1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Cadence NAND flash controller driver 4 * 5 * Copyright (C) 2019 Cadence 6 * 7 * Author: Piotr Sroka <piotrs@cadence.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/interrupt.h> 15 #include <linux/module.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/mtd/rawnand.h> 18 #include <linux/of_device.h> 19 #include <linux/iopoll.h> 20 #include <linux/slab.h> 21 22 /* 23 * HPNFC can work in 3 modes: 24 * - PIO - can work in master or slave DMA 25 * - CDMA - needs Master DMA for accessing command descriptors. 26 * - Generic mode - can use only slave DMA. 27 * CDMA and PIO modes can be used to execute only base commands. 28 * Generic mode can be used to execute any command 29 * on NAND flash memory. Driver uses CDMA mode for 30 * block erasing, page reading, page programing. 31 * Generic mode is used for executing rest of commands. 32 */ 33 34 #define MAX_ADDRESS_CYC 6 35 #define MAX_ERASE_ADDRESS_CYC 3 36 #define MAX_DATA_SIZE 0xFFFC 37 #define DMA_DATA_SIZE_ALIGN 8 38 39 /* Register definition. */ 40 /* 41 * Command register 0. 42 * Writing data to this register will initiate a new transaction 43 * of the NF controller. 44 */ 45 #define CMD_REG0 0x0000 46 /* Command type field mask. */ 47 #define CMD_REG0_CT GENMASK(31, 30) 48 /* Command type CDMA. */ 49 #define CMD_REG0_CT_CDMA 0uL 50 /* Command type generic. */ 51 #define CMD_REG0_CT_GEN 3uL 52 /* Command thread number field mask. */ 53 #define CMD_REG0_TN GENMASK(27, 24) 54 55 /* Command register 2. */ 56 #define CMD_REG2 0x0008 57 /* Command register 3. */ 58 #define CMD_REG3 0x000C 59 /* Pointer register to select which thread status will be selected. */ 60 #define CMD_STATUS_PTR 0x0010 61 /* Command status register for selected thread. */ 62 #define CMD_STATUS 0x0014 63 64 /* Interrupt status register. */ 65 #define INTR_STATUS 0x0110 66 #define INTR_STATUS_SDMA_ERR BIT(22) 67 #define INTR_STATUS_SDMA_TRIGG BIT(21) 68 #define INTR_STATUS_UNSUPP_CMD BIT(19) 69 #define INTR_STATUS_DDMA_TERR BIT(18) 70 #define INTR_STATUS_CDMA_TERR BIT(17) 71 #define INTR_STATUS_CDMA_IDL BIT(16) 72 73 /* Interrupt enable register. */ 74 #define INTR_ENABLE 0x0114 75 #define INTR_ENABLE_INTR_EN BIT(31) 76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22) 77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) 78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) 79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18) 80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17) 81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) 82 83 /* Controller internal state. */ 84 #define CTRL_STATUS 0x0118 85 #define CTRL_STATUS_INIT_COMP BIT(9) 86 #define CTRL_STATUS_CTRL_BUSY BIT(8) 87 88 /* Command Engine threads state. */ 89 #define TRD_STATUS 0x0120 90 91 /* Command Engine interrupt thread error status. */ 92 #define TRD_ERR_INT_STATUS 0x0128 93 /* Command Engine interrupt thread error enable. */ 94 #define TRD_ERR_INT_STATUS_EN 0x0130 95 /* Command Engine interrupt thread complete status. */ 96 #define TRD_COMP_INT_STATUS 0x0138 97 98 /* 99 * Transfer config 0 register. 100 * Configures data transfer parameters. 101 */ 102 #define TRAN_CFG_0 0x0400 103 /* Offset value from the beginning of the page. */ 104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16) 105 /* Numbers of sectors to transfer within singlNF device's page. */ 106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) 107 108 /* 109 * Transfer config 1 register. 110 * Configures data transfer parameters. 111 */ 112 #define TRAN_CFG_1 0x0404 113 /* Size of last data sector. */ 114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) 115 /* Size of not-last data sector. */ 116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) 117 118 /* ECC engine configuration register 0. */ 119 #define ECC_CONFIG_0 0x0428 120 /* Correction strength. */ 121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) 122 /* Enable erased pages detection mechanism. */ 123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) 124 /* Enable controller ECC check bits generation and correction. */ 125 #define ECC_CONFIG_0_ECC_EN BIT(0) 126 127 /* ECC engine configuration register 1. */ 128 #define ECC_CONFIG_1 0x042C 129 130 /* Multiplane settings register. */ 131 #define MULTIPLANE_CFG 0x0434 132 /* Cache operation settings. */ 133 #define CACHE_CFG 0x0438 134 135 /* DMA settings register. */ 136 #define DMA_SETINGS 0x043C 137 /* Enable SDMA error report on access unprepared slave DMA interface. */ 138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) 139 140 /* Transferred data block size for the slave DMA module. */ 141 #define SDMA_SIZE 0x0440 142 143 /* Thread number associated with transferred data block 144 * for the slave DMA module. 145 */ 146 #define SDMA_TRD_NUM 0x0444 147 /* Thread number mask. */ 148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) 149 150 #define CONTROL_DATA_CTRL 0x0494 151 /* Thread number mask. */ 152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) 153 154 #define CTRL_VERSION 0x800 155 #define CTRL_VERSION_REV GENMASK(7, 0) 156 157 /* Available hardware features of the controller. */ 158 #define CTRL_FEATURES 0x804 159 /* Support for NV-DDR2/3 work mode. */ 160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28) 161 /* Support for NV-DDR work mode. */ 162 #define CTRL_FEATURES_NVDDR BIT(27) 163 /* Support for asynchronous work mode. */ 164 #define CTRL_FEATURES_ASYNC BIT(26) 165 /* Support for asynchronous work mode. */ 166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) 167 /* Slave and Master DMA data width. */ 168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21) 169 /* Availability of Control Data feature.*/ 170 #define CTRL_FEATURES_CONTROL_DATA BIT(10) 171 172 /* BCH Engine identification register 0 - correction strengths. */ 173 #define BCH_CFG_0 0x838 174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) 175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) 176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) 177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) 178 179 /* BCH Engine identification register 1 - correction strengths. */ 180 #define BCH_CFG_1 0x83C 181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) 182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) 183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) 184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) 185 186 /* BCH Engine identification register 2 - sector sizes. */ 187 #define BCH_CFG_2 0x840 188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) 189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16) 190 191 /* BCH Engine identification register 3. */ 192 #define BCH_CFG_3 0x844 193 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) 194 195 /* Ready/Busy# line status. */ 196 #define RBN_SETINGS 0x1004 197 198 /* Common settings. */ 199 #define COMMON_SET 0x1008 200 /* 16 bit device connected to the NAND Flash interface. */ 201 #define COMMON_SET_DEVICE_16BIT BIT(8) 202 203 /* Skip_bytes registers. */ 204 #define SKIP_BYTES_CONF 0x100C 205 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) 206 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) 207 208 #define SKIP_BYTES_OFFSET 0x1010 209 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) 210 211 /* Timings configuration. */ 212 #define ASYNC_TOGGLE_TIMINGS 0x101c 213 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) 214 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) 215 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) 216 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) 217 218 #define TIMINGS0 0x1024 219 #define TIMINGS0_TADL GENMASK(31, 24) 220 #define TIMINGS0_TCCS GENMASK(23, 16) 221 #define TIMINGS0_TWHR GENMASK(15, 8) 222 #define TIMINGS0_TRHW GENMASK(7, 0) 223 224 #define TIMINGS1 0x1028 225 #define TIMINGS1_TRHZ GENMASK(31, 24) 226 #define TIMINGS1_TWB GENMASK(23, 16) 227 #define TIMINGS1_TVDLY GENMASK(7, 0) 228 229 #define TIMINGS2 0x102c 230 #define TIMINGS2_TFEAT GENMASK(25, 16) 231 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) 232 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) 233 234 /* Configuration of the resynchronization of slave DLL of PHY. */ 235 #define DLL_PHY_CTRL 0x1034 236 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) 237 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) 238 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) 239 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) 240 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) 241 242 /* Register controlling DQ related timing. */ 243 #define PHY_DQ_TIMING 0x2000 244 /* Register controlling DSQ related timing. */ 245 #define PHY_DQS_TIMING 0x2004 246 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) 247 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) 248 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) 249 250 /* Register controlling the gate and loopback control related timing. */ 251 #define PHY_GATE_LPBK_CTRL 0x2008 252 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) 253 254 /* Register holds the control for the master DLL logic. */ 255 #define PHY_DLL_MASTER_CTRL 0x200C 256 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) 257 258 /* Register holds the control for the slave DLL logic. */ 259 #define PHY_DLL_SLAVE_CTRL 0x2010 260 261 /* This register handles the global control settings for the PHY. */ 262 #define PHY_CTRL 0x2080 263 #define PHY_CTRL_SDR_DQS BIT(14) 264 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) 265 266 /* 267 * This register handles the global control settings 268 * for the termination selects for reads. 269 */ 270 #define PHY_TSEL 0x2084 271 272 /* Generic command layout. */ 273 #define GCMD_LAY_CS GENMASK_ULL(11, 8) 274 /* 275 * This bit informs the minicotroller if it has to wait for tWB 276 * after sending the last CMD/ADDR/DATA in the sequence. 277 */ 278 #define GCMD_LAY_TWB BIT_ULL(6) 279 /* Type of generic instruction. */ 280 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) 281 282 /* Generic CMD sequence type. */ 283 #define GCMD_LAY_INSTR_CMD 0 284 /* Generic ADDR sequence type. */ 285 #define GCMD_LAY_INSTR_ADDR 1 286 /* Generic data transfer sequence type. */ 287 #define GCMD_LAY_INSTR_DATA 2 288 289 /* Input part of generic command type of input is command. */ 290 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) 291 292 /* Generic command address sequence - address fields. */ 293 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) 294 /* Generic command address sequence - address size. */ 295 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) 296 297 /* Transfer direction field of generic command data sequence. */ 298 #define GCMD_DIR BIT_ULL(11) 299 /* Read transfer direction of generic command data sequence. */ 300 #define GCMD_DIR_READ 0 301 /* Write transfer direction of generic command data sequence. */ 302 #define GCMD_DIR_WRITE 1 303 304 /* ECC enabled flag of generic command data sequence - ECC enabled. */ 305 #define GCMD_ECC_EN BIT_ULL(12) 306 /* Generic command data sequence - sector size. */ 307 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) 308 /* Generic command data sequence - sector count. */ 309 #define GCMD_SECT_CNT GENMASK_ULL(39, 32) 310 /* Generic command data sequence - last sector size. */ 311 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) 312 313 /* CDMA descriptor fields. */ 314 /* Erase command type of CDMA descriptor. */ 315 #define CDMA_CT_ERASE 0x1000 316 /* Program page command type of CDMA descriptor. */ 317 #define CDMA_CT_WR 0x2100 318 /* Read page command type of CDMA descriptor. */ 319 #define CDMA_CT_RD 0x2200 320 321 /* Flash pointer memory shift. */ 322 #define CDMA_CFPTR_MEM_SHIFT 24 323 /* Flash pointer memory mask. */ 324 #define CDMA_CFPTR_MEM GENMASK(26, 24) 325 326 /* 327 * Command DMA descriptor flags. If set causes issue interrupt after 328 * the completion of descriptor processing. 329 */ 330 #define CDMA_CF_INT BIT(8) 331 /* 332 * Command DMA descriptor flags - the next descriptor 333 * address field is valid and descriptor processing should continue. 334 */ 335 #define CDMA_CF_CONT BIT(9) 336 /* DMA master flag of command DMA descriptor. */ 337 #define CDMA_CF_DMA_MASTER BIT(10) 338 339 /* Operation complete status of command descriptor. */ 340 #define CDMA_CS_COMP BIT(15) 341 /* Operation complete status of command descriptor. */ 342 /* Command descriptor status - operation fail. */ 343 #define CDMA_CS_FAIL BIT(14) 344 /* Command descriptor status - page erased. */ 345 #define CDMA_CS_ERP BIT(11) 346 /* Command descriptor status - timeout occurred. */ 347 #define CDMA_CS_TOUT BIT(10) 348 /* 349 * Maximum amount of correction applied to one ECC sector. 350 * It is part of command descriptor status. 351 */ 352 #define CDMA_CS_MAXERR GENMASK(9, 2) 353 /* Command descriptor status - uncorrectable ECC error. */ 354 #define CDMA_CS_UNCE BIT(1) 355 /* Command descriptor status - descriptor error. */ 356 #define CDMA_CS_ERR BIT(0) 357 358 /* Status of operation - OK. */ 359 #define STAT_OK 0 360 /* Status of operation - FAIL. */ 361 #define STAT_FAIL 2 362 /* Status of operation - uncorrectable ECC error. */ 363 #define STAT_ECC_UNCORR 3 364 /* Status of operation - page erased. */ 365 #define STAT_ERASED 5 366 /* Status of operation - correctable ECC error. */ 367 #define STAT_ECC_CORR 6 368 /* Status of operation - unsuspected state. */ 369 #define STAT_UNKNOWN 7 370 /* Status of operation - operation is not completed yet. */ 371 #define STAT_BUSY 0xFF 372 373 #define BCH_MAX_NUM_CORR_CAPS 8 374 #define BCH_MAX_NUM_SECTOR_SIZES 2 375 376 struct cadence_nand_timings { 377 u32 async_toggle_timings; 378 u32 timings0; 379 u32 timings1; 380 u32 timings2; 381 u32 dll_phy_ctrl; 382 u32 phy_ctrl; 383 u32 phy_dqs_timing; 384 u32 phy_gate_lpbk_ctrl; 385 }; 386 387 /* Command DMA descriptor. */ 388 struct cadence_nand_cdma_desc { 389 /* Next descriptor address. */ 390 u64 next_pointer; 391 392 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ 393 u32 flash_pointer; 394 /*field appears in HPNFC version 13*/ 395 u16 bank; 396 u16 rsvd0; 397 398 /* Operation the controller needs to perform. */ 399 u16 command_type; 400 u16 rsvd1; 401 /* Flags for operation of this command. */ 402 u16 command_flags; 403 u16 rsvd2; 404 405 /* System/host memory address required for data DMA commands. */ 406 u64 memory_pointer; 407 408 /* Status of operation. */ 409 u32 status; 410 u32 rsvd3; 411 412 /* Address pointer to sync buffer location. */ 413 u64 sync_flag_pointer; 414 415 /* Controls the buffer sync mechanism. */ 416 u32 sync_arguments; 417 u32 rsvd4; 418 419 /* Control data pointer. */ 420 u64 ctrl_data_ptr; 421 }; 422 423 /* Interrupt status. */ 424 struct cadence_nand_irq_status { 425 /* Thread operation complete status. */ 426 u32 trd_status; 427 /* Thread operation error. */ 428 u32 trd_error; 429 /* Controller status. */ 430 u32 status; 431 }; 432 433 /* Cadence NAND flash controller capabilities get from driver data. */ 434 struct cadence_nand_dt_devdata { 435 /* Skew value of the output signals of the NAND Flash interface. */ 436 u32 if_skew; 437 /* It informs if slave DMA interface is connected to DMA engine. */ 438 unsigned int has_dma:1; 439 }; 440 441 /* Cadence NAND flash controller capabilities read from registers. */ 442 struct cdns_nand_caps { 443 /* Maximum number of banks supported by hardware. */ 444 u8 max_banks; 445 /* Slave and Master DMA data width in bytes (4 or 8). */ 446 u8 data_dma_width; 447 /* Control Data feature supported. */ 448 bool data_control_supp; 449 /* Is PHY type DLL. */ 450 bool is_phy_type_dll; 451 }; 452 453 struct cdns_nand_ctrl { 454 struct device *dev; 455 struct nand_controller controller; 456 struct cadence_nand_cdma_desc *cdma_desc; 457 /* IP capability. */ 458 const struct cadence_nand_dt_devdata *caps1; 459 struct cdns_nand_caps caps2; 460 u8 ctrl_rev; 461 dma_addr_t dma_cdma_desc; 462 u8 *buf; 463 u32 buf_size; 464 u8 curr_corr_str_idx; 465 466 /* Register interface. */ 467 void __iomem *reg; 468 469 struct { 470 void __iomem *virt; 471 dma_addr_t dma; 472 } io; 473 474 int irq; 475 /* Interrupts that have happened. */ 476 struct cadence_nand_irq_status irq_status; 477 /* Interrupts we are waiting for. */ 478 struct cadence_nand_irq_status irq_mask; 479 struct completion complete; 480 /* Protect irq_mask and irq_status. */ 481 spinlock_t irq_lock; 482 483 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; 484 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; 485 struct nand_ecc_caps ecc_caps; 486 487 int curr_trans_type; 488 489 struct dma_chan *dmac; 490 491 u32 nf_clk_rate; 492 /* 493 * Estimated Board delay. The value includes the total 494 * round trip delay for the signals and is used for deciding on values 495 * associated with data read capture. 496 */ 497 u32 board_delay; 498 499 struct nand_chip *selected_chip; 500 501 unsigned long assigned_cs; 502 struct list_head chips; 503 u8 bch_metadata_size; 504 }; 505 506 struct cdns_nand_chip { 507 struct cadence_nand_timings timings; 508 struct nand_chip chip; 509 u8 nsels; 510 struct list_head node; 511 512 /* 513 * part of oob area of NAND flash memory page. 514 * This part is available for user to read or write. 515 */ 516 u32 avail_oob_size; 517 518 /* Sector size. There are few sectors per mtd->writesize */ 519 u32 sector_size; 520 u32 sector_count; 521 522 /* Offset of BBM. */ 523 u8 bbm_offs; 524 /* Number of bytes reserved for BBM. */ 525 u8 bbm_len; 526 /* ECC strength index. */ 527 u8 corr_str_idx; 528 529 u8 cs[]; 530 }; 531 532 struct ecc_info { 533 int (*calc_ecc_bytes)(int step_size, int strength); 534 int max_step_size; 535 }; 536 537 static inline struct 538 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) 539 { 540 return container_of(chip, struct cdns_nand_chip, chip); 541 } 542 543 static inline struct 544 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) 545 { 546 return container_of(controller, struct cdns_nand_ctrl, controller); 547 } 548 549 static bool 550 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, 551 u32 buf_len) 552 { 553 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; 554 555 return buf && virt_addr_valid(buf) && 556 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && 557 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); 558 } 559 560 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, 561 u32 reg_offset, u32 timeout_us, 562 u32 mask, bool is_clear) 563 { 564 u32 val; 565 int ret; 566 567 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, 568 val, !(val & mask) == is_clear, 569 10, timeout_us); 570 571 if (ret < 0) { 572 dev_err(cdns_ctrl->dev, 573 "Timeout while waiting for reg %x with mask %x is clear %d\n", 574 reg_offset, mask, is_clear); 575 } 576 577 return ret; 578 } 579 580 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, 581 bool enable) 582 { 583 u32 reg; 584 585 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 586 1000000, 587 CTRL_STATUS_CTRL_BUSY, true)) 588 return -ETIMEDOUT; 589 590 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 591 592 if (enable) 593 reg |= ECC_CONFIG_0_ECC_EN; 594 else 595 reg &= ~ECC_CONFIG_0_ECC_EN; 596 597 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 598 599 return 0; 600 } 601 602 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, 603 u8 corr_str_idx) 604 { 605 u32 reg; 606 607 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) 608 return; 609 610 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 611 reg &= ~ECC_CONFIG_0_CORR_STR; 612 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); 613 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 614 615 cdns_ctrl->curr_corr_str_idx = corr_str_idx; 616 } 617 618 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, 619 u8 strength) 620 { 621 int i, corr_str_idx = -1; 622 623 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 624 if (cdns_ctrl->ecc_strengths[i] == strength) { 625 corr_str_idx = i; 626 break; 627 } 628 } 629 630 return corr_str_idx; 631 } 632 633 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, 634 u16 marker_value) 635 { 636 u32 reg; 637 638 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 639 1000000, 640 CTRL_STATUS_CTRL_BUSY, true)) 641 return -ETIMEDOUT; 642 643 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 644 reg &= ~SKIP_BYTES_MARKER_VALUE; 645 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, 646 marker_value); 647 648 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 649 650 return 0; 651 } 652 653 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, 654 u8 num_of_bytes, 655 u32 offset_value, 656 int enable) 657 { 658 u32 reg, skip_bytes_offset; 659 660 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 661 1000000, 662 CTRL_STATUS_CTRL_BUSY, true)) 663 return -ETIMEDOUT; 664 665 if (!enable) { 666 num_of_bytes = 0; 667 offset_value = 0; 668 } 669 670 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); 671 reg &= ~SKIP_BYTES_NUM_OF_BYTES; 672 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, 673 num_of_bytes); 674 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, 675 offset_value); 676 677 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); 678 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); 679 680 return 0; 681 } 682 683 /* Functions enables/disables hardware detection of erased data */ 684 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, 685 bool enable, 686 u8 bitflips_threshold) 687 { 688 u32 reg; 689 690 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); 691 692 if (enable) 693 reg |= ECC_CONFIG_0_ERASE_DET_EN; 694 else 695 reg &= ~ECC_CONFIG_0_ERASE_DET_EN; 696 697 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); 698 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); 699 } 700 701 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, 702 bool bit_bus16) 703 { 704 u32 reg; 705 706 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 707 1000000, 708 CTRL_STATUS_CTRL_BUSY, true)) 709 return -ETIMEDOUT; 710 711 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); 712 713 if (!bit_bus16) 714 reg &= ~COMMON_SET_DEVICE_16BIT; 715 else 716 reg |= COMMON_SET_DEVICE_16BIT; 717 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); 718 719 return 0; 720 } 721 722 static void 723 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, 724 struct cadence_nand_irq_status *irq_status) 725 { 726 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); 727 writel_relaxed(irq_status->trd_status, 728 cdns_ctrl->reg + TRD_COMP_INT_STATUS); 729 writel_relaxed(irq_status->trd_error, 730 cdns_ctrl->reg + TRD_ERR_INT_STATUS); 731 } 732 733 static void 734 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, 735 struct cadence_nand_irq_status *irq_status) 736 { 737 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); 738 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg 739 + TRD_COMP_INT_STATUS); 740 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg 741 + TRD_ERR_INT_STATUS); 742 } 743 744 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, 745 struct cadence_nand_irq_status *irq_status) 746 { 747 cadence_nand_read_int_status(cdns_ctrl, irq_status); 748 749 return irq_status->status || irq_status->trd_status || 750 irq_status->trd_error; 751 } 752 753 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) 754 { 755 unsigned long flags; 756 757 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); 758 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); 759 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); 760 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); 761 } 762 763 /* 764 * This is the interrupt service routine. It handles all interrupts 765 * sent to this device. 766 */ 767 static irqreturn_t cadence_nand_isr(int irq, void *dev_id) 768 { 769 struct cdns_nand_ctrl *cdns_ctrl = dev_id; 770 struct cadence_nand_irq_status irq_status; 771 irqreturn_t result = IRQ_NONE; 772 773 spin_lock(&cdns_ctrl->irq_lock); 774 775 if (irq_detected(cdns_ctrl, &irq_status)) { 776 /* Handle interrupt. */ 777 /* First acknowledge it. */ 778 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); 779 /* Status in the device context for someone to read. */ 780 cdns_ctrl->irq_status.status |= irq_status.status; 781 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; 782 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; 783 /* Notify anyone who cares that it happened. */ 784 complete(&cdns_ctrl->complete); 785 /* Tell the OS that we've handled this. */ 786 result = IRQ_HANDLED; 787 } 788 spin_unlock(&cdns_ctrl->irq_lock); 789 790 return result; 791 } 792 793 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, 794 struct cadence_nand_irq_status *irq_mask) 795 { 796 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, 797 cdns_ctrl->reg + INTR_ENABLE); 798 799 writel_relaxed(irq_mask->trd_error, 800 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); 801 } 802 803 static void 804 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, 805 struct cadence_nand_irq_status *irq_mask, 806 struct cadence_nand_irq_status *irq_status) 807 { 808 unsigned long timeout = msecs_to_jiffies(10000); 809 unsigned long time_left; 810 811 time_left = wait_for_completion_timeout(&cdns_ctrl->complete, 812 timeout); 813 814 *irq_status = cdns_ctrl->irq_status; 815 if (time_left == 0) { 816 /* Timeout error. */ 817 dev_err(cdns_ctrl->dev, "timeout occurred:\n"); 818 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", 819 irq_status->status, irq_mask->status); 820 dev_err(cdns_ctrl->dev, 821 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", 822 irq_status->trd_status, irq_mask->trd_status); 823 dev_err(cdns_ctrl->dev, 824 "\t trd_error = 0x%x, trd_error mask = 0x%x\n", 825 irq_status->trd_error, irq_mask->trd_error); 826 } 827 } 828 829 /* Execute generic command on NAND controller. */ 830 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, 831 u8 chip_nr, 832 u64 mini_ctrl_cmd) 833 { 834 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; 835 836 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); 837 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; 838 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; 839 840 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 841 1000000, 842 CTRL_STATUS_CTRL_BUSY, true)) 843 return -ETIMEDOUT; 844 845 cadence_nand_reset_irq(cdns_ctrl); 846 847 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); 848 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); 849 850 /* Select generic command. */ 851 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); 852 /* Thread number. */ 853 reg |= FIELD_PREP(CMD_REG0_TN, 0); 854 855 /* Issue command. */ 856 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 857 858 return 0; 859 } 860 861 /* Wait for data on slave DMA interface. */ 862 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, 863 u8 *out_sdma_trd, 864 u32 *out_sdma_size) 865 { 866 struct cadence_nand_irq_status irq_mask, irq_status; 867 868 irq_mask.trd_status = 0; 869 irq_mask.trd_error = 0; 870 irq_mask.status = INTR_STATUS_SDMA_TRIGG 871 | INTR_STATUS_SDMA_ERR 872 | INTR_STATUS_UNSUPP_CMD; 873 874 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 875 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 876 if (irq_status.status == 0) { 877 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); 878 return -ETIMEDOUT; 879 } 880 881 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { 882 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); 883 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); 884 *out_sdma_trd = 885 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); 886 } else { 887 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", 888 irq_status.status); 889 return -EIO; 890 } 891 892 return 0; 893 } 894 895 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) 896 { 897 u32 reg; 898 899 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); 900 901 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); 902 903 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) 904 cdns_ctrl->caps2.data_dma_width = 8; 905 else 906 cdns_ctrl->caps2.data_dma_width = 4; 907 908 if (reg & CTRL_FEATURES_CONTROL_DATA) 909 cdns_ctrl->caps2.data_control_supp = true; 910 911 if (reg & (CTRL_FEATURES_NVDDR_2_3 912 | CTRL_FEATURES_NVDDR)) 913 cdns_ctrl->caps2.is_phy_type_dll = true; 914 } 915 916 /* Prepare CDMA descriptor. */ 917 static void 918 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, 919 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, 920 dma_addr_t ctrl_data_ptr, u16 ctype) 921 { 922 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; 923 924 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); 925 926 /* Set fields for one descriptor. */ 927 cdma_desc->flash_pointer = flash_ptr; 928 if (cdns_ctrl->ctrl_rev >= 13) 929 cdma_desc->bank = nf_mem; 930 else 931 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); 932 933 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; 934 cdma_desc->command_flags |= CDMA_CF_INT; 935 936 cdma_desc->memory_pointer = mem_ptr; 937 cdma_desc->status = 0; 938 cdma_desc->sync_flag_pointer = 0; 939 cdma_desc->sync_arguments = 0; 940 941 cdma_desc->command_type = ctype; 942 cdma_desc->ctrl_data_ptr = ctrl_data_ptr; 943 } 944 945 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, 946 u32 desc_status) 947 { 948 if (desc_status & CDMA_CS_ERP) 949 return STAT_ERASED; 950 951 if (desc_status & CDMA_CS_UNCE) 952 return STAT_ECC_UNCORR; 953 954 if (desc_status & CDMA_CS_ERR) { 955 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); 956 return STAT_FAIL; 957 } 958 959 if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) 960 return STAT_ECC_CORR; 961 962 return STAT_FAIL; 963 } 964 965 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) 966 { 967 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; 968 u8 status = STAT_BUSY; 969 970 if (desc_ptr->status & CDMA_CS_FAIL) { 971 status = cadence_nand_check_desc_error(cdns_ctrl, 972 desc_ptr->status); 973 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); 974 } else if (desc_ptr->status & CDMA_CS_COMP) { 975 /* Descriptor finished with no errors. */ 976 if (desc_ptr->command_flags & CDMA_CF_CONT) { 977 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); 978 status = STAT_UNKNOWN; 979 } else { 980 /* Last descriptor. */ 981 status = STAT_OK; 982 } 983 } 984 985 return status; 986 } 987 988 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, 989 u8 thread) 990 { 991 u32 reg; 992 int status; 993 994 /* Wait for thread ready. */ 995 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 996 1000000, 997 BIT(thread), true); 998 if (status) 999 return status; 1000 1001 cadence_nand_reset_irq(cdns_ctrl); 1002 reinit_completion(&cdns_ctrl->complete); 1003 1004 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, 1005 cdns_ctrl->reg + CMD_REG2); 1006 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); 1007 1008 /* Select CDMA mode. */ 1009 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); 1010 /* Thread number. */ 1011 reg |= FIELD_PREP(CMD_REG0_TN, thread); 1012 /* Issue command. */ 1013 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); 1014 1015 return 0; 1016 } 1017 1018 /* Send SDMA command and wait for finish. */ 1019 static u32 1020 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, 1021 u8 thread) 1022 { 1023 struct cadence_nand_irq_status irq_mask, irq_status = {0}; 1024 int status; 1025 1026 irq_mask.trd_status = BIT(thread); 1027 irq_mask.trd_error = BIT(thread); 1028 irq_mask.status = INTR_STATUS_CDMA_TERR; 1029 1030 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); 1031 1032 status = cadence_nand_cdma_send(cdns_ctrl, thread); 1033 if (status) 1034 return status; 1035 1036 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); 1037 1038 if (irq_status.status == 0 && irq_status.trd_status == 0 && 1039 irq_status.trd_error == 0) { 1040 dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); 1041 return -ETIMEDOUT; 1042 } 1043 if (irq_status.status & irq_mask.status) { 1044 dev_err(cdns_ctrl->dev, "CDMA command failed\n"); 1045 return -EIO; 1046 } 1047 1048 return 0; 1049 } 1050 1051 /* 1052 * ECC size depends on configured ECC strength and on maximum supported 1053 * ECC step size. 1054 */ 1055 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) 1056 { 1057 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); 1058 1059 return ALIGN(nbytes, 2); 1060 } 1061 1062 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ 1063 static int \ 1064 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ 1065 int strength)\ 1066 {\ 1067 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ 1068 } 1069 1070 CADENCE_NAND_CALC_ECC_BYTES(256) 1071 CADENCE_NAND_CALC_ECC_BYTES(512) 1072 CADENCE_NAND_CALC_ECC_BYTES(1024) 1073 CADENCE_NAND_CALC_ECC_BYTES(2048) 1074 CADENCE_NAND_CALC_ECC_BYTES(4096) 1075 1076 /* Function reads BCH capabilities. */ 1077 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) 1078 { 1079 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; 1080 int max_step_size = 0, nstrengths, i; 1081 u32 reg; 1082 1083 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); 1084 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); 1085 if (cdns_ctrl->bch_metadata_size < 4) { 1086 dev_err(cdns_ctrl->dev, 1087 "Driver needs at least 4 bytes of BCH meta data\n"); 1088 return -EIO; 1089 } 1090 1091 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); 1092 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); 1093 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); 1094 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); 1095 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); 1096 1097 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); 1098 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); 1099 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); 1100 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); 1101 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); 1102 1103 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); 1104 cdns_ctrl->ecc_stepinfos[0].stepsize = 1105 FIELD_GET(BCH_CFG_2_SECT_0, reg); 1106 1107 cdns_ctrl->ecc_stepinfos[1].stepsize = 1108 FIELD_GET(BCH_CFG_2_SECT_1, reg); 1109 1110 nstrengths = 0; 1111 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { 1112 if (cdns_ctrl->ecc_strengths[i] != 0) 1113 nstrengths++; 1114 } 1115 1116 ecc_caps->nstepinfos = 0; 1117 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { 1118 /* ECC strengths are common for all step infos. */ 1119 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; 1120 cdns_ctrl->ecc_stepinfos[i].strengths = 1121 cdns_ctrl->ecc_strengths; 1122 1123 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) 1124 ecc_caps->nstepinfos++; 1125 1126 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) 1127 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; 1128 } 1129 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; 1130 1131 switch (max_step_size) { 1132 case 256: 1133 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; 1134 break; 1135 case 512: 1136 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; 1137 break; 1138 case 1024: 1139 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; 1140 break; 1141 case 2048: 1142 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; 1143 break; 1144 case 4096: 1145 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; 1146 break; 1147 default: 1148 dev_err(cdns_ctrl->dev, 1149 "Unsupported sector size(ecc step size) %d\n", 1150 max_step_size); 1151 return -EIO; 1152 } 1153 1154 return 0; 1155 } 1156 1157 /* Hardware initialization. */ 1158 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) 1159 { 1160 int status; 1161 u32 reg; 1162 1163 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1164 1000000, 1165 CTRL_STATUS_INIT_COMP, false); 1166 if (status) 1167 return status; 1168 1169 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); 1170 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); 1171 1172 dev_info(cdns_ctrl->dev, 1173 "%s: cadence nand controller version reg %x\n", 1174 __func__, reg); 1175 1176 /* Disable cache and multiplane. */ 1177 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); 1178 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); 1179 1180 /* Clear all interrupts. */ 1181 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); 1182 1183 cadence_nand_get_caps(cdns_ctrl); 1184 if (cadence_nand_read_bch_caps(cdns_ctrl)) 1185 return -EIO; 1186 1187 /* 1188 * Set IO width access to 8. 1189 * It is because during SW device discovering width access 1190 * is expected to be 8. 1191 */ 1192 status = cadence_nand_set_access_width16(cdns_ctrl, false); 1193 1194 return status; 1195 } 1196 1197 #define TT_MAIN_OOB_AREAS 2 1198 #define TT_RAW_PAGE 3 1199 #define TT_BBM 4 1200 #define TT_MAIN_OOB_AREA_EXT 5 1201 1202 /* Prepare size of data to transfer. */ 1203 static void 1204 cadence_nand_prepare_data_size(struct nand_chip *chip, 1205 int transfer_type) 1206 { 1207 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1208 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1209 struct mtd_info *mtd = nand_to_mtd(chip); 1210 u32 sec_size = 0, offset = 0, sec_cnt = 1; 1211 u32 last_sec_size = cdns_chip->sector_size; 1212 u32 data_ctrl_size = 0; 1213 u32 reg = 0; 1214 1215 if (cdns_ctrl->curr_trans_type == transfer_type) 1216 return; 1217 1218 switch (transfer_type) { 1219 case TT_MAIN_OOB_AREA_EXT: 1220 sec_cnt = cdns_chip->sector_count; 1221 sec_size = cdns_chip->sector_size; 1222 data_ctrl_size = cdns_chip->avail_oob_size; 1223 break; 1224 case TT_MAIN_OOB_AREAS: 1225 sec_cnt = cdns_chip->sector_count; 1226 last_sec_size = cdns_chip->sector_size 1227 + cdns_chip->avail_oob_size; 1228 sec_size = cdns_chip->sector_size; 1229 break; 1230 case TT_RAW_PAGE: 1231 last_sec_size = mtd->writesize + mtd->oobsize; 1232 break; 1233 case TT_BBM: 1234 offset = mtd->writesize + cdns_chip->bbm_offs; 1235 last_sec_size = 8; 1236 break; 1237 } 1238 1239 reg = 0; 1240 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); 1241 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); 1242 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); 1243 1244 reg = 0; 1245 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); 1246 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); 1247 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); 1248 1249 if (cdns_ctrl->caps2.data_control_supp) { 1250 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); 1251 reg &= ~CONTROL_DATA_CTRL_SIZE; 1252 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); 1253 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); 1254 } 1255 1256 cdns_ctrl->curr_trans_type = transfer_type; 1257 } 1258 1259 static int 1260 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, 1261 int page, void *buf, void *ctrl_dat, u32 buf_size, 1262 u32 ctrl_dat_size, enum dma_data_direction dir, 1263 bool with_ecc) 1264 { 1265 dma_addr_t dma_buf, dma_ctrl_dat = 0; 1266 u8 thread_nr = chip_nr; 1267 int status; 1268 u16 ctype; 1269 1270 if (dir == DMA_FROM_DEVICE) 1271 ctype = CDMA_CT_RD; 1272 else 1273 ctype = CDMA_CT_WR; 1274 1275 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); 1276 1277 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); 1278 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { 1279 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1280 return -EIO; 1281 } 1282 1283 if (ctrl_dat && ctrl_dat_size) { 1284 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, 1285 ctrl_dat_size, dir); 1286 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { 1287 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1288 buf_size, dir); 1289 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1290 return -EIO; 1291 } 1292 } 1293 1294 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, 1295 dma_buf, dma_ctrl_dat, ctype); 1296 1297 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1298 1299 dma_unmap_single(cdns_ctrl->dev, dma_buf, 1300 buf_size, dir); 1301 1302 if (ctrl_dat && ctrl_dat_size) 1303 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, 1304 ctrl_dat_size, dir); 1305 if (status) 1306 return status; 1307 1308 return cadence_nand_cdma_finish(cdns_ctrl); 1309 } 1310 1311 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, 1312 struct cadence_nand_timings *t) 1313 { 1314 writel_relaxed(t->async_toggle_timings, 1315 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); 1316 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); 1317 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); 1318 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); 1319 1320 if (cdns_ctrl->caps2.is_phy_type_dll) 1321 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); 1322 1323 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); 1324 1325 if (cdns_ctrl->caps2.is_phy_type_dll) { 1326 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); 1327 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); 1328 writel_relaxed(t->phy_dqs_timing, 1329 cdns_ctrl->reg + PHY_DQS_TIMING); 1330 writel_relaxed(t->phy_gate_lpbk_ctrl, 1331 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); 1332 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, 1333 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); 1334 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); 1335 } 1336 } 1337 1338 static int cadence_nand_select_target(struct nand_chip *chip) 1339 { 1340 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1341 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1342 1343 if (chip == cdns_ctrl->selected_chip) 1344 return 0; 1345 1346 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1347 1000000, 1348 CTRL_STATUS_CTRL_BUSY, true)) 1349 return -ETIMEDOUT; 1350 1351 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); 1352 1353 cadence_nand_set_ecc_strength(cdns_ctrl, 1354 cdns_chip->corr_str_idx); 1355 1356 cadence_nand_set_erase_detection(cdns_ctrl, true, 1357 chip->ecc.strength); 1358 1359 cdns_ctrl->curr_trans_type = -1; 1360 cdns_ctrl->selected_chip = chip; 1361 1362 return 0; 1363 } 1364 1365 static int cadence_nand_erase(struct nand_chip *chip, u32 page) 1366 { 1367 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1368 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1369 int status; 1370 u8 thread_nr = cdns_chip->cs[chip->cur_cs]; 1371 1372 cadence_nand_cdma_desc_prepare(cdns_ctrl, 1373 cdns_chip->cs[chip->cur_cs], 1374 page, 0, 0, 1375 CDMA_CT_ERASE); 1376 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); 1377 if (status) { 1378 dev_err(cdns_ctrl->dev, "erase operation failed\n"); 1379 return -EIO; 1380 } 1381 1382 status = cadence_nand_cdma_finish(cdns_ctrl); 1383 if (status) 1384 return status; 1385 1386 return 0; 1387 } 1388 1389 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) 1390 { 1391 int status; 1392 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1393 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1394 struct mtd_info *mtd = nand_to_mtd(chip); 1395 1396 cadence_nand_prepare_data_size(chip, TT_BBM); 1397 1398 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1399 1400 /* 1401 * Read only bad block marker from offset 1402 * defined by a memory manufacturer. 1403 */ 1404 status = cadence_nand_cdma_transfer(cdns_ctrl, 1405 cdns_chip->cs[chip->cur_cs], 1406 page, cdns_ctrl->buf, NULL, 1407 mtd->oobsize, 1408 0, DMA_FROM_DEVICE, false); 1409 if (status) { 1410 dev_err(cdns_ctrl->dev, "read BBM failed\n"); 1411 return -EIO; 1412 } 1413 1414 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); 1415 1416 return 0; 1417 } 1418 1419 static int cadence_nand_write_page(struct nand_chip *chip, 1420 const u8 *buf, int oob_required, 1421 int page) 1422 { 1423 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1424 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1425 struct mtd_info *mtd = nand_to_mtd(chip); 1426 int status; 1427 u16 marker_val = 0xFFFF; 1428 1429 status = cadence_nand_select_target(chip); 1430 if (status) 1431 return status; 1432 1433 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1434 mtd->writesize 1435 + cdns_chip->bbm_offs, 1436 1); 1437 1438 if (oob_required) { 1439 marker_val = *(u16 *)(chip->oob_poi 1440 + cdns_chip->bbm_offs); 1441 } else { 1442 /* Set oob data to 0xFF. */ 1443 memset(cdns_ctrl->buf + mtd->writesize, 0xFF, 1444 cdns_chip->avail_oob_size); 1445 } 1446 1447 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); 1448 1449 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1450 1451 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1452 cdns_ctrl->caps2.data_control_supp) { 1453 u8 *oob; 1454 1455 if (oob_required) 1456 oob = chip->oob_poi; 1457 else 1458 oob = cdns_ctrl->buf + mtd->writesize; 1459 1460 status = cadence_nand_cdma_transfer(cdns_ctrl, 1461 cdns_chip->cs[chip->cur_cs], 1462 page, (void *)buf, oob, 1463 mtd->writesize, 1464 cdns_chip->avail_oob_size, 1465 DMA_TO_DEVICE, true); 1466 if (status) { 1467 dev_err(cdns_ctrl->dev, "write page failed\n"); 1468 return -EIO; 1469 } 1470 1471 return 0; 1472 } 1473 1474 if (oob_required) { 1475 /* Transfer the data to the oob area. */ 1476 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, 1477 cdns_chip->avail_oob_size); 1478 } 1479 1480 memcpy(cdns_ctrl->buf, buf, mtd->writesize); 1481 1482 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1483 1484 return cadence_nand_cdma_transfer(cdns_ctrl, 1485 cdns_chip->cs[chip->cur_cs], 1486 page, cdns_ctrl->buf, NULL, 1487 mtd->writesize 1488 + cdns_chip->avail_oob_size, 1489 0, DMA_TO_DEVICE, true); 1490 } 1491 1492 static int cadence_nand_write_oob(struct nand_chip *chip, int page) 1493 { 1494 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1495 struct mtd_info *mtd = nand_to_mtd(chip); 1496 1497 memset(cdns_ctrl->buf, 0xFF, mtd->writesize); 1498 1499 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); 1500 } 1501 1502 static int cadence_nand_write_page_raw(struct nand_chip *chip, 1503 const u8 *buf, int oob_required, 1504 int page) 1505 { 1506 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1507 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1508 struct mtd_info *mtd = nand_to_mtd(chip); 1509 int writesize = mtd->writesize; 1510 int oobsize = mtd->oobsize; 1511 int ecc_steps = chip->ecc.steps; 1512 int ecc_size = chip->ecc.size; 1513 int ecc_bytes = chip->ecc.bytes; 1514 void *tmp_buf = cdns_ctrl->buf; 1515 int oob_skip = cdns_chip->bbm_len; 1516 size_t size = writesize + oobsize; 1517 int i, pos, len; 1518 int status = 0; 1519 1520 status = cadence_nand_select_target(chip); 1521 if (status) 1522 return status; 1523 1524 /* 1525 * Fill the buffer with 0xff first except the full page transfer. 1526 * This simplifies the logic. 1527 */ 1528 if (!buf || !oob_required) 1529 memset(tmp_buf, 0xff, size); 1530 1531 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1532 1533 /* Arrange the buffer for syndrome payload/ecc layout. */ 1534 if (buf) { 1535 for (i = 0; i < ecc_steps; i++) { 1536 pos = i * (ecc_size + ecc_bytes); 1537 len = ecc_size; 1538 1539 if (pos >= writesize) 1540 pos += oob_skip; 1541 else if (pos + len > writesize) 1542 len = writesize - pos; 1543 1544 memcpy(tmp_buf + pos, buf, len); 1545 buf += len; 1546 if (len < ecc_size) { 1547 len = ecc_size - len; 1548 memcpy(tmp_buf + writesize + oob_skip, buf, 1549 len); 1550 buf += len; 1551 } 1552 } 1553 } 1554 1555 if (oob_required) { 1556 const u8 *oob = chip->oob_poi; 1557 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1558 (cdns_chip->sector_size + chip->ecc.bytes) 1559 + cdns_chip->sector_size + oob_skip; 1560 1561 /* BBM at the beginning of the OOB area. */ 1562 memcpy(tmp_buf + writesize, oob, oob_skip); 1563 1564 /* OOB free. */ 1565 memcpy(tmp_buf + oob_data_offset, oob, 1566 cdns_chip->avail_oob_size); 1567 oob += cdns_chip->avail_oob_size; 1568 1569 /* OOB ECC. */ 1570 for (i = 0; i < ecc_steps; i++) { 1571 pos = ecc_size + i * (ecc_size + ecc_bytes); 1572 if (i == (ecc_steps - 1)) 1573 pos += cdns_chip->avail_oob_size; 1574 1575 len = ecc_bytes; 1576 1577 if (pos >= writesize) 1578 pos += oob_skip; 1579 else if (pos + len > writesize) 1580 len = writesize - pos; 1581 1582 memcpy(tmp_buf + pos, oob, len); 1583 oob += len; 1584 if (len < ecc_bytes) { 1585 len = ecc_bytes - len; 1586 memcpy(tmp_buf + writesize + oob_skip, oob, 1587 len); 1588 oob += len; 1589 } 1590 } 1591 } 1592 1593 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1594 1595 return cadence_nand_cdma_transfer(cdns_ctrl, 1596 cdns_chip->cs[chip->cur_cs], 1597 page, cdns_ctrl->buf, NULL, 1598 mtd->writesize + 1599 mtd->oobsize, 1600 0, DMA_TO_DEVICE, false); 1601 } 1602 1603 static int cadence_nand_write_oob_raw(struct nand_chip *chip, 1604 int page) 1605 { 1606 return cadence_nand_write_page_raw(chip, NULL, true, page); 1607 } 1608 1609 static int cadence_nand_read_page(struct nand_chip *chip, 1610 u8 *buf, int oob_required, int page) 1611 { 1612 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1613 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1614 struct mtd_info *mtd = nand_to_mtd(chip); 1615 int status = 0; 1616 int ecc_err_count = 0; 1617 1618 status = cadence_nand_select_target(chip); 1619 if (status) 1620 return status; 1621 1622 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, 1623 mtd->writesize 1624 + cdns_chip->bbm_offs, 1); 1625 1626 /* 1627 * If data buffer can be accessed by DMA and data_control feature 1628 * is supported then transfer data and oob directly. 1629 */ 1630 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && 1631 cdns_ctrl->caps2.data_control_supp) { 1632 u8 *oob; 1633 1634 if (oob_required) 1635 oob = chip->oob_poi; 1636 else 1637 oob = cdns_ctrl->buf + mtd->writesize; 1638 1639 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); 1640 status = cadence_nand_cdma_transfer(cdns_ctrl, 1641 cdns_chip->cs[chip->cur_cs], 1642 page, buf, oob, 1643 mtd->writesize, 1644 cdns_chip->avail_oob_size, 1645 DMA_FROM_DEVICE, true); 1646 /* Otherwise use bounce buffer. */ 1647 } else { 1648 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); 1649 status = cadence_nand_cdma_transfer(cdns_ctrl, 1650 cdns_chip->cs[chip->cur_cs], 1651 page, cdns_ctrl->buf, 1652 NULL, mtd->writesize 1653 + cdns_chip->avail_oob_size, 1654 0, DMA_FROM_DEVICE, true); 1655 1656 memcpy(buf, cdns_ctrl->buf, mtd->writesize); 1657 if (oob_required) 1658 memcpy(chip->oob_poi, 1659 cdns_ctrl->buf + mtd->writesize, 1660 mtd->oobsize); 1661 } 1662 1663 switch (status) { 1664 case STAT_ECC_UNCORR: 1665 mtd->ecc_stats.failed++; 1666 ecc_err_count++; 1667 break; 1668 case STAT_ECC_CORR: 1669 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, 1670 cdns_ctrl->cdma_desc->status); 1671 mtd->ecc_stats.corrected += ecc_err_count; 1672 break; 1673 case STAT_ERASED: 1674 case STAT_OK: 1675 break; 1676 default: 1677 dev_err(cdns_ctrl->dev, "read page failed\n"); 1678 return -EIO; 1679 } 1680 1681 if (oob_required) 1682 if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) 1683 return -EIO; 1684 1685 return ecc_err_count; 1686 } 1687 1688 /* Reads OOB data from the device. */ 1689 static int cadence_nand_read_oob(struct nand_chip *chip, int page) 1690 { 1691 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1692 1693 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); 1694 } 1695 1696 static int cadence_nand_read_page_raw(struct nand_chip *chip, 1697 u8 *buf, int oob_required, int page) 1698 { 1699 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1700 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 1701 struct mtd_info *mtd = nand_to_mtd(chip); 1702 int oob_skip = cdns_chip->bbm_len; 1703 int writesize = mtd->writesize; 1704 int ecc_steps = chip->ecc.steps; 1705 int ecc_size = chip->ecc.size; 1706 int ecc_bytes = chip->ecc.bytes; 1707 void *tmp_buf = cdns_ctrl->buf; 1708 int i, pos, len; 1709 int status = 0; 1710 1711 status = cadence_nand_select_target(chip); 1712 if (status) 1713 return status; 1714 1715 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); 1716 1717 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); 1718 status = cadence_nand_cdma_transfer(cdns_ctrl, 1719 cdns_chip->cs[chip->cur_cs], 1720 page, cdns_ctrl->buf, NULL, 1721 mtd->writesize 1722 + mtd->oobsize, 1723 0, DMA_FROM_DEVICE, false); 1724 1725 switch (status) { 1726 case STAT_ERASED: 1727 case STAT_OK: 1728 break; 1729 default: 1730 dev_err(cdns_ctrl->dev, "read raw page failed\n"); 1731 return -EIO; 1732 } 1733 1734 /* Arrange the buffer for syndrome payload/ecc layout. */ 1735 if (buf) { 1736 for (i = 0; i < ecc_steps; i++) { 1737 pos = i * (ecc_size + ecc_bytes); 1738 len = ecc_size; 1739 1740 if (pos >= writesize) 1741 pos += oob_skip; 1742 else if (pos + len > writesize) 1743 len = writesize - pos; 1744 1745 memcpy(buf, tmp_buf + pos, len); 1746 buf += len; 1747 if (len < ecc_size) { 1748 len = ecc_size - len; 1749 memcpy(buf, tmp_buf + writesize + oob_skip, 1750 len); 1751 buf += len; 1752 } 1753 } 1754 } 1755 1756 if (oob_required) { 1757 u8 *oob = chip->oob_poi; 1758 u32 oob_data_offset = (cdns_chip->sector_count - 1) * 1759 (cdns_chip->sector_size + chip->ecc.bytes) 1760 + cdns_chip->sector_size + oob_skip; 1761 1762 /* OOB free. */ 1763 memcpy(oob, tmp_buf + oob_data_offset, 1764 cdns_chip->avail_oob_size); 1765 1766 /* BBM at the beginning of the OOB area. */ 1767 memcpy(oob, tmp_buf + writesize, oob_skip); 1768 1769 oob += cdns_chip->avail_oob_size; 1770 1771 /* OOB ECC */ 1772 for (i = 0; i < ecc_steps; i++) { 1773 pos = ecc_size + i * (ecc_size + ecc_bytes); 1774 len = ecc_bytes; 1775 1776 if (i == (ecc_steps - 1)) 1777 pos += cdns_chip->avail_oob_size; 1778 1779 if (pos >= writesize) 1780 pos += oob_skip; 1781 else if (pos + len > writesize) 1782 len = writesize - pos; 1783 1784 memcpy(oob, tmp_buf + pos, len); 1785 oob += len; 1786 if (len < ecc_bytes) { 1787 len = ecc_bytes - len; 1788 memcpy(oob, tmp_buf + writesize + oob_skip, 1789 len); 1790 oob += len; 1791 } 1792 } 1793 } 1794 1795 return 0; 1796 } 1797 1798 static int cadence_nand_read_oob_raw(struct nand_chip *chip, 1799 int page) 1800 { 1801 return cadence_nand_read_page_raw(chip, NULL, true, page); 1802 } 1803 1804 static void cadence_nand_slave_dma_transfer_finished(void *data) 1805 { 1806 struct completion *finished = data; 1807 1808 complete(finished); 1809 } 1810 1811 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, 1812 void *buf, 1813 dma_addr_t dev_dma, size_t len, 1814 enum dma_data_direction dir) 1815 { 1816 DECLARE_COMPLETION_ONSTACK(finished); 1817 struct dma_chan *chan; 1818 struct dma_device *dma_dev; 1819 dma_addr_t src_dma, dst_dma, buf_dma; 1820 struct dma_async_tx_descriptor *tx; 1821 dma_cookie_t cookie; 1822 1823 chan = cdns_ctrl->dmac; 1824 dma_dev = chan->device; 1825 1826 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); 1827 if (dma_mapping_error(dma_dev->dev, buf_dma)) { 1828 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); 1829 goto err; 1830 } 1831 1832 if (dir == DMA_FROM_DEVICE) { 1833 src_dma = cdns_ctrl->io.dma; 1834 dst_dma = buf_dma; 1835 } else { 1836 src_dma = buf_dma; 1837 dst_dma = cdns_ctrl->io.dma; 1838 } 1839 1840 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, 1841 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 1842 if (!tx) { 1843 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); 1844 goto err_unmap; 1845 } 1846 1847 tx->callback = cadence_nand_slave_dma_transfer_finished; 1848 tx->callback_param = &finished; 1849 1850 cookie = dmaengine_submit(tx); 1851 if (dma_submit_error(cookie)) { 1852 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); 1853 goto err_unmap; 1854 } 1855 1856 dma_async_issue_pending(cdns_ctrl->dmac); 1857 wait_for_completion(&finished); 1858 1859 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1860 1861 return 0; 1862 1863 err_unmap: 1864 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); 1865 1866 err: 1867 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); 1868 1869 return -EIO; 1870 } 1871 1872 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, 1873 u8 *buf, int len) 1874 { 1875 u8 thread_nr = 0; 1876 u32 sdma_size; 1877 int status; 1878 1879 /* Wait until slave DMA interface is ready to data transfer. */ 1880 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1881 if (status) 1882 return status; 1883 1884 if (!cdns_ctrl->caps1->has_dma) { 1885 int len_in_words = len >> 2; 1886 1887 /* read alingment data */ 1888 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1889 if (sdma_size > len) { 1890 /* read rest data from slave DMA interface if any */ 1891 ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1892 sdma_size / 4 - len_in_words); 1893 /* copy rest of data */ 1894 memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, 1895 len - (len_in_words << 2)); 1896 } 1897 return 0; 1898 } 1899 1900 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1901 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, 1902 cdns_ctrl->io.dma, 1903 len, DMA_FROM_DEVICE); 1904 if (status == 0) 1905 return 0; 1906 1907 dev_warn(cdns_ctrl->dev, 1908 "Slave DMA transfer failed. Try again using bounce buffer."); 1909 } 1910 1911 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1912 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1913 cdns_ctrl->io.dma, 1914 sdma_size, DMA_FROM_DEVICE); 1915 1916 if (status) { 1917 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1918 return status; 1919 } 1920 1921 memcpy(buf, cdns_ctrl->buf, len); 1922 1923 return 0; 1924 } 1925 1926 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, 1927 const u8 *buf, int len) 1928 { 1929 u8 thread_nr = 0; 1930 u32 sdma_size; 1931 int status; 1932 1933 /* Wait until slave DMA interface is ready to data transfer. */ 1934 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); 1935 if (status) 1936 return status; 1937 1938 if (!cdns_ctrl->caps1->has_dma) { 1939 int len_in_words = len >> 2; 1940 1941 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); 1942 if (sdma_size > len) { 1943 /* copy rest of data */ 1944 memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), 1945 len - (len_in_words << 2)); 1946 /* write all expected by nand controller data */ 1947 iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, 1948 sdma_size / 4 - len_in_words); 1949 } 1950 1951 return 0; 1952 } 1953 1954 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { 1955 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, 1956 cdns_ctrl->io.dma, 1957 len, DMA_TO_DEVICE); 1958 if (status == 0) 1959 return 0; 1960 1961 dev_warn(cdns_ctrl->dev, 1962 "Slave DMA transfer failed. Try again using bounce buffer."); 1963 } 1964 1965 /* If DMA transfer is not possible or failed then use bounce buffer. */ 1966 memcpy(cdns_ctrl->buf, buf, len); 1967 1968 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, 1969 cdns_ctrl->io.dma, 1970 sdma_size, DMA_TO_DEVICE); 1971 1972 if (status) 1973 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); 1974 1975 return status; 1976 } 1977 1978 static int cadence_nand_force_byte_access(struct nand_chip *chip, 1979 bool force_8bit) 1980 { 1981 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 1982 int status; 1983 1984 /* 1985 * Callers of this function do not verify if the NAND is using a 16-bit 1986 * an 8-bit bus for normal operations, so we need to take care of that 1987 * here by leaving the configuration unchanged if the NAND does not have 1988 * the NAND_BUSWIDTH_16 flag set. 1989 */ 1990 if (!(chip->options & NAND_BUSWIDTH_16)) 1991 return 0; 1992 1993 status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); 1994 1995 return status; 1996 } 1997 1998 static int cadence_nand_cmd_opcode(struct nand_chip *chip, 1999 const struct nand_subop *subop) 2000 { 2001 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2002 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2003 const struct nand_op_instr *instr; 2004 unsigned int op_id = 0; 2005 u64 mini_ctrl_cmd = 0; 2006 int ret; 2007 2008 instr = &subop->instrs[op_id]; 2009 2010 if (instr->delay_ns > 0) 2011 mini_ctrl_cmd |= GCMD_LAY_TWB; 2012 2013 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2014 GCMD_LAY_INSTR_CMD); 2015 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, 2016 instr->ctx.cmd.opcode); 2017 2018 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2019 cdns_chip->cs[chip->cur_cs], 2020 mini_ctrl_cmd); 2021 if (ret) 2022 dev_err(cdns_ctrl->dev, "send cmd %x failed\n", 2023 instr->ctx.cmd.opcode); 2024 2025 return ret; 2026 } 2027 2028 static int cadence_nand_cmd_address(struct nand_chip *chip, 2029 const struct nand_subop *subop) 2030 { 2031 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2032 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2033 const struct nand_op_instr *instr; 2034 unsigned int op_id = 0; 2035 u64 mini_ctrl_cmd = 0; 2036 unsigned int offset, naddrs; 2037 u64 address = 0; 2038 const u8 *addrs; 2039 int ret; 2040 int i; 2041 2042 instr = &subop->instrs[op_id]; 2043 2044 if (instr->delay_ns > 0) 2045 mini_ctrl_cmd |= GCMD_LAY_TWB; 2046 2047 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2048 GCMD_LAY_INSTR_ADDR); 2049 2050 offset = nand_subop_get_addr_start_off(subop, op_id); 2051 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 2052 addrs = &instr->ctx.addr.addrs[offset]; 2053 2054 for (i = 0; i < naddrs; i++) 2055 address |= (u64)addrs[i] << (8 * i); 2056 2057 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, 2058 address); 2059 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, 2060 naddrs - 1); 2061 2062 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2063 cdns_chip->cs[chip->cur_cs], 2064 mini_ctrl_cmd); 2065 if (ret) 2066 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); 2067 2068 return ret; 2069 } 2070 2071 static int cadence_nand_cmd_erase(struct nand_chip *chip, 2072 const struct nand_subop *subop) 2073 { 2074 unsigned int op_id; 2075 2076 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { 2077 int i; 2078 const struct nand_op_instr *instr = NULL; 2079 unsigned int offset, naddrs; 2080 const u8 *addrs; 2081 u32 page = 0; 2082 2083 instr = &subop->instrs[1]; 2084 offset = nand_subop_get_addr_start_off(subop, 1); 2085 naddrs = nand_subop_get_num_addr_cyc(subop, 1); 2086 addrs = &instr->ctx.addr.addrs[offset]; 2087 2088 for (i = 0; i < naddrs; i++) 2089 page |= (u32)addrs[i] << (8 * i); 2090 2091 return cadence_nand_erase(chip, page); 2092 } 2093 2094 /* 2095 * If it is not an erase operation then handle operation 2096 * by calling exec_op function. 2097 */ 2098 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 2099 int ret; 2100 const struct nand_operation nand_op = { 2101 .cs = chip->cur_cs, 2102 .instrs = &subop->instrs[op_id], 2103 .ninstrs = 1}; 2104 ret = chip->controller->ops->exec_op(chip, &nand_op, false); 2105 if (ret) 2106 return ret; 2107 } 2108 2109 return 0; 2110 } 2111 2112 static int cadence_nand_cmd_data(struct nand_chip *chip, 2113 const struct nand_subop *subop) 2114 { 2115 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2116 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2117 const struct nand_op_instr *instr; 2118 unsigned int offset, op_id = 0; 2119 u64 mini_ctrl_cmd = 0; 2120 int len = 0; 2121 int ret; 2122 2123 instr = &subop->instrs[op_id]; 2124 2125 if (instr->delay_ns > 0) 2126 mini_ctrl_cmd |= GCMD_LAY_TWB; 2127 2128 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, 2129 GCMD_LAY_INSTR_DATA); 2130 2131 if (instr->type == NAND_OP_DATA_OUT_INSTR) 2132 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, 2133 GCMD_DIR_WRITE); 2134 2135 len = nand_subop_get_data_len(subop, op_id); 2136 offset = nand_subop_get_data_start_off(subop, op_id); 2137 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); 2138 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); 2139 if (instr->ctx.data.force_8bit) { 2140 ret = cadence_nand_force_byte_access(chip, true); 2141 if (ret) { 2142 dev_err(cdns_ctrl->dev, 2143 "cannot change byte access generic data cmd failed\n"); 2144 return ret; 2145 } 2146 } 2147 2148 ret = cadence_nand_generic_cmd_send(cdns_ctrl, 2149 cdns_chip->cs[chip->cur_cs], 2150 mini_ctrl_cmd); 2151 if (ret) { 2152 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); 2153 return ret; 2154 } 2155 2156 if (instr->type == NAND_OP_DATA_IN_INSTR) { 2157 void *buf = instr->ctx.data.buf.in + offset; 2158 2159 ret = cadence_nand_read_buf(cdns_ctrl, buf, len); 2160 } else { 2161 const void *buf = instr->ctx.data.buf.out + offset; 2162 2163 ret = cadence_nand_write_buf(cdns_ctrl, buf, len); 2164 } 2165 2166 if (ret) { 2167 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); 2168 return ret; 2169 } 2170 2171 if (instr->ctx.data.force_8bit) { 2172 ret = cadence_nand_force_byte_access(chip, false); 2173 if (ret) { 2174 dev_err(cdns_ctrl->dev, 2175 "cannot change byte access generic data cmd failed\n"); 2176 } 2177 } 2178 2179 return ret; 2180 } 2181 2182 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, 2183 const struct nand_subop *subop) 2184 { 2185 int status; 2186 unsigned int op_id = 0; 2187 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2188 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2189 const struct nand_op_instr *instr = &subop->instrs[op_id]; 2190 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; 2191 2192 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, 2193 timeout_us, 2194 BIT(cdns_chip->cs[chip->cur_cs]), 2195 false); 2196 return status; 2197 } 2198 2199 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( 2200 NAND_OP_PARSER_PATTERN( 2201 cadence_nand_cmd_erase, 2202 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2203 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), 2204 NAND_OP_PARSER_PAT_CMD_ELEM(false), 2205 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 2206 NAND_OP_PARSER_PATTERN( 2207 cadence_nand_cmd_opcode, 2208 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 2209 NAND_OP_PARSER_PATTERN( 2210 cadence_nand_cmd_address, 2211 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), 2212 NAND_OP_PARSER_PATTERN( 2213 cadence_nand_cmd_data, 2214 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), 2215 NAND_OP_PARSER_PATTERN( 2216 cadence_nand_cmd_data, 2217 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), 2218 NAND_OP_PARSER_PATTERN( 2219 cadence_nand_cmd_waitrdy, 2220 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) 2221 ); 2222 2223 static int cadence_nand_exec_op(struct nand_chip *chip, 2224 const struct nand_operation *op, 2225 bool check_only) 2226 { 2227 if (!check_only) { 2228 int status = cadence_nand_select_target(chip); 2229 2230 if (status) 2231 return status; 2232 } 2233 2234 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, 2235 check_only); 2236 } 2237 2238 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, 2239 struct mtd_oob_region *oobregion) 2240 { 2241 struct nand_chip *chip = mtd_to_nand(mtd); 2242 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2243 2244 if (section) 2245 return -ERANGE; 2246 2247 oobregion->offset = cdns_chip->bbm_len; 2248 oobregion->length = cdns_chip->avail_oob_size 2249 - cdns_chip->bbm_len; 2250 2251 return 0; 2252 } 2253 2254 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, 2255 struct mtd_oob_region *oobregion) 2256 { 2257 struct nand_chip *chip = mtd_to_nand(mtd); 2258 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2259 2260 if (section) 2261 return -ERANGE; 2262 2263 oobregion->offset = cdns_chip->avail_oob_size; 2264 oobregion->length = chip->ecc.total; 2265 2266 return 0; 2267 } 2268 2269 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { 2270 .free = cadence_nand_ooblayout_free, 2271 .ecc = cadence_nand_ooblayout_ecc, 2272 }; 2273 2274 static int calc_cycl(u32 timing, u32 clock) 2275 { 2276 if (timing == 0 || clock == 0) 2277 return 0; 2278 2279 if ((timing % clock) > 0) 2280 return timing / clock; 2281 else 2282 return timing / clock - 1; 2283 } 2284 2285 /* Calculate max data valid window. */ 2286 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2287 u32 board_delay_skew_min, u32 ext_mode) 2288 { 2289 if (ext_mode == 0) 2290 clk_period /= 2; 2291 2292 return (trp_cnt + 1) * clk_period + trhoh_min + 2293 board_delay_skew_min; 2294 } 2295 2296 /* Calculate data valid window. */ 2297 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, 2298 u32 trea_max, u32 ext_mode) 2299 { 2300 if (ext_mode == 0) 2301 clk_period /= 2; 2302 2303 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; 2304 } 2305 2306 static int 2307 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, 2308 const struct nand_interface_config *conf) 2309 { 2310 const struct nand_sdr_timings *sdr; 2311 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2312 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2313 struct cadence_nand_timings *t = &cdns_chip->timings; 2314 u32 reg; 2315 u32 board_delay = cdns_ctrl->board_delay; 2316 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, 2317 cdns_ctrl->nf_clk_rate); 2318 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; 2319 u32 tfeat_cnt, trhz_cnt, tvdly_cnt; 2320 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; 2321 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; 2322 u32 if_skew = cdns_ctrl->caps1->if_skew; 2323 u32 board_delay_skew_min = board_delay - if_skew; 2324 u32 board_delay_skew_max = board_delay + if_skew; 2325 u32 dqs_sampl_res, phony_dqs_mod; 2326 u32 tdvw, tdvw_min, tdvw_max; 2327 u32 ext_rd_mode, ext_wr_mode; 2328 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; 2329 u32 sampling_point; 2330 2331 sdr = nand_get_sdr_timings(conf); 2332 if (IS_ERR(sdr)) 2333 return PTR_ERR(sdr); 2334 2335 memset(t, 0, sizeof(*t)); 2336 /* Sampling point calculation. */ 2337 2338 if (cdns_ctrl->caps2.is_phy_type_dll) 2339 phony_dqs_mod = 2; 2340 else 2341 phony_dqs_mod = 1; 2342 2343 dqs_sampl_res = clk_period / phony_dqs_mod; 2344 2345 tdvw_min = sdr->tREA_max + board_delay_skew_max; 2346 /* 2347 * The idea of those calculation is to get the optimum value 2348 * for tRP and tRH timings. If it is NOT possible to sample data 2349 * with optimal tRP/tRH settings, the parameters will be extended. 2350 * If clk_period is 50ns (the lowest value) this condition is met 2351 * for asynchronous timing modes 1, 2, 3, 4 and 5. 2352 * If clk_period is 20ns the condition is met only 2353 * for asynchronous timing mode 5. 2354 */ 2355 if (sdr->tRC_min <= clk_period && 2356 sdr->tRP_min <= (clk_period / 2) && 2357 sdr->tREH_min <= (clk_period / 2)) { 2358 /* Performance mode. */ 2359 ext_rd_mode = 0; 2360 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2361 sdr->tREA_max, ext_rd_mode); 2362 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, 2363 board_delay_skew_min, 2364 ext_rd_mode); 2365 /* 2366 * Check if data valid window and sampling point can be found 2367 * and is not on the edge (ie. we have hold margin). 2368 * If not extend the tRP timings. 2369 */ 2370 if (tdvw > 0) { 2371 if (tdvw_max <= tdvw_min || 2372 (tdvw_max % dqs_sampl_res) == 0) { 2373 /* 2374 * No valid sampling point so the RE pulse need 2375 * to be widen widening by half clock cycle. 2376 */ 2377 ext_rd_mode = 1; 2378 } 2379 } else { 2380 /* 2381 * There is no valid window 2382 * to be able to sample data the tRP need to be widen. 2383 * Very safe calculations are performed here. 2384 */ 2385 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2386 + dqs_sampl_res) / clk_period; 2387 ext_rd_mode = 1; 2388 } 2389 2390 } else { 2391 /* Extended read mode. */ 2392 u32 trh; 2393 2394 ext_rd_mode = 1; 2395 trp_cnt = calc_cycl(sdr->tRP_min, clk_period); 2396 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); 2397 if (sdr->tREH_min >= trh) 2398 trh_cnt = calc_cycl(sdr->tREH_min, clk_period); 2399 else 2400 trh_cnt = calc_cycl(trh, clk_period); 2401 2402 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, 2403 sdr->tREA_max, ext_rd_mode); 2404 /* 2405 * Check if data valid window and sampling point can be found 2406 * or if it is at the edge check if previous is valid 2407 * - if not extend the tRP timings. 2408 */ 2409 if (tdvw > 0) { 2410 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2411 sdr->tRHOH_min, 2412 board_delay_skew_min, 2413 ext_rd_mode); 2414 2415 if ((((tdvw_max / dqs_sampl_res) 2416 * dqs_sampl_res) <= tdvw_min) || 2417 (((tdvw_max % dqs_sampl_res) == 0) && 2418 (((tdvw_max / dqs_sampl_res - 1) 2419 * dqs_sampl_res) <= tdvw_min))) { 2420 /* 2421 * Data valid window width is lower than 2422 * sampling resolution and do not hit any 2423 * sampling point to be sure the sampling point 2424 * will be found the RE low pulse width will be 2425 * extended by one clock cycle. 2426 */ 2427 trp_cnt = trp_cnt + 1; 2428 } 2429 } else { 2430 /* 2431 * There is no valid window to be able to sample data. 2432 * The tRP need to be widen. 2433 * Very safe calculations are performed here. 2434 */ 2435 trp_cnt = (sdr->tREA_max + board_delay_skew_max 2436 + dqs_sampl_res) / clk_period; 2437 } 2438 } 2439 2440 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, 2441 sdr->tRHOH_min, 2442 board_delay_skew_min, ext_rd_mode); 2443 2444 if (sdr->tWC_min <= clk_period && 2445 (sdr->tWP_min + if_skew) <= (clk_period / 2) && 2446 (sdr->tWH_min + if_skew) <= (clk_period / 2)) { 2447 ext_wr_mode = 0; 2448 } else { 2449 u32 twh; 2450 2451 ext_wr_mode = 1; 2452 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); 2453 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) 2454 twp_cnt = calc_cycl(sdr->tALS_min + if_skew, 2455 clk_period); 2456 2457 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); 2458 if (sdr->tWH_min >= twh) 2459 twh = sdr->tWH_min; 2460 2461 twh_cnt = calc_cycl(twh + if_skew, clk_period); 2462 } 2463 2464 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); 2465 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); 2466 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); 2467 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); 2468 t->async_toggle_timings = reg; 2469 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); 2470 2471 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); 2472 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); 2473 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); 2474 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); 2475 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); 2476 2477 /* 2478 * If timing exceeds delay field in timing register 2479 * then use maximum value. 2480 */ 2481 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) 2482 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); 2483 else 2484 reg |= TIMINGS0_TCCS; 2485 2486 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); 2487 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); 2488 t->timings0 = reg; 2489 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); 2490 2491 /* The following is related to single signal so skew is not needed. */ 2492 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); 2493 trhz_cnt = trhz_cnt + 1; 2494 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); 2495 /* 2496 * Because of the two stage syncflop the value must be increased by 3 2497 * first value is related with sync, second value is related 2498 * with output if delay. 2499 */ 2500 twb_cnt = twb_cnt + 3 + 5; 2501 /* 2502 * The following is related to the we edge of the random data input 2503 * sequence so skew is not needed. 2504 */ 2505 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); 2506 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); 2507 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); 2508 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); 2509 t->timings1 = reg; 2510 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); 2511 2512 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); 2513 if (tfeat_cnt < twb_cnt) 2514 tfeat_cnt = twb_cnt; 2515 2516 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); 2517 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); 2518 2519 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); 2520 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); 2521 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); 2522 t->timings2 = reg; 2523 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); 2524 2525 if (cdns_ctrl->caps2.is_phy_type_dll) { 2526 reg = DLL_PHY_CTRL_DLL_RST_N; 2527 if (ext_wr_mode) 2528 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; 2529 if (ext_rd_mode) 2530 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; 2531 2532 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); 2533 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); 2534 t->dll_phy_ctrl = reg; 2535 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); 2536 } 2537 2538 /* Sampling point calculation. */ 2539 if ((tdvw_max % dqs_sampl_res) > 0) 2540 sampling_point = tdvw_max / dqs_sampl_res; 2541 else 2542 sampling_point = (tdvw_max / dqs_sampl_res - 1); 2543 2544 if (sampling_point * dqs_sampl_res > tdvw_min) { 2545 dll_phy_dqs_timing = 2546 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); 2547 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; 2548 phony_dqs_timing = sampling_point / phony_dqs_mod; 2549 2550 if ((sampling_point % 2) > 0) { 2551 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; 2552 if ((tdvw_max % dqs_sampl_res) == 0) 2553 /* 2554 * Calculation for sampling point at the edge 2555 * of data and being odd number. 2556 */ 2557 phony_dqs_timing = (tdvw_max / dqs_sampl_res) 2558 / phony_dqs_mod - 1; 2559 2560 if (!cdns_ctrl->caps2.is_phy_type_dll) 2561 phony_dqs_timing--; 2562 2563 } else { 2564 phony_dqs_timing--; 2565 } 2566 rd_del_sel = phony_dqs_timing + 3; 2567 } else { 2568 dev_warn(cdns_ctrl->dev, 2569 "ERROR : cannot find valid sampling point\n"); 2570 } 2571 2572 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); 2573 if (cdns_ctrl->caps2.is_phy_type_dll) 2574 reg |= PHY_CTRL_SDR_DQS; 2575 t->phy_ctrl = reg; 2576 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); 2577 2578 if (cdns_ctrl->caps2.is_phy_type_dll) { 2579 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); 2580 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); 2581 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", 2582 dll_phy_dqs_timing); 2583 t->phy_dqs_timing = dll_phy_dqs_timing; 2584 2585 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); 2586 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", 2587 reg); 2588 t->phy_gate_lpbk_ctrl = reg; 2589 2590 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", 2591 PHY_DLL_MASTER_CTRL_BYPASS_MODE); 2592 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); 2593 } 2594 2595 return 0; 2596 } 2597 2598 static int cadence_nand_attach_chip(struct nand_chip *chip) 2599 { 2600 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); 2601 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); 2602 u32 ecc_size; 2603 struct mtd_info *mtd = nand_to_mtd(chip); 2604 int ret; 2605 2606 if (chip->options & NAND_BUSWIDTH_16) { 2607 ret = cadence_nand_set_access_width16(cdns_ctrl, true); 2608 if (ret) 2609 return ret; 2610 } 2611 2612 chip->bbt_options |= NAND_BBT_USE_FLASH; 2613 chip->bbt_options |= NAND_BBT_NO_OOB; 2614 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2615 2616 chip->options |= NAND_NO_SUBPAGE_WRITE; 2617 2618 cdns_chip->bbm_offs = chip->badblockpos; 2619 cdns_chip->bbm_offs &= ~0x01; 2620 /* this value should be even number */ 2621 cdns_chip->bbm_len = 2; 2622 2623 ret = nand_ecc_choose_conf(chip, 2624 &cdns_ctrl->ecc_caps, 2625 mtd->oobsize - cdns_chip->bbm_len); 2626 if (ret) { 2627 dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); 2628 return ret; 2629 } 2630 2631 dev_dbg(cdns_ctrl->dev, 2632 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", 2633 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); 2634 2635 /* Error correction configuration. */ 2636 cdns_chip->sector_size = chip->ecc.size; 2637 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; 2638 ecc_size = cdns_chip->sector_count * chip->ecc.bytes; 2639 2640 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; 2641 2642 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) 2643 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; 2644 2645 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) 2646 > mtd->oobsize) 2647 cdns_chip->avail_oob_size -= 4; 2648 2649 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); 2650 if (ret < 0) 2651 return -EINVAL; 2652 2653 cdns_chip->corr_str_idx = (u8)ret; 2654 2655 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 2656 1000000, 2657 CTRL_STATUS_CTRL_BUSY, true)) 2658 return -ETIMEDOUT; 2659 2660 cadence_nand_set_ecc_strength(cdns_ctrl, 2661 cdns_chip->corr_str_idx); 2662 2663 cadence_nand_set_erase_detection(cdns_ctrl, true, 2664 chip->ecc.strength); 2665 2666 /* Override the default read operations. */ 2667 chip->ecc.read_page = cadence_nand_read_page; 2668 chip->ecc.read_page_raw = cadence_nand_read_page_raw; 2669 chip->ecc.write_page = cadence_nand_write_page; 2670 chip->ecc.write_page_raw = cadence_nand_write_page_raw; 2671 chip->ecc.read_oob = cadence_nand_read_oob; 2672 chip->ecc.write_oob = cadence_nand_write_oob; 2673 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; 2674 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; 2675 2676 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) 2677 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; 2678 2679 /* Is 32-bit DMA supported? */ 2680 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); 2681 if (ret) { 2682 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); 2683 return ret; 2684 } 2685 2686 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); 2687 2688 return 0; 2689 } 2690 2691 static const struct nand_controller_ops cadence_nand_controller_ops = { 2692 .attach_chip = cadence_nand_attach_chip, 2693 .exec_op = cadence_nand_exec_op, 2694 .setup_interface = cadence_nand_setup_interface, 2695 }; 2696 2697 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, 2698 struct device_node *np) 2699 { 2700 struct cdns_nand_chip *cdns_chip; 2701 struct mtd_info *mtd; 2702 struct nand_chip *chip; 2703 int nsels, ret, i; 2704 u32 cs; 2705 2706 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 2707 if (nsels <= 0) { 2708 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); 2709 return -EINVAL; 2710 } 2711 2712 /* Allocate the nand chip structure. */ 2713 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + 2714 (nsels * sizeof(u8)), 2715 GFP_KERNEL); 2716 if (!cdns_chip) { 2717 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); 2718 return -ENOMEM; 2719 } 2720 2721 cdns_chip->nsels = nsels; 2722 2723 for (i = 0; i < nsels; i++) { 2724 /* Retrieve CS id. */ 2725 ret = of_property_read_u32_index(np, "reg", i, &cs); 2726 if (ret) { 2727 dev_err(cdns_ctrl->dev, 2728 "could not retrieve reg property: %d\n", 2729 ret); 2730 return ret; 2731 } 2732 2733 if (cs >= cdns_ctrl->caps2.max_banks) { 2734 dev_err(cdns_ctrl->dev, 2735 "invalid reg value: %u (max CS = %d)\n", 2736 cs, cdns_ctrl->caps2.max_banks); 2737 return -EINVAL; 2738 } 2739 2740 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { 2741 dev_err(cdns_ctrl->dev, 2742 "CS %d already assigned\n", cs); 2743 return -EINVAL; 2744 } 2745 2746 cdns_chip->cs[i] = cs; 2747 } 2748 2749 chip = &cdns_chip->chip; 2750 chip->controller = &cdns_ctrl->controller; 2751 nand_set_flash_node(chip, np); 2752 2753 mtd = nand_to_mtd(chip); 2754 mtd->dev.parent = cdns_ctrl->dev; 2755 2756 /* 2757 * Default to HW ECC engine mode. If the nand-ecc-mode property is given 2758 * in the DT node, this entry will be overwritten in nand_scan_ident(). 2759 */ 2760 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 2761 2762 ret = nand_scan(chip, cdns_chip->nsels); 2763 if (ret) { 2764 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); 2765 return ret; 2766 } 2767 2768 ret = mtd_device_register(mtd, NULL, 0); 2769 if (ret) { 2770 dev_err(cdns_ctrl->dev, 2771 "failed to register mtd device: %d\n", ret); 2772 nand_cleanup(chip); 2773 return ret; 2774 } 2775 2776 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); 2777 2778 return 0; 2779 } 2780 2781 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) 2782 { 2783 struct cdns_nand_chip *entry, *temp; 2784 struct nand_chip *chip; 2785 int ret; 2786 2787 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { 2788 chip = &entry->chip; 2789 ret = mtd_device_unregister(nand_to_mtd(chip)); 2790 WARN_ON(ret); 2791 nand_cleanup(chip); 2792 list_del(&entry->node); 2793 } 2794 } 2795 2796 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) 2797 { 2798 struct device_node *np = cdns_ctrl->dev->of_node; 2799 struct device_node *nand_np; 2800 int max_cs = cdns_ctrl->caps2.max_banks; 2801 int nchips, ret; 2802 2803 nchips = of_get_child_count(np); 2804 2805 if (nchips > max_cs) { 2806 dev_err(cdns_ctrl->dev, 2807 "too many NAND chips: %d (max = %d CS)\n", 2808 nchips, max_cs); 2809 return -EINVAL; 2810 } 2811 2812 for_each_child_of_node(np, nand_np) { 2813 ret = cadence_nand_chip_init(cdns_ctrl, nand_np); 2814 if (ret) { 2815 of_node_put(nand_np); 2816 cadence_nand_chips_cleanup(cdns_ctrl); 2817 return ret; 2818 } 2819 } 2820 2821 return 0; 2822 } 2823 2824 static void 2825 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) 2826 { 2827 /* Disable interrupts. */ 2828 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); 2829 } 2830 2831 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) 2832 { 2833 dma_cap_mask_t mask; 2834 int ret; 2835 2836 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, 2837 sizeof(*cdns_ctrl->cdma_desc), 2838 &cdns_ctrl->dma_cdma_desc, 2839 GFP_KERNEL); 2840 if (!cdns_ctrl->dma_cdma_desc) 2841 return -ENOMEM; 2842 2843 cdns_ctrl->buf_size = SZ_16K; 2844 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2845 if (!cdns_ctrl->buf) { 2846 ret = -ENOMEM; 2847 goto free_buf_desc; 2848 } 2849 2850 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, 2851 IRQF_SHARED, "cadence-nand-controller", 2852 cdns_ctrl)) { 2853 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); 2854 ret = -ENODEV; 2855 goto free_buf; 2856 } 2857 2858 spin_lock_init(&cdns_ctrl->irq_lock); 2859 init_completion(&cdns_ctrl->complete); 2860 2861 ret = cadence_nand_hw_init(cdns_ctrl); 2862 if (ret) 2863 goto disable_irq; 2864 2865 dma_cap_zero(mask); 2866 dma_cap_set(DMA_MEMCPY, mask); 2867 2868 if (cdns_ctrl->caps1->has_dma) { 2869 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); 2870 if (!cdns_ctrl->dmac) { 2871 dev_err(cdns_ctrl->dev, 2872 "Unable to get a DMA channel\n"); 2873 ret = -EBUSY; 2874 goto disable_irq; 2875 } 2876 } 2877 2878 nand_controller_init(&cdns_ctrl->controller); 2879 INIT_LIST_HEAD(&cdns_ctrl->chips); 2880 2881 cdns_ctrl->controller.ops = &cadence_nand_controller_ops; 2882 cdns_ctrl->curr_corr_str_idx = 0xFF; 2883 2884 ret = cadence_nand_chips_init(cdns_ctrl); 2885 if (ret) { 2886 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", 2887 ret); 2888 goto dma_release_chnl; 2889 } 2890 2891 kfree(cdns_ctrl->buf); 2892 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); 2893 if (!cdns_ctrl->buf) { 2894 ret = -ENOMEM; 2895 goto dma_release_chnl; 2896 } 2897 2898 return 0; 2899 2900 dma_release_chnl: 2901 if (cdns_ctrl->dmac) 2902 dma_release_channel(cdns_ctrl->dmac); 2903 2904 disable_irq: 2905 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2906 2907 free_buf: 2908 kfree(cdns_ctrl->buf); 2909 2910 free_buf_desc: 2911 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2912 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2913 2914 return ret; 2915 } 2916 2917 /* Driver exit point. */ 2918 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) 2919 { 2920 cadence_nand_chips_cleanup(cdns_ctrl); 2921 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); 2922 kfree(cdns_ctrl->buf); 2923 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), 2924 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); 2925 2926 if (cdns_ctrl->dmac) 2927 dma_release_channel(cdns_ctrl->dmac); 2928 } 2929 2930 struct cadence_nand_dt { 2931 struct cdns_nand_ctrl cdns_ctrl; 2932 struct clk *clk; 2933 }; 2934 2935 static const struct cadence_nand_dt_devdata cadence_nand_default = { 2936 .if_skew = 0, 2937 .has_dma = 1, 2938 }; 2939 2940 static const struct of_device_id cadence_nand_dt_ids[] = { 2941 { 2942 .compatible = "cdns,hp-nfc", 2943 .data = &cadence_nand_default 2944 }, {} 2945 }; 2946 2947 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); 2948 2949 static int cadence_nand_dt_probe(struct platform_device *ofdev) 2950 { 2951 struct resource *res; 2952 struct cadence_nand_dt *dt; 2953 struct cdns_nand_ctrl *cdns_ctrl; 2954 int ret; 2955 const struct of_device_id *of_id; 2956 const struct cadence_nand_dt_devdata *devdata; 2957 u32 val; 2958 2959 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); 2960 if (of_id) { 2961 ofdev->id_entry = of_id->data; 2962 devdata = of_id->data; 2963 } else { 2964 pr_err("Failed to find the right device id.\n"); 2965 return -ENOMEM; 2966 } 2967 2968 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); 2969 if (!dt) 2970 return -ENOMEM; 2971 2972 cdns_ctrl = &dt->cdns_ctrl; 2973 cdns_ctrl->caps1 = devdata; 2974 2975 cdns_ctrl->dev = &ofdev->dev; 2976 cdns_ctrl->irq = platform_get_irq(ofdev, 0); 2977 if (cdns_ctrl->irq < 0) 2978 return cdns_ctrl->irq; 2979 2980 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); 2981 2982 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); 2983 if (IS_ERR(cdns_ctrl->reg)) 2984 return PTR_ERR(cdns_ctrl->reg); 2985 2986 res = platform_get_resource(ofdev, IORESOURCE_MEM, 1); 2987 cdns_ctrl->io.dma = res->start; 2988 cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res); 2989 if (IS_ERR(cdns_ctrl->io.virt)) 2990 return PTR_ERR(cdns_ctrl->io.virt); 2991 2992 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); 2993 if (IS_ERR(dt->clk)) 2994 return PTR_ERR(dt->clk); 2995 2996 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); 2997 2998 ret = of_property_read_u32(ofdev->dev.of_node, 2999 "cdns,board-delay-ps", &val); 3000 if (ret) { 3001 val = 4830; 3002 dev_info(cdns_ctrl->dev, 3003 "missing cdns,board-delay-ps property, %d was set\n", 3004 val); 3005 } 3006 cdns_ctrl->board_delay = val; 3007 3008 ret = cadence_nand_init(cdns_ctrl); 3009 if (ret) 3010 return ret; 3011 3012 platform_set_drvdata(ofdev, dt); 3013 return 0; 3014 } 3015 3016 static int cadence_nand_dt_remove(struct platform_device *ofdev) 3017 { 3018 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); 3019 3020 cadence_nand_remove(&dt->cdns_ctrl); 3021 3022 return 0; 3023 } 3024 3025 static struct platform_driver cadence_nand_dt_driver = { 3026 .probe = cadence_nand_dt_probe, 3027 .remove = cadence_nand_dt_remove, 3028 .driver = { 3029 .name = "cadence-nand-controller", 3030 .of_match_table = cadence_nand_dt_ids, 3031 }, 3032 }; 3033 3034 module_platform_driver(cadence_nand_dt_driver); 3035 3036 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); 3037 MODULE_LICENSE("GPL v2"); 3038 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller"); 3039 3040