1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cadence NAND flash controller driver
4  *
5  * Copyright (C) 2019 Cadence
6  *
7  * Author: Piotr Sroka <piotrs@cadence.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_device.h>
19 #include <linux/iopoll.h>
20 
21 /*
22  * HPNFC can work in 3 modes:
23  * -  PIO - can work in master or slave DMA
24  * -  CDMA - needs Master DMA for accessing command descriptors.
25  * -  Generic mode - can use only slave DMA.
26  * CDMA and PIO modes can be used to execute only base commands.
27  * Generic mode can be used to execute any command
28  * on NAND flash memory. Driver uses CDMA mode for
29  * block erasing, page reading, page programing.
30  * Generic mode is used for executing rest of commands.
31  */
32 
33 #define MAX_OOB_SIZE_PER_SECTOR	32
34 #define MAX_ADDRESS_CYC		6
35 #define MAX_ERASE_ADDRESS_CYC	3
36 #define MAX_DATA_SIZE		0xFFFC
37 #define DMA_DATA_SIZE_ALIGN	8
38 
39 /* Register definition. */
40 /*
41  * Command register 0.
42  * Writing data to this register will initiate a new transaction
43  * of the NF controller.
44  */
45 #define CMD_REG0			0x0000
46 /* Command type field mask. */
47 #define		CMD_REG0_CT		GENMASK(31, 30)
48 /* Command type CDMA. */
49 #define		CMD_REG0_CT_CDMA	0uL
50 /* Command type generic. */
51 #define		CMD_REG0_CT_GEN		3uL
52 /* Command thread number field mask. */
53 #define		CMD_REG0_TN		GENMASK(27, 24)
54 
55 /* Command register 2. */
56 #define CMD_REG2			0x0008
57 /* Command register 3. */
58 #define CMD_REG3			0x000C
59 /* Pointer register to select which thread status will be selected. */
60 #define CMD_STATUS_PTR			0x0010
61 /* Command status register for selected thread. */
62 #define CMD_STATUS			0x0014
63 
64 /* Interrupt status register. */
65 #define INTR_STATUS			0x0110
66 #define		INTR_STATUS_SDMA_ERR	BIT(22)
67 #define		INTR_STATUS_SDMA_TRIGG	BIT(21)
68 #define		INTR_STATUS_UNSUPP_CMD	BIT(19)
69 #define		INTR_STATUS_DDMA_TERR	BIT(18)
70 #define		INTR_STATUS_CDMA_TERR	BIT(17)
71 #define		INTR_STATUS_CDMA_IDL	BIT(16)
72 
73 /* Interrupt enable register. */
74 #define INTR_ENABLE				0x0114
75 #define		INTR_ENABLE_INTR_EN		BIT(31)
76 #define		INTR_ENABLE_SDMA_ERR_EN		BIT(22)
77 #define		INTR_ENABLE_SDMA_TRIGG_EN	BIT(21)
78 #define		INTR_ENABLE_UNSUPP_CMD_EN	BIT(19)
79 #define		INTR_ENABLE_DDMA_TERR_EN	BIT(18)
80 #define		INTR_ENABLE_CDMA_TERR_EN	BIT(17)
81 #define		INTR_ENABLE_CDMA_IDLE_EN	BIT(16)
82 
83 /* Controller internal state. */
84 #define CTRL_STATUS				0x0118
85 #define		CTRL_STATUS_INIT_COMP		BIT(9)
86 #define		CTRL_STATUS_CTRL_BUSY		BIT(8)
87 
88 /* Command Engine threads state. */
89 #define TRD_STATUS				0x0120
90 
91 /* Command Engine interrupt thread error status. */
92 #define TRD_ERR_INT_STATUS			0x0128
93 /* Command Engine interrupt thread error enable. */
94 #define TRD_ERR_INT_STATUS_EN			0x0130
95 /* Command Engine interrupt thread complete status. */
96 #define TRD_COMP_INT_STATUS			0x0138
97 
98 /*
99  * Transfer config 0 register.
100  * Configures data transfer parameters.
101  */
102 #define TRAN_CFG_0				0x0400
103 /* Offset value from the beginning of the page. */
104 #define		TRAN_CFG_0_OFFSET		GENMASK(31, 16)
105 /* Numbers of sectors to transfer within singlNF device's page. */
106 #define		TRAN_CFG_0_SEC_CNT		GENMASK(7, 0)
107 
108 /*
109  * Transfer config 1 register.
110  * Configures data transfer parameters.
111  */
112 #define TRAN_CFG_1				0x0404
113 /* Size of last data sector. */
114 #define		TRAN_CFG_1_LAST_SEC_SIZE	GENMASK(31, 16)
115 /* Size of not-last data sector. */
116 #define		TRAN_CFG_1_SECTOR_SIZE		GENMASK(15, 0)
117 
118 /* ECC engine configuration register 0. */
119 #define ECC_CONFIG_0				0x0428
120 /* Correction strength. */
121 #define		ECC_CONFIG_0_CORR_STR		GENMASK(10, 8)
122 /* Enable erased pages detection mechanism. */
123 #define		ECC_CONFIG_0_ERASE_DET_EN	BIT(1)
124 /* Enable controller ECC check bits generation and correction. */
125 #define		ECC_CONFIG_0_ECC_EN		BIT(0)
126 
127 /* ECC engine configuration register 1. */
128 #define ECC_CONFIG_1				0x042C
129 
130 /* Multiplane settings register. */
131 #define MULTIPLANE_CFG				0x0434
132 /* Cache operation settings. */
133 #define CACHE_CFG				0x0438
134 
135 /* DMA settings register. */
136 #define DMA_SETINGS				0x043C
137 /* Enable SDMA error report on access unprepared slave DMA interface. */
138 #define		DMA_SETINGS_SDMA_ERR_RSP	BIT(17)
139 
140 /* Transferred data block size for the slave DMA module. */
141 #define SDMA_SIZE				0x0440
142 
143 /* Thread number associated with transferred data block
144  * for the slave DMA module.
145  */
146 #define SDMA_TRD_NUM				0x0444
147 /* Thread number mask. */
148 #define		SDMA_TRD_NUM_SDMA_TRD		GENMASK(2, 0)
149 
150 #define CONTROL_DATA_CTRL			0x0494
151 /* Thread number mask. */
152 #define		CONTROL_DATA_CTRL_SIZE		GENMASK(15, 0)
153 
154 #define CTRL_VERSION				0x800
155 #define		CTRL_VERSION_REV		GENMASK(7, 0)
156 
157 /* Available hardware features of the controller. */
158 #define CTRL_FEATURES				0x804
159 /* Support for NV-DDR2/3 work mode. */
160 #define		CTRL_FEATURES_NVDDR_2_3		BIT(28)
161 /* Support for NV-DDR work mode. */
162 #define		CTRL_FEATURES_NVDDR		BIT(27)
163 /* Support for asynchronous work mode. */
164 #define		CTRL_FEATURES_ASYNC		BIT(26)
165 /* Support for asynchronous work mode. */
166 #define		CTRL_FEATURES_N_BANKS		GENMASK(25, 24)
167 /* Slave and Master DMA data width. */
168 #define		CTRL_FEATURES_DMA_DWITH64	BIT(21)
169 /* Availability of Control Data feature.*/
170 #define		CTRL_FEATURES_CONTROL_DATA	BIT(10)
171 
172 /* BCH Engine identification register 0 - correction strengths. */
173 #define BCH_CFG_0				0x838
174 #define		BCH_CFG_0_CORR_CAP_0		GENMASK(7, 0)
175 #define		BCH_CFG_0_CORR_CAP_1		GENMASK(15, 8)
176 #define		BCH_CFG_0_CORR_CAP_2		GENMASK(23, 16)
177 #define		BCH_CFG_0_CORR_CAP_3		GENMASK(31, 24)
178 
179 /* BCH Engine identification register 1 - correction strengths. */
180 #define BCH_CFG_1				0x83C
181 #define		BCH_CFG_1_CORR_CAP_4		GENMASK(7, 0)
182 #define		BCH_CFG_1_CORR_CAP_5		GENMASK(15, 8)
183 #define		BCH_CFG_1_CORR_CAP_6		GENMASK(23, 16)
184 #define		BCH_CFG_1_CORR_CAP_7		GENMASK(31, 24)
185 
186 /* BCH Engine identification register 2 - sector sizes. */
187 #define BCH_CFG_2				0x840
188 #define		BCH_CFG_2_SECT_0		GENMASK(15, 0)
189 #define		BCH_CFG_2_SECT_1		GENMASK(31, 16)
190 
191 /* BCH Engine identification register 3. */
192 #define BCH_CFG_3				0x844
193 
194 /* Ready/Busy# line status. */
195 #define RBN_SETINGS				0x1004
196 
197 /* Common settings. */
198 #define COMMON_SET				0x1008
199 /* 16 bit device connected to the NAND Flash interface. */
200 #define		COMMON_SET_DEVICE_16BIT		BIT(8)
201 
202 /* Skip_bytes registers. */
203 #define SKIP_BYTES_CONF				0x100C
204 #define		SKIP_BYTES_MARKER_VALUE		GENMASK(31, 16)
205 #define		SKIP_BYTES_NUM_OF_BYTES		GENMASK(7, 0)
206 
207 #define SKIP_BYTES_OFFSET			0x1010
208 #define		 SKIP_BYTES_OFFSET_VALUE	GENMASK(23, 0)
209 
210 /* Timings configuration. */
211 #define ASYNC_TOGGLE_TIMINGS			0x101c
212 #define		ASYNC_TOGGLE_TIMINGS_TRH	GENMASK(28, 24)
213 #define		ASYNC_TOGGLE_TIMINGS_TRP	GENMASK(20, 16)
214 #define		ASYNC_TOGGLE_TIMINGS_TWH	GENMASK(12, 8)
215 #define		ASYNC_TOGGLE_TIMINGS_TWP	GENMASK(4, 0)
216 
217 #define	TIMINGS0				0x1024
218 #define		TIMINGS0_TADL			GENMASK(31, 24)
219 #define		TIMINGS0_TCCS			GENMASK(23, 16)
220 #define		TIMINGS0_TWHR			GENMASK(15, 8)
221 #define		TIMINGS0_TRHW			GENMASK(7, 0)
222 
223 #define	TIMINGS1				0x1028
224 #define		TIMINGS1_TRHZ			GENMASK(31, 24)
225 #define		TIMINGS1_TWB			GENMASK(23, 16)
226 #define		TIMINGS1_TVDLY			GENMASK(7, 0)
227 
228 #define	TIMINGS2				0x102c
229 #define		TIMINGS2_TFEAT			GENMASK(25, 16)
230 #define		TIMINGS2_CS_HOLD_TIME		GENMASK(13, 8)
231 #define		TIMINGS2_CS_SETUP_TIME		GENMASK(5, 0)
232 
233 /* Configuration of the resynchronization of slave DLL of PHY. */
234 #define DLL_PHY_CTRL				0x1034
235 #define		DLL_PHY_CTRL_DLL_RST_N		BIT(24)
236 #define		DLL_PHY_CTRL_EXTENDED_WR_MODE	BIT(17)
237 #define		DLL_PHY_CTRL_EXTENDED_RD_MODE	BIT(16)
238 #define		DLL_PHY_CTRL_RS_HIGH_WAIT_CNT	GENMASK(11, 8)
239 #define		DLL_PHY_CTRL_RS_IDLE_CNT	GENMASK(7, 0)
240 
241 /* Register controlling DQ related timing. */
242 #define PHY_DQ_TIMING				0x2000
243 /* Register controlling DSQ related timing.  */
244 #define PHY_DQS_TIMING				0x2004
245 #define		PHY_DQS_TIMING_DQS_SEL_OE_END	GENMASK(3, 0)
246 #define		PHY_DQS_TIMING_PHONY_DQS_SEL	BIT(16)
247 #define		PHY_DQS_TIMING_USE_PHONY_DQS	BIT(20)
248 
249 /* Register controlling the gate and loopback control related timing. */
250 #define PHY_GATE_LPBK_CTRL			0x2008
251 #define		PHY_GATE_LPBK_CTRL_RDS		GENMASK(24, 19)
252 
253 /* Register holds the control for the master DLL logic. */
254 #define PHY_DLL_MASTER_CTRL			0x200C
255 #define		PHY_DLL_MASTER_CTRL_BYPASS_MODE	BIT(23)
256 
257 /* Register holds the control for the slave DLL logic. */
258 #define PHY_DLL_SLAVE_CTRL			0x2010
259 
260 /* This register handles the global control settings for the PHY. */
261 #define PHY_CTRL				0x2080
262 #define		PHY_CTRL_SDR_DQS		BIT(14)
263 #define		PHY_CTRL_PHONY_DQS		GENMASK(9, 4)
264 
265 /*
266  * This register handles the global control settings
267  * for the termination selects for reads.
268  */
269 #define PHY_TSEL				0x2084
270 
271 /* Generic command layout. */
272 #define GCMD_LAY_CS			GENMASK_ULL(11, 8)
273 /*
274  * This bit informs the minicotroller if it has to wait for tWB
275  * after sending the last CMD/ADDR/DATA in the sequence.
276  */
277 #define GCMD_LAY_TWB			BIT_ULL(6)
278 /* Type of generic instruction. */
279 #define GCMD_LAY_INSTR			GENMASK_ULL(5, 0)
280 
281 /* Generic CMD sequence type. */
282 #define		GCMD_LAY_INSTR_CMD	0
283 /* Generic ADDR sequence type. */
284 #define		GCMD_LAY_INSTR_ADDR	1
285 /* Generic data transfer sequence type. */
286 #define		GCMD_LAY_INSTR_DATA	2
287 
288 /* Input part of generic command type of input is command. */
289 #define GCMD_LAY_INPUT_CMD		GENMASK_ULL(23, 16)
290 
291 /* Generic command address sequence - address fields. */
292 #define GCMD_LAY_INPUT_ADDR		GENMASK_ULL(63, 16)
293 /* Generic command address sequence - address size. */
294 #define GCMD_LAY_INPUT_ADDR_SIZE	GENMASK_ULL(13, 11)
295 
296 /* Transfer direction field of generic command data sequence. */
297 #define GCMD_DIR			BIT_ULL(11)
298 /* Read transfer direction of generic command data sequence. */
299 #define		GCMD_DIR_READ		0
300 /* Write transfer direction of generic command data sequence. */
301 #define		GCMD_DIR_WRITE		1
302 
303 /* ECC enabled flag of generic command data sequence - ECC enabled. */
304 #define GCMD_ECC_EN			BIT_ULL(12)
305 /* Generic command data sequence - sector size. */
306 #define GCMD_SECT_SIZE			GENMASK_ULL(31, 16)
307 /* Generic command data sequence - sector count. */
308 #define GCMD_SECT_CNT			GENMASK_ULL(39, 32)
309 /* Generic command data sequence - last sector size. */
310 #define GCMD_LAST_SIZE			GENMASK_ULL(55, 40)
311 
312 /* CDMA descriptor fields. */
313 /* Erase command type of CDMA descriptor. */
314 #define CDMA_CT_ERASE		0x1000
315 /* Program page command type of CDMA descriptor. */
316 #define CDMA_CT_WR		0x2100
317 /* Read page command type of CDMA descriptor. */
318 #define CDMA_CT_RD		0x2200
319 
320 /* Flash pointer memory shift. */
321 #define CDMA_CFPTR_MEM_SHIFT	24
322 /* Flash pointer memory mask. */
323 #define CDMA_CFPTR_MEM		GENMASK(26, 24)
324 
325 /*
326  * Command DMA descriptor flags. If set causes issue interrupt after
327  * the completion of descriptor processing.
328  */
329 #define CDMA_CF_INT		BIT(8)
330 /*
331  * Command DMA descriptor flags - the next descriptor
332  * address field is valid and descriptor processing should continue.
333  */
334 #define CDMA_CF_CONT		BIT(9)
335 /* DMA master flag of command DMA descriptor. */
336 #define CDMA_CF_DMA_MASTER	BIT(10)
337 
338 /* Operation complete status of command descriptor. */
339 #define CDMA_CS_COMP		BIT(15)
340 /* Operation complete status of command descriptor. */
341 /* Command descriptor status - operation fail. */
342 #define CDMA_CS_FAIL		BIT(14)
343 /* Command descriptor status - page erased. */
344 #define CDMA_CS_ERP		BIT(11)
345 /* Command descriptor status - timeout occurred. */
346 #define CDMA_CS_TOUT		BIT(10)
347 /*
348  * Maximum amount of correction applied to one ECC sector.
349  * It is part of command descriptor status.
350  */
351 #define CDMA_CS_MAXERR		GENMASK(9, 2)
352 /* Command descriptor status - uncorrectable ECC error. */
353 #define CDMA_CS_UNCE		BIT(1)
354 /* Command descriptor status - descriptor error. */
355 #define CDMA_CS_ERR		BIT(0)
356 
357 /* Status of operation - OK. */
358 #define STAT_OK			0
359 /* Status of operation - FAIL. */
360 #define STAT_FAIL		2
361 /* Status of operation - uncorrectable ECC error. */
362 #define STAT_ECC_UNCORR		3
363 /* Status of operation - page erased. */
364 #define STAT_ERASED		5
365 /* Status of operation - correctable ECC error. */
366 #define STAT_ECC_CORR		6
367 /* Status of operation - unsuspected state. */
368 #define STAT_UNKNOWN		7
369 /* Status of operation - operation is not completed yet. */
370 #define STAT_BUSY		0xFF
371 
372 #define BCH_MAX_NUM_CORR_CAPS		8
373 #define BCH_MAX_NUM_SECTOR_SIZES	2
374 
375 struct cadence_nand_timings {
376 	u32 async_toggle_timings;
377 	u32 timings0;
378 	u32 timings1;
379 	u32 timings2;
380 	u32 dll_phy_ctrl;
381 	u32 phy_ctrl;
382 	u32 phy_dqs_timing;
383 	u32 phy_gate_lpbk_ctrl;
384 };
385 
386 /* Command DMA descriptor. */
387 struct cadence_nand_cdma_desc {
388 	/* Next descriptor address. */
389 	u64 next_pointer;
390 
391 	/* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
392 	u32 flash_pointer;
393 	/*field appears in HPNFC version 13*/
394 	u16 bank;
395 	u16 rsvd0;
396 
397 	/* Operation the controller needs to perform. */
398 	u16 command_type;
399 	u16 rsvd1;
400 	/* Flags for operation of this command. */
401 	u16 command_flags;
402 	u16 rsvd2;
403 
404 	/* System/host memory address required for data DMA commands. */
405 	u64 memory_pointer;
406 
407 	/* Status of operation. */
408 	u32 status;
409 	u32 rsvd3;
410 
411 	/* Address pointer to sync buffer location. */
412 	u64 sync_flag_pointer;
413 
414 	/* Controls the buffer sync mechanism. */
415 	u32 sync_arguments;
416 	u32 rsvd4;
417 
418 	/* Control data pointer. */
419 	u64 ctrl_data_ptr;
420 };
421 
422 /* Interrupt status. */
423 struct cadence_nand_irq_status {
424 	/* Thread operation complete status. */
425 	u32 trd_status;
426 	/* Thread operation error. */
427 	u32 trd_error;
428 	/* Controller status. */
429 	u32 status;
430 };
431 
432 /* Cadence NAND flash controller capabilities get from driver data. */
433 struct cadence_nand_dt_devdata {
434 	/* Skew value of the output signals of the NAND Flash interface. */
435 	u32 if_skew;
436 	/* It informs if slave DMA interface is connected to DMA engine. */
437 	unsigned int has_dma:1;
438 };
439 
440 /* Cadence NAND flash controller capabilities read from registers. */
441 struct cdns_nand_caps {
442 	/* Maximum number of banks supported by hardware. */
443 	u8 max_banks;
444 	/* Slave and Master DMA data width in bytes (4 or 8). */
445 	u8 data_dma_width;
446 	/* Control Data feature supported. */
447 	bool data_control_supp;
448 	/* Is PHY type DLL. */
449 	bool is_phy_type_dll;
450 };
451 
452 struct cdns_nand_ctrl {
453 	struct device *dev;
454 	struct nand_controller controller;
455 	struct cadence_nand_cdma_desc *cdma_desc;
456 	/* IP capability. */
457 	const struct cadence_nand_dt_devdata *caps1;
458 	struct cdns_nand_caps caps2;
459 	u8 ctrl_rev;
460 	dma_addr_t dma_cdma_desc;
461 	u8 *buf;
462 	u32 buf_size;
463 	u8 curr_corr_str_idx;
464 
465 	/* Register interface. */
466 	void __iomem *reg;
467 
468 	struct {
469 		void __iomem *virt;
470 		dma_addr_t dma;
471 	} io;
472 
473 	int irq;
474 	/* Interrupts that have happened. */
475 	struct cadence_nand_irq_status irq_status;
476 	/* Interrupts we are waiting for. */
477 	struct cadence_nand_irq_status irq_mask;
478 	struct completion complete;
479 	/* Protect irq_mask and irq_status. */
480 	spinlock_t irq_lock;
481 
482 	int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
483 	struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
484 	struct nand_ecc_caps ecc_caps;
485 
486 	int curr_trans_type;
487 
488 	struct dma_chan *dmac;
489 
490 	u32 nf_clk_rate;
491 	/*
492 	 * Estimated Board delay. The value includes the total
493 	 * round trip delay for the signals and is used for deciding on values
494 	 * associated with data read capture.
495 	 */
496 	u32 board_delay;
497 
498 	struct nand_chip *selected_chip;
499 
500 	unsigned long assigned_cs;
501 	struct list_head chips;
502 };
503 
504 struct cdns_nand_chip {
505 	struct cadence_nand_timings timings;
506 	struct nand_chip chip;
507 	u8 nsels;
508 	struct list_head node;
509 
510 	/*
511 	 * part of oob area of NAND flash memory page.
512 	 * This part is available for user to read or write.
513 	 */
514 	u32 avail_oob_size;
515 
516 	/* Sector size. There are few sectors per mtd->writesize */
517 	u32 sector_size;
518 	u32 sector_count;
519 
520 	/* Offset of BBM. */
521 	u8 bbm_offs;
522 	/* Number of bytes reserved for BBM. */
523 	u8 bbm_len;
524 	/* ECC strength index. */
525 	u8 corr_str_idx;
526 
527 	u8 cs[];
528 };
529 
530 struct ecc_info {
531 	int (*calc_ecc_bytes)(int step_size, int strength);
532 	int max_step_size;
533 };
534 
535 static inline struct
536 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
537 {
538 	return container_of(chip, struct cdns_nand_chip, chip);
539 }
540 
541 static inline struct
542 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
543 {
544 	return container_of(controller, struct cdns_nand_ctrl, controller);
545 }
546 
547 static bool
548 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
549 			u32 buf_len)
550 {
551 	u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
552 
553 	return buf && virt_addr_valid(buf) &&
554 		likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
555 		likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
556 }
557 
558 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
559 				       u32 reg_offset, u32 timeout_us,
560 				       u32 mask, bool is_clear)
561 {
562 	u32 val;
563 	int ret;
564 
565 	ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
566 					 val, !(val & mask) == is_clear,
567 					 10, timeout_us);
568 
569 	if (ret < 0) {
570 		dev_err(cdns_ctrl->dev,
571 			"Timeout while waiting for reg %x with mask %x is clear %d\n",
572 			reg_offset, mask, is_clear);
573 	}
574 
575 	return ret;
576 }
577 
578 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
579 				       bool enable)
580 {
581 	u32 reg;
582 
583 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
584 					1000000,
585 					CTRL_STATUS_CTRL_BUSY, true))
586 		return -ETIMEDOUT;
587 
588 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
589 
590 	if (enable)
591 		reg |= ECC_CONFIG_0_ECC_EN;
592 	else
593 		reg &= ~ECC_CONFIG_0_ECC_EN;
594 
595 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
596 
597 	return 0;
598 }
599 
600 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
601 					  u8 corr_str_idx)
602 {
603 	u32 reg;
604 
605 	if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
606 		return;
607 
608 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
609 	reg &= ~ECC_CONFIG_0_CORR_STR;
610 	reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
611 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
612 
613 	cdns_ctrl->curr_corr_str_idx = corr_str_idx;
614 }
615 
616 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
617 					     u8 strength)
618 {
619 	int i, corr_str_idx = -1;
620 
621 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
622 		if (cdns_ctrl->ecc_strengths[i] == strength) {
623 			corr_str_idx = i;
624 			break;
625 		}
626 	}
627 
628 	return corr_str_idx;
629 }
630 
631 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
632 					    u16 marker_value)
633 {
634 	u32 reg;
635 
636 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
637 					1000000,
638 					CTRL_STATUS_CTRL_BUSY, true))
639 		return -ETIMEDOUT;
640 
641 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
642 	reg &= ~SKIP_BYTES_MARKER_VALUE;
643 	reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
644 			  marker_value);
645 
646 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
647 
648 	return 0;
649 }
650 
651 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
652 					    u8 num_of_bytes,
653 					    u32 offset_value,
654 					    int enable)
655 {
656 	u32 reg, skip_bytes_offset;
657 
658 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
659 					1000000,
660 					CTRL_STATUS_CTRL_BUSY, true))
661 		return -ETIMEDOUT;
662 
663 	if (!enable) {
664 		num_of_bytes = 0;
665 		offset_value = 0;
666 	}
667 
668 	reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
669 	reg &= ~SKIP_BYTES_NUM_OF_BYTES;
670 	reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
671 			  num_of_bytes);
672 	skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
673 				       offset_value);
674 
675 	writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
676 	writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
677 
678 	return 0;
679 }
680 
681 /* Functions enables/disables hardware detection of erased data */
682 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
683 					     bool enable,
684 					     u8 bitflips_threshold)
685 {
686 	u32 reg;
687 
688 	reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
689 
690 	if (enable)
691 		reg |= ECC_CONFIG_0_ERASE_DET_EN;
692 	else
693 		reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
694 
695 	writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
696 	writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
697 }
698 
699 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
700 					   bool bit_bus16)
701 {
702 	u32 reg;
703 
704 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
705 					1000000,
706 					CTRL_STATUS_CTRL_BUSY, true))
707 		return -ETIMEDOUT;
708 
709 	reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
710 
711 	if (!bit_bus16)
712 		reg &= ~COMMON_SET_DEVICE_16BIT;
713 	else
714 		reg |= COMMON_SET_DEVICE_16BIT;
715 	writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
716 
717 	return 0;
718 }
719 
720 static void
721 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
722 			     struct cadence_nand_irq_status *irq_status)
723 {
724 	writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
725 	writel_relaxed(irq_status->trd_status,
726 		       cdns_ctrl->reg + TRD_COMP_INT_STATUS);
727 	writel_relaxed(irq_status->trd_error,
728 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS);
729 }
730 
731 static void
732 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
733 			     struct cadence_nand_irq_status *irq_status)
734 {
735 	irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
736 	irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
737 					       + TRD_COMP_INT_STATUS);
738 	irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
739 					      + TRD_ERR_INT_STATUS);
740 }
741 
742 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
743 			struct cadence_nand_irq_status *irq_status)
744 {
745 	cadence_nand_read_int_status(cdns_ctrl, irq_status);
746 
747 	return irq_status->status || irq_status->trd_status ||
748 		irq_status->trd_error;
749 }
750 
751 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
752 {
753 	unsigned long flags;
754 
755 	spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
756 	memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
757 	memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
758 	spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
759 }
760 
761 /*
762  * This is the interrupt service routine. It handles all interrupts
763  * sent to this device.
764  */
765 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
766 {
767 	struct cdns_nand_ctrl *cdns_ctrl = dev_id;
768 	struct cadence_nand_irq_status irq_status;
769 	irqreturn_t result = IRQ_NONE;
770 
771 	spin_lock(&cdns_ctrl->irq_lock);
772 
773 	if (irq_detected(cdns_ctrl, &irq_status)) {
774 		/* Handle interrupt. */
775 		/* First acknowledge it. */
776 		cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
777 		/* Status in the device context for someone to read. */
778 		cdns_ctrl->irq_status.status |= irq_status.status;
779 		cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
780 		cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
781 		/* Notify anyone who cares that it happened. */
782 		complete(&cdns_ctrl->complete);
783 		/* Tell the OS that we've handled this. */
784 		result = IRQ_HANDLED;
785 	}
786 	spin_unlock(&cdns_ctrl->irq_lock);
787 
788 	return result;
789 }
790 
791 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
792 				      struct cadence_nand_irq_status *irq_mask)
793 {
794 	writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
795 		       cdns_ctrl->reg + INTR_ENABLE);
796 
797 	writel_relaxed(irq_mask->trd_error,
798 		       cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
799 }
800 
801 static void
802 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
803 			  struct cadence_nand_irq_status *irq_mask,
804 			  struct cadence_nand_irq_status *irq_status)
805 {
806 	unsigned long timeout = msecs_to_jiffies(10000);
807 	unsigned long time_left;
808 
809 	time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
810 						timeout);
811 
812 	*irq_status = cdns_ctrl->irq_status;
813 	if (time_left == 0) {
814 		/* Timeout error. */
815 		dev_err(cdns_ctrl->dev, "timeout occurred:\n");
816 		dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
817 			irq_status->status, irq_mask->status);
818 		dev_err(cdns_ctrl->dev,
819 			"\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
820 			irq_status->trd_status, irq_mask->trd_status);
821 		dev_err(cdns_ctrl->dev,
822 			"\t trd_error = 0x%x, trd_error mask = 0x%x\n",
823 			irq_status->trd_error, irq_mask->trd_error);
824 	}
825 }
826 
827 /* Execute generic command on NAND controller. */
828 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
829 					 u8 chip_nr,
830 					 u64 mini_ctrl_cmd)
831 {
832 	u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
833 
834 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
835 	mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
836 	mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
837 
838 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
839 					1000000,
840 					CTRL_STATUS_CTRL_BUSY, true))
841 		return -ETIMEDOUT;
842 
843 	cadence_nand_reset_irq(cdns_ctrl);
844 
845 	writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
846 	writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
847 
848 	/* Select generic command. */
849 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
850 	/* Thread number. */
851 	reg |= FIELD_PREP(CMD_REG0_TN, 0);
852 
853 	/* Issue command. */
854 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
855 
856 	return 0;
857 }
858 
859 /* Wait for data on slave DMA interface. */
860 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
861 				     u8 *out_sdma_trd,
862 				     u32 *out_sdma_size)
863 {
864 	struct cadence_nand_irq_status irq_mask, irq_status;
865 
866 	irq_mask.trd_status = 0;
867 	irq_mask.trd_error = 0;
868 	irq_mask.status = INTR_STATUS_SDMA_TRIGG
869 		| INTR_STATUS_SDMA_ERR
870 		| INTR_STATUS_UNSUPP_CMD;
871 
872 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
873 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
874 	if (irq_status.status == 0) {
875 		dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
876 		return -ETIMEDOUT;
877 	}
878 
879 	if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
880 		*out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
881 		*out_sdma_trd  = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
882 		*out_sdma_trd =
883 			FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
884 	} else {
885 		dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
886 			irq_status.status);
887 		return -EIO;
888 	}
889 
890 	return 0;
891 }
892 
893 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
894 {
895 	u32  reg;
896 
897 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
898 
899 	cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
900 
901 	if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
902 		cdns_ctrl->caps2.data_dma_width = 8;
903 	else
904 		cdns_ctrl->caps2.data_dma_width = 4;
905 
906 	if (reg & CTRL_FEATURES_CONTROL_DATA)
907 		cdns_ctrl->caps2.data_control_supp = true;
908 
909 	if (reg & (CTRL_FEATURES_NVDDR_2_3
910 		   | CTRL_FEATURES_NVDDR))
911 		cdns_ctrl->caps2.is_phy_type_dll = true;
912 }
913 
914 /* Prepare CDMA descriptor. */
915 static void
916 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
917 			       char nf_mem, u32 flash_ptr, char *mem_ptr,
918 			       char *ctrl_data_ptr, u16 ctype)
919 {
920 	struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
921 
922 	memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
923 
924 	/* Set fields for one descriptor. */
925 	cdma_desc->flash_pointer = flash_ptr;
926 	if (cdns_ctrl->ctrl_rev >= 13)
927 		cdma_desc->bank = nf_mem;
928 	else
929 		cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
930 
931 	cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
932 	cdma_desc->command_flags  |= CDMA_CF_INT;
933 
934 	cdma_desc->memory_pointer = (uintptr_t)mem_ptr;
935 	cdma_desc->status = 0;
936 	cdma_desc->sync_flag_pointer = 0;
937 	cdma_desc->sync_arguments = 0;
938 
939 	cdma_desc->command_type = ctype;
940 	cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr;
941 }
942 
943 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
944 					u32 desc_status)
945 {
946 	if (desc_status & CDMA_CS_ERP)
947 		return STAT_ERASED;
948 
949 	if (desc_status & CDMA_CS_UNCE)
950 		return STAT_ECC_UNCORR;
951 
952 	if (desc_status & CDMA_CS_ERR) {
953 		dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
954 		return STAT_FAIL;
955 	}
956 
957 	if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
958 		return STAT_ECC_CORR;
959 
960 	return STAT_FAIL;
961 }
962 
963 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
964 {
965 	struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
966 	u8 status = STAT_BUSY;
967 
968 	if (desc_ptr->status & CDMA_CS_FAIL) {
969 		status = cadence_nand_check_desc_error(cdns_ctrl,
970 						       desc_ptr->status);
971 		dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
972 	} else if (desc_ptr->status & CDMA_CS_COMP) {
973 		/* Descriptor finished with no errors. */
974 		if (desc_ptr->command_flags & CDMA_CF_CONT) {
975 			dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
976 			status = STAT_UNKNOWN;
977 		} else {
978 			/* Last descriptor.  */
979 			status = STAT_OK;
980 		}
981 	}
982 
983 	return status;
984 }
985 
986 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
987 				  u8 thread)
988 {
989 	u32 reg;
990 	int status;
991 
992 	/* Wait for thread ready. */
993 	status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
994 					     1000000,
995 					     BIT(thread), true);
996 	if (status)
997 		return status;
998 
999 	cadence_nand_reset_irq(cdns_ctrl);
1000 
1001 	writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1002 		       cdns_ctrl->reg + CMD_REG2);
1003 	writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1004 
1005 	/* Select CDMA mode. */
1006 	reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1007 	/* Thread number. */
1008 	reg |= FIELD_PREP(CMD_REG0_TN, thread);
1009 	/* Issue command. */
1010 	writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1011 
1012 	return 0;
1013 }
1014 
1015 /* Send SDMA command and wait for finish. */
1016 static u32
1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1018 				u8 thread)
1019 {
1020 	struct cadence_nand_irq_status irq_mask, irq_status = {0};
1021 	int status;
1022 
1023 	irq_mask.trd_status = BIT(thread);
1024 	irq_mask.trd_error = BIT(thread);
1025 	irq_mask.status = INTR_STATUS_CDMA_TERR;
1026 
1027 	cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1028 
1029 	status = cadence_nand_cdma_send(cdns_ctrl, thread);
1030 	if (status)
1031 		return status;
1032 
1033 	cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1034 
1035 	if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1036 	    irq_status.trd_error == 0) {
1037 		dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1038 		return -ETIMEDOUT;
1039 	}
1040 	if (irq_status.status & irq_mask.status) {
1041 		dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1042 		return -EIO;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * ECC size depends on configured ECC strength and on maximum supported
1050  * ECC step size.
1051  */
1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1053 {
1054 	int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1055 
1056 	return ALIGN(nbytes, 2);
1057 }
1058 
1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1060 	static int \
1061 	cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1062 						    int strength)\
1063 	{\
1064 		return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1065 	}
1066 
1067 CADENCE_NAND_CALC_ECC_BYTES(256)
1068 CADENCE_NAND_CALC_ECC_BYTES(512)
1069 CADENCE_NAND_CALC_ECC_BYTES(1024)
1070 CADENCE_NAND_CALC_ECC_BYTES(2048)
1071 CADENCE_NAND_CALC_ECC_BYTES(4096)
1072 
1073 /* Function reads BCH capabilities. */
1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1075 {
1076 	struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1077 	int max_step_size = 0, nstrengths, i;
1078 	u32 reg;
1079 
1080 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1081 	cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1082 	cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1083 	cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1084 	cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1085 
1086 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1087 	cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1088 	cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1089 	cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1090 	cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1091 
1092 	reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1093 	cdns_ctrl->ecc_stepinfos[0].stepsize =
1094 		FIELD_GET(BCH_CFG_2_SECT_0, reg);
1095 
1096 	cdns_ctrl->ecc_stepinfos[1].stepsize =
1097 		FIELD_GET(BCH_CFG_2_SECT_1, reg);
1098 
1099 	nstrengths = 0;
1100 	for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1101 		if (cdns_ctrl->ecc_strengths[i] != 0)
1102 			nstrengths++;
1103 	}
1104 
1105 	ecc_caps->nstepinfos = 0;
1106 	for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1107 		/* ECC strengths are common for all step infos. */
1108 		cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1109 		cdns_ctrl->ecc_stepinfos[i].strengths =
1110 			cdns_ctrl->ecc_strengths;
1111 
1112 		if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1113 			ecc_caps->nstepinfos++;
1114 
1115 		if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1116 			max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1117 	}
1118 	ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1119 
1120 	switch (max_step_size) {
1121 	case 256:
1122 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1123 		break;
1124 	case 512:
1125 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1126 		break;
1127 	case 1024:
1128 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1129 		break;
1130 	case 2048:
1131 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1132 		break;
1133 	case 4096:
1134 		ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1135 		break;
1136 	default:
1137 		dev_err(cdns_ctrl->dev,
1138 			"Unsupported sector size(ecc step size) %d\n",
1139 			max_step_size);
1140 		return -EIO;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 /* Hardware initialization. */
1147 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1148 {
1149 	int status;
1150 	u32 reg;
1151 
1152 	status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1153 					     1000000,
1154 					     CTRL_STATUS_INIT_COMP, false);
1155 	if (status)
1156 		return status;
1157 
1158 	reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1159 	cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1160 
1161 	dev_info(cdns_ctrl->dev,
1162 		 "%s: cadence nand controller version reg %x\n",
1163 		 __func__, reg);
1164 
1165 	/* Disable cache and multiplane. */
1166 	writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1167 	writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1168 
1169 	/* Clear all interrupts. */
1170 	writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1171 
1172 	cadence_nand_get_caps(cdns_ctrl);
1173 	cadence_nand_read_bch_caps(cdns_ctrl);
1174 
1175 	/*
1176 	 * Set IO width access to 8.
1177 	 * It is because during SW device discovering width access
1178 	 * is expected to be 8.
1179 	 */
1180 	status = cadence_nand_set_access_width16(cdns_ctrl, false);
1181 
1182 	return status;
1183 }
1184 
1185 #define TT_MAIN_OOB_AREAS	2
1186 #define TT_RAW_PAGE		3
1187 #define TT_BBM			4
1188 #define TT_MAIN_OOB_AREA_EXT	5
1189 
1190 /* Prepare size of data to transfer. */
1191 static void
1192 cadence_nand_prepare_data_size(struct nand_chip *chip,
1193 			       int transfer_type)
1194 {
1195 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1196 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1197 	struct mtd_info *mtd = nand_to_mtd(chip);
1198 	u32 sec_size = 0, offset = 0, sec_cnt = 1;
1199 	u32 last_sec_size = cdns_chip->sector_size;
1200 	u32 data_ctrl_size = 0;
1201 	u32 reg = 0;
1202 
1203 	if (cdns_ctrl->curr_trans_type == transfer_type)
1204 		return;
1205 
1206 	switch (transfer_type) {
1207 	case TT_MAIN_OOB_AREA_EXT:
1208 		sec_cnt = cdns_chip->sector_count;
1209 		sec_size = cdns_chip->sector_size;
1210 		data_ctrl_size = cdns_chip->avail_oob_size;
1211 		break;
1212 	case TT_MAIN_OOB_AREAS:
1213 		sec_cnt = cdns_chip->sector_count;
1214 		last_sec_size = cdns_chip->sector_size
1215 			+ cdns_chip->avail_oob_size;
1216 		sec_size = cdns_chip->sector_size;
1217 		break;
1218 	case TT_RAW_PAGE:
1219 		last_sec_size = mtd->writesize + mtd->oobsize;
1220 		break;
1221 	case TT_BBM:
1222 		offset = mtd->writesize + cdns_chip->bbm_offs;
1223 		last_sec_size = 8;
1224 		break;
1225 	}
1226 
1227 	reg = 0;
1228 	reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1229 	reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1230 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1231 
1232 	reg = 0;
1233 	reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1234 	reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1235 	writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1236 
1237 	if (cdns_ctrl->caps2.data_control_supp) {
1238 		reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1239 		reg &= ~CONTROL_DATA_CTRL_SIZE;
1240 		reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1241 		writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1242 	}
1243 
1244 	cdns_ctrl->curr_trans_type = transfer_type;
1245 }
1246 
1247 static int
1248 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1249 			   int page, void *buf, void *ctrl_dat, u32 buf_size,
1250 			   u32 ctrl_dat_size, enum dma_data_direction dir,
1251 			   bool with_ecc)
1252 {
1253 	dma_addr_t dma_buf, dma_ctrl_dat = 0;
1254 	u8 thread_nr = chip_nr;
1255 	int status;
1256 	u16 ctype;
1257 
1258 	if (dir == DMA_FROM_DEVICE)
1259 		ctype = CDMA_CT_RD;
1260 	else
1261 		ctype = CDMA_CT_WR;
1262 
1263 	cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1264 
1265 	dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1266 	if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1267 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1268 		return -EIO;
1269 	}
1270 
1271 	if (ctrl_dat && ctrl_dat_size) {
1272 		dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1273 					      ctrl_dat_size, dir);
1274 		if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1275 			dma_unmap_single(cdns_ctrl->dev, dma_buf,
1276 					 buf_size, dir);
1277 			dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1278 			return -EIO;
1279 		}
1280 	}
1281 
1282 	cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1283 				       (void *)dma_buf, (void *)dma_ctrl_dat,
1284 				       ctype);
1285 
1286 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1287 
1288 	dma_unmap_single(cdns_ctrl->dev, dma_buf,
1289 			 buf_size, dir);
1290 
1291 	if (ctrl_dat && ctrl_dat_size)
1292 		dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1293 				 ctrl_dat_size, dir);
1294 	if (status)
1295 		return status;
1296 
1297 	return cadence_nand_cdma_finish(cdns_ctrl);
1298 }
1299 
1300 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1301 				     struct cadence_nand_timings *t)
1302 {
1303 	writel_relaxed(t->async_toggle_timings,
1304 		       cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1305 	writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1306 	writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1307 	writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1308 
1309 	if (cdns_ctrl->caps2.is_phy_type_dll)
1310 		writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1311 
1312 	writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1313 
1314 	if (cdns_ctrl->caps2.is_phy_type_dll) {
1315 		writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1316 		writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1317 		writel_relaxed(t->phy_dqs_timing,
1318 			       cdns_ctrl->reg + PHY_DQS_TIMING);
1319 		writel_relaxed(t->phy_gate_lpbk_ctrl,
1320 			       cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1321 		writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1322 			       cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1323 		writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1324 	}
1325 }
1326 
1327 static int cadence_nand_select_target(struct nand_chip *chip)
1328 {
1329 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1330 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1331 
1332 	if (chip == cdns_ctrl->selected_chip)
1333 		return 0;
1334 
1335 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1336 					1000000,
1337 					CTRL_STATUS_CTRL_BUSY, true))
1338 		return -ETIMEDOUT;
1339 
1340 	cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1341 
1342 	cadence_nand_set_ecc_strength(cdns_ctrl,
1343 				      cdns_chip->corr_str_idx);
1344 
1345 	cadence_nand_set_erase_detection(cdns_ctrl, true,
1346 					 chip->ecc.strength);
1347 
1348 	cdns_ctrl->curr_trans_type = -1;
1349 	cdns_ctrl->selected_chip = chip;
1350 
1351 	return 0;
1352 }
1353 
1354 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1355 {
1356 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1357 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1358 	int status;
1359 	u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1360 
1361 	cadence_nand_cdma_desc_prepare(cdns_ctrl,
1362 				       cdns_chip->cs[chip->cur_cs],
1363 				       page, NULL, NULL,
1364 				       CDMA_CT_ERASE);
1365 	status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1366 	if (status) {
1367 		dev_err(cdns_ctrl->dev, "erase operation failed\n");
1368 		return -EIO;
1369 	}
1370 
1371 	status = cadence_nand_cdma_finish(cdns_ctrl);
1372 	if (status)
1373 		return status;
1374 
1375 	return 0;
1376 }
1377 
1378 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1379 {
1380 	int status;
1381 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1382 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1383 	struct mtd_info *mtd = nand_to_mtd(chip);
1384 
1385 	cadence_nand_prepare_data_size(chip, TT_BBM);
1386 
1387 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1388 
1389 	/*
1390 	 * Read only bad block marker from offset
1391 	 * defined by a memory manufacturer.
1392 	 */
1393 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1394 					    cdns_chip->cs[chip->cur_cs],
1395 					    page, cdns_ctrl->buf, NULL,
1396 					    mtd->oobsize,
1397 					    0, DMA_FROM_DEVICE, false);
1398 	if (status) {
1399 		dev_err(cdns_ctrl->dev, "read BBM failed\n");
1400 		return -EIO;
1401 	}
1402 
1403 	memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1404 
1405 	return 0;
1406 }
1407 
1408 static int cadence_nand_write_page(struct nand_chip *chip,
1409 				   const u8 *buf, int oob_required,
1410 				   int page)
1411 {
1412 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1413 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1414 	struct mtd_info *mtd = nand_to_mtd(chip);
1415 	int status;
1416 	u16 marker_val = 0xFFFF;
1417 
1418 	status = cadence_nand_select_target(chip);
1419 	if (status)
1420 		return status;
1421 
1422 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1423 					 mtd->writesize
1424 					 + cdns_chip->bbm_offs,
1425 					 1);
1426 
1427 	if (oob_required) {
1428 		marker_val = *(u16 *)(chip->oob_poi
1429 				      + cdns_chip->bbm_offs);
1430 	} else {
1431 		/* Set oob data to 0xFF. */
1432 		memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1433 		       cdns_chip->avail_oob_size);
1434 	}
1435 
1436 	cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1437 
1438 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1439 
1440 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1441 	    cdns_ctrl->caps2.data_control_supp) {
1442 		u8 *oob;
1443 
1444 		if (oob_required)
1445 			oob = chip->oob_poi;
1446 		else
1447 			oob = cdns_ctrl->buf + mtd->writesize;
1448 
1449 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1450 						    cdns_chip->cs[chip->cur_cs],
1451 						    page, (void *)buf, oob,
1452 						    mtd->writesize,
1453 						    cdns_chip->avail_oob_size,
1454 						    DMA_TO_DEVICE, true);
1455 		if (status) {
1456 			dev_err(cdns_ctrl->dev, "write page failed\n");
1457 			return -EIO;
1458 		}
1459 
1460 		return 0;
1461 	}
1462 
1463 	if (oob_required) {
1464 		/* Transfer the data to the oob area. */
1465 		memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1466 		       cdns_chip->avail_oob_size);
1467 	}
1468 
1469 	memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1470 
1471 	cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1472 
1473 	return cadence_nand_cdma_transfer(cdns_ctrl,
1474 					  cdns_chip->cs[chip->cur_cs],
1475 					  page, cdns_ctrl->buf, NULL,
1476 					  mtd->writesize
1477 					  + cdns_chip->avail_oob_size,
1478 					  0, DMA_TO_DEVICE, true);
1479 }
1480 
1481 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1482 {
1483 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1484 	struct mtd_info *mtd = nand_to_mtd(chip);
1485 
1486 	memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1487 
1488 	return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1489 }
1490 
1491 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1492 				       const u8 *buf, int oob_required,
1493 				       int page)
1494 {
1495 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1496 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1497 	struct mtd_info *mtd = nand_to_mtd(chip);
1498 	int writesize = mtd->writesize;
1499 	int oobsize = mtd->oobsize;
1500 	int ecc_steps = chip->ecc.steps;
1501 	int ecc_size = chip->ecc.size;
1502 	int ecc_bytes = chip->ecc.bytes;
1503 	void *tmp_buf = cdns_ctrl->buf;
1504 	int oob_skip = cdns_chip->bbm_len;
1505 	size_t size = writesize + oobsize;
1506 	int i, pos, len;
1507 	int status = 0;
1508 
1509 	status = cadence_nand_select_target(chip);
1510 	if (status)
1511 		return status;
1512 
1513 	/*
1514 	 * Fill the buffer with 0xff first except the full page transfer.
1515 	 * This simplifies the logic.
1516 	 */
1517 	if (!buf || !oob_required)
1518 		memset(tmp_buf, 0xff, size);
1519 
1520 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1521 
1522 	/* Arrange the buffer for syndrome payload/ecc layout. */
1523 	if (buf) {
1524 		for (i = 0; i < ecc_steps; i++) {
1525 			pos = i * (ecc_size + ecc_bytes);
1526 			len = ecc_size;
1527 
1528 			if (pos >= writesize)
1529 				pos += oob_skip;
1530 			else if (pos + len > writesize)
1531 				len = writesize - pos;
1532 
1533 			memcpy(tmp_buf + pos, buf, len);
1534 			buf += len;
1535 			if (len < ecc_size) {
1536 				len = ecc_size - len;
1537 				memcpy(tmp_buf + writesize + oob_skip, buf,
1538 				       len);
1539 				buf += len;
1540 			}
1541 		}
1542 	}
1543 
1544 	if (oob_required) {
1545 		const u8 *oob = chip->oob_poi;
1546 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1547 			(cdns_chip->sector_size + chip->ecc.bytes)
1548 			+ cdns_chip->sector_size + oob_skip;
1549 
1550 		/* BBM at the beginning of the OOB area. */
1551 		memcpy(tmp_buf + writesize, oob, oob_skip);
1552 
1553 		/* OOB free. */
1554 		memcpy(tmp_buf + oob_data_offset, oob,
1555 		       cdns_chip->avail_oob_size);
1556 		oob += cdns_chip->avail_oob_size;
1557 
1558 		/* OOB ECC. */
1559 		for (i = 0; i < ecc_steps; i++) {
1560 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1561 			if (i == (ecc_steps - 1))
1562 				pos += cdns_chip->avail_oob_size;
1563 
1564 			len = ecc_bytes;
1565 
1566 			if (pos >= writesize)
1567 				pos += oob_skip;
1568 			else if (pos + len > writesize)
1569 				len = writesize - pos;
1570 
1571 			memcpy(tmp_buf + pos, oob, len);
1572 			oob += len;
1573 			if (len < ecc_bytes) {
1574 				len = ecc_bytes - len;
1575 				memcpy(tmp_buf + writesize + oob_skip, oob,
1576 				       len);
1577 				oob += len;
1578 			}
1579 		}
1580 	}
1581 
1582 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1583 
1584 	return cadence_nand_cdma_transfer(cdns_ctrl,
1585 					  cdns_chip->cs[chip->cur_cs],
1586 					  page, cdns_ctrl->buf, NULL,
1587 					  mtd->writesize +
1588 					  mtd->oobsize,
1589 					  0, DMA_TO_DEVICE, false);
1590 }
1591 
1592 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1593 				      int page)
1594 {
1595 	return cadence_nand_write_page_raw(chip, NULL, true, page);
1596 }
1597 
1598 static int cadence_nand_read_page(struct nand_chip *chip,
1599 				  u8 *buf, int oob_required, int page)
1600 {
1601 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1602 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1603 	struct mtd_info *mtd = nand_to_mtd(chip);
1604 	int status = 0;
1605 	int ecc_err_count = 0;
1606 
1607 	status = cadence_nand_select_target(chip);
1608 	if (status)
1609 		return status;
1610 
1611 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1612 					 mtd->writesize
1613 					 + cdns_chip->bbm_offs, 1);
1614 
1615 	/*
1616 	 * If data buffer can be accessed by DMA and data_control feature
1617 	 * is supported then transfer data and oob directly.
1618 	 */
1619 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1620 	    cdns_ctrl->caps2.data_control_supp) {
1621 		u8 *oob;
1622 
1623 		if (oob_required)
1624 			oob = chip->oob_poi;
1625 		else
1626 			oob = cdns_ctrl->buf + mtd->writesize;
1627 
1628 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1629 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1630 						    cdns_chip->cs[chip->cur_cs],
1631 						    page, buf, oob,
1632 						    mtd->writesize,
1633 						    cdns_chip->avail_oob_size,
1634 						    DMA_FROM_DEVICE, true);
1635 	/* Otherwise use bounce buffer. */
1636 	} else {
1637 		cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1638 		status = cadence_nand_cdma_transfer(cdns_ctrl,
1639 						    cdns_chip->cs[chip->cur_cs],
1640 						    page, cdns_ctrl->buf,
1641 						    NULL, mtd->writesize
1642 						    + cdns_chip->avail_oob_size,
1643 						    0, DMA_FROM_DEVICE, true);
1644 
1645 		memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1646 		if (oob_required)
1647 			memcpy(chip->oob_poi,
1648 			       cdns_ctrl->buf + mtd->writesize,
1649 			       mtd->oobsize);
1650 	}
1651 
1652 	switch (status) {
1653 	case STAT_ECC_UNCORR:
1654 		mtd->ecc_stats.failed++;
1655 		ecc_err_count++;
1656 		break;
1657 	case STAT_ECC_CORR:
1658 		ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1659 					  cdns_ctrl->cdma_desc->status);
1660 		mtd->ecc_stats.corrected += ecc_err_count;
1661 		break;
1662 	case STAT_ERASED:
1663 	case STAT_OK:
1664 		break;
1665 	default:
1666 		dev_err(cdns_ctrl->dev, "read page failed\n");
1667 		return -EIO;
1668 	}
1669 
1670 	if (oob_required)
1671 		if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1672 			return -EIO;
1673 
1674 	return ecc_err_count;
1675 }
1676 
1677 /* Reads OOB data from the device. */
1678 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1679 {
1680 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1681 
1682 	return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1683 }
1684 
1685 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1686 				      u8 *buf, int oob_required, int page)
1687 {
1688 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1689 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1690 	struct mtd_info *mtd = nand_to_mtd(chip);
1691 	int oob_skip = cdns_chip->bbm_len;
1692 	int writesize = mtd->writesize;
1693 	int ecc_steps = chip->ecc.steps;
1694 	int ecc_size = chip->ecc.size;
1695 	int ecc_bytes = chip->ecc.bytes;
1696 	void *tmp_buf = cdns_ctrl->buf;
1697 	int i, pos, len;
1698 	int status = 0;
1699 
1700 	status = cadence_nand_select_target(chip);
1701 	if (status)
1702 		return status;
1703 
1704 	cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1705 
1706 	cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1707 	status = cadence_nand_cdma_transfer(cdns_ctrl,
1708 					    cdns_chip->cs[chip->cur_cs],
1709 					    page, cdns_ctrl->buf, NULL,
1710 					    mtd->writesize
1711 					    + mtd->oobsize,
1712 					    0, DMA_FROM_DEVICE, false);
1713 
1714 	switch (status) {
1715 	case STAT_ERASED:
1716 	case STAT_OK:
1717 		break;
1718 	default:
1719 		dev_err(cdns_ctrl->dev, "read raw page failed\n");
1720 		return -EIO;
1721 	}
1722 
1723 	/* Arrange the buffer for syndrome payload/ecc layout. */
1724 	if (buf) {
1725 		for (i = 0; i < ecc_steps; i++) {
1726 			pos = i * (ecc_size + ecc_bytes);
1727 			len = ecc_size;
1728 
1729 			if (pos >= writesize)
1730 				pos += oob_skip;
1731 			else if (pos + len > writesize)
1732 				len = writesize - pos;
1733 
1734 			memcpy(buf, tmp_buf + pos, len);
1735 			buf += len;
1736 			if (len < ecc_size) {
1737 				len = ecc_size - len;
1738 				memcpy(buf, tmp_buf + writesize + oob_skip,
1739 				       len);
1740 				buf += len;
1741 			}
1742 		}
1743 	}
1744 
1745 	if (oob_required) {
1746 		u8 *oob = chip->oob_poi;
1747 		u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1748 			(cdns_chip->sector_size + chip->ecc.bytes)
1749 			+ cdns_chip->sector_size + oob_skip;
1750 
1751 		/* OOB free. */
1752 		memcpy(oob, tmp_buf + oob_data_offset,
1753 		       cdns_chip->avail_oob_size);
1754 
1755 		/* BBM at the beginning of the OOB area. */
1756 		memcpy(oob, tmp_buf + writesize, oob_skip);
1757 
1758 		oob += cdns_chip->avail_oob_size;
1759 
1760 		/* OOB ECC */
1761 		for (i = 0; i < ecc_steps; i++) {
1762 			pos = ecc_size + i * (ecc_size + ecc_bytes);
1763 			len = ecc_bytes;
1764 
1765 			if (i == (ecc_steps - 1))
1766 				pos += cdns_chip->avail_oob_size;
1767 
1768 			if (pos >= writesize)
1769 				pos += oob_skip;
1770 			else if (pos + len > writesize)
1771 				len = writesize - pos;
1772 
1773 			memcpy(oob, tmp_buf + pos, len);
1774 			oob += len;
1775 			if (len < ecc_bytes) {
1776 				len = ecc_bytes - len;
1777 				memcpy(oob, tmp_buf + writesize + oob_skip,
1778 				       len);
1779 				oob += len;
1780 			}
1781 		}
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1788 				     int page)
1789 {
1790 	return cadence_nand_read_page_raw(chip, NULL, true, page);
1791 }
1792 
1793 static void cadence_nand_slave_dma_transfer_finished(void *data)
1794 {
1795 	struct completion *finished = data;
1796 
1797 	complete(finished);
1798 }
1799 
1800 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1801 					   void *buf,
1802 					   dma_addr_t dev_dma, size_t len,
1803 					   enum dma_data_direction dir)
1804 {
1805 	DECLARE_COMPLETION_ONSTACK(finished);
1806 	struct dma_chan *chan;
1807 	struct dma_device *dma_dev;
1808 	dma_addr_t src_dma, dst_dma, buf_dma;
1809 	struct dma_async_tx_descriptor *tx;
1810 	dma_cookie_t cookie;
1811 
1812 	chan = cdns_ctrl->dmac;
1813 	dma_dev = chan->device;
1814 
1815 	buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1816 	if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1817 		dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1818 		goto err;
1819 	}
1820 
1821 	if (dir == DMA_FROM_DEVICE) {
1822 		src_dma = cdns_ctrl->io.dma;
1823 		dst_dma = buf_dma;
1824 	} else {
1825 		src_dma = buf_dma;
1826 		dst_dma = cdns_ctrl->io.dma;
1827 	}
1828 
1829 	tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1830 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1831 	if (!tx) {
1832 		dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1833 		goto err_unmap;
1834 	}
1835 
1836 	tx->callback = cadence_nand_slave_dma_transfer_finished;
1837 	tx->callback_param = &finished;
1838 
1839 	cookie = dmaengine_submit(tx);
1840 	if (dma_submit_error(cookie)) {
1841 		dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1842 		goto err_unmap;
1843 	}
1844 
1845 	dma_async_issue_pending(cdns_ctrl->dmac);
1846 	wait_for_completion(&finished);
1847 
1848 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1849 
1850 	return 0;
1851 
1852 err_unmap:
1853 	dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1854 
1855 err:
1856 	dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1857 
1858 	return -EIO;
1859 }
1860 
1861 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1862 				 u8 *buf, int len)
1863 {
1864 	u8 thread_nr = 0;
1865 	u32 sdma_size;
1866 	int status;
1867 
1868 	/* Wait until slave DMA interface is ready to data transfer. */
1869 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1870 	if (status)
1871 		return status;
1872 
1873 	if (!cdns_ctrl->caps1->has_dma) {
1874 		int len_in_words = len >> 2;
1875 
1876 		/* read alingment data */
1877 		ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1878 		if (sdma_size > len) {
1879 			/* read rest data from slave DMA interface if any */
1880 			ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1881 				     sdma_size / 4 - len_in_words);
1882 			/* copy rest of data */
1883 			memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
1884 			       len - (len_in_words << 2));
1885 		}
1886 		return 0;
1887 	}
1888 
1889 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1890 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1891 							 cdns_ctrl->io.dma,
1892 							 len, DMA_FROM_DEVICE);
1893 		if (status == 0)
1894 			return 0;
1895 
1896 		dev_warn(cdns_ctrl->dev,
1897 			 "Slave DMA transfer failed. Try again using bounce buffer.");
1898 	}
1899 
1900 	/* If DMA transfer is not possible or failed then use bounce buffer. */
1901 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1902 						 cdns_ctrl->io.dma,
1903 						 sdma_size, DMA_FROM_DEVICE);
1904 
1905 	if (status) {
1906 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1907 		return status;
1908 	}
1909 
1910 	memcpy(buf, cdns_ctrl->buf, len);
1911 
1912 	return 0;
1913 }
1914 
1915 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1916 				  const u8 *buf, int len)
1917 {
1918 	u8 thread_nr = 0;
1919 	u32 sdma_size;
1920 	int status;
1921 
1922 	/* Wait until slave DMA interface is ready to data transfer. */
1923 	status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1924 	if (status)
1925 		return status;
1926 
1927 	if (!cdns_ctrl->caps1->has_dma) {
1928 		int len_in_words = len >> 2;
1929 
1930 		iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1931 		if (sdma_size > len) {
1932 			/* copy rest of data */
1933 			memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
1934 			       len - (len_in_words << 2));
1935 			/* write all expected by nand controller data */
1936 			iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
1937 				      sdma_size / 4 - len_in_words);
1938 		}
1939 
1940 		return 0;
1941 	}
1942 
1943 	if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1944 		status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
1945 							 cdns_ctrl->io.dma,
1946 							 len, DMA_TO_DEVICE);
1947 		if (status == 0)
1948 			return 0;
1949 
1950 		dev_warn(cdns_ctrl->dev,
1951 			 "Slave DMA transfer failed. Try again using bounce buffer.");
1952 	}
1953 
1954 	/* If DMA transfer is not possible or failed then use bounce buffer. */
1955 	memcpy(cdns_ctrl->buf, buf, len);
1956 
1957 	status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1958 						 cdns_ctrl->io.dma,
1959 						 sdma_size, DMA_TO_DEVICE);
1960 
1961 	if (status)
1962 		dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1963 
1964 	return status;
1965 }
1966 
1967 static int cadence_nand_force_byte_access(struct nand_chip *chip,
1968 					  bool force_8bit)
1969 {
1970 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1971 	int status;
1972 
1973 	/*
1974 	 * Callers of this function do not verify if the NAND is using a 16-bit
1975 	 * an 8-bit bus for normal operations, so we need to take care of that
1976 	 * here by leaving the configuration unchanged if the NAND does not have
1977 	 * the NAND_BUSWIDTH_16 flag set.
1978 	 */
1979 	if (!(chip->options & NAND_BUSWIDTH_16))
1980 		return 0;
1981 
1982 	status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
1983 
1984 	return status;
1985 }
1986 
1987 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
1988 				   const struct nand_subop *subop)
1989 {
1990 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1991 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1992 	const struct nand_op_instr *instr;
1993 	unsigned int op_id = 0;
1994 	u64 mini_ctrl_cmd = 0;
1995 	int ret;
1996 
1997 	instr = &subop->instrs[op_id];
1998 
1999 	if (instr->delay_ns > 0)
2000 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2001 
2002 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2003 				    GCMD_LAY_INSTR_CMD);
2004 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2005 				    instr->ctx.cmd.opcode);
2006 
2007 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2008 					    cdns_chip->cs[chip->cur_cs],
2009 					    mini_ctrl_cmd);
2010 	if (ret)
2011 		dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2012 			instr->ctx.cmd.opcode);
2013 
2014 	return ret;
2015 }
2016 
2017 static int cadence_nand_cmd_address(struct nand_chip *chip,
2018 				    const struct nand_subop *subop)
2019 {
2020 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2021 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2022 	const struct nand_op_instr *instr;
2023 	unsigned int op_id = 0;
2024 	u64 mini_ctrl_cmd = 0;
2025 	unsigned int offset, naddrs;
2026 	u64 address = 0;
2027 	const u8 *addrs;
2028 	int ret;
2029 	int i;
2030 
2031 	instr = &subop->instrs[op_id];
2032 
2033 	if (instr->delay_ns > 0)
2034 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2035 
2036 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2037 				    GCMD_LAY_INSTR_ADDR);
2038 
2039 	offset = nand_subop_get_addr_start_off(subop, op_id);
2040 	naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2041 	addrs = &instr->ctx.addr.addrs[offset];
2042 
2043 	for (i = 0; i < naddrs; i++)
2044 		address |= (u64)addrs[i] << (8 * i);
2045 
2046 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2047 				    address);
2048 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2049 				    naddrs - 1);
2050 
2051 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2052 					    cdns_chip->cs[chip->cur_cs],
2053 					    mini_ctrl_cmd);
2054 	if (ret)
2055 		dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2056 
2057 	return ret;
2058 }
2059 
2060 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2061 				  const struct nand_subop *subop)
2062 {
2063 	unsigned int op_id;
2064 
2065 	if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2066 		int i;
2067 		const struct nand_op_instr *instr = NULL;
2068 		unsigned int offset, naddrs;
2069 		const u8 *addrs;
2070 		u32 page = 0;
2071 
2072 		instr = &subop->instrs[1];
2073 		offset = nand_subop_get_addr_start_off(subop, 1);
2074 		naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2075 		addrs = &instr->ctx.addr.addrs[offset];
2076 
2077 		for (i = 0; i < naddrs; i++)
2078 			page |= (u32)addrs[i] << (8 * i);
2079 
2080 		return cadence_nand_erase(chip, page);
2081 	}
2082 
2083 	/*
2084 	 * If it is not an erase operation then handle operation
2085 	 * by calling exec_op function.
2086 	 */
2087 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2088 		int ret;
2089 		const struct nand_operation nand_op = {
2090 			.cs = chip->cur_cs,
2091 			.instrs =  &subop->instrs[op_id],
2092 			.ninstrs = 1};
2093 		ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2094 		if (ret)
2095 			return ret;
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static int cadence_nand_cmd_data(struct nand_chip *chip,
2102 				 const struct nand_subop *subop)
2103 {
2104 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2105 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2106 	const struct nand_op_instr *instr;
2107 	unsigned int offset, op_id = 0;
2108 	u64 mini_ctrl_cmd = 0;
2109 	int len = 0;
2110 	int ret;
2111 
2112 	instr = &subop->instrs[op_id];
2113 
2114 	if (instr->delay_ns > 0)
2115 		mini_ctrl_cmd |= GCMD_LAY_TWB;
2116 
2117 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2118 				    GCMD_LAY_INSTR_DATA);
2119 
2120 	if (instr->type == NAND_OP_DATA_OUT_INSTR)
2121 		mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2122 					    GCMD_DIR_WRITE);
2123 
2124 	len = nand_subop_get_data_len(subop, op_id);
2125 	offset = nand_subop_get_data_start_off(subop, op_id);
2126 	mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2127 	mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2128 	if (instr->ctx.data.force_8bit) {
2129 		ret = cadence_nand_force_byte_access(chip, true);
2130 		if (ret) {
2131 			dev_err(cdns_ctrl->dev,
2132 				"cannot change byte access generic data cmd failed\n");
2133 			return ret;
2134 		}
2135 	}
2136 
2137 	ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2138 					    cdns_chip->cs[chip->cur_cs],
2139 					    mini_ctrl_cmd);
2140 	if (ret) {
2141 		dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2142 		return ret;
2143 	}
2144 
2145 	if (instr->type == NAND_OP_DATA_IN_INSTR) {
2146 		void *buf = instr->ctx.data.buf.in + offset;
2147 
2148 		ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2149 	} else {
2150 		const void *buf = instr->ctx.data.buf.out + offset;
2151 
2152 		ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2153 	}
2154 
2155 	if (ret) {
2156 		dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2157 		return ret;
2158 	}
2159 
2160 	if (instr->ctx.data.force_8bit) {
2161 		ret = cadence_nand_force_byte_access(chip, false);
2162 		if (ret) {
2163 			dev_err(cdns_ctrl->dev,
2164 				"cannot change byte access generic data cmd failed\n");
2165 		}
2166 	}
2167 
2168 	return ret;
2169 }
2170 
2171 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2172 				    const struct nand_subop *subop)
2173 {
2174 	int status;
2175 	unsigned int op_id = 0;
2176 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2177 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2178 	const struct nand_op_instr *instr = &subop->instrs[op_id];
2179 	u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2180 
2181 	status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2182 					     timeout_us,
2183 					     BIT(cdns_chip->cs[chip->cur_cs]),
2184 					     false);
2185 	return status;
2186 }
2187 
2188 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2189 	NAND_OP_PARSER_PATTERN(
2190 		cadence_nand_cmd_erase,
2191 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2192 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2193 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2194 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2195 	NAND_OP_PARSER_PATTERN(
2196 		cadence_nand_cmd_opcode,
2197 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2198 	NAND_OP_PARSER_PATTERN(
2199 		cadence_nand_cmd_address,
2200 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2201 	NAND_OP_PARSER_PATTERN(
2202 		cadence_nand_cmd_data,
2203 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2204 	NAND_OP_PARSER_PATTERN(
2205 		cadence_nand_cmd_data,
2206 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2207 	NAND_OP_PARSER_PATTERN(
2208 		cadence_nand_cmd_waitrdy,
2209 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2210 	);
2211 
2212 static int cadence_nand_exec_op(struct nand_chip *chip,
2213 				const struct nand_operation *op,
2214 				bool check_only)
2215 {
2216 	int status = cadence_nand_select_target(chip);
2217 
2218 	if (status)
2219 		return status;
2220 
2221 	return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2222 				      check_only);
2223 }
2224 
2225 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2226 				       struct mtd_oob_region *oobregion)
2227 {
2228 	struct nand_chip *chip = mtd_to_nand(mtd);
2229 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2230 
2231 	if (section)
2232 		return -ERANGE;
2233 
2234 	oobregion->offset = cdns_chip->bbm_len;
2235 	oobregion->length = cdns_chip->avail_oob_size
2236 		- cdns_chip->bbm_len;
2237 
2238 	return 0;
2239 }
2240 
2241 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2242 				      struct mtd_oob_region *oobregion)
2243 {
2244 	struct nand_chip *chip = mtd_to_nand(mtd);
2245 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2246 
2247 	if (section)
2248 		return -ERANGE;
2249 
2250 	oobregion->offset = cdns_chip->avail_oob_size;
2251 	oobregion->length = chip->ecc.total;
2252 
2253 	return 0;
2254 }
2255 
2256 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2257 	.free = cadence_nand_ooblayout_free,
2258 	.ecc = cadence_nand_ooblayout_ecc,
2259 };
2260 
2261 static int calc_cycl(u32 timing, u32 clock)
2262 {
2263 	if (timing == 0 || clock == 0)
2264 		return 0;
2265 
2266 	if ((timing % clock) > 0)
2267 		return timing / clock;
2268 	else
2269 		return timing / clock - 1;
2270 }
2271 
2272 /* Calculate max data valid window. */
2273 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2274 				u32 board_delay_skew_min, u32 ext_mode)
2275 {
2276 	if (ext_mode == 0)
2277 		clk_period /= 2;
2278 
2279 	return (trp_cnt + 1) * clk_period + trhoh_min +
2280 		board_delay_skew_min;
2281 }
2282 
2283 /* Calculate data valid window. */
2284 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2285 			    u32 trea_max, u32 ext_mode)
2286 {
2287 	if (ext_mode == 0)
2288 		clk_period /= 2;
2289 
2290 	return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2291 }
2292 
2293 static int
2294 cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
2295 				  const struct nand_data_interface *conf)
2296 {
2297 	const struct nand_sdr_timings *sdr;
2298 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2299 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2300 	struct cadence_nand_timings *t = &cdns_chip->timings;
2301 	u32 reg;
2302 	u32 board_delay = cdns_ctrl->board_delay;
2303 	u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2304 					    cdns_ctrl->nf_clk_rate);
2305 	u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2306 	u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2307 	u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2308 	u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2309 	u32 if_skew = cdns_ctrl->caps1->if_skew;
2310 	u32 board_delay_skew_min = board_delay - if_skew;
2311 	u32 board_delay_skew_max = board_delay + if_skew;
2312 	u32 dqs_sampl_res, phony_dqs_mod;
2313 	u32 tdvw, tdvw_min, tdvw_max;
2314 	u32 ext_rd_mode, ext_wr_mode;
2315 	u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2316 	u32 sampling_point;
2317 
2318 	sdr = nand_get_sdr_timings(conf);
2319 	if (IS_ERR(sdr))
2320 		return PTR_ERR(sdr);
2321 
2322 	memset(t, 0, sizeof(*t));
2323 	/* Sampling point calculation. */
2324 
2325 	if (cdns_ctrl->caps2.is_phy_type_dll)
2326 		phony_dqs_mod = 2;
2327 	else
2328 		phony_dqs_mod = 1;
2329 
2330 	dqs_sampl_res = clk_period / phony_dqs_mod;
2331 
2332 	tdvw_min = sdr->tREA_max + board_delay_skew_max;
2333 	/*
2334 	 * The idea of those calculation is to get the optimum value
2335 	 * for tRP and tRH timings. If it is NOT possible to sample data
2336 	 * with optimal tRP/tRH settings, the parameters will be extended.
2337 	 * If clk_period is 50ns (the lowest value) this condition is met
2338 	 * for asynchronous timing modes 1, 2, 3, 4 and 5.
2339 	 * If clk_period is 20ns the condition is met only
2340 	 * for asynchronous timing mode 5.
2341 	 */
2342 	if (sdr->tRC_min <= clk_period &&
2343 	    sdr->tRP_min <= (clk_period / 2) &&
2344 	    sdr->tREH_min <= (clk_period / 2)) {
2345 		/* Performance mode. */
2346 		ext_rd_mode = 0;
2347 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2348 				 sdr->tREA_max, ext_rd_mode);
2349 		tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2350 					 board_delay_skew_min,
2351 					 ext_rd_mode);
2352 		/*
2353 		 * Check if data valid window and sampling point can be found
2354 		 * and is not on the edge (ie. we have hold margin).
2355 		 * If not extend the tRP timings.
2356 		 */
2357 		if (tdvw > 0) {
2358 			if (tdvw_max <= tdvw_min ||
2359 			    (tdvw_max % dqs_sampl_res) == 0) {
2360 				/*
2361 				 * No valid sampling point so the RE pulse need
2362 				 * to be widen widening by half clock cycle.
2363 				 */
2364 				ext_rd_mode = 1;
2365 			}
2366 		} else {
2367 			/*
2368 			 * There is no valid window
2369 			 * to be able to sample data the tRP need to be widen.
2370 			 * Very safe calculations are performed here.
2371 			 */
2372 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2373 				   + dqs_sampl_res) / clk_period;
2374 			ext_rd_mode = 1;
2375 		}
2376 
2377 	} else {
2378 		/* Extended read mode. */
2379 		u32 trh;
2380 
2381 		ext_rd_mode = 1;
2382 		trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2383 		trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2384 		if (sdr->tREH_min >= trh)
2385 			trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2386 		else
2387 			trh_cnt = calc_cycl(trh, clk_period);
2388 
2389 		tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2390 				 sdr->tREA_max, ext_rd_mode);
2391 		/*
2392 		 * Check if data valid window and sampling point can be found
2393 		 * or if it is at the edge check if previous is valid
2394 		 * - if not extend the tRP timings.
2395 		 */
2396 		if (tdvw > 0) {
2397 			tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2398 						 sdr->tRHOH_min,
2399 						 board_delay_skew_min,
2400 						 ext_rd_mode);
2401 
2402 			if ((((tdvw_max / dqs_sampl_res)
2403 			      * dqs_sampl_res) <= tdvw_min) ||
2404 			    (((tdvw_max % dqs_sampl_res) == 0) &&
2405 			     (((tdvw_max / dqs_sampl_res - 1)
2406 			       * dqs_sampl_res) <= tdvw_min))) {
2407 				/*
2408 				 * Data valid window width is lower than
2409 				 * sampling resolution and do not hit any
2410 				 * sampling point to be sure the sampling point
2411 				 * will be found the RE low pulse width will be
2412 				 *  extended by one clock cycle.
2413 				 */
2414 				trp_cnt = trp_cnt + 1;
2415 			}
2416 		} else {
2417 			/*
2418 			 * There is no valid window to be able to sample data.
2419 			 * The tRP need to be widen.
2420 			 * Very safe calculations are performed here.
2421 			 */
2422 			trp_cnt = (sdr->tREA_max + board_delay_skew_max
2423 				   + dqs_sampl_res) / clk_period;
2424 		}
2425 	}
2426 
2427 	tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2428 				 sdr->tRHOH_min,
2429 				 board_delay_skew_min, ext_rd_mode);
2430 
2431 	if (sdr->tWC_min <= clk_period &&
2432 	    (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2433 	    (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2434 		ext_wr_mode = 0;
2435 	} else {
2436 		u32 twh;
2437 
2438 		ext_wr_mode = 1;
2439 		twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2440 		if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2441 			twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2442 					    clk_period);
2443 
2444 		twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2445 		if (sdr->tWH_min >= twh)
2446 			twh = sdr->tWH_min;
2447 
2448 		twh_cnt = calc_cycl(twh + if_skew, clk_period);
2449 	}
2450 
2451 	reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2452 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2453 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2454 	reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2455 	t->async_toggle_timings = reg;
2456 	dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2457 
2458 	tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2459 	tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2460 	twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2461 	trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2462 	reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2463 
2464 	/*
2465 	 * If timing exceeds delay field in timing register
2466 	 * then use maximum value.
2467 	 */
2468 	if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2469 		reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2470 	else
2471 		reg |= TIMINGS0_TCCS;
2472 
2473 	reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2474 	reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2475 	t->timings0 = reg;
2476 	dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2477 
2478 	/* The following is related to single signal so skew is not needed. */
2479 	trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2480 	trhz_cnt = trhz_cnt + 1;
2481 	twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2482 	/*
2483 	 * Because of the two stage syncflop the value must be increased by 3
2484 	 * first value is related with sync, second value is related
2485 	 * with output if delay.
2486 	 */
2487 	twb_cnt = twb_cnt + 3 + 5;
2488 	/*
2489 	 * The following is related to the we edge of the random data input
2490 	 * sequence so skew is not needed.
2491 	 */
2492 	tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2493 	reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2494 	reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2495 	reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2496 	t->timings1 = reg;
2497 	dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2498 
2499 	tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2500 	if (tfeat_cnt < twb_cnt)
2501 		tfeat_cnt = twb_cnt;
2502 
2503 	tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2504 	tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2505 
2506 	reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2507 	reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2508 	reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2509 	t->timings2 = reg;
2510 	dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2511 
2512 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2513 		reg = DLL_PHY_CTRL_DLL_RST_N;
2514 		if (ext_wr_mode)
2515 			reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2516 		if (ext_rd_mode)
2517 			reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2518 
2519 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2520 		reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2521 		t->dll_phy_ctrl = reg;
2522 		dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2523 	}
2524 
2525 	/* Sampling point calculation. */
2526 	if ((tdvw_max % dqs_sampl_res) > 0)
2527 		sampling_point = tdvw_max / dqs_sampl_res;
2528 	else
2529 		sampling_point = (tdvw_max / dqs_sampl_res - 1);
2530 
2531 	if (sampling_point * dqs_sampl_res > tdvw_min) {
2532 		dll_phy_dqs_timing =
2533 			FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2534 		dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2535 		phony_dqs_timing = sampling_point / phony_dqs_mod;
2536 
2537 		if ((sampling_point % 2) > 0) {
2538 			dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2539 			if ((tdvw_max % dqs_sampl_res) == 0)
2540 				/*
2541 				 * Calculation for sampling point at the edge
2542 				 * of data and being odd number.
2543 				 */
2544 				phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2545 					/ phony_dqs_mod - 1;
2546 
2547 			if (!cdns_ctrl->caps2.is_phy_type_dll)
2548 				phony_dqs_timing--;
2549 
2550 		} else {
2551 			phony_dqs_timing--;
2552 		}
2553 		rd_del_sel = phony_dqs_timing + 3;
2554 	} else {
2555 		dev_warn(cdns_ctrl->dev,
2556 			 "ERROR : cannot find valid sampling point\n");
2557 	}
2558 
2559 	reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2560 	if (cdns_ctrl->caps2.is_phy_type_dll)
2561 		reg  |= PHY_CTRL_SDR_DQS;
2562 	t->phy_ctrl = reg;
2563 	dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2564 
2565 	if (cdns_ctrl->caps2.is_phy_type_dll) {
2566 		dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2567 		dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2568 		dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2569 			dll_phy_dqs_timing);
2570 		t->phy_dqs_timing = dll_phy_dqs_timing;
2571 
2572 		reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2573 		dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2574 			reg);
2575 		t->phy_gate_lpbk_ctrl = reg;
2576 
2577 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2578 			PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2579 		dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 int cadence_nand_attach_chip(struct nand_chip *chip)
2586 {
2587 	struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2588 	struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2589 	u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2590 	struct mtd_info *mtd = nand_to_mtd(chip);
2591 	u32 max_oob_data_size;
2592 	int ret;
2593 
2594 	if (chip->options & NAND_BUSWIDTH_16) {
2595 		ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2596 		if (ret)
2597 			return ret;
2598 	}
2599 
2600 	chip->bbt_options |= NAND_BBT_USE_FLASH;
2601 	chip->bbt_options |= NAND_BBT_NO_OOB;
2602 	chip->ecc.mode = NAND_ECC_HW;
2603 
2604 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2605 
2606 	cdns_chip->bbm_offs = chip->badblockpos;
2607 	if (chip->options & NAND_BUSWIDTH_16) {
2608 		cdns_chip->bbm_offs &= ~0x01;
2609 		cdns_chip->bbm_len = 2;
2610 	} else {
2611 		cdns_chip->bbm_len = 1;
2612 	}
2613 
2614 	ret = nand_ecc_choose_conf(chip,
2615 				   &cdns_ctrl->ecc_caps,
2616 				   mtd->oobsize - cdns_chip->bbm_len);
2617 	if (ret) {
2618 		dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2619 		return ret;
2620 	}
2621 
2622 	dev_dbg(cdns_ctrl->dev,
2623 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2624 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2625 
2626 	/* Error correction configuration. */
2627 	cdns_chip->sector_size = chip->ecc.size;
2628 	cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2629 
2630 	cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2631 
2632 	max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
2633 
2634 	if (cdns_chip->avail_oob_size > max_oob_data_size)
2635 		cdns_chip->avail_oob_size = max_oob_data_size;
2636 
2637 	if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2638 	    > mtd->oobsize)
2639 		cdns_chip->avail_oob_size -= 4;
2640 
2641 	ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2642 	if (ret < 0)
2643 		return -EINVAL;
2644 
2645 	cdns_chip->corr_str_idx = (u8)ret;
2646 
2647 	if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2648 					1000000,
2649 					CTRL_STATUS_CTRL_BUSY, true))
2650 		return -ETIMEDOUT;
2651 
2652 	cadence_nand_set_ecc_strength(cdns_ctrl,
2653 				      cdns_chip->corr_str_idx);
2654 
2655 	cadence_nand_set_erase_detection(cdns_ctrl, true,
2656 					 chip->ecc.strength);
2657 
2658 	/* Override the default read operations. */
2659 	chip->ecc.read_page = cadence_nand_read_page;
2660 	chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2661 	chip->ecc.write_page = cadence_nand_write_page;
2662 	chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2663 	chip->ecc.read_oob = cadence_nand_read_oob;
2664 	chip->ecc.write_oob = cadence_nand_write_oob;
2665 	chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2666 	chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2667 
2668 	if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2669 		cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2670 
2671 	/* Is 32-bit DMA supported? */
2672 	ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2673 	if (ret) {
2674 		dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2675 		return ret;
2676 	}
2677 
2678 	mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2679 
2680 	return 0;
2681 }
2682 
2683 static const struct nand_controller_ops cadence_nand_controller_ops = {
2684 	.attach_chip = cadence_nand_attach_chip,
2685 	.exec_op = cadence_nand_exec_op,
2686 	.setup_data_interface = cadence_nand_setup_data_interface,
2687 };
2688 
2689 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2690 				  struct device_node *np)
2691 {
2692 	struct cdns_nand_chip *cdns_chip;
2693 	struct mtd_info *mtd;
2694 	struct nand_chip *chip;
2695 	int nsels, ret, i;
2696 	u32 cs;
2697 
2698 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2699 	if (nsels <= 0) {
2700 		dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2701 		return -EINVAL;
2702 	}
2703 
2704 	/* Allocate the nand chip structure. */
2705 	cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2706 				 (nsels * sizeof(u8)),
2707 				 GFP_KERNEL);
2708 	if (!cdns_chip) {
2709 		dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2710 		return -ENOMEM;
2711 	}
2712 
2713 	cdns_chip->nsels = nsels;
2714 
2715 	for (i = 0; i < nsels; i++) {
2716 		/* Retrieve CS id. */
2717 		ret = of_property_read_u32_index(np, "reg", i, &cs);
2718 		if (ret) {
2719 			dev_err(cdns_ctrl->dev,
2720 				"could not retrieve reg property: %d\n",
2721 				ret);
2722 			return ret;
2723 		}
2724 
2725 		if (cs >= cdns_ctrl->caps2.max_banks) {
2726 			dev_err(cdns_ctrl->dev,
2727 				"invalid reg value: %u (max CS = %d)\n",
2728 				cs, cdns_ctrl->caps2.max_banks);
2729 			return -EINVAL;
2730 		}
2731 
2732 		if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2733 			dev_err(cdns_ctrl->dev,
2734 				"CS %d already assigned\n", cs);
2735 			return -EINVAL;
2736 		}
2737 
2738 		cdns_chip->cs[i] = cs;
2739 	}
2740 
2741 	chip = &cdns_chip->chip;
2742 	chip->controller = &cdns_ctrl->controller;
2743 	nand_set_flash_node(chip, np);
2744 
2745 	mtd = nand_to_mtd(chip);
2746 	mtd->dev.parent = cdns_ctrl->dev;
2747 
2748 	/*
2749 	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2750 	 * in the DT node, this entry will be overwritten in nand_scan_ident().
2751 	 */
2752 	chip->ecc.mode = NAND_ECC_HW;
2753 
2754 	ret = nand_scan(chip, cdns_chip->nsels);
2755 	if (ret) {
2756 		dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2757 		return ret;
2758 	}
2759 
2760 	ret = mtd_device_register(mtd, NULL, 0);
2761 	if (ret) {
2762 		dev_err(cdns_ctrl->dev,
2763 			"failed to register mtd device: %d\n", ret);
2764 		nand_cleanup(chip);
2765 		return ret;
2766 	}
2767 
2768 	list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2769 
2770 	return 0;
2771 }
2772 
2773 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2774 {
2775 	struct cdns_nand_chip *entry, *temp;
2776 
2777 	list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2778 		nand_release(&entry->chip);
2779 		list_del(&entry->node);
2780 	}
2781 }
2782 
2783 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2784 {
2785 	struct device_node *np = cdns_ctrl->dev->of_node;
2786 	struct device_node *nand_np;
2787 	int max_cs = cdns_ctrl->caps2.max_banks;
2788 	int nchips, ret;
2789 
2790 	nchips = of_get_child_count(np);
2791 
2792 	if (nchips > max_cs) {
2793 		dev_err(cdns_ctrl->dev,
2794 			"too many NAND chips: %d (max = %d CS)\n",
2795 			nchips, max_cs);
2796 		return -EINVAL;
2797 	}
2798 
2799 	for_each_child_of_node(np, nand_np) {
2800 		ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2801 		if (ret) {
2802 			of_node_put(nand_np);
2803 			cadence_nand_chips_cleanup(cdns_ctrl);
2804 			return ret;
2805 		}
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 static void
2812 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2813 {
2814 	/* Disable interrupts. */
2815 	writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2816 }
2817 
2818 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2819 {
2820 	dma_cap_mask_t mask;
2821 	int ret;
2822 
2823 	cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2824 						  sizeof(*cdns_ctrl->cdma_desc),
2825 						  &cdns_ctrl->dma_cdma_desc,
2826 						  GFP_KERNEL);
2827 	if (!cdns_ctrl->dma_cdma_desc)
2828 		return -ENOMEM;
2829 
2830 	cdns_ctrl->buf_size = SZ_16K;
2831 	cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2832 	if (!cdns_ctrl->buf) {
2833 		ret = -ENOMEM;
2834 		goto free_buf_desc;
2835 	}
2836 
2837 	if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2838 			     IRQF_SHARED, "cadence-nand-controller",
2839 			     cdns_ctrl)) {
2840 		dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2841 		ret = -ENODEV;
2842 		goto free_buf;
2843 	}
2844 
2845 	spin_lock_init(&cdns_ctrl->irq_lock);
2846 	init_completion(&cdns_ctrl->complete);
2847 
2848 	ret = cadence_nand_hw_init(cdns_ctrl);
2849 	if (ret)
2850 		goto disable_irq;
2851 
2852 	dma_cap_zero(mask);
2853 	dma_cap_set(DMA_MEMCPY, mask);
2854 
2855 	if (cdns_ctrl->caps1->has_dma) {
2856 		cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2857 		if (!cdns_ctrl->dmac) {
2858 			dev_err(cdns_ctrl->dev,
2859 				"Unable to get a DMA channel\n");
2860 			ret = -EBUSY;
2861 			goto disable_irq;
2862 		}
2863 	}
2864 
2865 	nand_controller_init(&cdns_ctrl->controller);
2866 	INIT_LIST_HEAD(&cdns_ctrl->chips);
2867 
2868 	cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2869 	cdns_ctrl->curr_corr_str_idx = 0xFF;
2870 
2871 	ret = cadence_nand_chips_init(cdns_ctrl);
2872 	if (ret) {
2873 		dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2874 			ret);
2875 		goto dma_release_chnl;
2876 	}
2877 
2878 	kfree(cdns_ctrl->buf);
2879 	cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2880 	if (!cdns_ctrl->buf) {
2881 		ret = -ENOMEM;
2882 		goto dma_release_chnl;
2883 	}
2884 
2885 	return 0;
2886 
2887 dma_release_chnl:
2888 	if (cdns_ctrl->dmac)
2889 		dma_release_channel(cdns_ctrl->dmac);
2890 
2891 disable_irq:
2892 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2893 
2894 free_buf:
2895 	kfree(cdns_ctrl->buf);
2896 
2897 free_buf_desc:
2898 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2899 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2900 
2901 	return ret;
2902 }
2903 
2904 /* Driver exit point. */
2905 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2906 {
2907 	cadence_nand_chips_cleanup(cdns_ctrl);
2908 	cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2909 	kfree(cdns_ctrl->buf);
2910 	dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2911 			  cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2912 
2913 	if (cdns_ctrl->dmac)
2914 		dma_release_channel(cdns_ctrl->dmac);
2915 }
2916 
2917 struct cadence_nand_dt {
2918 	struct cdns_nand_ctrl cdns_ctrl;
2919 	struct clk *clk;
2920 };
2921 
2922 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2923 	.if_skew = 0,
2924 	.has_dma = 1,
2925 };
2926 
2927 static const struct of_device_id cadence_nand_dt_ids[] = {
2928 	{
2929 		.compatible = "cdns,hp-nfc",
2930 		.data = &cadence_nand_default
2931 	}, {}
2932 };
2933 
2934 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2935 
2936 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2937 {
2938 	struct resource *res;
2939 	struct cadence_nand_dt *dt;
2940 	struct cdns_nand_ctrl *cdns_ctrl;
2941 	int ret;
2942 	const struct of_device_id *of_id;
2943 	const struct cadence_nand_dt_devdata *devdata;
2944 	u32 val;
2945 
2946 	of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
2947 	if (of_id) {
2948 		ofdev->id_entry = of_id->data;
2949 		devdata = of_id->data;
2950 	} else {
2951 		pr_err("Failed to find the right device id.\n");
2952 		return -ENOMEM;
2953 	}
2954 
2955 	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
2956 	if (!dt)
2957 		return -ENOMEM;
2958 
2959 	cdns_ctrl = &dt->cdns_ctrl;
2960 	cdns_ctrl->caps1 = devdata;
2961 
2962 	cdns_ctrl->dev = &ofdev->dev;
2963 	cdns_ctrl->irq = platform_get_irq(ofdev, 0);
2964 	if (cdns_ctrl->irq < 0)
2965 		return cdns_ctrl->irq;
2966 
2967 	dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
2968 
2969 	cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
2970 	if (IS_ERR(cdns_ctrl->reg)) {
2971 		dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
2972 		return PTR_ERR(cdns_ctrl->reg);
2973 	}
2974 
2975 	res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
2976 	cdns_ctrl->io.dma = res->start;
2977 	cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
2978 	if (IS_ERR(cdns_ctrl->io.virt)) {
2979 		dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
2980 		return PTR_ERR(cdns_ctrl->io.virt);
2981 	}
2982 
2983 	dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
2984 	if (IS_ERR(dt->clk))
2985 		return PTR_ERR(dt->clk);
2986 
2987 	cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
2988 
2989 	ret = of_property_read_u32(ofdev->dev.of_node,
2990 				   "cdns,board-delay-ps", &val);
2991 	if (ret) {
2992 		val = 4830;
2993 		dev_info(cdns_ctrl->dev,
2994 			 "missing cdns,board-delay-ps property, %d was set\n",
2995 			 val);
2996 	}
2997 	cdns_ctrl->board_delay = val;
2998 
2999 	ret = cadence_nand_init(cdns_ctrl);
3000 	if (ret)
3001 		return ret;
3002 
3003 	platform_set_drvdata(ofdev, dt);
3004 	return 0;
3005 }
3006 
3007 static int cadence_nand_dt_remove(struct platform_device *ofdev)
3008 {
3009 	struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3010 
3011 	cadence_nand_remove(&dt->cdns_ctrl);
3012 
3013 	return 0;
3014 }
3015 
3016 static struct platform_driver cadence_nand_dt_driver = {
3017 	.probe		= cadence_nand_dt_probe,
3018 	.remove		= cadence_nand_dt_remove,
3019 	.driver		= {
3020 		.name	= "cadence-nand-controller",
3021 		.of_match_table = cadence_nand_dt_ids,
3022 	},
3023 };
3024 
3025 module_platform_driver(cadence_nand_dt_driver);
3026 
3027 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3028 MODULE_LICENSE("GPL v2");
3029 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3030 
3031