /* Sampling point calculation. */ 2582 if ((tdvw_max % dqs_sampl_res) > 0) 2583 sampling_point = tdvw_max / dqs_sampl_res; 2584 else 2585 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2586 2587 if (sampling_point * dqs_sampl_res > tdvw_min) { 2588 dll_phy_dqs_timing = 2589 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2590 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2591 phony_dqs_timing = sampling_point / phony_dqs_mod; 2592 2593 if ((sampling_point % 2) > 0) { 2594 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2595 if ((tdvw_max % dqs_sampl_res) == 0) 2596 /* 2597 * Calculation for sampling point at the edge 2598 * of data and being odd number. 2599 */ 2600 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2601 / phony_dqs_mod - 1; 2602 2603 if (!cdns_ctrl->caps2.is_phy_type_dll) 2604 phony_dqs_timing--; 2605 2606 } else { 2607 phony_dqs_timing--; 2608 } 2609 rd_del_sel = phony_dqs_timing + 3; 2610 } else { 2611 dev_warn(cdns_ctrl->dev, 2612 "ERROR : cannot find valid sampling point\n"); 2613 } 2614 2615 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2616 if (cdns_ctrl->caps2.is_phy_type_dll) 2617 reg |= PHY_CTRL_SDR_DQS; 2618 t->phy_ctrl = reg; 2619 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2620 2621 if (cdns_ctrl->caps2.is_phy_type_dll) { 2622 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2623 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2624 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2625 dll_phy_dqs_timing); 2626 t->phy_dqs_timing = dll_phy_dqs_timing; 2627 2628 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2629 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2630 reg); 2631 t->phy_gate_lpbk_ctrl = reg; 2632 2633 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2634 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2635 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2636 } 2637 2638 return 0; 2639 } 2640 2641 static int cadence_nand_attach_chip(struct nand_chip *chip) 2642 { 2643 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2644 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2645 u32 ecc_size; 2646 struct mtd_info *mtd = nand_to_mtd(chip); 2647 int ret; 2648 2649 if (chip->options & NAND_BUSWIDTH_16) { 2650 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2651 if (ret) 2652 return ret; 2653 } 2654 2655 chip->bbt_options |= NAND_BBT_USE_FLASH; 2656 chip->bbt_options |= NAND_BBT_NO_OOB; 2657 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2658 2659 chip->options |= NAND_NO_SUBPAGE_WRITE; 2660 2661 cdns_chip->bbm_offs = chip->badblockpos; 2662 cdns_chip->bbm_offs &= ~0x01; 2663 /* this value should be even number */ 2664 cdns_chip->bbm_len = 2; 2665 2666 ret = nand_ecc_choose_conf(chip, 2667 &cdns_ctrl->ecc_caps, 2668 mtd->oobsize - cdns_chip->bbm_len); 2669 if (ret) { 2670 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2671 return ret; 2672 } 2673 2674 dev_dbg(cdns_ctrl->dev, 2675 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2676 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2677 2678 /* Error correction configuration. */ 2679 cdns_chip->sector_size = chip->ecc.size; 2680 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2681 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2682 2683 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2684 2685 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) 2686 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; 2687 2688 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2689 > mtd->oobsize) 2690 cdns_chip->avail_oob_size -= 4; 2691 2692 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2693 if (ret < 0) 2694 return -EINVAL; 2695 2696 cdns_chip->corr_str_idx = (u8)ret; 2697 2698 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2699 1000000, 2700 CTRL_STATUS_CTRL_BUSY, true)) 2701 return -ETIMEDOUT; 2702 2703 cadence_nand_set_ecc_strength(cdns_ctrl, 2704 cdns_chip->corr_str_idx); 2705 2706 cadence_nand_set_erase_detection(cdns_ctrl, true, 2707 chip->ecc.strength); 2708 2709 /* Override the default read operations. */ 2710 chip->ecc.read_page = cadence_nand_read_page; 2711 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2712 chip->ecc.write_page = cadence_nand_write_page; 2713 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2714 chip->ecc.read_oob = cadence_nand_read_oob; 2715 chip->ecc.write_oob = cadence_nand_write_oob; 2716 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2717 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2718 2719 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2720 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2721 2722 /* Is 32-bit DMA supported? */ 2723 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2724 if (ret) { 2725 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2726 return ret; 2727 } 2728 2729 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2730 2731 return 0; 2732 } 2733 2734 static const struct nand_controller_ops cadence_nand_controller_ops = { 2735 .attach_chip = cadence_nand_attach_chip, 2736 .exec_op = cadence_nand_exec_op, 2737 .setup_interface = cadence_nand_setup_interface, 2738 }; 2739 2740 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2741 struct device_node *np) 2742 { 2743 struct cdns_nand_chip *cdns_chip; 2744 struct mtd_info *mtd; 2745 struct nand_chip *chip; 2746 int nsels, ret, i; 2747 u32 cs; 2748 2749 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2750 if (nsels <= 0) { 2751 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2752 return -EINVAL; 2753 } 2754 2755 /* Allocate the nand chip structure. */ 2756 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2757 (nsels * sizeof(u8)), 2758 GFP_KERNEL); 2759 if (!cdns_chip) { 2760 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2761 return -ENOMEM; 2762 } 2763 2764 cdns_chip->nsels = nsels; 2765 2766 for (i = 0; i < nsels; i++) { 2767 /* Retrieve CS id. */ 2768 ret = of_property_read_u32_index(np, "reg", i, &cs); 2769 if (ret) { 2770 dev_err(cdns_ctrl->dev, 2771 "could not retrieve reg property: %d\n", 2772 ret); 2773 return ret; 2774 } 2775 2776 if (cs >= cdns_ctrl->caps2.max_banks) { 2777 dev_err(cdns_ctrl->dev, 2778 "invalid reg value: %u (max CS = %d)\n", 2779 cs, cdns_ctrl->caps2.max_banks); 2780 return -EINVAL; 2781 } 2782 2783 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2784 dev_err(cdns_ctrl->dev, 2785 "CS %d already assigned\n", cs); 2786 return -EINVAL; 2787 } 2788 2789 cdns_chip->cs[i] = cs; 2790 } 2791 2792 chip = &cdns_chip->chip; 2793 chip->controller = &cdns_ctrl->controller; 2794 nand_set_flash_node(chip, np); 2795 2796 mtd = nand_to_mtd(chip); 2797 mtd->dev.parent = cdns_ctrl->dev; 2798 2799 /* 2800 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2801 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2802 */ 2803 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2804 2805 ret = nand_scan(chip, cdns_chip->nsels); 2806 if (ret) { 2807 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2808 return ret; 2809 } 2810 2811 ret = mtd_device_register(mtd, NULL, 0); 2812 if (ret) { 2813 dev_err(cdns_ctrl->dev, 2814 "failed to register mtd device: %d\n", ret); 2815 nand_cleanup(chip); 2816 return ret; 2817 } 2818 2819 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2820 2821 return 0; 2822 } 2823 2824 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2825 { 2826 struct cdns_nand_chip *entry, *temp; 2827 struct nand_chip *chip; 2828 int ret; 2829 2830 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2831 chip = &entry->chip; 2832 ret = mtd_device_unregister(nand_to_mtd(chip)); 2833 WARN_ON(ret); 2834 nand_cleanup(chip); 2835 list_del(&entry->node); 2836 } 2837 } 2838 2839 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2840 { 2841 struct device_node *np = cdns_ctrl->dev->of_node; 2842 struct device_node *nand_np; 2843 int max_cs = cdns_ctrl->caps2.max_banks; 2844 int nchips, ret; 2845 2846 nchips = of_get_child_count(np); 2847 2848 if (nchips > max_cs) { 2849 dev_err(cdns_ctrl->dev, 2850 "too many NAND chips: %d (max = %d CS)\n", 2851 nchips, max_cs); 2852 return -EINVAL; 2853 } 2854 2855 for_each_child_of_node(np, nand_np) { 2856 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2857 if (ret) { 2858 of_node_put(nand_np); 2859 cadence_nand_chips_cleanup(cdns_ctrl); 2860 return ret; 2861 } 2862 } 2863 2864 return 0; 2865 } 2866 2867 static void 2868 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2869 { 2870 /* Disable interrupts. */ 2871 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2872 } 2873 2874 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2875 { 2876 dma_cap_mask_t mask; 2877 int ret; 2878 2879 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2880 sizeof(*cdns_ctrl->cdma_desc), 2881 &cdns_ctrl->dma_cdma_desc, 2882 GFP_KERNEL); 2883 if (!cdns_ctrl->dma_cdma_desc) 2884 return -ENOMEM; 2885 2886 cdns_ctrl->buf_size = SZ_16K; 2887 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2888 if (!cdns_ctrl->buf) { 2889 ret = -ENOMEM; 2890 goto free_buf_desc; 2891 } 2892 2893 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2894 IRQF_SHARED, "cadence-nand-controller", 2895 cdns_ctrl)) { 2896 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2897 ret = -ENODEV; 2898 goto free_buf; 2899 } 2900 2901 spin_lock_init(&cdns_ctrl->irq_lock); 2902 init_completion(&cdns_ctrl->complete); 2903 2904 ret = cadence_nand_hw_init(cdns_ctrl); 2905 if (ret) 2906 goto disable_irq; 2907 2908 dma_cap_zero(mask); 2909 dma_cap_set(DMA_MEMCPY, mask); 2910 2911 if (cdns_ctrl->caps1->has_dma) { 2912 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2913 if (!cdns_ctrl->dmac) { 2914 dev_err(cdns_ctrl->dev, 2915 "Unable to get a DMA channel\n"); 2916 ret = -EBUSY; 2917 goto disable_irq; 2918 } 2919 } 2920 2921 nand_controller_init(&cdns_ctrl->controller); 2922 INIT_LIST_HEAD(&cdns_ctrl->chips); 2923 2924 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2925 cdns_ctrl->curr_corr_str_idx = 0xFF; 2926 2927 ret = cadence_nand_chips_init(cdns_ctrl); 2928 if (ret) { 2929 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2930 ret); 2931 goto dma_release_chnl; 2932 } 2933 2934 kfree(cdns_ctrl->buf); 2935 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2936 if (!cdns_ctrl->buf) { 2937 ret = -ENOMEM; 2938 goto dma_release_chnl; 2939 } 2940 2941 return 0; 2942 2943 dma_release_chnl: 2944 if (cdns_ctrl->dmac) 2945 dma_release_channel(cdns_ctrl->dmac); 2946 2947 disable_irq: 2948 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2949 2950 free_buf: 2951 kfree(cdns_ctrl->buf); 2952 2953 free_buf_desc: 2954 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2955 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2956 2957 return ret; 2958 } 2959 2960 /* Driver exit point. */ 2961 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2962 { 2963 cadence_nand_chips_cleanup(cdns_ctrl); 2964 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2965 kfree(cdns_ctrl->buf); 2966 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2967 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2968 2969 if (cdns_ctrl->dmac) 2970 dma_release_channel(cdns_ctrl->dmac); 2971 } 2972 2973 struct cadence_nand_dt { 2974 struct cdns_nand_ctrl cdns_ctrl; 2975 struct clk *clk; 2976 }; 2977 2978 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2979 .if_skew = 0, 2980 .has_dma = 1, 2981 }; 2982 2983 static const struct of_device_id cadence_nand_dt_ids[] = { 2984 { 2985 .compatible = "cdns,hp-nfc", 2986 .data = &cadence_nand_default 2987 }, {} 2988 }; 2989 2990 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2991 2992 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2993 { 2994 struct resource *res; 2995 struct cadence_nand_dt *dt; 2996 struct cdns_nand_ctrl *cdns_ctrl; 2997 int ret; 2998 const struct of_device_id *of_id; 2999 const struct cadence_nand_dt_devdata *devdata; 3000 u32 val; 3001 3002 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); 3003 if (of_id) { 3004 ofdev->id_entry = of_id->data; 3005 devdata = of_id->data; 3006 } else { 3007 pr_err("Failed to find the right device id.\n"); 3008 return -ENOMEM; 3009 } 3010 3011 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 3012 if (!dt) 3013 return -ENOMEM; 3014 3015 cdns_ctrl = &dt->cdns_ctrl; 3016 cdns_ctrl->caps1 = devdata; 3017 3018 cdns_ctrl->dev = &ofdev->dev; 3019 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 3020 if (cdns_ctrl->irq < 0) 3021 return cdns_ctrl->irq; 3022 3023 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 3024 3025 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 3026 if (IS_ERR(cdns_ctrl->reg)) 3027 return PTR_ERR(cdns_ctrl->reg); 3028 3029 cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res); 3030 if (IS_ERR(cdns_ctrl->io.virt)) 3031 return PTR_ERR(cdns_ctrl->io.virt); 3032 cdns_ctrl->io.dma = res->start; 3033 3034 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 3035 if (IS_ERR(dt->clk)) 3036 return PTR_ERR(dt->clk); 3037 3038 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 3039 3040 ret = of_property_read_u32(ofdev->dev.of_node, 3041 "cdns,board-delay-ps", &val); 3042 if (ret) { 3043 val = 4830; 3044 dev_info(cdns_ctrl->dev, 3045 "missing cdns,board-delay-ps property, %d was set\n", 3046 val); 3047 } 3048 cdns_ctrl->board_delay = val; 3049 3050 ret = cadence_nand_init(cdns_ctrl); 3051 if (ret) 3052 return ret; 3053 3054 platform_set_drvdata(ofdev, dt); 3055 return 0; 3056 } 3057 3058 static int cadence_nand_dt_remove(struct platform_device *ofdev) 3059 { 3060 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3061 3062 cadence_nand_remove(&dt->cdns_ctrl); 3063 3064 return 0; 3065 } 3066 3067 static struct platform_driver cadence_nand_dt_driver = { 3068 .probe = cadence_nand_dt_probe, 3069 .remove = cadence_nand_dt_remove, 3070 .driver = { 3071 .name = "cadence-nand-controller", 3072 .of_match_table = cadence_nand_dt_ids, 3073 }, 3074 }; 3075 3076 module_platform_driver(cadence_nand_dt_driver); 3077 3078 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3079 MODULE_LICENSE("GPL v2"); 3080 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3081 3082