1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_device.h> 19 #include <linux/iopoll.h> 20 21 /* 22 * HPNFC can work in 3 modes: 23 * - PIO - can work in master or slave DMA 24 * - CDMA - needs Master DMA for accessing command descriptors. 25 * - Generic mode - can use only slave DMA. 26 * CDMA and PIO modes can be used to execute only base commands. 27 * Generic mode can be used to execute any command 28 * on NAND flash memory. Driver uses CDMA mode for 29 * block erasing, page reading, page programing. 30 * Generic mode is used for executing rest of commands. 31 */ 32 33 #define MAX_ADDRESS_CYC 6 34 #define MAX_ERASE_ADDRESS_CYC 3 35 #define MAX_DATA_SIZE 0xFFFC 36 #define DMA_DATA_SIZE_ALIGN 8 37 38 /* Register definition. */ 39 /* 40 * Command register 0. 41 * Writing data to this register will initiate a new transaction 42 * of the NF controller. 43 */ 44 #define CMD_REG0 0x0000 45 /* Command type field mask. */ 46 #define CMD_REG0_CT GENMASK(31, 30) 47 /* Command type CDMA. */ 48 #define CMD_REG0_CT_CDMA 0uL 49 /* Command type generic. */ 50 #define CMD_REG0_CT_GEN 3uL 51 /* Command thread number field mask. */ 52 #define CMD_REG0_TN GENMASK(27, 24) 53 54 /* Command register 2. */ 55 #define CMD_REG2 0x0008 56 /* Command register 3. */ 57 #define CMD_REG3 0x000C 58 /* Pointer register to select which thread status will be selected. */ 59 #define CMD_STATUS_PTR 0x0010 60 /* Command status register for selected thread. */ 61 #define CMD_STATUS 0x0014 62 63 /* Interrupt status register. */ 64 #define INTR_STATUS 0x0110 65 #define INTR_STATUS_SDMA_ERR BIT(22) 66 #define INTR_STATUS_SDMA_TRIGG BIT(21) 67 #define INTR_STATUS_UNSUPP_CMD BIT(19) 68 #define INTR_STATUS_DDMA_TERR BIT(18) 69 #define INTR_STATUS_CDMA_TERR BIT(17) 70 #define INTR_STATUS_CDMA_IDL BIT(16) 71 72 /* Interrupt enable register. */ 73 #define INTR_ENABLE 0x0114 74 #define INTR_ENABLE_INTR_EN BIT(31) 75 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 76 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 77 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 78 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 79 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 80 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 81 82 /* Controller internal state. */ 83 #define CTRL_STATUS 0x0118 84 #define CTRL_STATUS_INIT_COMP BIT(9) 85 #define CTRL_STATUS_CTRL_BUSY BIT(8) 86 87 /* Command Engine threads state. */ 88 #define TRD_STATUS 0x0120 89 90 /* Command Engine interrupt thread error status. */ 91 #define TRD_ERR_INT_STATUS 0x0128 92 /* Command Engine interrupt thread error enable. */ 93 #define TRD_ERR_INT_STATUS_EN 0x0130 94 /* Command Engine interrupt thread complete status. */ 95 #define TRD_COMP_INT_STATUS 0x0138 96 97 /* 98 * Transfer config 0 register. 99 * Configures data transfer parameters. 100 */ 101 #define TRAN_CFG_0 0x0400 102 /* Offset value from the beginning of the page. */ 103 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 104 /* Numbers of sectors to transfer within singlNF device's page. */ 105 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 106 107 /* 108 * Transfer config 1 register. 109 * Configures data transfer parameters. 110 */ 111 #define TRAN_CFG_1 0x0404 112 /* Size of last data sector. */ 113 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 114 /* Size of not-last data sector. */ 115 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 116 117 /* ECC engine configuration register 0. */ 118 #define ECC_CONFIG_0 0x0428 119 /* Correction strength. */ 120 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 121 /* Enable erased pages detection mechanism. */ 122 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 123 /* Enable controller ECC check bits generation and correction. */ 124 #define ECC_CONFIG_0_ECC_EN BIT(0) 125 126 /* ECC engine configuration register 1. */ 127 #define ECC_CONFIG_1 0x042C 128 129 /* Multiplane settings register. */ 130 #define MULTIPLANE_CFG 0x0434 131 /* Cache operation settings. */ 132 #define CACHE_CFG 0x0438 133 134 /* DMA settings register. */ 135 #define DMA_SETINGS 0x043C 136 /* Enable SDMA error report on access unprepared slave DMA interface. */ 137 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 138 139 /* Transferred data block size for the slave DMA module. */ 140 #define SDMA_SIZE 0x0440 141 142 /* Thread number associated with transferred data block 143 * for the slave DMA module. 144 */ 145 #define SDMA_TRD_NUM 0x0444 146 /* Thread number mask. */ 147 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 148 149 #define CONTROL_DATA_CTRL 0x0494 150 /* Thread number mask. */ 151 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 152 153 #define CTRL_VERSION 0x800 154 #define CTRL_VERSION_REV GENMASK(7, 0) 155 156 /* Available hardware features of the controller. */ 157 #define CTRL_FEATURES 0x804 158 /* Support for NV-DDR2/3 work mode. */ 159 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 160 /* Support for NV-DDR work mode. */ 161 #define CTRL_FEATURES_NVDDR BIT(27) 162 /* Support for asynchronous work mode. */ 163 #define CTRL_FEATURES_ASYNC BIT(26) 164 /* Support for asynchronous work mode. */ 165 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 166 /* Slave and Master DMA data width. */ 167 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 168 /* Availability of Control Data feature.*/ 169 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 170 171 /* BCH Engine identification register 0 - correction strengths. */ 172 #define BCH_CFG_0 0x838 173 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 174 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 175 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 176 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 177 178 /* BCH Engine identification register 1 - correction strengths. */ 179 #define BCH_CFG_1 0x83C 180 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 181 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 182 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 183 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 184 185 /* BCH Engine identification register 2 - sector sizes. */ 186 #define BCH_CFG_2 0x840 187 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 188 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 189 190 /* BCH Engine identification register 3. */ 191 #define BCH_CFG_3 0x844 192 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) 193 194 /* Ready/Busy# line status. */ 195 #define RBN_SETINGS 0x1004 196 197 /* Common settings. */ 198 #define COMMON_SET 0x1008 199 /* 16 bit device connected to the NAND Flash interface. */ 200 #define COMMON_SET_DEVICE_16BIT BIT(8) 201 202 /* Skip_bytes registers. */ 203 #define SKIP_BYTES_CONF 0x100C 204 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 205 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 206 207 #define SKIP_BYTES_OFFSET 0x1010 208 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 209 210 /* Timings configuration. */ 211 #define ASYNC_TOGGLE_TIMINGS 0x101c 212 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 213 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 214 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 215 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 216 217 #define TIMINGS0 0x1024 218 #define TIMINGS0_TADL GENMASK(31, 24) 219 #define TIMINGS0_TCCS GENMASK(23, 16) 220 #define TIMINGS0_TWHR GENMASK(15, 8) 221 #define TIMINGS0_TRHW GENMASK(7, 0) 222 223 #define TIMINGS1 0x1028 224 #define TIMINGS1_TRHZ GENMASK(31, 24) 225 #define TIMINGS1_TWB GENMASK(23, 16) 226 #define TIMINGS1_TVDLY GENMASK(7, 0) 227 228 #define TIMINGS2 0x102c 229 #define TIMINGS2_TFEAT GENMASK(25, 16) 230 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 231 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 232 233 /* Configuration of the resynchronization of slave DLL of PHY. */ 234 #define DLL_PHY_CTRL 0x1034 235 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 236 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 237 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 238 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 239 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 240 241 /* Register controlling DQ related timing. */ 242 #define PHY_DQ_TIMING 0x2000 243 /* Register controlling DSQ related timing. */ 244 #define PHY_DQS_TIMING 0x2004 245 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 246 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 247 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 248 249 /* Register controlling the gate and loopback control related timing. */ 250 #define PHY_GATE_LPBK_CTRL 0x2008 251 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 252 253 /* Register holds the control for the master DLL logic. */ 254 #define PHY_DLL_MASTER_CTRL 0x200C 255 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 256 257 /* Register holds the control for the slave DLL logic. */ 258 #define PHY_DLL_SLAVE_CTRL 0x2010 259 260 /* This register handles the global control settings for the PHY. */ 261 #define PHY_CTRL 0x2080 262 #define PHY_CTRL_SDR_DQS BIT(14) 263 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 264 265 /* 266 * This register handles the global control settings 267 * for the termination selects for reads. 268 */ 269 #define PHY_TSEL 0x2084 270 271 /* Generic command layout. */ 272 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 273 /* 274 * This bit informs the minicotroller if it has to wait for tWB 275 * after sending the last CMD/ADDR/DATA in the sequence. 276 */ 277 #define GCMD_LAY_TWB BIT_ULL(6) 278 /* Type of generic instruction. */ 279 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 280 281 /* Generic CMD sequence type. */ 282 #define GCMD_LAY_INSTR_CMD 0 283 /* Generic ADDR sequence type. */ 284 #define GCMD_LAY_INSTR_ADDR 1 285 /* Generic data transfer sequence type. */ 286 #define GCMD_LAY_INSTR_DATA 2 287 288 /* Input part of generic command type of input is command. */ 289 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 290 291 /* Generic command address sequence - address fields. */ 292 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 293 /* Generic command address sequence - address size. */ 294 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 295 296 /* Transfer direction field of generic command data sequence. */ 297 #define GCMD_DIR BIT_ULL(11) 298 /* Read transfer direction of generic command data sequence. */ 299 #define GCMD_DIR_READ 0 300 /* Write transfer direction of generic command data sequence. */ 301 #define GCMD_DIR_WRITE 1 302 303 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 304 #define GCMD_ECC_EN BIT_ULL(12) 305 /* Generic command data sequence - sector size. */ 306 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 307 /* Generic command data sequence - sector count. */ 308 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 309 /* Generic command data sequence - last sector size. */ 310 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 311 312 /* CDMA descriptor fields. */ 313 /* Erase command type of CDMA descriptor. */ 314 #define CDMA_CT_ERASE 0x1000 315 /* Program page command type of CDMA descriptor. */ 316 #define CDMA_CT_WR 0x2100 317 /* Read page command type of CDMA descriptor. */ 318 #define CDMA_CT_RD 0x2200 319 320 /* Flash pointer memory shift. */ 321 #define CDMA_CFPTR_MEM_SHIFT 24 322 /* Flash pointer memory mask. */ 323 #define CDMA_CFPTR_MEM GENMASK(26, 24) 324 325 /* 326 * Command DMA descriptor flags. If set causes issue interrupt after 327 * the completion of descriptor processing. 328 */ 329 #define CDMA_CF_INT BIT(8) 330 /* 331 * Command DMA descriptor flags - the next descriptor 332 * address field is valid and descriptor processing should continue. 333 */ 334 #define CDMA_CF_CONT BIT(9) 335 /* DMA master flag of command DMA descriptor. */ 336 #define CDMA_CF_DMA_MASTER BIT(10) 337 338 /* Operation complete status of command descriptor. */ 339 #define CDMA_CS_COMP BIT(15) 340 /* Operation complete status of command descriptor. */ 341 /* Command descriptor status - operation fail. */ 342 #define CDMA_CS_FAIL BIT(14) 343 /* Command descriptor status - page erased. */ 344 #define CDMA_CS_ERP BIT(11) 345 /* Command descriptor status - timeout occurred. */ 346 #define CDMA_CS_TOUT BIT(10) 347 /* 348 * Maximum amount of correction applied to one ECC sector. 349 * It is part of command descriptor status. 350 */ 351 #define CDMA_CS_MAXERR GENMASK(9, 2) 352 /* Command descriptor status - uncorrectable ECC error. */ 353 #define CDMA_CS_UNCE BIT(1) 354 /* Command descriptor status - descriptor error. */ 355 #define CDMA_CS_ERR BIT(0) 356 357 /* Status of operation - OK. */ 358 #define STAT_OK 0 359 /* Status of operation - FAIL. */ 360 #define STAT_FAIL 2 361 /* Status of operation - uncorrectable ECC error. */ 362 #define STAT_ECC_UNCORR 3 363 /* Status of operation - page erased. */ 364 #define STAT_ERASED 5 365 /* Status of operation - correctable ECC error. */ 366 #define STAT_ECC_CORR 6 367 /* Status of operation - unsuspected state. */ 368 #define STAT_UNKNOWN 7 369 /* Status of operation - operation is not completed yet. */ 370 #define STAT_BUSY 0xFF 371 372 #define BCH_MAX_NUM_CORR_CAPS 8 373 #define BCH_MAX_NUM_SECTOR_SIZES 2 374 375 struct cadence_nand_timings { 376 u32 async_toggle_timings; 377 u32 timings0; 378 u32 timings1; 379 u32 timings2; 380 u32 dll_phy_ctrl; 381 u32 phy_ctrl; 382 u32 phy_dqs_timing; 383 u32 phy_gate_lpbk_ctrl; 384 }; 385 386 /* Command DMA descriptor. */ 387 struct cadence_nand_cdma_desc { 388 /* Next descriptor address. */ 389 u64 next_pointer; 390 391 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 392 u32 flash_pointer; 393 /*field appears in HPNFC version 13*/ 394 u16 bank; 395 u16 rsvd0; 396 397 /* Operation the controller needs to perform. */ 398 u16 command_type; 399 u16 rsvd1; 400 /* Flags for operation of this command. */ 401 u16 command_flags; 402 u16 rsvd2; 403 404 /* System/host memory address required for data DMA commands. */ 405 u64 memory_pointer; 406 407 /* Status of operation. */ 408 u32 status; 409 u32 rsvd3; 410 411 /* Address pointer to sync buffer location. */ 412 u64 sync_flag_pointer; 413 414 /* Controls the buffer sync mechanism. */ 415 u32 sync_arguments; 416 u32 rsvd4; 417 418 /* Control data pointer. */ 419 u64 ctrl_data_ptr; 420 }; 421 422 /* Interrupt status. */ 423 struct cadence_nand_irq_status { 424 /* Thread operation complete status. */ 425 u32 trd_status; 426 /* Thread operation error. */ 427 u32 trd_error; 428 /* Controller status. */ 429 u32 status; 430 }; 431 432 /* Cadence NAND flash controller capabilities get from driver data. */ 433 struct cadence_nand_dt_devdata { 434 /* Skew value of the output signals of the NAND Flash interface. */ 435 u32 if_skew; 436 /* It informs if slave DMA interface is connected to DMA engine. */ 437 unsigned int has_dma:1; 438 }; 439 440 /* Cadence NAND flash controller capabilities read from registers. */ 441 struct cdns_nand_caps { 442 /* Maximum number of banks supported by hardware. */ 443 u8 max_banks; 444 /* Slave and Master DMA data width in bytes (4 or 8). */ 445 u8 data_dma_width; 446 /* Control Data feature supported. */ 447 bool data_control_supp; 448 /* Is PHY type DLL. */ 449 bool is_phy_type_dll; 450 }; 451 452 struct cdns_nand_ctrl { 453 struct device *dev; 454 struct nand_controller controller; 455 struct cadence_nand_cdma_desc *cdma_desc; 456 /* IP capability. */ 457 const struct cadence_nand_dt_devdata *caps1; 458 struct cdns_nand_caps caps2; 459 u8 ctrl_rev; 460 dma_addr_t dma_cdma_desc; 461 u8 *buf; 462 u32 buf_size; 463 u8 curr_corr_str_idx; 464 465 /* Register interface. */ 466 void __iomem *reg; 467 468 struct { 469 void __iomem *virt; 470 dma_addr_t dma; 471 } io; 472 473 int irq; 474 /* Interrupts that have happened. */ 475 struct cadence_nand_irq_status irq_status; 476 /* Interrupts we are waiting for. */ 477 struct cadence_nand_irq_status irq_mask; 478 struct completion complete; 479 /* Protect irq_mask and irq_status. */ 480 spinlock_t irq_lock; 481 482 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 483 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 484 struct nand_ecc_caps ecc_caps; 485 486 int curr_trans_type; 487 488 struct dma_chan *dmac; 489 490 u32 nf_clk_rate; 491 /* 492 * Estimated Board delay. The value includes the total 493 * round trip delay for the signals and is used for deciding on values 494 * associated with data read capture. 495 */ 496 u32 board_delay; 497 498 struct nand_chip *selected_chip; 499 500 unsigned long assigned_cs; 501 struct list_head chips; 502 u8 bch_metadata_size; 503 }; 504 505 struct cdns_nand_chip { 506 struct cadence_nand_timings timings; 507 struct nand_chip chip; 508 u8 nsels; 509 struct list_head node; 510 511 /* 512 * part of oob area of NAND flash memory page. 513 * This part is available for user to read or write. 514 */ 515 u32 avail_oob_size; 516 517 /* Sector size. There are few sectors per mtd->writesize */ 518 u32 sector_size; 519 u32 sector_count; 520 521 /* Offset of BBM. */ 522 u8 bbm_offs; 523 /* Number of bytes reserved for BBM. */ 524 u8 bbm_len; 525 /* ECC strength index. */ 526 u8 corr_str_idx; 527 528 u8 cs[]; 529 }; 530 531 struct ecc_info { 532 int (*calc_ecc_bytes)(int step_size, int strength); 533 int max_step_size; 534 }; 535 536 static inline struct 537 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 538 { 539 return container_of(chip, struct cdns_nand_chip, chip); 540 } 541 542 static inline struct 543 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 544 { 545 return container_of(controller, struct cdns_nand_ctrl, controller); 546 } 547 548 static bool 549 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 550 u32 buf_len) 551 { 552 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 553 554 return buf && virt_addr_valid(buf) && 555 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 556 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 557 } 558 559 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 560 u32 reg_offset, u32 timeout_us, 561 u32 mask, bool is_clear) 562 { 563 u32 val; 564 int ret; 565 566 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 567 val, !(val & mask) == is_clear, 568 10, timeout_us); 569 570 if (ret < 0) { 571 dev_err(cdns_ctrl->dev, 572 "Timeout while waiting for reg %x with mask %x is clear %d\n", 573 reg_offset, mask, is_clear); 574 } 575 576 return ret; 577 } 578 579 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 580 bool enable) 581 { 582 u32 reg; 583 584 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 585 1000000, 586 CTRL_STATUS_CTRL_BUSY, true)) 587 return -ETIMEDOUT; 588 589 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 590 591 if (enable) 592 reg |= ECC_CONFIG_0_ECC_EN; 593 else 594 reg &= ~ECC_CONFIG_0_ECC_EN; 595 596 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 597 598 return 0; 599 } 600 601 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 602 u8 corr_str_idx) 603 { 604 u32 reg; 605 606 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 607 return; 608 609 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 610 reg &= ~ECC_CONFIG_0_CORR_STR; 611 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 612 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 613 614 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 615 } 616 617 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 618 u8 strength) 619 { 620 int i, corr_str_idx = -1; 621 622 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 623 if (cdns_ctrl->ecc_strengths[i] == strength) { 624 corr_str_idx = i; 625 break; 626 } 627 } 628 629 return corr_str_idx; 630 } 631 632 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 633 u16 marker_value) 634 { 635 u32 reg; 636 637 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 638 1000000, 639 CTRL_STATUS_CTRL_BUSY, true)) 640 return -ETIMEDOUT; 641 642 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 643 reg &= ~SKIP_BYTES_MARKER_VALUE; 644 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 645 marker_value); 646 647 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 648 649 return 0; 650 } 651 652 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 653 u8 num_of_bytes, 654 u32 offset_value, 655 int enable) 656 { 657 u32 reg, skip_bytes_offset; 658 659 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 660 1000000, 661 CTRL_STATUS_CTRL_BUSY, true)) 662 return -ETIMEDOUT; 663 664 if (!enable) { 665 num_of_bytes = 0; 666 offset_value = 0; 667 } 668 669 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 670 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 671 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 672 num_of_bytes); 673 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 674 offset_value); 675 676 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 677 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 678 679 return 0; 680 } 681 682 /* Functions enables/disables hardware detection of erased data */ 683 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 684 bool enable, 685 u8 bitflips_threshold) 686 { 687 u32 reg; 688 689 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 690 691 if (enable) 692 reg |= ECC_CONFIG_0_ERASE_DET_EN; 693 else 694 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 695 696 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 697 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 698 } 699 700 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 701 bool bit_bus16) 702 { 703 u32 reg; 704 705 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 706 1000000, 707 CTRL_STATUS_CTRL_BUSY, true)) 708 return -ETIMEDOUT; 709 710 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 711 712 if (!bit_bus16) 713 reg &= ~COMMON_SET_DEVICE_16BIT; 714 else 715 reg |= COMMON_SET_DEVICE_16BIT; 716 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 717 718 return 0; 719 } 720 721 static void 722 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 723 struct cadence_nand_irq_status *irq_status) 724 { 725 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 726 writel_relaxed(irq_status->trd_status, 727 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 728 writel_relaxed(irq_status->trd_error, 729 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 730 } 731 732 static void 733 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 734 struct cadence_nand_irq_status *irq_status) 735 { 736 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 737 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 738 + TRD_COMP_INT_STATUS); 739 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 740 + TRD_ERR_INT_STATUS); 741 } 742 743 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 744 struct cadence_nand_irq_status *irq_status) 745 { 746 cadence_nand_read_int_status(cdns_ctrl, irq_status); 747 748 return irq_status->status || irq_status->trd_status || 749 irq_status->trd_error; 750 } 751 752 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 753 { 754 unsigned long flags; 755 756 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 757 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 758 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 759 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 760 } 761 762 /* 763 * This is the interrupt service routine. It handles all interrupts 764 * sent to this device. 765 */ 766 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 767 { 768 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 769 struct cadence_nand_irq_status irq_status; 770 irqreturn_t result = IRQ_NONE; 771 772 spin_lock(&cdns_ctrl->irq_lock); 773 774 if (irq_detected(cdns_ctrl, &irq_status)) { 775 /* Handle interrupt. */ 776 /* First acknowledge it. */ 777 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 778 /* Status in the device context for someone to read. */ 779 cdns_ctrl->irq_status.status |= irq_status.status; 780 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 781 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 782 /* Notify anyone who cares that it happened. */ 783 complete(&cdns_ctrl->complete); 784 /* Tell the OS that we've handled this. */ 785 result = IRQ_HANDLED; 786 } 787 spin_unlock(&cdns_ctrl->irq_lock); 788 789 return result; 790 } 791 792 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 793 struct cadence_nand_irq_status *irq_mask) 794 { 795 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 796 cdns_ctrl->reg + INTR_ENABLE); 797 798 writel_relaxed(irq_mask->trd_error, 799 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 800 } 801 802 static void 803 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 804 struct cadence_nand_irq_status *irq_mask, 805 struct cadence_nand_irq_status *irq_status) 806 { 807 unsigned long timeout = msecs_to_jiffies(10000); 808 unsigned long time_left; 809 810 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 811 timeout); 812 813 *irq_status = cdns_ctrl->irq_status; 814 if (time_left == 0) { 815 /* Timeout error. */ 816 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 817 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 818 irq_status->status, irq_mask->status); 819 dev_err(cdns_ctrl->dev, 820 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 821 irq_status->trd_status, irq_mask->trd_status); 822 dev_err(cdns_ctrl->dev, 823 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 824 irq_status->trd_error, irq_mask->trd_error); 825 } 826 } 827 828 /* Execute generic command on NAND controller. */ 829 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 830 u8 chip_nr, 831 u64 mini_ctrl_cmd) 832 { 833 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 834 835 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 836 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 837 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 838 839 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 840 1000000, 841 CTRL_STATUS_CTRL_BUSY, true)) 842 return -ETIMEDOUT; 843 844 cadence_nand_reset_irq(cdns_ctrl); 845 846 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 847 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 848 849 /* Select generic command. */ 850 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 851 /* Thread number. */ 852 reg |= FIELD_PREP(CMD_REG0_TN, 0); 853 854 /* Issue command. */ 855 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 856 857 return 0; 858 } 859 860 /* Wait for data on slave DMA interface. */ 861 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 862 u8 *out_sdma_trd, 863 u32 *out_sdma_size) 864 { 865 struct cadence_nand_irq_status irq_mask, irq_status; 866 867 irq_mask.trd_status = 0; 868 irq_mask.trd_error = 0; 869 irq_mask.status = INTR_STATUS_SDMA_TRIGG 870 | INTR_STATUS_SDMA_ERR 871 | INTR_STATUS_UNSUPP_CMD; 872 873 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 874 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 875 if (irq_status.status == 0) { 876 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 877 return -ETIMEDOUT; 878 } 879 880 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 881 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 882 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 883 *out_sdma_trd = 884 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 885 } else { 886 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 887 irq_status.status); 888 return -EIO; 889 } 890 891 return 0; 892 } 893 894 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 895 { 896 u32 reg; 897 898 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 899 900 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 901 902 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 903 cdns_ctrl->caps2.data_dma_width = 8; 904 else 905 cdns_ctrl->caps2.data_dma_width = 4; 906 907 if (reg & CTRL_FEATURES_CONTROL_DATA) 908 cdns_ctrl->caps2.data_control_supp = true; 909 910 if (reg & (CTRL_FEATURES_NVDDR_2_3 911 | CTRL_FEATURES_NVDDR)) 912 cdns_ctrl->caps2.is_phy_type_dll = true; 913 } 914 915 /* Prepare CDMA descriptor. */ 916 static void 917 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 918 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 919 dma_addr_t ctrl_data_ptr, u16 ctype) 920 { 921 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 922 923 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 924 925 /* Set fields for one descriptor. */ 926 cdma_desc->flash_pointer = flash_ptr; 927 if (cdns_ctrl->ctrl_rev >= 13) 928 cdma_desc->bank = nf_mem; 929 else 930 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 931 932 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 933 cdma_desc->command_flags |= CDMA_CF_INT; 934 935 cdma_desc->memory_pointer = mem_ptr; 936 cdma_desc->status = 0; 937 cdma_desc->sync_flag_pointer = 0; 938 cdma_desc->sync_arguments = 0; 939 940 cdma_desc->command_type = ctype; 941 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 942 } 943 944 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 945 u32 desc_status) 946 { 947 if (desc_status & CDMA_CS_ERP) 948 return STAT_ERASED; 949 950 if (desc_status & CDMA_CS_UNCE) 951 return STAT_ECC_UNCORR; 952 953 if (desc_status & CDMA_CS_ERR) { 954 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 955 return STAT_FAIL; 956 } 957 958 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 959 return STAT_ECC_CORR; 960 961 return STAT_FAIL; 962 } 963 964 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 965 { 966 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 967 u8 status = STAT_BUSY; 968 969 if (desc_ptr->status & CDMA_CS_FAIL) { 970 status = cadence_nand_check_desc_error(cdns_ctrl, 971 desc_ptr->status); 972 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 973 } else if (desc_ptr->status & CDMA_CS_COMP) { 974 /* Descriptor finished with no errors. */ 975 if (desc_ptr->command_flags & CDMA_CF_CONT) { 976 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 977 status = STAT_UNKNOWN; 978 } else { 979 /* Last descriptor. */ 980 status = STAT_OK; 981 } 982 } 983 984 return status; 985 } 986 987 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 988 u8 thread) 989 { 990 u32 reg; 991 int status; 992 993 /* Wait for thread ready. */ 994 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 995 1000000, 996 BIT(thread), true); 997 if (status) 998 return status; 999 1000 cadence_nand_reset_irq(cdns_ctrl); 1001 reinit_completion(&cdns_ctrl->complete); 1002 1003 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1004 cdns_ctrl->reg + CMD_REG2); 1005 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1006 1007 /* Select CDMA mode. */ 1008 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1009 /* Thread number. */ 1010 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1011 /* Issue command. */ 1012 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1013 1014 return 0; 1015 } 1016 1017 /* Send SDMA command and wait for finish. */ 1018 static u32 1019 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1020 u8 thread) 1021 { 1022 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1023 int status; 1024 1025 irq_mask.trd_status = BIT(thread); 1026 irq_mask.trd_error = BIT(thread); 1027 irq_mask.status = INTR_STATUS_CDMA_TERR; 1028 1029 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1030 1031 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1032 if (status) 1033 return status; 1034 1035 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1036 1037 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1038 irq_status.trd_error == 0) { 1039 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1040 return -ETIMEDOUT; 1041 } 1042 if (irq_status.status & irq_mask.status) { 1043 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1044 return -EIO; 1045 } 1046 1047 return 0; 1048 } 1049 1050 /* 1051 * ECC size depends on configured ECC strength and on maximum supported 1052 * ECC step size. 1053 */ 1054 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1055 { 1056 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1057 1058 return ALIGN(nbytes, 2); 1059 } 1060 1061 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1062 static int \ 1063 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1064 int strength)\ 1065 {\ 1066 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1067 } 1068 1069 CADENCE_NAND_CALC_ECC_BYTES(256) 1070 CADENCE_NAND_CALC_ECC_BYTES(512) 1071 CADENCE_NAND_CALC_ECC_BYTES(1024) 1072 CADENCE_NAND_CALC_ECC_BYTES(2048) 1073 CADENCE_NAND_CALC_ECC_BYTES(4096) 1074 1075 /* Function reads BCH capabilities. */ 1076 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1077 { 1078 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1079 int max_step_size = 0, nstrengths, i; 1080 u32 reg; 1081 1082 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); 1083 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); 1084 if (cdns_ctrl->bch_metadata_size < 4) { 1085 dev_err(cdns_ctrl->dev, 1086 "Driver needs at least 4 bytes of BCH meta data\n"); 1087 return -EIO; 1088 } 1089 1090 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1091 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1092 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1093 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1094 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1095 1096 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1097 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1098 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1099 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1100 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1101 1102 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1103 cdns_ctrl->ecc_stepinfos[0].stepsize = 1104 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1105 1106 cdns_ctrl->ecc_stepinfos[1].stepsize = 1107 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1108 1109 nstrengths = 0; 1110 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1111 if (cdns_ctrl->ecc_strengths[i] != 0) 1112 nstrengths++; 1113 } 1114 1115 ecc_caps->nstepinfos = 0; 1116 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1117 /* ECC strengths are common for all step infos. */ 1118 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1119 cdns_ctrl->ecc_stepinfos[i].strengths = 1120 cdns_ctrl->ecc_strengths; 1121 1122 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1123 ecc_caps->nstepinfos++; 1124 1125 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1126 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1127 } 1128 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1129 1130 switch (max_step_size) { 1131 case 256: 1132 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1133 break; 1134 case 512: 1135 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1136 break; 1137 case 1024: 1138 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1139 break; 1140 case 2048: 1141 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1142 break; 1143 case 4096: 1144 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1145 break; 1146 default: 1147 dev_err(cdns_ctrl->dev, 1148 "Unsupported sector size(ecc step size) %d\n", 1149 max_step_size); 1150 return -EIO; 1151 } 1152 1153 return 0; 1154 } 1155 1156 /* Hardware initialization. */ 1157 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1158 { 1159 int status; 1160 u32 reg; 1161 1162 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1163 1000000, 1164 CTRL_STATUS_INIT_COMP, false); 1165 if (status) 1166 return status; 1167 1168 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1169 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1170 1171 dev_info(cdns_ctrl->dev, 1172 "%s: cadence nand controller version reg %x\n", 1173 __func__, reg); 1174 1175 /* Disable cache and multiplane. */ 1176 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1177 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1178 1179 /* Clear all interrupts. */ 1180 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1181 1182 cadence_nand_get_caps(cdns_ctrl); 1183 if (cadence_nand_read_bch_caps(cdns_ctrl)) 1184 return -EIO; 1185 1186 /* 1187 * Set IO width access to 8. 1188 * It is because during SW device discovering width access 1189 * is expected to be 8. 1190 */ 1191 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1192 1193 return status; 1194 } 1195 1196 #define TT_MAIN_OOB_AREAS 2 1197 #define TT_RAW_PAGE 3 1198 #define TT_BBM 4 1199 #define TT_MAIN_OOB_AREA_EXT 5 1200 1201 /* Prepare size of data to transfer. */ 1202 static void 1203 cadence_nand_prepare_data_size(struct nand_chip *chip, 1204 int transfer_type) 1205 { 1206 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1207 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1208 struct mtd_info *mtd = nand_to_mtd(chip); 1209 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1210 u32 last_sec_size = cdns_chip->sector_size; 1211 u32 data_ctrl_size = 0; 1212 u32 reg = 0; 1213 1214 if (cdns_ctrl->curr_trans_type == transfer_type) 1215 return; 1216 1217 switch (transfer_type) { 1218 case TT_MAIN_OOB_AREA_EXT: 1219 sec_cnt = cdns_chip->sector_count; 1220 sec_size = cdns_chip->sector_size; 1221 data_ctrl_size = cdns_chip->avail_oob_size; 1222 break; 1223 case TT_MAIN_OOB_AREAS: 1224 sec_cnt = cdns_chip->sector_count; 1225 last_sec_size = cdns_chip->sector_size 1226 + cdns_chip->avail_oob_size; 1227 sec_size = cdns_chip->sector_size; 1228 break; 1229 case TT_RAW_PAGE: 1230 last_sec_size = mtd->writesize + mtd->oobsize; 1231 break; 1232 case TT_BBM: 1233 offset = mtd->writesize + cdns_chip->bbm_offs; 1234 last_sec_size = 8; 1235 break; 1236 } 1237 1238 reg = 0; 1239 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1240 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1241 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1242 1243 reg = 0; 1244 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1245 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1246 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1247 1248 if (cdns_ctrl->caps2.data_control_supp) { 1249 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1250 reg &= ~CONTROL_DATA_CTRL_SIZE; 1251 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1252 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1253 } 1254 1255 cdns_ctrl->curr_trans_type = transfer_type; 1256 } 1257 1258 static int 1259 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1260 int page, void *buf, void *ctrl_dat, u32 buf_size, 1261 u32 ctrl_dat_size, enum dma_data_direction dir, 1262 bool with_ecc) 1263 { 1264 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1265 u8 thread_nr = chip_nr; 1266 int status; 1267 u16 ctype; 1268 1269 if (dir == DMA_FROM_DEVICE) 1270 ctype = CDMA_CT_RD; 1271 else 1272 ctype = CDMA_CT_WR; 1273 1274 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1275 1276 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1277 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1278 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1279 return -EIO; 1280 } 1281 1282 if (ctrl_dat && ctrl_dat_size) { 1283 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1284 ctrl_dat_size, dir); 1285 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1286 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1287 buf_size, dir); 1288 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1289 return -EIO; 1290 } 1291 } 1292 1293 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1294 dma_buf, dma_ctrl_dat, ctype); 1295 1296 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1297 1298 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1299 buf_size, dir); 1300 1301 if (ctrl_dat && ctrl_dat_size) 1302 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1303 ctrl_dat_size, dir); 1304 if (status) 1305 return status; 1306 1307 return cadence_nand_cdma_finish(cdns_ctrl); 1308 } 1309 1310 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1311 struct cadence_nand_timings *t) 1312 { 1313 writel_relaxed(t->async_toggle_timings, 1314 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1315 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1316 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1317 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1318 1319 if (cdns_ctrl->caps2.is_phy_type_dll) 1320 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1321 1322 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1323 1324 if (cdns_ctrl->caps2.is_phy_type_dll) { 1325 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1326 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1327 writel_relaxed(t->phy_dqs_timing, 1328 cdns_ctrl->reg + PHY_DQS_TIMING); 1329 writel_relaxed(t->phy_gate_lpbk_ctrl, 1330 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1331 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1332 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1333 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1334 } 1335 } 1336 1337 static int cadence_nand_select_target(struct nand_chip *chip) 1338 { 1339 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1340 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1341 1342 if (chip == cdns_ctrl->selected_chip) 1343 return 0; 1344 1345 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1346 1000000, 1347 CTRL_STATUS_CTRL_BUSY, true)) 1348 return -ETIMEDOUT; 1349 1350 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1351 1352 cadence_nand_set_ecc_strength(cdns_ctrl, 1353 cdns_chip->corr_str_idx); 1354 1355 cadence_nand_set_erase_detection(cdns_ctrl, true, 1356 chip->ecc.strength); 1357 1358 cdns_ctrl->curr_trans_type = -1; 1359 cdns_ctrl->selected_chip = chip; 1360 1361 return 0; 1362 } 1363 1364 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1365 { 1366 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1367 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1368 int status; 1369 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1370 1371 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1372 cdns_chip->cs[chip->cur_cs], 1373 page, 0, 0, 1374 CDMA_CT_ERASE); 1375 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1376 if (status) { 1377 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1378 return -EIO; 1379 } 1380 1381 status = cadence_nand_cdma_finish(cdns_ctrl); 1382 if (status) 1383 return status; 1384 1385 return 0; 1386 } 1387 1388 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1389 { 1390 int status; 1391 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1392 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1393 struct mtd_info *mtd = nand_to_mtd(chip); 1394 1395 cadence_nand_prepare_data_size(chip, TT_BBM); 1396 1397 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1398 1399 /* 1400 * Read only bad block marker from offset 1401 * defined by a memory manufacturer. 1402 */ 1403 status = cadence_nand_cdma_transfer(cdns_ctrl, 1404 cdns_chip->cs[chip->cur_cs], 1405 page, cdns_ctrl->buf, NULL, 1406 mtd->oobsize, 1407 0, DMA_FROM_DEVICE, false); 1408 if (status) { 1409 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1410 return -EIO; 1411 } 1412 1413 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1414 1415 return 0; 1416 } 1417 1418 static int cadence_nand_write_page(struct nand_chip *chip, 1419 const u8 *buf, int oob_required, 1420 int page) 1421 { 1422 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1423 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1424 struct mtd_info *mtd = nand_to_mtd(chip); 1425 int status; 1426 u16 marker_val = 0xFFFF; 1427 1428 status = cadence_nand_select_target(chip); 1429 if (status) 1430 return status; 1431 1432 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1433 mtd->writesize 1434 + cdns_chip->bbm_offs, 1435 1); 1436 1437 if (oob_required) { 1438 marker_val = *(u16 *)(chip->oob_poi 1439 + cdns_chip->bbm_offs); 1440 } else { 1441 /* Set oob data to 0xFF. */ 1442 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1443 cdns_chip->avail_oob_size); 1444 } 1445 1446 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1447 1448 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1449 1450 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1451 cdns_ctrl->caps2.data_control_supp) { 1452 u8 *oob; 1453 1454 if (oob_required) 1455 oob = chip->oob_poi; 1456 else 1457 oob = cdns_ctrl->buf + mtd->writesize; 1458 1459 status = cadence_nand_cdma_transfer(cdns_ctrl, 1460 cdns_chip->cs[chip->cur_cs], 1461 page, (void *)buf, oob, 1462 mtd->writesize, 1463 cdns_chip->avail_oob_size, 1464 DMA_TO_DEVICE, true); 1465 if (status) { 1466 dev_err(cdns_ctrl->dev, "write page failed\n"); 1467 return -EIO; 1468 } 1469 1470 return 0; 1471 } 1472 1473 if (oob_required) { 1474 /* Transfer the data to the oob area. */ 1475 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1476 cdns_chip->avail_oob_size); 1477 } 1478 1479 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1480 1481 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1482 1483 return cadence_nand_cdma_transfer(cdns_ctrl, 1484 cdns_chip->cs[chip->cur_cs], 1485 page, cdns_ctrl->buf, NULL, 1486 mtd->writesize 1487 + cdns_chip->avail_oob_size, 1488 0, DMA_TO_DEVICE, true); 1489 } 1490 1491 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1492 { 1493 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1494 struct mtd_info *mtd = nand_to_mtd(chip); 1495 1496 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1497 1498 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1499 } 1500 1501 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1502 const u8 *buf, int oob_required, 1503 int page) 1504 { 1505 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1506 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1507 struct mtd_info *mtd = nand_to_mtd(chip); 1508 int writesize = mtd->writesize; 1509 int oobsize = mtd->oobsize; 1510 int ecc_steps = chip->ecc.steps; 1511 int ecc_size = chip->ecc.size; 1512 int ecc_bytes = chip->ecc.bytes; 1513 void *tmp_buf = cdns_ctrl->buf; 1514 int oob_skip = cdns_chip->bbm_len; 1515 size_t size = writesize + oobsize; 1516 int i, pos, len; 1517 int status = 0; 1518 1519 status = cadence_nand_select_target(chip); 1520 if (status) 1521 return status; 1522 1523 /* 1524 * Fill the buffer with 0xff first except the full page transfer. 1525 * This simplifies the logic. 1526 */ 1527 if (!buf || !oob_required) 1528 memset(tmp_buf, 0xff, size); 1529 1530 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1531 1532 /* Arrange the buffer for syndrome payload/ecc layout. */ 1533 if (buf) { 1534 for (i = 0; i < ecc_steps; i++) { 1535 pos = i * (ecc_size + ecc_bytes); 1536 len = ecc_size; 1537 1538 if (pos >= writesize) 1539 pos += oob_skip; 1540 else if (pos + len > writesize) 1541 len = writesize - pos; 1542 1543 memcpy(tmp_buf + pos, buf, len); 1544 buf += len; 1545 if (len < ecc_size) { 1546 len = ecc_size - len; 1547 memcpy(tmp_buf + writesize + oob_skip, buf, 1548 len); 1549 buf += len; 1550 } 1551 } 1552 } 1553 1554 if (oob_required) { 1555 const u8 *oob = chip->oob_poi; 1556 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1557 (cdns_chip->sector_size + chip->ecc.bytes) 1558 + cdns_chip->sector_size + oob_skip; 1559 1560 /* BBM at the beginning of the OOB area. */ 1561 memcpy(tmp_buf + writesize, oob, oob_skip); 1562 1563 /* OOB free. */ 1564 memcpy(tmp_buf + oob_data_offset, oob, 1565 cdns_chip->avail_oob_size); 1566 oob += cdns_chip->avail_oob_size; 1567 1568 /* OOB ECC. */ 1569 for (i = 0; i < ecc_steps; i++) { 1570 pos = ecc_size + i * (ecc_size + ecc_bytes); 1571 if (i == (ecc_steps - 1)) 1572 pos += cdns_chip->avail_oob_size; 1573 1574 len = ecc_bytes; 1575 1576 if (pos >= writesize) 1577 pos += oob_skip; 1578 else if (pos + len > writesize) 1579 len = writesize - pos; 1580 1581 memcpy(tmp_buf + pos, oob, len); 1582 oob += len; 1583 if (len < ecc_bytes) { 1584 len = ecc_bytes - len; 1585 memcpy(tmp_buf + writesize + oob_skip, oob, 1586 len); 1587 oob += len; 1588 } 1589 } 1590 } 1591 1592 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1593 1594 return cadence_nand_cdma_transfer(cdns_ctrl, 1595 cdns_chip->cs[chip->cur_cs], 1596 page, cdns_ctrl->buf, NULL, 1597 mtd->writesize + 1598 mtd->oobsize, 1599 0, DMA_TO_DEVICE, false); 1600 } 1601 1602 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1603 int page) 1604 { 1605 return cadence_nand_write_page_raw(chip, NULL, true, page); 1606 } 1607 1608 static int cadence_nand_read_page(struct nand_chip *chip, 1609 u8 *buf, int oob_required, int page) 1610 { 1611 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1612 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1613 struct mtd_info *mtd = nand_to_mtd(chip); 1614 int status = 0; 1615 int ecc_err_count = 0; 1616 1617 status = cadence_nand_select_target(chip); 1618 if (status) 1619 return status; 1620 1621 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1622 mtd->writesize 1623 + cdns_chip->bbm_offs, 1); 1624 1625 /* 1626 * If data buffer can be accessed by DMA and data_control feature 1627 * is supported then transfer data and oob directly. 1628 */ 1629 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1630 cdns_ctrl->caps2.data_control_supp) { 1631 u8 *oob; 1632 1633 if (oob_required) 1634 oob = chip->oob_poi; 1635 else 1636 oob = cdns_ctrl->buf + mtd->writesize; 1637 1638 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1639 status = cadence_nand_cdma_transfer(cdns_ctrl, 1640 cdns_chip->cs[chip->cur_cs], 1641 page, buf, oob, 1642 mtd->writesize, 1643 cdns_chip->avail_oob_size, 1644 DMA_FROM_DEVICE, true); 1645 /* Otherwise use bounce buffer. */ 1646 } else { 1647 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1648 status = cadence_nand_cdma_transfer(cdns_ctrl, 1649 cdns_chip->cs[chip->cur_cs], 1650 page, cdns_ctrl->buf, 1651 NULL, mtd->writesize 1652 + cdns_chip->avail_oob_size, 1653 0, DMA_FROM_DEVICE, true); 1654 1655 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1656 if (oob_required) 1657 memcpy(chip->oob_poi, 1658 cdns_ctrl->buf + mtd->writesize, 1659 mtd->oobsize); 1660 } 1661 1662 switch (status) { 1663 case STAT_ECC_UNCORR: 1664 mtd->ecc_stats.failed++; 1665 ecc_err_count++; 1666 break; 1667 case STAT_ECC_CORR: 1668 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1669 cdns_ctrl->cdma_desc->status); 1670 mtd->ecc_stats.corrected += ecc_err_count; 1671 break; 1672 case STAT_ERASED: 1673 case STAT_OK: 1674 break; 1675 default: 1676 dev_err(cdns_ctrl->dev, "read page failed\n"); 1677 return -EIO; 1678 } 1679 1680 if (oob_required) 1681 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1682 return -EIO; 1683 1684 return ecc_err_count; 1685 } 1686 1687 /* Reads OOB data from the device. */ 1688 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1689 { 1690 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1691 1692 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1693 } 1694 1695 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1696 u8 *buf, int oob_required, int page) 1697 { 1698 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1699 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1700 struct mtd_info *mtd = nand_to_mtd(chip); 1701 int oob_skip = cdns_chip->bbm_len; 1702 int writesize = mtd->writesize; 1703 int ecc_steps = chip->ecc.steps; 1704 int ecc_size = chip->ecc.size; 1705 int ecc_bytes = chip->ecc.bytes; 1706 void *tmp_buf = cdns_ctrl->buf; 1707 int i, pos, len; 1708 int status = 0; 1709 1710 status = cadence_nand_select_target(chip); 1711 if (status) 1712 return status; 1713 1714 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1715 1716 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1717 status = cadence_nand_cdma_transfer(cdns_ctrl, 1718 cdns_chip->cs[chip->cur_cs], 1719 page, cdns_ctrl->buf, NULL, 1720 mtd->writesize 1721 + mtd->oobsize, 1722 0, DMA_FROM_DEVICE, false); 1723 1724 switch (status) { 1725 case STAT_ERASED: 1726 case STAT_OK: 1727 break; 1728 default: 1729 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1730 return -EIO; 1731 } 1732 1733 /* Arrange the buffer for syndrome payload/ecc layout. */ 1734 if (buf) { 1735 for (i = 0; i < ecc_steps; i++) { 1736 pos = i * (ecc_size + ecc_bytes); 1737 len = ecc_size; 1738 1739 if (pos >= writesize) 1740 pos += oob_skip; 1741 else if (pos + len > writesize) 1742 len = writesize - pos; 1743 1744 memcpy(buf, tmp_buf + pos, len); 1745 buf += len; 1746 if (len < ecc_size) { 1747 len = ecc_size - len; 1748 memcpy(buf, tmp_buf + writesize + oob_skip, 1749 len); 1750 buf += len; 1751 } 1752 } 1753 } 1754 1755 if (oob_required) { 1756 u8 *oob = chip->oob_poi; 1757 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1758 (cdns_chip->sector_size + chip->ecc.bytes) 1759 + cdns_chip->sector_size + oob_skip; 1760 1761 /* OOB free. */ 1762 memcpy(oob, tmp_buf + oob_data_offset, 1763 cdns_chip->avail_oob_size); 1764 1765 /* BBM at the beginning of the OOB area. */ 1766 memcpy(oob, tmp_buf + writesize, oob_skip); 1767 1768 oob += cdns_chip->avail_oob_size; 1769 1770 /* OOB ECC */ 1771 for (i = 0; i < ecc_steps; i++) { 1772 pos = ecc_size + i * (ecc_size + ecc_bytes); 1773 len = ecc_bytes; 1774 1775 if (i == (ecc_steps - 1)) 1776 pos += cdns_chip->avail_oob_size; 1777 1778 if (pos >= writesize) 1779 pos += oob_skip; 1780 else if (pos + len > writesize) 1781 len = writesize - pos; 1782 1783 memcpy(oob, tmp_buf + pos, len); 1784 oob += len; 1785 if (len < ecc_bytes) { 1786 len = ecc_bytes - len; 1787 memcpy(oob, tmp_buf + writesize + oob_skip, 1788 len); 1789 oob += len; 1790 } 1791 } 1792 } 1793 1794 return 0; 1795 } 1796 1797 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1798 int page) 1799 { 1800 return cadence_nand_read_page_raw(chip, NULL, true, page); 1801 } 1802 1803 static void cadence_nand_slave_dma_transfer_finished(void *data) 1804 { 1805 struct completion *finished = data; 1806 1807 complete(finished); 1808 } 1809 1810 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1811 void *buf, 1812 dma_addr_t dev_dma, size_t len, 1813 enum dma_data_direction dir) 1814 { 1815 DECLARE_COMPLETION_ONSTACK(finished); 1816 struct dma_chan *chan; 1817 struct dma_device *dma_dev; 1818 dma_addr_t src_dma, dst_dma, buf_dma; 1819 struct dma_async_tx_descriptor *tx; 1820 dma_cookie_t cookie; 1821 1822 chan = cdns_ctrl->dmac; 1823 dma_dev = chan->device; 1824 1825 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1826 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1827 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1828 goto err; 1829 } 1830 1831 if (dir == DMA_FROM_DEVICE) { 1832 src_dma = cdns_ctrl->io.dma; 1833 dst_dma = buf_dma; 1834 } else { 1835 src_dma = buf_dma; 1836 dst_dma = cdns_ctrl->io.dma; 1837 } 1838 1839 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1840 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1841 if (!tx) { 1842 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1843 goto err_unmap; 1844 } 1845 1846 tx->callback = cadence_nand_slave_dma_transfer_finished; 1847 tx->callback_param = &finished; 1848 1849 cookie = dmaengine_submit(tx); 1850 if (dma_submit_error(cookie)) { 1851 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1852 goto err_unmap; 1853 } 1854 1855 dma_async_issue_pending(cdns_ctrl->dmac); 1856 wait_for_completion(&finished); 1857 1858 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1859 1860 return 0; 1861 1862 err_unmap: 1863 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1864 1865 err: 1866 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1867 1868 return -EIO; 1869 } 1870 1871 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1872 u8 *buf, int len) 1873 { 1874 u8 thread_nr = 0; 1875 u32 sdma_size; 1876 int status; 1877 1878 /* Wait until slave DMA interface is ready to data transfer. */ 1879 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1880 if (status) 1881 return status; 1882 1883 if (!cdns_ctrl->caps1->has_dma) { 1884 int len_in_words = len >> 2; 1885 1886 /* read alingment data */ 1887 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1888 if (sdma_size > len) { 1889 /* read rest data from slave DMA interface if any */ 1890 ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1891 sdma_size / 4 - len_in_words); 1892 /* copy rest of data */ 1893 memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, 1894 len - (len_in_words << 2)); 1895 } 1896 return 0; 1897 } 1898 1899 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1900 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1901 cdns_ctrl->io.dma, 1902 len, DMA_FROM_DEVICE); 1903 if (status == 0) 1904 return 0; 1905 1906 dev_warn(cdns_ctrl->dev, 1907 "Slave DMA transfer failed. Try again using bounce buffer."); 1908 } 1909 1910 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1911 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1912 cdns_ctrl->io.dma, 1913 sdma_size, DMA_FROM_DEVICE); 1914 1915 if (status) { 1916 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1917 return status; 1918 } 1919 1920 memcpy(buf, cdns_ctrl->buf, len); 1921 1922 return 0; 1923 } 1924 1925 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1926 const u8 *buf, int len) 1927 { 1928 u8 thread_nr = 0; 1929 u32 sdma_size; 1930 int status; 1931 1932 /* Wait until slave DMA interface is ready to data transfer. */ 1933 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1934 if (status) 1935 return status; 1936 1937 if (!cdns_ctrl->caps1->has_dma) { 1938 int len_in_words = len >> 2; 1939 1940 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1941 if (sdma_size > len) { 1942 /* copy rest of data */ 1943 memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), 1944 len - (len_in_words << 2)); 1945 /* write all expected by nand controller data */ 1946 iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1947 sdma_size / 4 - len_in_words); 1948 } 1949 1950 return 0; 1951 } 1952 1953 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1954 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 1955 cdns_ctrl->io.dma, 1956 len, DMA_TO_DEVICE); 1957 if (status == 0) 1958 return 0; 1959 1960 dev_warn(cdns_ctrl->dev, 1961 "Slave DMA transfer failed. Try again using bounce buffer."); 1962 } 1963 1964 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1965 memcpy(cdns_ctrl->buf, buf, len); 1966 1967 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1968 cdns_ctrl->io.dma, 1969 sdma_size, DMA_TO_DEVICE); 1970 1971 if (status) 1972 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1973 1974 return status; 1975 } 1976 1977 static int cadence_nand_force_byte_access(struct nand_chip *chip, 1978 bool force_8bit) 1979 { 1980 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1981 int status; 1982 1983 /* 1984 * Callers of this function do not verify if the NAND is using a 16-bit 1985 * an 8-bit bus for normal operations, so we need to take care of that 1986 * here by leaving the configuration unchanged if the NAND does not have 1987 * the NAND_BUSWIDTH_16 flag set. 1988 */ 1989 if (!(chip->options & NAND_BUSWIDTH_16)) 1990 return 0; 1991 1992 status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 1993 1994 return status; 1995 } 1996 1997 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 1998 const struct nand_subop *subop) 1999 { 2000 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2001 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2002 const struct nand_op_instr *instr; 2003 unsigned int op_id = 0; 2004 u64 mini_ctrl_cmd = 0; 2005 int ret; 2006 2007 instr = &subop->instrs[op_id]; 2008 2009 if (instr->delay_ns > 0) 2010 mini_ctrl_cmd |= GCMD_LAY_TWB; 2011 2012 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2013 GCMD_LAY_INSTR_CMD); 2014 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2015 instr->ctx.cmd.opcode); 2016 2017 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2018 cdns_chip->cs[chip->cur_cs], 2019 mini_ctrl_cmd); 2020 if (ret) 2021 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2022 instr->ctx.cmd.opcode); 2023 2024 return ret; 2025 } 2026 2027 static int cadence_nand_cmd_address(struct nand_chip *chip, 2028 const struct nand_subop *subop) 2029 { 2030 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2031 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2032 const struct nand_op_instr *instr; 2033 unsigned int op_id = 0; 2034 u64 mini_ctrl_cmd = 0; 2035 unsigned int offset, naddrs; 2036 u64 address = 0; 2037 const u8 *addrs; 2038 int ret; 2039 int i; 2040 2041 instr = &subop->instrs[op_id]; 2042 2043 if (instr->delay_ns > 0) 2044 mini_ctrl_cmd |= GCMD_LAY_TWB; 2045 2046 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2047 GCMD_LAY_INSTR_ADDR); 2048 2049 offset = nand_subop_get_addr_start_off(subop, op_id); 2050 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2051 addrs = &instr->ctx.addr.addrs[offset]; 2052 2053 for (i = 0; i < naddrs; i++) 2054 address |= (u64)addrs[i] << (8 * i); 2055 2056 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2057 address); 2058 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2059 naddrs - 1); 2060 2061 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2062 cdns_chip->cs[chip->cur_cs], 2063 mini_ctrl_cmd); 2064 if (ret) 2065 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2066 2067 return ret; 2068 } 2069 2070 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2071 const struct nand_subop *subop) 2072 { 2073 unsigned int op_id; 2074 2075 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2076 int i; 2077 const struct nand_op_instr *instr = NULL; 2078 unsigned int offset, naddrs; 2079 const u8 *addrs; 2080 u32 page = 0; 2081 2082 instr = &subop->instrs[1]; 2083 offset = nand_subop_get_addr_start_off(subop, 1); 2084 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2085 addrs = &instr->ctx.addr.addrs[offset]; 2086 2087 for (i = 0; i < naddrs; i++) 2088 page |= (u32)addrs[i] << (8 * i); 2089 2090 return cadence_nand_erase(chip, page); 2091 } 2092 2093 /* 2094 * If it is not an erase operation then handle operation 2095 * by calling exec_op function. 2096 */ 2097 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2098 int ret; 2099 const struct nand_operation nand_op = { 2100 .cs = chip->cur_cs, 2101 .instrs = &subop->instrs[op_id], 2102 .ninstrs = 1}; 2103 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2104 if (ret) 2105 return ret; 2106 } 2107 2108 return 0; 2109 } 2110 2111 static int cadence_nand_cmd_data(struct nand_chip *chip, 2112 const struct nand_subop *subop) 2113 { 2114 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2115 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2116 const struct nand_op_instr *instr; 2117 unsigned int offset, op_id = 0; 2118 u64 mini_ctrl_cmd = 0; 2119 int len = 0; 2120 int ret; 2121 2122 instr = &subop->instrs[op_id]; 2123 2124 if (instr->delay_ns > 0) 2125 mini_ctrl_cmd |= GCMD_LAY_TWB; 2126 2127 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2128 GCMD_LAY_INSTR_DATA); 2129 2130 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2131 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2132 GCMD_DIR_WRITE); 2133 2134 len = nand_subop_get_data_len(subop, op_id); 2135 offset = nand_subop_get_data_start_off(subop, op_id); 2136 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2137 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2138 if (instr->ctx.data.force_8bit) { 2139 ret = cadence_nand_force_byte_access(chip, true); 2140 if (ret) { 2141 dev_err(cdns_ctrl->dev, 2142 "cannot change byte access generic data cmd failed\n"); 2143 return ret; 2144 } 2145 } 2146 2147 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2148 cdns_chip->cs[chip->cur_cs], 2149 mini_ctrl_cmd); 2150 if (ret) { 2151 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2152 return ret; 2153 } 2154 2155 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2156 void *buf = instr->ctx.data.buf.in + offset; 2157 2158 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2159 } else { 2160 const void *buf = instr->ctx.data.buf.out + offset; 2161 2162 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2163 } 2164 2165 if (ret) { 2166 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2167 return ret; 2168 } 2169 2170 if (instr->ctx.data.force_8bit) { 2171 ret = cadence_nand_force_byte_access(chip, false); 2172 if (ret) { 2173 dev_err(cdns_ctrl->dev, 2174 "cannot change byte access generic data cmd failed\n"); 2175 } 2176 } 2177 2178 return ret; 2179 } 2180 2181 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2182 const struct nand_subop *subop) 2183 { 2184 int status; 2185 unsigned int op_id = 0; 2186 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2187 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2188 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2189 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2190 2191 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2192 timeout_us, 2193 BIT(cdns_chip->cs[chip->cur_cs]), 2194 false); 2195 return status; 2196 } 2197 2198 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2199 NAND_OP_PARSER_PATTERN( 2200 cadence_nand_cmd_erase, 2201 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2202 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2203 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2204 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2205 NAND_OP_PARSER_PATTERN( 2206 cadence_nand_cmd_opcode, 2207 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2208 NAND_OP_PARSER_PATTERN( 2209 cadence_nand_cmd_address, 2210 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2211 NAND_OP_PARSER_PATTERN( 2212 cadence_nand_cmd_data, 2213 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2214 NAND_OP_PARSER_PATTERN( 2215 cadence_nand_cmd_data, 2216 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2217 NAND_OP_PARSER_PATTERN( 2218 cadence_nand_cmd_waitrdy, 2219 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2220 ); 2221 2222 static int cadence_nand_exec_op(struct nand_chip *chip, 2223 const struct nand_operation *op, 2224 bool check_only) 2225 { 2226 int status = cadence_nand_select_target(chip); 2227 2228 if (status) 2229 return status; 2230 2231 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2232 check_only); 2233 } 2234 2235 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2236 struct mtd_oob_region *oobregion) 2237 { 2238 struct nand_chip *chip = mtd_to_nand(mtd); 2239 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2240 2241 if (section) 2242 return -ERANGE; 2243 2244 oobregion->offset = cdns_chip->bbm_len; 2245 oobregion->length = cdns_chip->avail_oob_size 2246 - cdns_chip->bbm_len; 2247 2248 return 0; 2249 } 2250 2251 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2252 struct mtd_oob_region *oobregion) 2253 { 2254 struct nand_chip *chip = mtd_to_nand(mtd); 2255 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2256 2257 if (section) 2258 return -ERANGE; 2259 2260 oobregion->offset = cdns_chip->avail_oob_size; 2261 oobregion->length = chip->ecc.total; 2262 2263 return 0; 2264 } 2265 2266 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2267 .free = cadence_nand_ooblayout_free, 2268 .ecc = cadence_nand_ooblayout_ecc, 2269 }; 2270 2271 static int calc_cycl(u32 timing, u32 clock) 2272 { 2273 if (timing == 0 || clock == 0) 2274 return 0; 2275 2276 if ((timing % clock) > 0) 2277 return timing / clock; 2278 else 2279 return timing / clock - 1; 2280 } 2281 2282 /* Calculate max data valid window. */ 2283 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2284 u32 board_delay_skew_min, u32 ext_mode) 2285 { 2286 if (ext_mode == 0) 2287 clk_period /= 2; 2288 2289 return (trp_cnt + 1) * clk_period + trhoh_min + 2290 board_delay_skew_min; 2291 } 2292 2293 /* Calculate data valid window. */ 2294 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2295 u32 trea_max, u32 ext_mode) 2296 { 2297 if (ext_mode == 0) 2298 clk_period /= 2; 2299 2300 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2301 } 2302 2303 static int 2304 cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr, 2305 const struct nand_data_interface *conf) 2306 { 2307 const struct nand_sdr_timings *sdr; 2308 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2309 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2310 struct cadence_nand_timings *t = &cdns_chip->timings; 2311 u32 reg; 2312 u32 board_delay = cdns_ctrl->board_delay; 2313 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2314 cdns_ctrl->nf_clk_rate); 2315 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2316 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2317 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2318 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2319 u32 if_skew = cdns_ctrl->caps1->if_skew; 2320 u32 board_delay_skew_min = board_delay - if_skew; 2321 u32 board_delay_skew_max = board_delay + if_skew; 2322 u32 dqs_sampl_res, phony_dqs_mod; 2323 u32 tdvw, tdvw_min, tdvw_max; 2324 u32 ext_rd_mode, ext_wr_mode; 2325 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2326 u32 sampling_point; 2327 2328 sdr = nand_get_sdr_timings(conf); 2329 if (IS_ERR(sdr)) 2330 return PTR_ERR(sdr); 2331 2332 memset(t, 0, sizeof(*t)); 2333 /* Sampling point calculation. */ 2334 2335 if (cdns_ctrl->caps2.is_phy_type_dll) 2336 phony_dqs_mod = 2; 2337 else 2338 phony_dqs_mod = 1; 2339 2340 dqs_sampl_res = clk_period / phony_dqs_mod; 2341 2342 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2343 /* 2344 * The idea of those calculation is to get the optimum value 2345 * for tRP and tRH timings. If it is NOT possible to sample data 2346 * with optimal tRP/tRH settings, the parameters will be extended. 2347 * If clk_period is 50ns (the lowest value) this condition is met 2348 * for asynchronous timing modes 1, 2, 3, 4 and 5. 2349 * If clk_period is 20ns the condition is met only 2350 * for asynchronous timing mode 5. 2351 */ 2352 if (sdr->tRC_min <= clk_period && 2353 sdr->tRP_min <= (clk_period / 2) && 2354 sdr->tREH_min <= (clk_period / 2)) { 2355 /* Performance mode. */ 2356 ext_rd_mode = 0; 2357 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2358 sdr->tREA_max, ext_rd_mode); 2359 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2360 board_delay_skew_min, 2361 ext_rd_mode); 2362 /* 2363 * Check if data valid window and sampling point can be found 2364 * and is not on the edge (ie. we have hold margin). 2365 * If not extend the tRP timings. 2366 */ 2367 if (tdvw > 0) { 2368 if (tdvw_max <= tdvw_min || 2369 (tdvw_max % dqs_sampl_res) == 0) { 2370 /* 2371 * No valid sampling point so the RE pulse need 2372 * to be widen widening by half clock cycle. 2373 */ 2374 ext_rd_mode = 1; 2375 } 2376 } else { 2377 /* 2378 * There is no valid window 2379 * to be able to sample data the tRP need to be widen. 2380 * Very safe calculations are performed here. 2381 */ 2382 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2383 + dqs_sampl_res) / clk_period; 2384 ext_rd_mode = 1; 2385 } 2386 2387 } else { 2388 /* Extended read mode. */ 2389 u32 trh; 2390 2391 ext_rd_mode = 1; 2392 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2393 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2394 if (sdr->tREH_min >= trh) 2395 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2396 else 2397 trh_cnt = calc_cycl(trh, clk_period); 2398 2399 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2400 sdr->tREA_max, ext_rd_mode); 2401 /* 2402 * Check if data valid window and sampling point can be found 2403 * or if it is at the edge check if previous is valid 2404 * - if not extend the tRP timings. 2405 */ 2406 if (tdvw > 0) { 2407 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2408 sdr->tRHOH_min, 2409 board_delay_skew_min, 2410 ext_rd_mode); 2411 2412 if ((((tdvw_max / dqs_sampl_res) 2413 * dqs_sampl_res) <= tdvw_min) || 2414 (((tdvw_max % dqs_sampl_res) == 0) && 2415 (((tdvw_max / dqs_sampl_res - 1) 2416 * dqs_sampl_res) <= tdvw_min))) { 2417 /* 2418 * Data valid window width is lower than 2419 * sampling resolution and do not hit any 2420 * sampling point to be sure the sampling point 2421 * will be found the RE low pulse width will be 2422 * extended by one clock cycle. 2423 */ 2424 trp_cnt = trp_cnt + 1; 2425 } 2426 } else { 2427 /* 2428 * There is no valid window to be able to sample data. 2429 * The tRP need to be widen. 2430 * Very safe calculations are performed here. 2431 */ 2432 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2433 + dqs_sampl_res) / clk_period; 2434 } 2435 } 2436 2437 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2438 sdr->tRHOH_min, 2439 board_delay_skew_min, ext_rd_mode); 2440 2441 if (sdr->tWC_min <= clk_period && 2442 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2443 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2444 ext_wr_mode = 0; 2445 } else { 2446 u32 twh; 2447 2448 ext_wr_mode = 1; 2449 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2450 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2451 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2452 clk_period); 2453 2454 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2455 if (sdr->tWH_min >= twh) 2456 twh = sdr->tWH_min; 2457 2458 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2459 } 2460 2461 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2462 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2463 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2464 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2465 t->async_toggle_timings = reg; 2466 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2467 2468 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2469 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2470 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2471 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2472 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2473 2474 /* 2475 * If timing exceeds delay field in timing register 2476 * then use maximum value. 2477 */ 2478 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2479 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2480 else 2481 reg |= TIMINGS0_TCCS; 2482 2483 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2484 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2485 t->timings0 = reg; 2486 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2487 2488 /* The following is related to single signal so skew is not needed. */ 2489 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2490 trhz_cnt = trhz_cnt + 1; 2491 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2492 /* 2493 * Because of the two stage syncflop the value must be increased by 3 2494 * first value is related with sync, second value is related 2495 * with output if delay. 2496 */ 2497 twb_cnt = twb_cnt + 3 + 5; 2498 /* 2499 * The following is related to the we edge of the random data input 2500 * sequence so skew is not needed. 2501 */ 2502 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2503 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2504 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2505 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2506 t->timings1 = reg; 2507 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2508 2509 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2510 if (tfeat_cnt < twb_cnt) 2511 tfeat_cnt = twb_cnt; 2512 2513 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2514 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2515 2516 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2517 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2518 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2519 t->timings2 = reg; 2520 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2521 2522 if (cdns_ctrl->caps2.is_phy_type_dll) { 2523 reg = DLL_PHY_CTRL_DLL_RST_N; 2524 if (ext_wr_mode) 2525 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2526 if (ext_rd_mode) 2527 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2528 2529 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2530 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2531 t->dll_phy_ctrl = reg; 2532 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2533 } 2534 2535 /* Sampling point calculation. */ 2536 if ((tdvw_max % dqs_sampl_res) > 0) 2537 sampling_point = tdvw_max / dqs_sampl_res; 2538 else 2539 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2540 2541 if (sampling_point * dqs_sampl_res > tdvw_min) { 2542 dll_phy_dqs_timing = 2543 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2544 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2545 phony_dqs_timing = sampling_point / phony_dqs_mod; 2546 2547 if ((sampling_point % 2) > 0) { 2548 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2549 if ((tdvw_max % dqs_sampl_res) == 0) 2550 /* 2551 * Calculation for sampling point at the edge 2552 * of data and being odd number. 2553 */ 2554 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2555 / phony_dqs_mod - 1; 2556 2557 if (!cdns_ctrl->caps2.is_phy_type_dll) 2558 phony_dqs_timing--; 2559 2560 } else { 2561 phony_dqs_timing--; 2562 } 2563 rd_del_sel = phony_dqs_timing + 3; 2564 } else { 2565 dev_warn(cdns_ctrl->dev, 2566 "ERROR : cannot find valid sampling point\n"); 2567 } 2568 2569 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2570 if (cdns_ctrl->caps2.is_phy_type_dll) 2571 reg |= PHY_CTRL_SDR_DQS; 2572 t->phy_ctrl = reg; 2573 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2574 2575 if (cdns_ctrl->caps2.is_phy_type_dll) { 2576 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2577 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2578 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2579 dll_phy_dqs_timing); 2580 t->phy_dqs_timing = dll_phy_dqs_timing; 2581 2582 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2583 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2584 reg); 2585 t->phy_gate_lpbk_ctrl = reg; 2586 2587 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2588 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2589 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2590 } 2591 2592 return 0; 2593 } 2594 2595 int cadence_nand_attach_chip(struct nand_chip *chip) 2596 { 2597 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2598 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2599 u32 ecc_size; 2600 struct mtd_info *mtd = nand_to_mtd(chip); 2601 int ret; 2602 2603 if (chip->options & NAND_BUSWIDTH_16) { 2604 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2605 if (ret) 2606 return ret; 2607 } 2608 2609 chip->bbt_options |= NAND_BBT_USE_FLASH; 2610 chip->bbt_options |= NAND_BBT_NO_OOB; 2611 chip->ecc.mode = NAND_ECC_HW; 2612 2613 chip->options |= NAND_NO_SUBPAGE_WRITE; 2614 2615 cdns_chip->bbm_offs = chip->badblockpos; 2616 cdns_chip->bbm_offs &= ~0x01; 2617 /* this value should be even number */ 2618 cdns_chip->bbm_len = 2; 2619 2620 ret = nand_ecc_choose_conf(chip, 2621 &cdns_ctrl->ecc_caps, 2622 mtd->oobsize - cdns_chip->bbm_len); 2623 if (ret) { 2624 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2625 return ret; 2626 } 2627 2628 dev_dbg(cdns_ctrl->dev, 2629 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2630 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2631 2632 /* Error correction configuration. */ 2633 cdns_chip->sector_size = chip->ecc.size; 2634 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2635 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2636 2637 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2638 2639 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) 2640 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; 2641 2642 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2643 > mtd->oobsize) 2644 cdns_chip->avail_oob_size -= 4; 2645 2646 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2647 if (ret < 0) 2648 return -EINVAL; 2649 2650 cdns_chip->corr_str_idx = (u8)ret; 2651 2652 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2653 1000000, 2654 CTRL_STATUS_CTRL_BUSY, true)) 2655 return -ETIMEDOUT; 2656 2657 cadence_nand_set_ecc_strength(cdns_ctrl, 2658 cdns_chip->corr_str_idx); 2659 2660 cadence_nand_set_erase_detection(cdns_ctrl, true, 2661 chip->ecc.strength); 2662 2663 /* Override the default read operations. */ 2664 chip->ecc.read_page = cadence_nand_read_page; 2665 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2666 chip->ecc.write_page = cadence_nand_write_page; 2667 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2668 chip->ecc.read_oob = cadence_nand_read_oob; 2669 chip->ecc.write_oob = cadence_nand_write_oob; 2670 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2671 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2672 2673 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2674 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2675 2676 /* Is 32-bit DMA supported? */ 2677 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2678 if (ret) { 2679 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2680 return ret; 2681 } 2682 2683 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2684 2685 return 0; 2686 } 2687 2688 static const struct nand_controller_ops cadence_nand_controller_ops = { 2689 .attach_chip = cadence_nand_attach_chip, 2690 .exec_op = cadence_nand_exec_op, 2691 .setup_data_interface = cadence_nand_setup_data_interface, 2692 }; 2693 2694 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2695 struct device_node *np) 2696 { 2697 struct cdns_nand_chip *cdns_chip; 2698 struct mtd_info *mtd; 2699 struct nand_chip *chip; 2700 int nsels, ret, i; 2701 u32 cs; 2702 2703 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2704 if (nsels <= 0) { 2705 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2706 return -EINVAL; 2707 } 2708 2709 /* Allocate the nand chip structure. */ 2710 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2711 (nsels * sizeof(u8)), 2712 GFP_KERNEL); 2713 if (!cdns_chip) { 2714 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2715 return -ENOMEM; 2716 } 2717 2718 cdns_chip->nsels = nsels; 2719 2720 for (i = 0; i < nsels; i++) { 2721 /* Retrieve CS id. */ 2722 ret = of_property_read_u32_index(np, "reg", i, &cs); 2723 if (ret) { 2724 dev_err(cdns_ctrl->dev, 2725 "could not retrieve reg property: %d\n", 2726 ret); 2727 return ret; 2728 } 2729 2730 if (cs >= cdns_ctrl->caps2.max_banks) { 2731 dev_err(cdns_ctrl->dev, 2732 "invalid reg value: %u (max CS = %d)\n", 2733 cs, cdns_ctrl->caps2.max_banks); 2734 return -EINVAL; 2735 } 2736 2737 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2738 dev_err(cdns_ctrl->dev, 2739 "CS %d already assigned\n", cs); 2740 return -EINVAL; 2741 } 2742 2743 cdns_chip->cs[i] = cs; 2744 } 2745 2746 chip = &cdns_chip->chip; 2747 chip->controller = &cdns_ctrl->controller; 2748 nand_set_flash_node(chip, np); 2749 2750 mtd = nand_to_mtd(chip); 2751 mtd->dev.parent = cdns_ctrl->dev; 2752 2753 /* 2754 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2755 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2756 */ 2757 chip->ecc.mode = NAND_ECC_HW; 2758 2759 ret = nand_scan(chip, cdns_chip->nsels); 2760 if (ret) { 2761 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2762 return ret; 2763 } 2764 2765 ret = mtd_device_register(mtd, NULL, 0); 2766 if (ret) { 2767 dev_err(cdns_ctrl->dev, 2768 "failed to register mtd device: %d\n", ret); 2769 nand_cleanup(chip); 2770 return ret; 2771 } 2772 2773 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2774 2775 return 0; 2776 } 2777 2778 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2779 { 2780 struct cdns_nand_chip *entry, *temp; 2781 2782 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2783 nand_release(&entry->chip); 2784 list_del(&entry->node); 2785 } 2786 } 2787 2788 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2789 { 2790 struct device_node *np = cdns_ctrl->dev->of_node; 2791 struct device_node *nand_np; 2792 int max_cs = cdns_ctrl->caps2.max_banks; 2793 int nchips, ret; 2794 2795 nchips = of_get_child_count(np); 2796 2797 if (nchips > max_cs) { 2798 dev_err(cdns_ctrl->dev, 2799 "too many NAND chips: %d (max = %d CS)\n", 2800 nchips, max_cs); 2801 return -EINVAL; 2802 } 2803 2804 for_each_child_of_node(np, nand_np) { 2805 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2806 if (ret) { 2807 of_node_put(nand_np); 2808 cadence_nand_chips_cleanup(cdns_ctrl); 2809 return ret; 2810 } 2811 } 2812 2813 return 0; 2814 } 2815 2816 static void 2817 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2818 { 2819 /* Disable interrupts. */ 2820 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2821 } 2822 2823 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2824 { 2825 dma_cap_mask_t mask; 2826 int ret; 2827 2828 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2829 sizeof(*cdns_ctrl->cdma_desc), 2830 &cdns_ctrl->dma_cdma_desc, 2831 GFP_KERNEL); 2832 if (!cdns_ctrl->dma_cdma_desc) 2833 return -ENOMEM; 2834 2835 cdns_ctrl->buf_size = SZ_16K; 2836 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2837 if (!cdns_ctrl->buf) { 2838 ret = -ENOMEM; 2839 goto free_buf_desc; 2840 } 2841 2842 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2843 IRQF_SHARED, "cadence-nand-controller", 2844 cdns_ctrl)) { 2845 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2846 ret = -ENODEV; 2847 goto free_buf; 2848 } 2849 2850 spin_lock_init(&cdns_ctrl->irq_lock); 2851 init_completion(&cdns_ctrl->complete); 2852 2853 ret = cadence_nand_hw_init(cdns_ctrl); 2854 if (ret) 2855 goto disable_irq; 2856 2857 dma_cap_zero(mask); 2858 dma_cap_set(DMA_MEMCPY, mask); 2859 2860 if (cdns_ctrl->caps1->has_dma) { 2861 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2862 if (!cdns_ctrl->dmac) { 2863 dev_err(cdns_ctrl->dev, 2864 "Unable to get a DMA channel\n"); 2865 ret = -EBUSY; 2866 goto disable_irq; 2867 } 2868 } 2869 2870 nand_controller_init(&cdns_ctrl->controller); 2871 INIT_LIST_HEAD(&cdns_ctrl->chips); 2872 2873 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2874 cdns_ctrl->curr_corr_str_idx = 0xFF; 2875 2876 ret = cadence_nand_chips_init(cdns_ctrl); 2877 if (ret) { 2878 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2879 ret); 2880 goto dma_release_chnl; 2881 } 2882 2883 kfree(cdns_ctrl->buf); 2884 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2885 if (!cdns_ctrl->buf) { 2886 ret = -ENOMEM; 2887 goto dma_release_chnl; 2888 } 2889 2890 return 0; 2891 2892 dma_release_chnl: 2893 if (cdns_ctrl->dmac) 2894 dma_release_channel(cdns_ctrl->dmac); 2895 2896 disable_irq: 2897 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2898 2899 free_buf: 2900 kfree(cdns_ctrl->buf); 2901 2902 free_buf_desc: 2903 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2904 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2905 2906 return ret; 2907 } 2908 2909 /* Driver exit point. */ 2910 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2911 { 2912 cadence_nand_chips_cleanup(cdns_ctrl); 2913 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2914 kfree(cdns_ctrl->buf); 2915 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2916 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2917 2918 if (cdns_ctrl->dmac) 2919 dma_release_channel(cdns_ctrl->dmac); 2920 } 2921 2922 struct cadence_nand_dt { 2923 struct cdns_nand_ctrl cdns_ctrl; 2924 struct clk *clk; 2925 }; 2926 2927 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2928 .if_skew = 0, 2929 .has_dma = 1, 2930 }; 2931 2932 static const struct of_device_id cadence_nand_dt_ids[] = { 2933 { 2934 .compatible = "cdns,hp-nfc", 2935 .data = &cadence_nand_default 2936 }, {} 2937 }; 2938 2939 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2940 2941 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2942 { 2943 struct resource *res; 2944 struct cadence_nand_dt *dt; 2945 struct cdns_nand_ctrl *cdns_ctrl; 2946 int ret; 2947 const struct of_device_id *of_id; 2948 const struct cadence_nand_dt_devdata *devdata; 2949 u32 val; 2950 2951 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); 2952 if (of_id) { 2953 ofdev->id_entry = of_id->data; 2954 devdata = of_id->data; 2955 } else { 2956 pr_err("Failed to find the right device id.\n"); 2957 return -ENOMEM; 2958 } 2959 2960 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 2961 if (!dt) 2962 return -ENOMEM; 2963 2964 cdns_ctrl = &dt->cdns_ctrl; 2965 cdns_ctrl->caps1 = devdata; 2966 2967 cdns_ctrl->dev = &ofdev->dev; 2968 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 2969 if (cdns_ctrl->irq < 0) 2970 return cdns_ctrl->irq; 2971 2972 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 2973 2974 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 2975 if (IS_ERR(cdns_ctrl->reg)) { 2976 dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n"); 2977 return PTR_ERR(cdns_ctrl->reg); 2978 } 2979 2980 res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); 2981 cdns_ctrl->io.dma = res->start; 2982 cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); 2983 if (IS_ERR(cdns_ctrl->io.virt)) { 2984 dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n"); 2985 return PTR_ERR(cdns_ctrl->io.virt); 2986 } 2987 2988 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 2989 if (IS_ERR(dt->clk)) 2990 return PTR_ERR(dt->clk); 2991 2992 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 2993 2994 ret = of_property_read_u32(ofdev->dev.of_node, 2995 "cdns,board-delay-ps", &val); 2996 if (ret) { 2997 val = 4830; 2998 dev_info(cdns_ctrl->dev, 2999 "missing cdns,board-delay-ps property, %d was set\n", 3000 val); 3001 } 3002 cdns_ctrl->board_delay = val; 3003 3004 ret = cadence_nand_init(cdns_ctrl); 3005 if (ret) 3006 return ret; 3007 3008 platform_set_drvdata(ofdev, dt); 3009 return 0; 3010 } 3011 3012 static int cadence_nand_dt_remove(struct platform_device *ofdev) 3013 { 3014 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3015 3016 cadence_nand_remove(&dt->cdns_ctrl); 3017 3018 return 0; 3019 } 3020 3021 static struct platform_driver cadence_nand_dt_driver = { 3022 .probe = cadence_nand_dt_probe, 3023 .remove = cadence_nand_dt_remove, 3024 .driver = { 3025 .name = "cadence-nand-controller", 3026 .of_match_table = cadence_nand_dt_ids, 3027 }, 3028 }; 3029 3030 module_platform_driver(cadence_nand_dt_driver); 3031 3032 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3033 MODULE_LICENSE("GPL v2"); 3034 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3035 3036