1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_device.h> 19 #include <linux/iopoll.h> 20 21 /* 22 * HPNFC can work in 3 modes: 23 * - PIO - can work in master or slave DMA 24 * - CDMA - needs Master DMA for accessing command descriptors. 25 * - Generic mode - can use only slave DMA. 26 * CDMA and PIO modes can be used to execute only base commands. 27 * Generic mode can be used to execute any command 28 * on NAND flash memory. Driver uses CDMA mode for 29 * block erasing, page reading, page programing. 30 * Generic mode is used for executing rest of commands. 31 */ 32 33 #define MAX_OOB_SIZE_PER_SECTOR 32 34 #define MAX_ADDRESS_CYC 6 35 #define MAX_ERASE_ADDRESS_CYC 3 36 #define MAX_DATA_SIZE 0xFFFC 37 #define DMA_DATA_SIZE_ALIGN 8 38 39 /* Register definition. */ 40 /* 41 * Command register 0. 42 * Writing data to this register will initiate a new transaction 43 * of the NF controller. 44 */ 45 #define CMD_REG0 0x0000 46 /* Command type field mask. */ 47 #define CMD_REG0_CT GENMASK(31, 30) 48 /* Command type CDMA. */ 49 #define CMD_REG0_CT_CDMA 0uL 50 /* Command type generic. */ 51 #define CMD_REG0_CT_GEN 3uL 52 /* Command thread number field mask. */ 53 #define CMD_REG0_TN GENMASK(27, 24) 54 55 /* Command register 2. */ 56 #define CMD_REG2 0x0008 57 /* Command register 3. */ 58 #define CMD_REG3 0x000C 59 /* Pointer register to select which thread status will be selected. */ 60 #define CMD_STATUS_PTR 0x0010 61 /* Command status register for selected thread. */ 62 #define CMD_STATUS 0x0014 63 64 /* Interrupt status register. */ 65 #define INTR_STATUS 0x0110 66 #define INTR_STATUS_SDMA_ERR BIT(22) 67 #define INTR_STATUS_SDMA_TRIGG BIT(21) 68 #define INTR_STATUS_UNSUPP_CMD BIT(19) 69 #define INTR_STATUS_DDMA_TERR BIT(18) 70 #define INTR_STATUS_CDMA_TERR BIT(17) 71 #define INTR_STATUS_CDMA_IDL BIT(16) 72 73 /* Interrupt enable register. */ 74 #define INTR_ENABLE 0x0114 75 #define INTR_ENABLE_INTR_EN BIT(31) 76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 82 83 /* Controller internal state. */ 84 #define CTRL_STATUS 0x0118 85 #define CTRL_STATUS_INIT_COMP BIT(9) 86 #define CTRL_STATUS_CTRL_BUSY BIT(8) 87 88 /* Command Engine threads state. */ 89 #define TRD_STATUS 0x0120 90 91 /* Command Engine interrupt thread error status. */ 92 #define TRD_ERR_INT_STATUS 0x0128 93 /* Command Engine interrupt thread error enable. */ 94 #define TRD_ERR_INT_STATUS_EN 0x0130 95 /* Command Engine interrupt thread complete status. */ 96 #define TRD_COMP_INT_STATUS 0x0138 97 98 /* 99 * Transfer config 0 register. 100 * Configures data transfer parameters. 101 */ 102 #define TRAN_CFG_0 0x0400 103 /* Offset value from the beginning of the page. */ 104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 105 /* Numbers of sectors to transfer within singlNF device's page. */ 106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 107 108 /* 109 * Transfer config 1 register. 110 * Configures data transfer parameters. 111 */ 112 #define TRAN_CFG_1 0x0404 113 /* Size of last data sector. */ 114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 115 /* Size of not-last data sector. */ 116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 117 118 /* ECC engine configuration register 0. */ 119 #define ECC_CONFIG_0 0x0428 120 /* Correction strength. */ 121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 122 /* Enable erased pages detection mechanism. */ 123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 124 /* Enable controller ECC check bits generation and correction. */ 125 #define ECC_CONFIG_0_ECC_EN BIT(0) 126 127 /* ECC engine configuration register 1. */ 128 #define ECC_CONFIG_1 0x042C 129 130 /* Multiplane settings register. */ 131 #define MULTIPLANE_CFG 0x0434 132 /* Cache operation settings. */ 133 #define CACHE_CFG 0x0438 134 135 /* DMA settings register. */ 136 #define DMA_SETINGS 0x043C 137 /* Enable SDMA error report on access unprepared slave DMA interface. */ 138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 139 140 /* Transferred data block size for the slave DMA module. */ 141 #define SDMA_SIZE 0x0440 142 143 /* Thread number associated with transferred data block 144 * for the slave DMA module. 145 */ 146 #define SDMA_TRD_NUM 0x0444 147 /* Thread number mask. */ 148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 149 150 #define CONTROL_DATA_CTRL 0x0494 151 /* Thread number mask. */ 152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 153 154 #define CTRL_VERSION 0x800 155 #define CTRL_VERSION_REV GENMASK(7, 0) 156 157 /* Available hardware features of the controller. */ 158 #define CTRL_FEATURES 0x804 159 /* Support for NV-DDR2/3 work mode. */ 160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 161 /* Support for NV-DDR work mode. */ 162 #define CTRL_FEATURES_NVDDR BIT(27) 163 /* Support for asynchronous work mode. */ 164 #define CTRL_FEATURES_ASYNC BIT(26) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 167 /* Slave and Master DMA data width. */ 168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 169 /* Availability of Control Data feature.*/ 170 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 171 172 /* BCH Engine identification register 0 - correction strengths. */ 173 #define BCH_CFG_0 0x838 174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 178 179 /* BCH Engine identification register 1 - correction strengths. */ 180 #define BCH_CFG_1 0x83C 181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 185 186 /* BCH Engine identification register 2 - sector sizes. */ 187 #define BCH_CFG_2 0x840 188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 190 191 /* BCH Engine identification register 3. */ 192 #define BCH_CFG_3 0x844 193 194 /* Ready/Busy# line status. */ 195 #define RBN_SETINGS 0x1004 196 197 /* Common settings. */ 198 #define COMMON_SET 0x1008 199 /* 16 bit device connected to the NAND Flash interface. */ 200 #define COMMON_SET_DEVICE_16BIT BIT(8) 201 202 /* Skip_bytes registers. */ 203 #define SKIP_BYTES_CONF 0x100C 204 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 205 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 206 207 #define SKIP_BYTES_OFFSET 0x1010 208 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 209 210 /* Timings configuration. */ 211 #define ASYNC_TOGGLE_TIMINGS 0x101c 212 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 213 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 214 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 215 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 216 217 #define TIMINGS0 0x1024 218 #define TIMINGS0_TADL GENMASK(31, 24) 219 #define TIMINGS0_TCCS GENMASK(23, 16) 220 #define TIMINGS0_TWHR GENMASK(15, 8) 221 #define TIMINGS0_TRHW GENMASK(7, 0) 222 223 #define TIMINGS1 0x1028 224 #define TIMINGS1_TRHZ GENMASK(31, 24) 225 #define TIMINGS1_TWB GENMASK(23, 16) 226 #define TIMINGS1_TVDLY GENMASK(7, 0) 227 228 #define TIMINGS2 0x102c 229 #define TIMINGS2_TFEAT GENMASK(25, 16) 230 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 231 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 232 233 /* Configuration of the resynchronization of slave DLL of PHY. */ 234 #define DLL_PHY_CTRL 0x1034 235 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 236 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 237 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 238 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 239 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 240 241 /* Register controlling DQ related timing. */ 242 #define PHY_DQ_TIMING 0x2000 243 /* Register controlling DSQ related timing. */ 244 #define PHY_DQS_TIMING 0x2004 245 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 246 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 247 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 248 249 /* Register controlling the gate and loopback control related timing. */ 250 #define PHY_GATE_LPBK_CTRL 0x2008 251 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 252 253 /* Register holds the control for the master DLL logic. */ 254 #define PHY_DLL_MASTER_CTRL 0x200C 255 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 256 257 /* Register holds the control for the slave DLL logic. */ 258 #define PHY_DLL_SLAVE_CTRL 0x2010 259 260 /* This register handles the global control settings for the PHY. */ 261 #define PHY_CTRL 0x2080 262 #define PHY_CTRL_SDR_DQS BIT(14) 263 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 264 265 /* 266 * This register handles the global control settings 267 * for the termination selects for reads. 268 */ 269 #define PHY_TSEL 0x2084 270 271 /* Generic command layout. */ 272 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 273 /* 274 * This bit informs the minicotroller if it has to wait for tWB 275 * after sending the last CMD/ADDR/DATA in the sequence. 276 */ 277 #define GCMD_LAY_TWB BIT_ULL(6) 278 /* Type of generic instruction. */ 279 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 280 281 /* Generic CMD sequence type. */ 282 #define GCMD_LAY_INSTR_CMD 0 283 /* Generic ADDR sequence type. */ 284 #define GCMD_LAY_INSTR_ADDR 1 285 /* Generic data transfer sequence type. */ 286 #define GCMD_LAY_INSTR_DATA 2 287 288 /* Input part of generic command type of input is command. */ 289 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 290 291 /* Generic command address sequence - address fields. */ 292 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 293 /* Generic command address sequence - address size. */ 294 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 295 296 /* Transfer direction field of generic command data sequence. */ 297 #define GCMD_DIR BIT_ULL(11) 298 /* Read transfer direction of generic command data sequence. */ 299 #define GCMD_DIR_READ 0 300 /* Write transfer direction of generic command data sequence. */ 301 #define GCMD_DIR_WRITE 1 302 303 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 304 #define GCMD_ECC_EN BIT_ULL(12) 305 /* Generic command data sequence - sector size. */ 306 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 307 /* Generic command data sequence - sector count. */ 308 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 309 /* Generic command data sequence - last sector size. */ 310 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 311 312 /* CDMA descriptor fields. */ 313 /* Erase command type of CDMA descriptor. */ 314 #define CDMA_CT_ERASE 0x1000 315 /* Program page command type of CDMA descriptor. */ 316 #define CDMA_CT_WR 0x2100 317 /* Read page command type of CDMA descriptor. */ 318 #define CDMA_CT_RD 0x2200 319 320 /* Flash pointer memory shift. */ 321 #define CDMA_CFPTR_MEM_SHIFT 24 322 /* Flash pointer memory mask. */ 323 #define CDMA_CFPTR_MEM GENMASK(26, 24) 324 325 /* 326 * Command DMA descriptor flags. If set causes issue interrupt after 327 * the completion of descriptor processing. 328 */ 329 #define CDMA_CF_INT BIT(8) 330 /* 331 * Command DMA descriptor flags - the next descriptor 332 * address field is valid and descriptor processing should continue. 333 */ 334 #define CDMA_CF_CONT BIT(9) 335 /* DMA master flag of command DMA descriptor. */ 336 #define CDMA_CF_DMA_MASTER BIT(10) 337 338 /* Operation complete status of command descriptor. */ 339 #define CDMA_CS_COMP BIT(15) 340 /* Operation complete status of command descriptor. */ 341 /* Command descriptor status - operation fail. */ 342 #define CDMA_CS_FAIL BIT(14) 343 /* Command descriptor status - page erased. */ 344 #define CDMA_CS_ERP BIT(11) 345 /* Command descriptor status - timeout occurred. */ 346 #define CDMA_CS_TOUT BIT(10) 347 /* 348 * Maximum amount of correction applied to one ECC sector. 349 * It is part of command descriptor status. 350 */ 351 #define CDMA_CS_MAXERR GENMASK(9, 2) 352 /* Command descriptor status - uncorrectable ECC error. */ 353 #define CDMA_CS_UNCE BIT(1) 354 /* Command descriptor status - descriptor error. */ 355 #define CDMA_CS_ERR BIT(0) 356 357 /* Status of operation - OK. */ 358 #define STAT_OK 0 359 /* Status of operation - FAIL. */ 360 #define STAT_FAIL 2 361 /* Status of operation - uncorrectable ECC error. */ 362 #define STAT_ECC_UNCORR 3 363 /* Status of operation - page erased. */ 364 #define STAT_ERASED 5 365 /* Status of operation - correctable ECC error. */ 366 #define STAT_ECC_CORR 6 367 /* Status of operation - unsuspected state. */ 368 #define STAT_UNKNOWN 7 369 /* Status of operation - operation is not completed yet. */ 370 #define STAT_BUSY 0xFF 371 372 #define BCH_MAX_NUM_CORR_CAPS 8 373 #define BCH_MAX_NUM_SECTOR_SIZES 2 374 375 struct cadence_nand_timings { 376 u32 async_toggle_timings; 377 u32 timings0; 378 u32 timings1; 379 u32 timings2; 380 u32 dll_phy_ctrl; 381 u32 phy_ctrl; 382 u32 phy_dqs_timing; 383 u32 phy_gate_lpbk_ctrl; 384 }; 385 386 /* Command DMA descriptor. */ 387 struct cadence_nand_cdma_desc { 388 /* Next descriptor address. */ 389 u64 next_pointer; 390 391 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 392 u32 flash_pointer; 393 /*field appears in HPNFC version 13*/ 394 u16 bank; 395 u16 rsvd0; 396 397 /* Operation the controller needs to perform. */ 398 u16 command_type; 399 u16 rsvd1; 400 /* Flags for operation of this command. */ 401 u16 command_flags; 402 u16 rsvd2; 403 404 /* System/host memory address required for data DMA commands. */ 405 u64 memory_pointer; 406 407 /* Status of operation. */ 408 u32 status; 409 u32 rsvd3; 410 411 /* Address pointer to sync buffer location. */ 412 u64 sync_flag_pointer; 413 414 /* Controls the buffer sync mechanism. */ 415 u32 sync_arguments; 416 u32 rsvd4; 417 418 /* Control data pointer. */ 419 u64 ctrl_data_ptr; 420 }; 421 422 /* Interrupt status. */ 423 struct cadence_nand_irq_status { 424 /* Thread operation complete status. */ 425 u32 trd_status; 426 /* Thread operation error. */ 427 u32 trd_error; 428 /* Controller status. */ 429 u32 status; 430 }; 431 432 /* Cadence NAND flash controller capabilities get from driver data. */ 433 struct cadence_nand_dt_devdata { 434 /* Skew value of the output signals of the NAND Flash interface. */ 435 u32 if_skew; 436 /* It informs if slave DMA interface is connected to DMA engine. */ 437 unsigned int has_dma:1; 438 }; 439 440 /* Cadence NAND flash controller capabilities read from registers. */ 441 struct cdns_nand_caps { 442 /* Maximum number of banks supported by hardware. */ 443 u8 max_banks; 444 /* Slave and Master DMA data width in bytes (4 or 8). */ 445 u8 data_dma_width; 446 /* Control Data feature supported. */ 447 bool data_control_supp; 448 /* Is PHY type DLL. */ 449 bool is_phy_type_dll; 450 }; 451 452 struct cdns_nand_ctrl { 453 struct device *dev; 454 struct nand_controller controller; 455 struct cadence_nand_cdma_desc *cdma_desc; 456 /* IP capability. */ 457 const struct cadence_nand_dt_devdata *caps1; 458 struct cdns_nand_caps caps2; 459 u8 ctrl_rev; 460 dma_addr_t dma_cdma_desc; 461 u8 *buf; 462 u32 buf_size; 463 u8 curr_corr_str_idx; 464 465 /* Register interface. */ 466 void __iomem *reg; 467 468 struct { 469 void __iomem *virt; 470 dma_addr_t dma; 471 } io; 472 473 int irq; 474 /* Interrupts that have happened. */ 475 struct cadence_nand_irq_status irq_status; 476 /* Interrupts we are waiting for. */ 477 struct cadence_nand_irq_status irq_mask; 478 struct completion complete; 479 /* Protect irq_mask and irq_status. */ 480 spinlock_t irq_lock; 481 482 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 483 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 484 struct nand_ecc_caps ecc_caps; 485 486 int curr_trans_type; 487 488 struct dma_chan *dmac; 489 490 u32 nf_clk_rate; 491 /* 492 * Estimated Board delay. The value includes the total 493 * round trip delay for the signals and is used for deciding on values 494 * associated with data read capture. 495 */ 496 u32 board_delay; 497 498 struct nand_chip *selected_chip; 499 500 unsigned long assigned_cs; 501 struct list_head chips; 502 }; 503 504 struct cdns_nand_chip { 505 struct cadence_nand_timings timings; 506 struct nand_chip chip; 507 u8 nsels; 508 struct list_head node; 509 510 /* 511 * part of oob area of NAND flash memory page. 512 * This part is available for user to read or write. 513 */ 514 u32 avail_oob_size; 515 516 /* Sector size. There are few sectors per mtd->writesize */ 517 u32 sector_size; 518 u32 sector_count; 519 520 /* Offset of BBM. */ 521 u8 bbm_offs; 522 /* Number of bytes reserved for BBM. */ 523 u8 bbm_len; 524 /* ECC strength index. */ 525 u8 corr_str_idx; 526 527 u8 cs[]; 528 }; 529 530 struct ecc_info { 531 int (*calc_ecc_bytes)(int step_size, int strength); 532 int max_step_size; 533 }; 534 535 static inline struct 536 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 537 { 538 return container_of(chip, struct cdns_nand_chip, chip); 539 } 540 541 static inline struct 542 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 543 { 544 return container_of(controller, struct cdns_nand_ctrl, controller); 545 } 546 547 static bool 548 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 549 u32 buf_len) 550 { 551 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 552 553 return buf && virt_addr_valid(buf) && 554 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 555 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 556 } 557 558 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 559 u32 reg_offset, u32 timeout_us, 560 u32 mask, bool is_clear) 561 { 562 u32 val; 563 int ret; 564 565 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 566 val, !(val & mask) == is_clear, 567 10, timeout_us); 568 569 if (ret < 0) { 570 dev_err(cdns_ctrl->dev, 571 "Timeout while waiting for reg %x with mask %x is clear %d\n", 572 reg_offset, mask, is_clear); 573 } 574 575 return ret; 576 } 577 578 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 579 bool enable) 580 { 581 u32 reg; 582 583 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 584 1000000, 585 CTRL_STATUS_CTRL_BUSY, true)) 586 return -ETIMEDOUT; 587 588 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 589 590 if (enable) 591 reg |= ECC_CONFIG_0_ECC_EN; 592 else 593 reg &= ~ECC_CONFIG_0_ECC_EN; 594 595 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 596 597 return 0; 598 } 599 600 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 601 u8 corr_str_idx) 602 { 603 u32 reg; 604 605 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 606 return; 607 608 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 609 reg &= ~ECC_CONFIG_0_CORR_STR; 610 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 611 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 612 613 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 614 } 615 616 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 617 u8 strength) 618 { 619 int i, corr_str_idx = -1; 620 621 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 622 if (cdns_ctrl->ecc_strengths[i] == strength) { 623 corr_str_idx = i; 624 break; 625 } 626 } 627 628 return corr_str_idx; 629 } 630 631 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 632 u16 marker_value) 633 { 634 u32 reg; 635 636 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 637 1000000, 638 CTRL_STATUS_CTRL_BUSY, true)) 639 return -ETIMEDOUT; 640 641 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 642 reg &= ~SKIP_BYTES_MARKER_VALUE; 643 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 644 marker_value); 645 646 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 647 648 return 0; 649 } 650 651 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 652 u8 num_of_bytes, 653 u32 offset_value, 654 int enable) 655 { 656 u32 reg, skip_bytes_offset; 657 658 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 659 1000000, 660 CTRL_STATUS_CTRL_BUSY, true)) 661 return -ETIMEDOUT; 662 663 if (!enable) { 664 num_of_bytes = 0; 665 offset_value = 0; 666 } 667 668 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 669 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 670 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 671 num_of_bytes); 672 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 673 offset_value); 674 675 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 676 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 677 678 return 0; 679 } 680 681 /* Functions enables/disables hardware detection of erased data */ 682 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 683 bool enable, 684 u8 bitflips_threshold) 685 { 686 u32 reg; 687 688 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 689 690 if (enable) 691 reg |= ECC_CONFIG_0_ERASE_DET_EN; 692 else 693 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 694 695 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 696 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 697 } 698 699 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 700 bool bit_bus16) 701 { 702 u32 reg; 703 704 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 705 1000000, 706 CTRL_STATUS_CTRL_BUSY, true)) 707 return -ETIMEDOUT; 708 709 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 710 711 if (!bit_bus16) 712 reg &= ~COMMON_SET_DEVICE_16BIT; 713 else 714 reg |= COMMON_SET_DEVICE_16BIT; 715 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 716 717 return 0; 718 } 719 720 static void 721 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 722 struct cadence_nand_irq_status *irq_status) 723 { 724 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 725 writel_relaxed(irq_status->trd_status, 726 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 727 writel_relaxed(irq_status->trd_error, 728 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 729 } 730 731 static void 732 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 733 struct cadence_nand_irq_status *irq_status) 734 { 735 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 736 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 737 + TRD_COMP_INT_STATUS); 738 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 739 + TRD_ERR_INT_STATUS); 740 } 741 742 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 743 struct cadence_nand_irq_status *irq_status) 744 { 745 cadence_nand_read_int_status(cdns_ctrl, irq_status); 746 747 return irq_status->status || irq_status->trd_status || 748 irq_status->trd_error; 749 } 750 751 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 752 { 753 unsigned long flags; 754 755 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 756 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 757 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 758 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 759 } 760 761 /* 762 * This is the interrupt service routine. It handles all interrupts 763 * sent to this device. 764 */ 765 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 766 { 767 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 768 struct cadence_nand_irq_status irq_status; 769 irqreturn_t result = IRQ_NONE; 770 771 spin_lock(&cdns_ctrl->irq_lock); 772 773 if (irq_detected(cdns_ctrl, &irq_status)) { 774 /* Handle interrupt. */ 775 /* First acknowledge it. */ 776 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 777 /* Status in the device context for someone to read. */ 778 cdns_ctrl->irq_status.status |= irq_status.status; 779 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 780 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 781 /* Notify anyone who cares that it happened. */ 782 complete(&cdns_ctrl->complete); 783 /* Tell the OS that we've handled this. */ 784 result = IRQ_HANDLED; 785 } 786 spin_unlock(&cdns_ctrl->irq_lock); 787 788 return result; 789 } 790 791 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 792 struct cadence_nand_irq_status *irq_mask) 793 { 794 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 795 cdns_ctrl->reg + INTR_ENABLE); 796 797 writel_relaxed(irq_mask->trd_error, 798 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 799 } 800 801 static void 802 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 803 struct cadence_nand_irq_status *irq_mask, 804 struct cadence_nand_irq_status *irq_status) 805 { 806 unsigned long timeout = msecs_to_jiffies(10000); 807 unsigned long time_left; 808 809 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 810 timeout); 811 812 *irq_status = cdns_ctrl->irq_status; 813 if (time_left == 0) { 814 /* Timeout error. */ 815 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 816 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 817 irq_status->status, irq_mask->status); 818 dev_err(cdns_ctrl->dev, 819 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 820 irq_status->trd_status, irq_mask->trd_status); 821 dev_err(cdns_ctrl->dev, 822 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 823 irq_status->trd_error, irq_mask->trd_error); 824 } 825 } 826 827 /* Execute generic command on NAND controller. */ 828 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 829 u8 chip_nr, 830 u64 mini_ctrl_cmd) 831 { 832 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 833 834 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 835 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 836 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 837 838 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 839 1000000, 840 CTRL_STATUS_CTRL_BUSY, true)) 841 return -ETIMEDOUT; 842 843 cadence_nand_reset_irq(cdns_ctrl); 844 845 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 846 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 847 848 /* Select generic command. */ 849 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 850 /* Thread number. */ 851 reg |= FIELD_PREP(CMD_REG0_TN, 0); 852 853 /* Issue command. */ 854 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 855 856 return 0; 857 } 858 859 /* Wait for data on slave DMA interface. */ 860 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 861 u8 *out_sdma_trd, 862 u32 *out_sdma_size) 863 { 864 struct cadence_nand_irq_status irq_mask, irq_status; 865 866 irq_mask.trd_status = 0; 867 irq_mask.trd_error = 0; 868 irq_mask.status = INTR_STATUS_SDMA_TRIGG 869 | INTR_STATUS_SDMA_ERR 870 | INTR_STATUS_UNSUPP_CMD; 871 872 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 873 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 874 if (irq_status.status == 0) { 875 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 876 return -ETIMEDOUT; 877 } 878 879 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 880 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 881 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 882 *out_sdma_trd = 883 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 884 } else { 885 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 886 irq_status.status); 887 return -EIO; 888 } 889 890 return 0; 891 } 892 893 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 894 { 895 u32 reg; 896 897 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 898 899 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 900 901 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 902 cdns_ctrl->caps2.data_dma_width = 8; 903 else 904 cdns_ctrl->caps2.data_dma_width = 4; 905 906 if (reg & CTRL_FEATURES_CONTROL_DATA) 907 cdns_ctrl->caps2.data_control_supp = true; 908 909 if (reg & (CTRL_FEATURES_NVDDR_2_3 910 | CTRL_FEATURES_NVDDR)) 911 cdns_ctrl->caps2.is_phy_type_dll = true; 912 } 913 914 /* Prepare CDMA descriptor. */ 915 static void 916 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 917 char nf_mem, u32 flash_ptr, char *mem_ptr, 918 char *ctrl_data_ptr, u16 ctype) 919 { 920 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 921 922 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 923 924 /* Set fields for one descriptor. */ 925 cdma_desc->flash_pointer = flash_ptr; 926 if (cdns_ctrl->ctrl_rev >= 13) 927 cdma_desc->bank = nf_mem; 928 else 929 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 930 931 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 932 cdma_desc->command_flags |= CDMA_CF_INT; 933 934 cdma_desc->memory_pointer = (uintptr_t)mem_ptr; 935 cdma_desc->status = 0; 936 cdma_desc->sync_flag_pointer = 0; 937 cdma_desc->sync_arguments = 0; 938 939 cdma_desc->command_type = ctype; 940 cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr; 941 } 942 943 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 944 u32 desc_status) 945 { 946 if (desc_status & CDMA_CS_ERP) 947 return STAT_ERASED; 948 949 if (desc_status & CDMA_CS_UNCE) 950 return STAT_ECC_UNCORR; 951 952 if (desc_status & CDMA_CS_ERR) { 953 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 954 return STAT_FAIL; 955 } 956 957 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 958 return STAT_ECC_CORR; 959 960 return STAT_FAIL; 961 } 962 963 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 964 { 965 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 966 u8 status = STAT_BUSY; 967 968 if (desc_ptr->status & CDMA_CS_FAIL) { 969 status = cadence_nand_check_desc_error(cdns_ctrl, 970 desc_ptr->status); 971 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 972 } else if (desc_ptr->status & CDMA_CS_COMP) { 973 /* Descriptor finished with no errors. */ 974 if (desc_ptr->command_flags & CDMA_CF_CONT) { 975 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 976 status = STAT_UNKNOWN; 977 } else { 978 /* Last descriptor. */ 979 status = STAT_OK; 980 } 981 } 982 983 return status; 984 } 985 986 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 987 u8 thread) 988 { 989 u32 reg; 990 int status; 991 992 /* Wait for thread ready. */ 993 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 994 1000000, 995 BIT(thread), true); 996 if (status) 997 return status; 998 999 cadence_nand_reset_irq(cdns_ctrl); 1000 1001 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1002 cdns_ctrl->reg + CMD_REG2); 1003 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1004 1005 /* Select CDMA mode. */ 1006 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1007 /* Thread number. */ 1008 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1009 /* Issue command. */ 1010 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1011 1012 return 0; 1013 } 1014 1015 /* Send SDMA command and wait for finish. */ 1016 static u32 1017 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1018 u8 thread) 1019 { 1020 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1021 int status; 1022 1023 irq_mask.trd_status = BIT(thread); 1024 irq_mask.trd_error = BIT(thread); 1025 irq_mask.status = INTR_STATUS_CDMA_TERR; 1026 1027 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1028 1029 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1030 if (status) 1031 return status; 1032 1033 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1034 1035 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1036 irq_status.trd_error == 0) { 1037 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1038 return -ETIMEDOUT; 1039 } 1040 if (irq_status.status & irq_mask.status) { 1041 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1042 return -EIO; 1043 } 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * ECC size depends on configured ECC strength and on maximum supported 1050 * ECC step size. 1051 */ 1052 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1053 { 1054 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1055 1056 return ALIGN(nbytes, 2); 1057 } 1058 1059 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1060 static int \ 1061 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1062 int strength)\ 1063 {\ 1064 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1065 } 1066 1067 CADENCE_NAND_CALC_ECC_BYTES(256) 1068 CADENCE_NAND_CALC_ECC_BYTES(512) 1069 CADENCE_NAND_CALC_ECC_BYTES(1024) 1070 CADENCE_NAND_CALC_ECC_BYTES(2048) 1071 CADENCE_NAND_CALC_ECC_BYTES(4096) 1072 1073 /* Function reads BCH capabilities. */ 1074 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1075 { 1076 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1077 int max_step_size = 0, nstrengths, i; 1078 u32 reg; 1079 1080 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1081 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1082 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1083 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1084 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1085 1086 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1087 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1088 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1089 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1090 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1091 1092 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1093 cdns_ctrl->ecc_stepinfos[0].stepsize = 1094 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1095 1096 cdns_ctrl->ecc_stepinfos[1].stepsize = 1097 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1098 1099 nstrengths = 0; 1100 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1101 if (cdns_ctrl->ecc_strengths[i] != 0) 1102 nstrengths++; 1103 } 1104 1105 ecc_caps->nstepinfos = 0; 1106 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1107 /* ECC strengths are common for all step infos. */ 1108 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1109 cdns_ctrl->ecc_stepinfos[i].strengths = 1110 cdns_ctrl->ecc_strengths; 1111 1112 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1113 ecc_caps->nstepinfos++; 1114 1115 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1116 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1117 } 1118 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1119 1120 switch (max_step_size) { 1121 case 256: 1122 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1123 break; 1124 case 512: 1125 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1126 break; 1127 case 1024: 1128 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1129 break; 1130 case 2048: 1131 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1132 break; 1133 case 4096: 1134 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1135 break; 1136 default: 1137 dev_err(cdns_ctrl->dev, 1138 "Unsupported sector size(ecc step size) %d\n", 1139 max_step_size); 1140 return -EIO; 1141 } 1142 1143 return 0; 1144 } 1145 1146 /* Hardware initialization. */ 1147 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1148 { 1149 int status; 1150 u32 reg; 1151 1152 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1153 1000000, 1154 CTRL_STATUS_INIT_COMP, false); 1155 if (status) 1156 return status; 1157 1158 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1159 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1160 1161 dev_info(cdns_ctrl->dev, 1162 "%s: cadence nand controller version reg %x\n", 1163 __func__, reg); 1164 1165 /* Disable cache and multiplane. */ 1166 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1167 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1168 1169 /* Clear all interrupts. */ 1170 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1171 1172 cadence_nand_get_caps(cdns_ctrl); 1173 cadence_nand_read_bch_caps(cdns_ctrl); 1174 1175 /* 1176 * Set IO width access to 8. 1177 * It is because during SW device discovering width access 1178 * is expected to be 8. 1179 */ 1180 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1181 1182 return status; 1183 } 1184 1185 #define TT_MAIN_OOB_AREAS 2 1186 #define TT_RAW_PAGE 3 1187 #define TT_BBM 4 1188 #define TT_MAIN_OOB_AREA_EXT 5 1189 1190 /* Prepare size of data to transfer. */ 1191 static void 1192 cadence_nand_prepare_data_size(struct nand_chip *chip, 1193 int transfer_type) 1194 { 1195 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1196 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1197 struct mtd_info *mtd = nand_to_mtd(chip); 1198 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1199 u32 last_sec_size = cdns_chip->sector_size; 1200 u32 data_ctrl_size = 0; 1201 u32 reg = 0; 1202 1203 if (cdns_ctrl->curr_trans_type == transfer_type) 1204 return; 1205 1206 switch (transfer_type) { 1207 case TT_MAIN_OOB_AREA_EXT: 1208 sec_cnt = cdns_chip->sector_count; 1209 sec_size = cdns_chip->sector_size; 1210 data_ctrl_size = cdns_chip->avail_oob_size; 1211 break; 1212 case TT_MAIN_OOB_AREAS: 1213 sec_cnt = cdns_chip->sector_count; 1214 last_sec_size = cdns_chip->sector_size 1215 + cdns_chip->avail_oob_size; 1216 sec_size = cdns_chip->sector_size; 1217 break; 1218 case TT_RAW_PAGE: 1219 last_sec_size = mtd->writesize + mtd->oobsize; 1220 break; 1221 case TT_BBM: 1222 offset = mtd->writesize + cdns_chip->bbm_offs; 1223 last_sec_size = 8; 1224 break; 1225 } 1226 1227 reg = 0; 1228 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1229 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1230 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1231 1232 reg = 0; 1233 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1234 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1235 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1236 1237 if (cdns_ctrl->caps2.data_control_supp) { 1238 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1239 reg &= ~CONTROL_DATA_CTRL_SIZE; 1240 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1241 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1242 } 1243 1244 cdns_ctrl->curr_trans_type = transfer_type; 1245 } 1246 1247 static int 1248 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1249 int page, void *buf, void *ctrl_dat, u32 buf_size, 1250 u32 ctrl_dat_size, enum dma_data_direction dir, 1251 bool with_ecc) 1252 { 1253 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1254 u8 thread_nr = chip_nr; 1255 int status; 1256 u16 ctype; 1257 1258 if (dir == DMA_FROM_DEVICE) 1259 ctype = CDMA_CT_RD; 1260 else 1261 ctype = CDMA_CT_WR; 1262 1263 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1264 1265 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1266 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1267 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1268 return -EIO; 1269 } 1270 1271 if (ctrl_dat && ctrl_dat_size) { 1272 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1273 ctrl_dat_size, dir); 1274 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1275 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1276 buf_size, dir); 1277 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1278 return -EIO; 1279 } 1280 } 1281 1282 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1283 (void *)dma_buf, (void *)dma_ctrl_dat, 1284 ctype); 1285 1286 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1287 1288 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1289 buf_size, dir); 1290 1291 if (ctrl_dat && ctrl_dat_size) 1292 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1293 ctrl_dat_size, dir); 1294 if (status) 1295 return status; 1296 1297 return cadence_nand_cdma_finish(cdns_ctrl); 1298 } 1299 1300 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1301 struct cadence_nand_timings *t) 1302 { 1303 writel_relaxed(t->async_toggle_timings, 1304 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1305 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1306 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1307 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1308 1309 if (cdns_ctrl->caps2.is_phy_type_dll) 1310 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1311 1312 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1313 1314 if (cdns_ctrl->caps2.is_phy_type_dll) { 1315 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1316 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1317 writel_relaxed(t->phy_dqs_timing, 1318 cdns_ctrl->reg + PHY_DQS_TIMING); 1319 writel_relaxed(t->phy_gate_lpbk_ctrl, 1320 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1321 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1322 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1323 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1324 } 1325 } 1326 1327 static int cadence_nand_select_target(struct nand_chip *chip) 1328 { 1329 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1330 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1331 1332 if (chip == cdns_ctrl->selected_chip) 1333 return 0; 1334 1335 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1336 1000000, 1337 CTRL_STATUS_CTRL_BUSY, true)) 1338 return -ETIMEDOUT; 1339 1340 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1341 1342 cadence_nand_set_ecc_strength(cdns_ctrl, 1343 cdns_chip->corr_str_idx); 1344 1345 cadence_nand_set_erase_detection(cdns_ctrl, true, 1346 chip->ecc.strength); 1347 1348 cdns_ctrl->curr_trans_type = -1; 1349 cdns_ctrl->selected_chip = chip; 1350 1351 return 0; 1352 } 1353 1354 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1355 { 1356 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1357 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1358 int status; 1359 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1360 1361 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1362 cdns_chip->cs[chip->cur_cs], 1363 page, NULL, NULL, 1364 CDMA_CT_ERASE); 1365 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1366 if (status) { 1367 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1368 return -EIO; 1369 } 1370 1371 status = cadence_nand_cdma_finish(cdns_ctrl); 1372 if (status) 1373 return status; 1374 1375 return 0; 1376 } 1377 1378 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1379 { 1380 int status; 1381 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1382 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1383 struct mtd_info *mtd = nand_to_mtd(chip); 1384 1385 cadence_nand_prepare_data_size(chip, TT_BBM); 1386 1387 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1388 1389 /* 1390 * Read only bad block marker from offset 1391 * defined by a memory manufacturer. 1392 */ 1393 status = cadence_nand_cdma_transfer(cdns_ctrl, 1394 cdns_chip->cs[chip->cur_cs], 1395 page, cdns_ctrl->buf, NULL, 1396 mtd->oobsize, 1397 0, DMA_FROM_DEVICE, false); 1398 if (status) { 1399 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1400 return -EIO; 1401 } 1402 1403 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1404 1405 return 0; 1406 } 1407 1408 static int cadence_nand_write_page(struct nand_chip *chip, 1409 const u8 *buf, int oob_required, 1410 int page) 1411 { 1412 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1413 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1414 struct mtd_info *mtd = nand_to_mtd(chip); 1415 int status; 1416 u16 marker_val = 0xFFFF; 1417 1418 status = cadence_nand_select_target(chip); 1419 if (status) 1420 return status; 1421 1422 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1423 mtd->writesize 1424 + cdns_chip->bbm_offs, 1425 1); 1426 1427 if (oob_required) { 1428 marker_val = *(u16 *)(chip->oob_poi 1429 + cdns_chip->bbm_offs); 1430 } else { 1431 /* Set oob data to 0xFF. */ 1432 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1433 cdns_chip->avail_oob_size); 1434 } 1435 1436 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1437 1438 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1439 1440 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1441 cdns_ctrl->caps2.data_control_supp) { 1442 u8 *oob; 1443 1444 if (oob_required) 1445 oob = chip->oob_poi; 1446 else 1447 oob = cdns_ctrl->buf + mtd->writesize; 1448 1449 status = cadence_nand_cdma_transfer(cdns_ctrl, 1450 cdns_chip->cs[chip->cur_cs], 1451 page, (void *)buf, oob, 1452 mtd->writesize, 1453 cdns_chip->avail_oob_size, 1454 DMA_TO_DEVICE, true); 1455 if (status) { 1456 dev_err(cdns_ctrl->dev, "write page failed\n"); 1457 return -EIO; 1458 } 1459 1460 return 0; 1461 } 1462 1463 if (oob_required) { 1464 /* Transfer the data to the oob area. */ 1465 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1466 cdns_chip->avail_oob_size); 1467 } 1468 1469 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1470 1471 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1472 1473 return cadence_nand_cdma_transfer(cdns_ctrl, 1474 cdns_chip->cs[chip->cur_cs], 1475 page, cdns_ctrl->buf, NULL, 1476 mtd->writesize 1477 + cdns_chip->avail_oob_size, 1478 0, DMA_TO_DEVICE, true); 1479 } 1480 1481 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1482 { 1483 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1484 struct mtd_info *mtd = nand_to_mtd(chip); 1485 1486 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1487 1488 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1489 } 1490 1491 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1492 const u8 *buf, int oob_required, 1493 int page) 1494 { 1495 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1496 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1497 struct mtd_info *mtd = nand_to_mtd(chip); 1498 int writesize = mtd->writesize; 1499 int oobsize = mtd->oobsize; 1500 int ecc_steps = chip->ecc.steps; 1501 int ecc_size = chip->ecc.size; 1502 int ecc_bytes = chip->ecc.bytes; 1503 void *tmp_buf = cdns_ctrl->buf; 1504 int oob_skip = cdns_chip->bbm_len; 1505 size_t size = writesize + oobsize; 1506 int i, pos, len; 1507 int status = 0; 1508 1509 status = cadence_nand_select_target(chip); 1510 if (status) 1511 return status; 1512 1513 /* 1514 * Fill the buffer with 0xff first except the full page transfer. 1515 * This simplifies the logic. 1516 */ 1517 if (!buf || !oob_required) 1518 memset(tmp_buf, 0xff, size); 1519 1520 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1521 1522 /* Arrange the buffer for syndrome payload/ecc layout. */ 1523 if (buf) { 1524 for (i = 0; i < ecc_steps; i++) { 1525 pos = i * (ecc_size + ecc_bytes); 1526 len = ecc_size; 1527 1528 if (pos >= writesize) 1529 pos += oob_skip; 1530 else if (pos + len > writesize) 1531 len = writesize - pos; 1532 1533 memcpy(tmp_buf + pos, buf, len); 1534 buf += len; 1535 if (len < ecc_size) { 1536 len = ecc_size - len; 1537 memcpy(tmp_buf + writesize + oob_skip, buf, 1538 len); 1539 buf += len; 1540 } 1541 } 1542 } 1543 1544 if (oob_required) { 1545 const u8 *oob = chip->oob_poi; 1546 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1547 (cdns_chip->sector_size + chip->ecc.bytes) 1548 + cdns_chip->sector_size + oob_skip; 1549 1550 /* BBM at the beginning of the OOB area. */ 1551 memcpy(tmp_buf + writesize, oob, oob_skip); 1552 1553 /* OOB free. */ 1554 memcpy(tmp_buf + oob_data_offset, oob, 1555 cdns_chip->avail_oob_size); 1556 oob += cdns_chip->avail_oob_size; 1557 1558 /* OOB ECC. */ 1559 for (i = 0; i < ecc_steps; i++) { 1560 pos = ecc_size + i * (ecc_size + ecc_bytes); 1561 if (i == (ecc_steps - 1)) 1562 pos += cdns_chip->avail_oob_size; 1563 1564 len = ecc_bytes; 1565 1566 if (pos >= writesize) 1567 pos += oob_skip; 1568 else if (pos + len > writesize) 1569 len = writesize - pos; 1570 1571 memcpy(tmp_buf + pos, oob, len); 1572 oob += len; 1573 if (len < ecc_bytes) { 1574 len = ecc_bytes - len; 1575 memcpy(tmp_buf + writesize + oob_skip, oob, 1576 len); 1577 oob += len; 1578 } 1579 } 1580 } 1581 1582 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1583 1584 return cadence_nand_cdma_transfer(cdns_ctrl, 1585 cdns_chip->cs[chip->cur_cs], 1586 page, cdns_ctrl->buf, NULL, 1587 mtd->writesize + 1588 mtd->oobsize, 1589 0, DMA_TO_DEVICE, false); 1590 } 1591 1592 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1593 int page) 1594 { 1595 return cadence_nand_write_page_raw(chip, NULL, true, page); 1596 } 1597 1598 static int cadence_nand_read_page(struct nand_chip *chip, 1599 u8 *buf, int oob_required, int page) 1600 { 1601 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1602 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1603 struct mtd_info *mtd = nand_to_mtd(chip); 1604 int status = 0; 1605 int ecc_err_count = 0; 1606 1607 status = cadence_nand_select_target(chip); 1608 if (status) 1609 return status; 1610 1611 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1612 mtd->writesize 1613 + cdns_chip->bbm_offs, 1); 1614 1615 /* 1616 * If data buffer can be accessed by DMA and data_control feature 1617 * is supported then transfer data and oob directly. 1618 */ 1619 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1620 cdns_ctrl->caps2.data_control_supp) { 1621 u8 *oob; 1622 1623 if (oob_required) 1624 oob = chip->oob_poi; 1625 else 1626 oob = cdns_ctrl->buf + mtd->writesize; 1627 1628 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1629 status = cadence_nand_cdma_transfer(cdns_ctrl, 1630 cdns_chip->cs[chip->cur_cs], 1631 page, buf, oob, 1632 mtd->writesize, 1633 cdns_chip->avail_oob_size, 1634 DMA_FROM_DEVICE, true); 1635 /* Otherwise use bounce buffer. */ 1636 } else { 1637 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1638 status = cadence_nand_cdma_transfer(cdns_ctrl, 1639 cdns_chip->cs[chip->cur_cs], 1640 page, cdns_ctrl->buf, 1641 NULL, mtd->writesize 1642 + cdns_chip->avail_oob_size, 1643 0, DMA_FROM_DEVICE, true); 1644 1645 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1646 if (oob_required) 1647 memcpy(chip->oob_poi, 1648 cdns_ctrl->buf + mtd->writesize, 1649 mtd->oobsize); 1650 } 1651 1652 switch (status) { 1653 case STAT_ECC_UNCORR: 1654 mtd->ecc_stats.failed++; 1655 ecc_err_count++; 1656 break; 1657 case STAT_ECC_CORR: 1658 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1659 cdns_ctrl->cdma_desc->status); 1660 mtd->ecc_stats.corrected += ecc_err_count; 1661 break; 1662 case STAT_ERASED: 1663 case STAT_OK: 1664 break; 1665 default: 1666 dev_err(cdns_ctrl->dev, "read page failed\n"); 1667 return -EIO; 1668 } 1669 1670 if (oob_required) 1671 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1672 return -EIO; 1673 1674 return ecc_err_count; 1675 } 1676 1677 /* Reads OOB data from the device. */ 1678 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1679 { 1680 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1681 1682 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1683 } 1684 1685 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1686 u8 *buf, int oob_required, int page) 1687 { 1688 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1689 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1690 struct mtd_info *mtd = nand_to_mtd(chip); 1691 int oob_skip = cdns_chip->bbm_len; 1692 int writesize = mtd->writesize; 1693 int ecc_steps = chip->ecc.steps; 1694 int ecc_size = chip->ecc.size; 1695 int ecc_bytes = chip->ecc.bytes; 1696 void *tmp_buf = cdns_ctrl->buf; 1697 int i, pos, len; 1698 int status = 0; 1699 1700 status = cadence_nand_select_target(chip); 1701 if (status) 1702 return status; 1703 1704 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1705 1706 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1707 status = cadence_nand_cdma_transfer(cdns_ctrl, 1708 cdns_chip->cs[chip->cur_cs], 1709 page, cdns_ctrl->buf, NULL, 1710 mtd->writesize 1711 + mtd->oobsize, 1712 0, DMA_FROM_DEVICE, false); 1713 1714 switch (status) { 1715 case STAT_ERASED: 1716 case STAT_OK: 1717 break; 1718 default: 1719 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1720 return -EIO; 1721 } 1722 1723 /* Arrange the buffer for syndrome payload/ecc layout. */ 1724 if (buf) { 1725 for (i = 0; i < ecc_steps; i++) { 1726 pos = i * (ecc_size + ecc_bytes); 1727 len = ecc_size; 1728 1729 if (pos >= writesize) 1730 pos += oob_skip; 1731 else if (pos + len > writesize) 1732 len = writesize - pos; 1733 1734 memcpy(buf, tmp_buf + pos, len); 1735 buf += len; 1736 if (len < ecc_size) { 1737 len = ecc_size - len; 1738 memcpy(buf, tmp_buf + writesize + oob_skip, 1739 len); 1740 buf += len; 1741 } 1742 } 1743 } 1744 1745 if (oob_required) { 1746 u8 *oob = chip->oob_poi; 1747 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1748 (cdns_chip->sector_size + chip->ecc.bytes) 1749 + cdns_chip->sector_size + oob_skip; 1750 1751 /* OOB free. */ 1752 memcpy(oob, tmp_buf + oob_data_offset, 1753 cdns_chip->avail_oob_size); 1754 1755 /* BBM at the beginning of the OOB area. */ 1756 memcpy(oob, tmp_buf + writesize, oob_skip); 1757 1758 oob += cdns_chip->avail_oob_size; 1759 1760 /* OOB ECC */ 1761 for (i = 0; i < ecc_steps; i++) { 1762 pos = ecc_size + i * (ecc_size + ecc_bytes); 1763 len = ecc_bytes; 1764 1765 if (i == (ecc_steps - 1)) 1766 pos += cdns_chip->avail_oob_size; 1767 1768 if (pos >= writesize) 1769 pos += oob_skip; 1770 else if (pos + len > writesize) 1771 len = writesize - pos; 1772 1773 memcpy(oob, tmp_buf + pos, len); 1774 oob += len; 1775 if (len < ecc_bytes) { 1776 len = ecc_bytes - len; 1777 memcpy(oob, tmp_buf + writesize + oob_skip, 1778 len); 1779 oob += len; 1780 } 1781 } 1782 } 1783 1784 return 0; 1785 } 1786 1787 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1788 int page) 1789 { 1790 return cadence_nand_read_page_raw(chip, NULL, true, page); 1791 } 1792 1793 static void cadence_nand_slave_dma_transfer_finished(void *data) 1794 { 1795 struct completion *finished = data; 1796 1797 complete(finished); 1798 } 1799 1800 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1801 void *buf, 1802 dma_addr_t dev_dma, size_t len, 1803 enum dma_data_direction dir) 1804 { 1805 DECLARE_COMPLETION_ONSTACK(finished); 1806 struct dma_chan *chan; 1807 struct dma_device *dma_dev; 1808 dma_addr_t src_dma, dst_dma, buf_dma; 1809 struct dma_async_tx_descriptor *tx; 1810 dma_cookie_t cookie; 1811 1812 chan = cdns_ctrl->dmac; 1813 dma_dev = chan->device; 1814 1815 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1816 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1817 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1818 goto err; 1819 } 1820 1821 if (dir == DMA_FROM_DEVICE) { 1822 src_dma = cdns_ctrl->io.dma; 1823 dst_dma = buf_dma; 1824 } else { 1825 src_dma = buf_dma; 1826 dst_dma = cdns_ctrl->io.dma; 1827 } 1828 1829 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1830 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1831 if (!tx) { 1832 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1833 goto err_unmap; 1834 } 1835 1836 tx->callback = cadence_nand_slave_dma_transfer_finished; 1837 tx->callback_param = &finished; 1838 1839 cookie = dmaengine_submit(tx); 1840 if (dma_submit_error(cookie)) { 1841 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1842 goto err_unmap; 1843 } 1844 1845 dma_async_issue_pending(cdns_ctrl->dmac); 1846 wait_for_completion(&finished); 1847 1848 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1849 1850 return 0; 1851 1852 err_unmap: 1853 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1854 1855 err: 1856 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1857 1858 return -EIO; 1859 } 1860 1861 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1862 u8 *buf, int len) 1863 { 1864 u8 thread_nr = 0; 1865 u32 sdma_size; 1866 int status; 1867 1868 /* Wait until slave DMA interface is ready to data transfer. */ 1869 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1870 if (status) 1871 return status; 1872 1873 if (!cdns_ctrl->caps1->has_dma) { 1874 int len_in_words = len >> 2; 1875 1876 /* read alingment data */ 1877 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1878 if (sdma_size > len) { 1879 /* read rest data from slave DMA interface if any */ 1880 ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1881 sdma_size / 4 - len_in_words); 1882 /* copy rest of data */ 1883 memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, 1884 len - (len_in_words << 2)); 1885 } 1886 return 0; 1887 } 1888 1889 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1890 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1891 cdns_ctrl->io.dma, 1892 len, DMA_FROM_DEVICE); 1893 if (status == 0) 1894 return 0; 1895 1896 dev_warn(cdns_ctrl->dev, 1897 "Slave DMA transfer failed. Try again using bounce buffer."); 1898 } 1899 1900 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1901 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1902 cdns_ctrl->io.dma, 1903 sdma_size, DMA_FROM_DEVICE); 1904 1905 if (status) { 1906 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1907 return status; 1908 } 1909 1910 memcpy(buf, cdns_ctrl->buf, len); 1911 1912 return 0; 1913 } 1914 1915 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1916 const u8 *buf, int len) 1917 { 1918 u8 thread_nr = 0; 1919 u32 sdma_size; 1920 int status; 1921 1922 /* Wait until slave DMA interface is ready to data transfer. */ 1923 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1924 if (status) 1925 return status; 1926 1927 if (!cdns_ctrl->caps1->has_dma) { 1928 int len_in_words = len >> 2; 1929 1930 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1931 if (sdma_size > len) { 1932 /* copy rest of data */ 1933 memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), 1934 len - (len_in_words << 2)); 1935 /* write all expected by nand controller data */ 1936 iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1937 sdma_size / 4 - len_in_words); 1938 } 1939 1940 return 0; 1941 } 1942 1943 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1944 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 1945 cdns_ctrl->io.dma, 1946 len, DMA_TO_DEVICE); 1947 if (status == 0) 1948 return 0; 1949 1950 dev_warn(cdns_ctrl->dev, 1951 "Slave DMA transfer failed. Try again using bounce buffer."); 1952 } 1953 1954 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1955 memcpy(cdns_ctrl->buf, buf, len); 1956 1957 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1958 cdns_ctrl->io.dma, 1959 sdma_size, DMA_TO_DEVICE); 1960 1961 if (status) 1962 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1963 1964 return status; 1965 } 1966 1967 static int cadence_nand_force_byte_access(struct nand_chip *chip, 1968 bool force_8bit) 1969 { 1970 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1971 int status; 1972 1973 /* 1974 * Callers of this function do not verify if the NAND is using a 16-bit 1975 * an 8-bit bus for normal operations, so we need to take care of that 1976 * here by leaving the configuration unchanged if the NAND does not have 1977 * the NAND_BUSWIDTH_16 flag set. 1978 */ 1979 if (!(chip->options & NAND_BUSWIDTH_16)) 1980 return 0; 1981 1982 status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 1983 1984 return status; 1985 } 1986 1987 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 1988 const struct nand_subop *subop) 1989 { 1990 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1991 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1992 const struct nand_op_instr *instr; 1993 unsigned int op_id = 0; 1994 u64 mini_ctrl_cmd = 0; 1995 int ret; 1996 1997 instr = &subop->instrs[op_id]; 1998 1999 if (instr->delay_ns > 0) 2000 mini_ctrl_cmd |= GCMD_LAY_TWB; 2001 2002 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2003 GCMD_LAY_INSTR_CMD); 2004 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2005 instr->ctx.cmd.opcode); 2006 2007 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2008 cdns_chip->cs[chip->cur_cs], 2009 mini_ctrl_cmd); 2010 if (ret) 2011 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2012 instr->ctx.cmd.opcode); 2013 2014 return ret; 2015 } 2016 2017 static int cadence_nand_cmd_address(struct nand_chip *chip, 2018 const struct nand_subop *subop) 2019 { 2020 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2021 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2022 const struct nand_op_instr *instr; 2023 unsigned int op_id = 0; 2024 u64 mini_ctrl_cmd = 0; 2025 unsigned int offset, naddrs; 2026 u64 address = 0; 2027 const u8 *addrs; 2028 int ret; 2029 int i; 2030 2031 instr = &subop->instrs[op_id]; 2032 2033 if (instr->delay_ns > 0) 2034 mini_ctrl_cmd |= GCMD_LAY_TWB; 2035 2036 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2037 GCMD_LAY_INSTR_ADDR); 2038 2039 offset = nand_subop_get_addr_start_off(subop, op_id); 2040 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2041 addrs = &instr->ctx.addr.addrs[offset]; 2042 2043 for (i = 0; i < naddrs; i++) 2044 address |= (u64)addrs[i] << (8 * i); 2045 2046 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2047 address); 2048 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2049 naddrs - 1); 2050 2051 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2052 cdns_chip->cs[chip->cur_cs], 2053 mini_ctrl_cmd); 2054 if (ret) 2055 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2056 2057 return ret; 2058 } 2059 2060 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2061 const struct nand_subop *subop) 2062 { 2063 unsigned int op_id; 2064 2065 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2066 int i; 2067 const struct nand_op_instr *instr = NULL; 2068 unsigned int offset, naddrs; 2069 const u8 *addrs; 2070 u32 page = 0; 2071 2072 instr = &subop->instrs[1]; 2073 offset = nand_subop_get_addr_start_off(subop, 1); 2074 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2075 addrs = &instr->ctx.addr.addrs[offset]; 2076 2077 for (i = 0; i < naddrs; i++) 2078 page |= (u32)addrs[i] << (8 * i); 2079 2080 return cadence_nand_erase(chip, page); 2081 } 2082 2083 /* 2084 * If it is not an erase operation then handle operation 2085 * by calling exec_op function. 2086 */ 2087 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2088 int ret; 2089 const struct nand_operation nand_op = { 2090 .cs = chip->cur_cs, 2091 .instrs = &subop->instrs[op_id], 2092 .ninstrs = 1}; 2093 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2094 if (ret) 2095 return ret; 2096 } 2097 2098 return 0; 2099 } 2100 2101 static int cadence_nand_cmd_data(struct nand_chip *chip, 2102 const struct nand_subop *subop) 2103 { 2104 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2105 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2106 const struct nand_op_instr *instr; 2107 unsigned int offset, op_id = 0; 2108 u64 mini_ctrl_cmd = 0; 2109 int len = 0; 2110 int ret; 2111 2112 instr = &subop->instrs[op_id]; 2113 2114 if (instr->delay_ns > 0) 2115 mini_ctrl_cmd |= GCMD_LAY_TWB; 2116 2117 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2118 GCMD_LAY_INSTR_DATA); 2119 2120 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2121 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2122 GCMD_DIR_WRITE); 2123 2124 len = nand_subop_get_data_len(subop, op_id); 2125 offset = nand_subop_get_data_start_off(subop, op_id); 2126 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2127 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2128 if (instr->ctx.data.force_8bit) { 2129 ret = cadence_nand_force_byte_access(chip, true); 2130 if (ret) { 2131 dev_err(cdns_ctrl->dev, 2132 "cannot change byte access generic data cmd failed\n"); 2133 return ret; 2134 } 2135 } 2136 2137 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2138 cdns_chip->cs[chip->cur_cs], 2139 mini_ctrl_cmd); 2140 if (ret) { 2141 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2142 return ret; 2143 } 2144 2145 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2146 void *buf = instr->ctx.data.buf.in + offset; 2147 2148 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2149 } else { 2150 const void *buf = instr->ctx.data.buf.out + offset; 2151 2152 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2153 } 2154 2155 if (ret) { 2156 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2157 return ret; 2158 } 2159 2160 if (instr->ctx.data.force_8bit) { 2161 ret = cadence_nand_force_byte_access(chip, false); 2162 if (ret) { 2163 dev_err(cdns_ctrl->dev, 2164 "cannot change byte access generic data cmd failed\n"); 2165 } 2166 } 2167 2168 return ret; 2169 } 2170 2171 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2172 const struct nand_subop *subop) 2173 { 2174 int status; 2175 unsigned int op_id = 0; 2176 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2177 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2178 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2179 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2180 2181 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2182 timeout_us, 2183 BIT(cdns_chip->cs[chip->cur_cs]), 2184 false); 2185 return status; 2186 } 2187 2188 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2189 NAND_OP_PARSER_PATTERN( 2190 cadence_nand_cmd_erase, 2191 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2192 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2193 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2194 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2195 NAND_OP_PARSER_PATTERN( 2196 cadence_nand_cmd_opcode, 2197 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2198 NAND_OP_PARSER_PATTERN( 2199 cadence_nand_cmd_address, 2200 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2201 NAND_OP_PARSER_PATTERN( 2202 cadence_nand_cmd_data, 2203 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2204 NAND_OP_PARSER_PATTERN( 2205 cadence_nand_cmd_data, 2206 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2207 NAND_OP_PARSER_PATTERN( 2208 cadence_nand_cmd_waitrdy, 2209 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2210 ); 2211 2212 static int cadence_nand_exec_op(struct nand_chip *chip, 2213 const struct nand_operation *op, 2214 bool check_only) 2215 { 2216 int status = cadence_nand_select_target(chip); 2217 2218 if (status) 2219 return status; 2220 2221 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2222 check_only); 2223 } 2224 2225 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2226 struct mtd_oob_region *oobregion) 2227 { 2228 struct nand_chip *chip = mtd_to_nand(mtd); 2229 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2230 2231 if (section) 2232 return -ERANGE; 2233 2234 oobregion->offset = cdns_chip->bbm_len; 2235 oobregion->length = cdns_chip->avail_oob_size 2236 - cdns_chip->bbm_len; 2237 2238 return 0; 2239 } 2240 2241 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2242 struct mtd_oob_region *oobregion) 2243 { 2244 struct nand_chip *chip = mtd_to_nand(mtd); 2245 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2246 2247 if (section) 2248 return -ERANGE; 2249 2250 oobregion->offset = cdns_chip->avail_oob_size; 2251 oobregion->length = chip->ecc.total; 2252 2253 return 0; 2254 } 2255 2256 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2257 .free = cadence_nand_ooblayout_free, 2258 .ecc = cadence_nand_ooblayout_ecc, 2259 }; 2260 2261 static int calc_cycl(u32 timing, u32 clock) 2262 { 2263 if (timing == 0 || clock == 0) 2264 return 0; 2265 2266 if ((timing % clock) > 0) 2267 return timing / clock; 2268 else 2269 return timing / clock - 1; 2270 } 2271 2272 /* Calculate max data valid window. */ 2273 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2274 u32 board_delay_skew_min, u32 ext_mode) 2275 { 2276 if (ext_mode == 0) 2277 clk_period /= 2; 2278 2279 return (trp_cnt + 1) * clk_period + trhoh_min + 2280 board_delay_skew_min; 2281 } 2282 2283 /* Calculate data valid window. */ 2284 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2285 u32 trea_max, u32 ext_mode) 2286 { 2287 if (ext_mode == 0) 2288 clk_period /= 2; 2289 2290 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2291 } 2292 2293 static int 2294 cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr, 2295 const struct nand_data_interface *conf) 2296 { 2297 const struct nand_sdr_timings *sdr; 2298 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2299 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2300 struct cadence_nand_timings *t = &cdns_chip->timings; 2301 u32 reg; 2302 u32 board_delay = cdns_ctrl->board_delay; 2303 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2304 cdns_ctrl->nf_clk_rate); 2305 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2306 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2307 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2308 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2309 u32 if_skew = cdns_ctrl->caps1->if_skew; 2310 u32 board_delay_skew_min = board_delay - if_skew; 2311 u32 board_delay_skew_max = board_delay + if_skew; 2312 u32 dqs_sampl_res, phony_dqs_mod; 2313 u32 tdvw, tdvw_min, tdvw_max; 2314 u32 ext_rd_mode, ext_wr_mode; 2315 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2316 u32 sampling_point; 2317 2318 sdr = nand_get_sdr_timings(conf); 2319 if (IS_ERR(sdr)) 2320 return PTR_ERR(sdr); 2321 2322 memset(t, 0, sizeof(*t)); 2323 /* Sampling point calculation. */ 2324 2325 if (cdns_ctrl->caps2.is_phy_type_dll) 2326 phony_dqs_mod = 2; 2327 else 2328 phony_dqs_mod = 1; 2329 2330 dqs_sampl_res = clk_period / phony_dqs_mod; 2331 2332 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2333 /* 2334 * The idea of those calculation is to get the optimum value 2335 * for tRP and tRH timings. If it is NOT possible to sample data 2336 * with optimal tRP/tRH settings, the parameters will be extended. 2337 * If clk_period is 50ns (the lowest value) this condition is met 2338 * for asynchronous timing modes 1, 2, 3, 4 and 5. 2339 * If clk_period is 20ns the condition is met only 2340 * for asynchronous timing mode 5. 2341 */ 2342 if (sdr->tRC_min <= clk_period && 2343 sdr->tRP_min <= (clk_period / 2) && 2344 sdr->tREH_min <= (clk_period / 2)) { 2345 /* Performance mode. */ 2346 ext_rd_mode = 0; 2347 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2348 sdr->tREA_max, ext_rd_mode); 2349 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2350 board_delay_skew_min, 2351 ext_rd_mode); 2352 /* 2353 * Check if data valid window and sampling point can be found 2354 * and is not on the edge (ie. we have hold margin). 2355 * If not extend the tRP timings. 2356 */ 2357 if (tdvw > 0) { 2358 if (tdvw_max <= tdvw_min || 2359 (tdvw_max % dqs_sampl_res) == 0) { 2360 /* 2361 * No valid sampling point so the RE pulse need 2362 * to be widen widening by half clock cycle. 2363 */ 2364 ext_rd_mode = 1; 2365 } 2366 } else { 2367 /* 2368 * There is no valid window 2369 * to be able to sample data the tRP need to be widen. 2370 * Very safe calculations are performed here. 2371 */ 2372 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2373 + dqs_sampl_res) / clk_period; 2374 ext_rd_mode = 1; 2375 } 2376 2377 } else { 2378 /* Extended read mode. */ 2379 u32 trh; 2380 2381 ext_rd_mode = 1; 2382 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2383 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2384 if (sdr->tREH_min >= trh) 2385 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2386 else 2387 trh_cnt = calc_cycl(trh, clk_period); 2388 2389 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2390 sdr->tREA_max, ext_rd_mode); 2391 /* 2392 * Check if data valid window and sampling point can be found 2393 * or if it is at the edge check if previous is valid 2394 * - if not extend the tRP timings. 2395 */ 2396 if (tdvw > 0) { 2397 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2398 sdr->tRHOH_min, 2399 board_delay_skew_min, 2400 ext_rd_mode); 2401 2402 if ((((tdvw_max / dqs_sampl_res) 2403 * dqs_sampl_res) <= tdvw_min) || 2404 (((tdvw_max % dqs_sampl_res) == 0) && 2405 (((tdvw_max / dqs_sampl_res - 1) 2406 * dqs_sampl_res) <= tdvw_min))) { 2407 /* 2408 * Data valid window width is lower than 2409 * sampling resolution and do not hit any 2410 * sampling point to be sure the sampling point 2411 * will be found the RE low pulse width will be 2412 * extended by one clock cycle. 2413 */ 2414 trp_cnt = trp_cnt + 1; 2415 } 2416 } else { 2417 /* 2418 * There is no valid window to be able to sample data. 2419 * The tRP need to be widen. 2420 * Very safe calculations are performed here. 2421 */ 2422 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2423 + dqs_sampl_res) / clk_period; 2424 } 2425 } 2426 2427 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2428 sdr->tRHOH_min, 2429 board_delay_skew_min, ext_rd_mode); 2430 2431 if (sdr->tWC_min <= clk_period && 2432 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2433 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2434 ext_wr_mode = 0; 2435 } else { 2436 u32 twh; 2437 2438 ext_wr_mode = 1; 2439 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2440 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2441 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2442 clk_period); 2443 2444 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2445 if (sdr->tWH_min >= twh) 2446 twh = sdr->tWH_min; 2447 2448 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2449 } 2450 2451 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2452 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2453 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2454 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2455 t->async_toggle_timings = reg; 2456 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2457 2458 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2459 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2460 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2461 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2462 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2463 2464 /* 2465 * If timing exceeds delay field in timing register 2466 * then use maximum value. 2467 */ 2468 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2469 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2470 else 2471 reg |= TIMINGS0_TCCS; 2472 2473 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2474 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2475 t->timings0 = reg; 2476 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2477 2478 /* The following is related to single signal so skew is not needed. */ 2479 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2480 trhz_cnt = trhz_cnt + 1; 2481 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2482 /* 2483 * Because of the two stage syncflop the value must be increased by 3 2484 * first value is related with sync, second value is related 2485 * with output if delay. 2486 */ 2487 twb_cnt = twb_cnt + 3 + 5; 2488 /* 2489 * The following is related to the we edge of the random data input 2490 * sequence so skew is not needed. 2491 */ 2492 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2493 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2494 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2495 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2496 t->timings1 = reg; 2497 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2498 2499 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2500 if (tfeat_cnt < twb_cnt) 2501 tfeat_cnt = twb_cnt; 2502 2503 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2504 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2505 2506 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2507 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2508 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2509 t->timings2 = reg; 2510 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2511 2512 if (cdns_ctrl->caps2.is_phy_type_dll) { 2513 reg = DLL_PHY_CTRL_DLL_RST_N; 2514 if (ext_wr_mode) 2515 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2516 if (ext_rd_mode) 2517 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2518 2519 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2520 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2521 t->dll_phy_ctrl = reg; 2522 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2523 } 2524 2525 /* Sampling point calculation. */ 2526 if ((tdvw_max % dqs_sampl_res) > 0) 2527 sampling_point = tdvw_max / dqs_sampl_res; 2528 else 2529 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2530 2531 if (sampling_point * dqs_sampl_res > tdvw_min) { 2532 dll_phy_dqs_timing = 2533 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2534 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2535 phony_dqs_timing = sampling_point / phony_dqs_mod; 2536 2537 if ((sampling_point % 2) > 0) { 2538 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2539 if ((tdvw_max % dqs_sampl_res) == 0) 2540 /* 2541 * Calculation for sampling point at the edge 2542 * of data and being odd number. 2543 */ 2544 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2545 / phony_dqs_mod - 1; 2546 2547 if (!cdns_ctrl->caps2.is_phy_type_dll) 2548 phony_dqs_timing--; 2549 2550 } else { 2551 phony_dqs_timing--; 2552 } 2553 rd_del_sel = phony_dqs_timing + 3; 2554 } else { 2555 dev_warn(cdns_ctrl->dev, 2556 "ERROR : cannot find valid sampling point\n"); 2557 } 2558 2559 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2560 if (cdns_ctrl->caps2.is_phy_type_dll) 2561 reg |= PHY_CTRL_SDR_DQS; 2562 t->phy_ctrl = reg; 2563 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2564 2565 if (cdns_ctrl->caps2.is_phy_type_dll) { 2566 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2567 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2568 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2569 dll_phy_dqs_timing); 2570 t->phy_dqs_timing = dll_phy_dqs_timing; 2571 2572 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2573 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2574 reg); 2575 t->phy_gate_lpbk_ctrl = reg; 2576 2577 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2578 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2579 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2580 } 2581 2582 return 0; 2583 } 2584 2585 int cadence_nand_attach_chip(struct nand_chip *chip) 2586 { 2587 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2588 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2589 u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2590 struct mtd_info *mtd = nand_to_mtd(chip); 2591 u32 max_oob_data_size; 2592 int ret; 2593 2594 if (chip->options & NAND_BUSWIDTH_16) { 2595 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2596 if (ret) 2597 return ret; 2598 } 2599 2600 chip->bbt_options |= NAND_BBT_USE_FLASH; 2601 chip->bbt_options |= NAND_BBT_NO_OOB; 2602 chip->ecc.mode = NAND_ECC_HW; 2603 2604 chip->options |= NAND_NO_SUBPAGE_WRITE; 2605 2606 cdns_chip->bbm_offs = chip->badblockpos; 2607 if (chip->options & NAND_BUSWIDTH_16) { 2608 cdns_chip->bbm_offs &= ~0x01; 2609 cdns_chip->bbm_len = 2; 2610 } else { 2611 cdns_chip->bbm_len = 1; 2612 } 2613 2614 ret = nand_ecc_choose_conf(chip, 2615 &cdns_ctrl->ecc_caps, 2616 mtd->oobsize - cdns_chip->bbm_len); 2617 if (ret) { 2618 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2619 return ret; 2620 } 2621 2622 dev_dbg(cdns_ctrl->dev, 2623 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2624 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2625 2626 /* Error correction configuration. */ 2627 cdns_chip->sector_size = chip->ecc.size; 2628 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2629 2630 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2631 2632 max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR; 2633 2634 if (cdns_chip->avail_oob_size > max_oob_data_size) 2635 cdns_chip->avail_oob_size = max_oob_data_size; 2636 2637 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2638 > mtd->oobsize) 2639 cdns_chip->avail_oob_size -= 4; 2640 2641 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2642 if (ret < 0) 2643 return -EINVAL; 2644 2645 cdns_chip->corr_str_idx = (u8)ret; 2646 2647 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2648 1000000, 2649 CTRL_STATUS_CTRL_BUSY, true)) 2650 return -ETIMEDOUT; 2651 2652 cadence_nand_set_ecc_strength(cdns_ctrl, 2653 cdns_chip->corr_str_idx); 2654 2655 cadence_nand_set_erase_detection(cdns_ctrl, true, 2656 chip->ecc.strength); 2657 2658 /* Override the default read operations. */ 2659 chip->ecc.read_page = cadence_nand_read_page; 2660 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2661 chip->ecc.write_page = cadence_nand_write_page; 2662 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2663 chip->ecc.read_oob = cadence_nand_read_oob; 2664 chip->ecc.write_oob = cadence_nand_write_oob; 2665 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2666 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2667 2668 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2669 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2670 2671 /* Is 32-bit DMA supported? */ 2672 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2673 if (ret) { 2674 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2675 return ret; 2676 } 2677 2678 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2679 2680 return 0; 2681 } 2682 2683 static const struct nand_controller_ops cadence_nand_controller_ops = { 2684 .attach_chip = cadence_nand_attach_chip, 2685 .exec_op = cadence_nand_exec_op, 2686 .setup_data_interface = cadence_nand_setup_data_interface, 2687 }; 2688 2689 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2690 struct device_node *np) 2691 { 2692 struct cdns_nand_chip *cdns_chip; 2693 struct mtd_info *mtd; 2694 struct nand_chip *chip; 2695 int nsels, ret, i; 2696 u32 cs; 2697 2698 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2699 if (nsels <= 0) { 2700 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2701 return -EINVAL; 2702 } 2703 2704 /* Allocate the nand chip structure. */ 2705 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2706 (nsels * sizeof(u8)), 2707 GFP_KERNEL); 2708 if (!cdns_chip) { 2709 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2710 return -ENOMEM; 2711 } 2712 2713 cdns_chip->nsels = nsels; 2714 2715 for (i = 0; i < nsels; i++) { 2716 /* Retrieve CS id. */ 2717 ret = of_property_read_u32_index(np, "reg", i, &cs); 2718 if (ret) { 2719 dev_err(cdns_ctrl->dev, 2720 "could not retrieve reg property: %d\n", 2721 ret); 2722 return ret; 2723 } 2724 2725 if (cs >= cdns_ctrl->caps2.max_banks) { 2726 dev_err(cdns_ctrl->dev, 2727 "invalid reg value: %u (max CS = %d)\n", 2728 cs, cdns_ctrl->caps2.max_banks); 2729 return -EINVAL; 2730 } 2731 2732 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2733 dev_err(cdns_ctrl->dev, 2734 "CS %d already assigned\n", cs); 2735 return -EINVAL; 2736 } 2737 2738 cdns_chip->cs[i] = cs; 2739 } 2740 2741 chip = &cdns_chip->chip; 2742 chip->controller = &cdns_ctrl->controller; 2743 nand_set_flash_node(chip, np); 2744 2745 mtd = nand_to_mtd(chip); 2746 mtd->dev.parent = cdns_ctrl->dev; 2747 2748 /* 2749 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2750 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2751 */ 2752 chip->ecc.mode = NAND_ECC_HW; 2753 2754 ret = nand_scan(chip, cdns_chip->nsels); 2755 if (ret) { 2756 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2757 return ret; 2758 } 2759 2760 ret = mtd_device_register(mtd, NULL, 0); 2761 if (ret) { 2762 dev_err(cdns_ctrl->dev, 2763 "failed to register mtd device: %d\n", ret); 2764 nand_cleanup(chip); 2765 return ret; 2766 } 2767 2768 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2769 2770 return 0; 2771 } 2772 2773 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2774 { 2775 struct cdns_nand_chip *entry, *temp; 2776 2777 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2778 nand_release(&entry->chip); 2779 list_del(&entry->node); 2780 } 2781 } 2782 2783 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2784 { 2785 struct device_node *np = cdns_ctrl->dev->of_node; 2786 struct device_node *nand_np; 2787 int max_cs = cdns_ctrl->caps2.max_banks; 2788 int nchips, ret; 2789 2790 nchips = of_get_child_count(np); 2791 2792 if (nchips > max_cs) { 2793 dev_err(cdns_ctrl->dev, 2794 "too many NAND chips: %d (max = %d CS)\n", 2795 nchips, max_cs); 2796 return -EINVAL; 2797 } 2798 2799 for_each_child_of_node(np, nand_np) { 2800 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2801 if (ret) { 2802 of_node_put(nand_np); 2803 cadence_nand_chips_cleanup(cdns_ctrl); 2804 return ret; 2805 } 2806 } 2807 2808 return 0; 2809 } 2810 2811 static void 2812 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2813 { 2814 /* Disable interrupts. */ 2815 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2816 } 2817 2818 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2819 { 2820 dma_cap_mask_t mask; 2821 int ret; 2822 2823 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2824 sizeof(*cdns_ctrl->cdma_desc), 2825 &cdns_ctrl->dma_cdma_desc, 2826 GFP_KERNEL); 2827 if (!cdns_ctrl->dma_cdma_desc) 2828 return -ENOMEM; 2829 2830 cdns_ctrl->buf_size = SZ_16K; 2831 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2832 if (!cdns_ctrl->buf) { 2833 ret = -ENOMEM; 2834 goto free_buf_desc; 2835 } 2836 2837 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2838 IRQF_SHARED, "cadence-nand-controller", 2839 cdns_ctrl)) { 2840 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2841 ret = -ENODEV; 2842 goto free_buf; 2843 } 2844 2845 spin_lock_init(&cdns_ctrl->irq_lock); 2846 init_completion(&cdns_ctrl->complete); 2847 2848 ret = cadence_nand_hw_init(cdns_ctrl); 2849 if (ret) 2850 goto disable_irq; 2851 2852 dma_cap_zero(mask); 2853 dma_cap_set(DMA_MEMCPY, mask); 2854 2855 if (cdns_ctrl->caps1->has_dma) { 2856 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2857 if (!cdns_ctrl->dmac) { 2858 dev_err(cdns_ctrl->dev, 2859 "Unable to get a DMA channel\n"); 2860 ret = -EBUSY; 2861 goto disable_irq; 2862 } 2863 } 2864 2865 nand_controller_init(&cdns_ctrl->controller); 2866 INIT_LIST_HEAD(&cdns_ctrl->chips); 2867 2868 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2869 cdns_ctrl->curr_corr_str_idx = 0xFF; 2870 2871 ret = cadence_nand_chips_init(cdns_ctrl); 2872 if (ret) { 2873 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2874 ret); 2875 goto dma_release_chnl; 2876 } 2877 2878 kfree(cdns_ctrl->buf); 2879 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2880 if (!cdns_ctrl->buf) { 2881 ret = -ENOMEM; 2882 goto dma_release_chnl; 2883 } 2884 2885 return 0; 2886 2887 dma_release_chnl: 2888 if (cdns_ctrl->dmac) 2889 dma_release_channel(cdns_ctrl->dmac); 2890 2891 disable_irq: 2892 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2893 2894 free_buf: 2895 kfree(cdns_ctrl->buf); 2896 2897 free_buf_desc: 2898 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2899 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2900 2901 return ret; 2902 } 2903 2904 /* Driver exit point. */ 2905 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2906 { 2907 cadence_nand_chips_cleanup(cdns_ctrl); 2908 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2909 kfree(cdns_ctrl->buf); 2910 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2911 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2912 2913 if (cdns_ctrl->dmac) 2914 dma_release_channel(cdns_ctrl->dmac); 2915 } 2916 2917 struct cadence_nand_dt { 2918 struct cdns_nand_ctrl cdns_ctrl; 2919 struct clk *clk; 2920 }; 2921 2922 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2923 .if_skew = 0, 2924 .has_dma = 1, 2925 }; 2926 2927 static const struct of_device_id cadence_nand_dt_ids[] = { 2928 { 2929 .compatible = "cdns,hp-nfc", 2930 .data = &cadence_nand_default 2931 }, {} 2932 }; 2933 2934 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2935 2936 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2937 { 2938 struct resource *res; 2939 struct cadence_nand_dt *dt; 2940 struct cdns_nand_ctrl *cdns_ctrl; 2941 int ret; 2942 const struct of_device_id *of_id; 2943 const struct cadence_nand_dt_devdata *devdata; 2944 u32 val; 2945 2946 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); 2947 if (of_id) { 2948 ofdev->id_entry = of_id->data; 2949 devdata = of_id->data; 2950 } else { 2951 pr_err("Failed to find the right device id.\n"); 2952 return -ENOMEM; 2953 } 2954 2955 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 2956 if (!dt) 2957 return -ENOMEM; 2958 2959 cdns_ctrl = &dt->cdns_ctrl; 2960 cdns_ctrl->caps1 = devdata; 2961 2962 cdns_ctrl->dev = &ofdev->dev; 2963 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 2964 if (cdns_ctrl->irq < 0) 2965 return cdns_ctrl->irq; 2966 2967 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 2968 2969 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 2970 if (IS_ERR(cdns_ctrl->reg)) { 2971 dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n"); 2972 return PTR_ERR(cdns_ctrl->reg); 2973 } 2974 2975 res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); 2976 cdns_ctrl->io.dma = res->start; 2977 cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); 2978 if (IS_ERR(cdns_ctrl->io.virt)) { 2979 dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n"); 2980 return PTR_ERR(cdns_ctrl->io.virt); 2981 } 2982 2983 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 2984 if (IS_ERR(dt->clk)) 2985 return PTR_ERR(dt->clk); 2986 2987 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 2988 2989 ret = of_property_read_u32(ofdev->dev.of_node, 2990 "cdns,board-delay-ps", &val); 2991 if (ret) { 2992 val = 4830; 2993 dev_info(cdns_ctrl->dev, 2994 "missing cdns,board-delay-ps property, %d was set\n", 2995 val); 2996 } 2997 cdns_ctrl->board_delay = val; 2998 2999 ret = cadence_nand_init(cdns_ctrl); 3000 if (ret) 3001 return ret; 3002 3003 platform_set_drvdata(ofdev, dt); 3004 return 0; 3005 } 3006 3007 static int cadence_nand_dt_remove(struct platform_device *ofdev) 3008 { 3009 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3010 3011 cadence_nand_remove(&dt->cdns_ctrl); 3012 3013 return 0; 3014 } 3015 3016 static struct platform_driver cadence_nand_dt_driver = { 3017 .probe = cadence_nand_dt_probe, 3018 .remove = cadence_nand_dt_remove, 3019 .driver = { 3020 .name = "cadence-nand-controller", 3021 .of_match_table = cadence_nand_dt_ids, 3022 }, 3023 }; 3024 3025 module_platform_driver(cadence_nand_dt_driver); 3026 3027 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3028 MODULE_LICENSE("GPL v2"); 3029 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3030 3031