1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Cadence NAND flash controller driver
4 *
5 * Copyright (C) 2019 Cadence
6 *
7 * Author: Piotr Sroka <piotrs@cadence.com>
8 */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/rawnand.h>
18 #include <linux/of_device.h>
19 #include <linux/iopoll.h>
20 #include <linux/slab.h>
21
22 /*
23 * HPNFC can work in 3 modes:
24 * - PIO - can work in master or slave DMA
25 * - CDMA - needs Master DMA for accessing command descriptors.
26 * - Generic mode - can use only slave DMA.
27 * CDMA and PIO modes can be used to execute only base commands.
28 * Generic mode can be used to execute any command
29 * on NAND flash memory. Driver uses CDMA mode for
30 * block erasing, page reading, page programing.
31 * Generic mode is used for executing rest of commands.
32 */
33
34 #define MAX_ADDRESS_CYC 6
35 #define MAX_ERASE_ADDRESS_CYC 3
36 #define MAX_DATA_SIZE 0xFFFC
37 #define DMA_DATA_SIZE_ALIGN 8
38
39 /* Register definition. */
40 /*
41 * Command register 0.
42 * Writing data to this register will initiate a new transaction
43 * of the NF controller.
44 */
45 #define CMD_REG0 0x0000
46 /* Command type field mask. */
47 #define CMD_REG0_CT GENMASK(31, 30)
48 /* Command type CDMA. */
49 #define CMD_REG0_CT_CDMA 0uL
50 /* Command type generic. */
51 #define CMD_REG0_CT_GEN 3uL
52 /* Command thread number field mask. */
53 #define CMD_REG0_TN GENMASK(27, 24)
54
55 /* Command register 2. */
56 #define CMD_REG2 0x0008
57 /* Command register 3. */
58 #define CMD_REG3 0x000C
59 /* Pointer register to select which thread status will be selected. */
60 #define CMD_STATUS_PTR 0x0010
61 /* Command status register for selected thread. */
62 #define CMD_STATUS 0x0014
63
64 /* Interrupt status register. */
65 #define INTR_STATUS 0x0110
66 #define INTR_STATUS_SDMA_ERR BIT(22)
67 #define INTR_STATUS_SDMA_TRIGG BIT(21)
68 #define INTR_STATUS_UNSUPP_CMD BIT(19)
69 #define INTR_STATUS_DDMA_TERR BIT(18)
70 #define INTR_STATUS_CDMA_TERR BIT(17)
71 #define INTR_STATUS_CDMA_IDL BIT(16)
72
73 /* Interrupt enable register. */
74 #define INTR_ENABLE 0x0114
75 #define INTR_ENABLE_INTR_EN BIT(31)
76 #define INTR_ENABLE_SDMA_ERR_EN BIT(22)
77 #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
78 #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
79 #define INTR_ENABLE_DDMA_TERR_EN BIT(18)
80 #define INTR_ENABLE_CDMA_TERR_EN BIT(17)
81 #define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
82
83 /* Controller internal state. */
84 #define CTRL_STATUS 0x0118
85 #define CTRL_STATUS_INIT_COMP BIT(9)
86 #define CTRL_STATUS_CTRL_BUSY BIT(8)
87
88 /* Command Engine threads state. */
89 #define TRD_STATUS 0x0120
90
91 /* Command Engine interrupt thread error status. */
92 #define TRD_ERR_INT_STATUS 0x0128
93 /* Command Engine interrupt thread error enable. */
94 #define TRD_ERR_INT_STATUS_EN 0x0130
95 /* Command Engine interrupt thread complete status. */
96 #define TRD_COMP_INT_STATUS 0x0138
97
98 /*
99 * Transfer config 0 register.
100 * Configures data transfer parameters.
101 */
102 #define TRAN_CFG_0 0x0400
103 /* Offset value from the beginning of the page. */
104 #define TRAN_CFG_0_OFFSET GENMASK(31, 16)
105 /* Numbers of sectors to transfer within singlNF device's page. */
106 #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
107
108 /*
109 * Transfer config 1 register.
110 * Configures data transfer parameters.
111 */
112 #define TRAN_CFG_1 0x0404
113 /* Size of last data sector. */
114 #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
115 /* Size of not-last data sector. */
116 #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
117
118 /* ECC engine configuration register 0. */
119 #define ECC_CONFIG_0 0x0428
120 /* Correction strength. */
121 #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
122 /* Enable erased pages detection mechanism. */
123 #define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
124 /* Enable controller ECC check bits generation and correction. */
125 #define ECC_CONFIG_0_ECC_EN BIT(0)
126
127 /* ECC engine configuration register 1. */
128 #define ECC_CONFIG_1 0x042C
129
130 /* Multiplane settings register. */
131 #define MULTIPLANE_CFG 0x0434
132 /* Cache operation settings. */
133 #define CACHE_CFG 0x0438
134
135 /* DMA settings register. */
136 #define DMA_SETINGS 0x043C
137 /* Enable SDMA error report on access unprepared slave DMA interface. */
138 #define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
139
140 /* Transferred data block size for the slave DMA module. */
141 #define SDMA_SIZE 0x0440
142
143 /* Thread number associated with transferred data block
144 * for the slave DMA module.
145 */
146 #define SDMA_TRD_NUM 0x0444
147 /* Thread number mask. */
148 #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
149
150 #define CONTROL_DATA_CTRL 0x0494
151 /* Thread number mask. */
152 #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
153
154 #define CTRL_VERSION 0x800
155 #define CTRL_VERSION_REV GENMASK(7, 0)
156
157 /* Available hardware features of the controller. */
158 #define CTRL_FEATURES 0x804
159 /* Support for NV-DDR2/3 work mode. */
160 #define CTRL_FEATURES_NVDDR_2_3 BIT(28)
161 /* Support for NV-DDR work mode. */
162 #define CTRL_FEATURES_NVDDR BIT(27)
163 /* Support for asynchronous work mode. */
164 #define CTRL_FEATURES_ASYNC BIT(26)
165 /* Support for asynchronous work mode. */
166 #define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
167 /* Slave and Master DMA data width. */
168 #define CTRL_FEATURES_DMA_DWITH64 BIT(21)
169 /* Availability of Control Data feature.*/
170 #define CTRL_FEATURES_CONTROL_DATA BIT(10)
171
172 /* BCH Engine identification register 0 - correction strengths. */
173 #define BCH_CFG_0 0x838
174 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
175 #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
176 #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
177 #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
178
179 /* BCH Engine identification register 1 - correction strengths. */
180 #define BCH_CFG_1 0x83C
181 #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
182 #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
183 #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
184 #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
185
186 /* BCH Engine identification register 2 - sector sizes. */
187 #define BCH_CFG_2 0x840
188 #define BCH_CFG_2_SECT_0 GENMASK(15, 0)
189 #define BCH_CFG_2_SECT_1 GENMASK(31, 16)
190
191 /* BCH Engine identification register 3. */
192 #define BCH_CFG_3 0x844
193 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
194
195 /* Ready/Busy# line status. */
196 #define RBN_SETINGS 0x1004
197
198 /* Common settings. */
199 #define COMMON_SET 0x1008
200 /* 16 bit device connected to the NAND Flash interface. */
201 #define COMMON_SET_DEVICE_16BIT BIT(8)
202
203 /* Skip_bytes registers. */
204 #define SKIP_BYTES_CONF 0x100C
205 #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
206 #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
207
208 #define SKIP_BYTES_OFFSET 0x1010
209 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
210
211 /* Timings configuration. */
212 #define ASYNC_TOGGLE_TIMINGS 0x101c
213 #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
214 #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
215 #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
216 #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
217
218 #define TIMINGS0 0x1024
219 #define TIMINGS0_TADL GENMASK(31, 24)
220 #define TIMINGS0_TCCS GENMASK(23, 16)
221 #define TIMINGS0_TWHR GENMASK(15, 8)
222 #define TIMINGS0_TRHW GENMASK(7, 0)
223
224 #define TIMINGS1 0x1028
225 #define TIMINGS1_TRHZ GENMASK(31, 24)
226 #define TIMINGS1_TWB GENMASK(23, 16)
227 #define TIMINGS1_TVDLY GENMASK(7, 0)
228
229 #define TIMINGS2 0x102c
230 #define TIMINGS2_TFEAT GENMASK(25, 16)
231 #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
232 #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
233
234 /* Configuration of the resynchronization of slave DLL of PHY. */
235 #define DLL_PHY_CTRL 0x1034
236 #define DLL_PHY_CTRL_DLL_RST_N BIT(24)
237 #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
238 #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
239 #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
240 #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
241
242 /* Register controlling DQ related timing. */
243 #define PHY_DQ_TIMING 0x2000
244 /* Register controlling DSQ related timing. */
245 #define PHY_DQS_TIMING 0x2004
246 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
247 #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
248 #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
249
250 /* Register controlling the gate and loopback control related timing. */
251 #define PHY_GATE_LPBK_CTRL 0x2008
252 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
253
254 /* Register holds the control for the master DLL logic. */
255 #define PHY_DLL_MASTER_CTRL 0x200C
256 #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
257
258 /* Register holds the control for the slave DLL logic. */
259 #define PHY_DLL_SLAVE_CTRL 0x2010
260
261 /* This register handles the global control settings for the PHY. */
262 #define PHY_CTRL 0x2080
263 #define PHY_CTRL_SDR_DQS BIT(14)
264 #define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
265
266 /*
267 * This register handles the global control settings
268 * for the termination selects for reads.
269 */
270 #define PHY_TSEL 0x2084
271
272 /* Generic command layout. */
273 #define GCMD_LAY_CS GENMASK_ULL(11, 8)
274 /*
275 * This bit informs the minicotroller if it has to wait for tWB
276 * after sending the last CMD/ADDR/DATA in the sequence.
277 */
278 #define GCMD_LAY_TWB BIT_ULL(6)
279 /* Type of generic instruction. */
280 #define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
281
282 /* Generic CMD sequence type. */
283 #define GCMD_LAY_INSTR_CMD 0
284 /* Generic ADDR sequence type. */
285 #define GCMD_LAY_INSTR_ADDR 1
286 /* Generic data transfer sequence type. */
287 #define GCMD_LAY_INSTR_DATA 2
288
289 /* Input part of generic command type of input is command. */
290 #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
291
292 /* Generic command address sequence - address fields. */
293 #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
294 /* Generic command address sequence - address size. */
295 #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
296
297 /* Transfer direction field of generic command data sequence. */
298 #define GCMD_DIR BIT_ULL(11)
299 /* Read transfer direction of generic command data sequence. */
300 #define GCMD_DIR_READ 0
301 /* Write transfer direction of generic command data sequence. */
302 #define GCMD_DIR_WRITE 1
303
304 /* ECC enabled flag of generic command data sequence - ECC enabled. */
305 #define GCMD_ECC_EN BIT_ULL(12)
306 /* Generic command data sequence - sector size. */
307 #define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
308 /* Generic command data sequence - sector count. */
309 #define GCMD_SECT_CNT GENMASK_ULL(39, 32)
310 /* Generic command data sequence - last sector size. */
311 #define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
312
313 /* CDMA descriptor fields. */
314 /* Erase command type of CDMA descriptor. */
315 #define CDMA_CT_ERASE 0x1000
316 /* Program page command type of CDMA descriptor. */
317 #define CDMA_CT_WR 0x2100
318 /* Read page command type of CDMA descriptor. */
319 #define CDMA_CT_RD 0x2200
320
321 /* Flash pointer memory shift. */
322 #define CDMA_CFPTR_MEM_SHIFT 24
323 /* Flash pointer memory mask. */
324 #define CDMA_CFPTR_MEM GENMASK(26, 24)
325
326 /*
327 * Command DMA descriptor flags. If set causes issue interrupt after
328 * the completion of descriptor processing.
329 */
330 #define CDMA_CF_INT BIT(8)
331 /*
332 * Command DMA descriptor flags - the next descriptor
333 * address field is valid and descriptor processing should continue.
334 */
335 #define CDMA_CF_CONT BIT(9)
336 /* DMA master flag of command DMA descriptor. */
337 #define CDMA_CF_DMA_MASTER BIT(10)
338
339 /* Operation complete status of command descriptor. */
340 #define CDMA_CS_COMP BIT(15)
341 /* Operation complete status of command descriptor. */
342 /* Command descriptor status - operation fail. */
343 #define CDMA_CS_FAIL BIT(14)
344 /* Command descriptor status - page erased. */
345 #define CDMA_CS_ERP BIT(11)
346 /* Command descriptor status - timeout occurred. */
347 #define CDMA_CS_TOUT BIT(10)
348 /*
349 * Maximum amount of correction applied to one ECC sector.
350 * It is part of command descriptor status.
351 */
352 #define CDMA_CS_MAXERR GENMASK(9, 2)
353 /* Command descriptor status - uncorrectable ECC error. */
354 #define CDMA_CS_UNCE BIT(1)
355 /* Command descriptor status - descriptor error. */
356 #define CDMA_CS_ERR BIT(0)
357
358 /* Status of operation - OK. */
359 #define STAT_OK 0
360 /* Status of operation - FAIL. */
361 #define STAT_FAIL 2
362 /* Status of operation - uncorrectable ECC error. */
363 #define STAT_ECC_UNCORR 3
364 /* Status of operation - page erased. */
365 #define STAT_ERASED 5
366 /* Status of operation - correctable ECC error. */
367 #define STAT_ECC_CORR 6
368 /* Status of operation - unsuspected state. */
369 #define STAT_UNKNOWN 7
370 /* Status of operation - operation is not completed yet. */
371 #define STAT_BUSY 0xFF
372
373 #define BCH_MAX_NUM_CORR_CAPS 8
374 #define BCH_MAX_NUM_SECTOR_SIZES 2
375
376 struct cadence_nand_timings {
377 u32 async_toggle_timings;
378 u32 timings0;
379 u32 timings1;
380 u32 timings2;
381 u32 dll_phy_ctrl;
382 u32 phy_ctrl;
383 u32 phy_dqs_timing;
384 u32 phy_gate_lpbk_ctrl;
385 };
386
387 /* Command DMA descriptor. */
388 struct cadence_nand_cdma_desc {
389 /* Next descriptor address. */
390 u64 next_pointer;
391
392 /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
393 u32 flash_pointer;
394 /*field appears in HPNFC version 13*/
395 u16 bank;
396 u16 rsvd0;
397
398 /* Operation the controller needs to perform. */
399 u16 command_type;
400 u16 rsvd1;
401 /* Flags for operation of this command. */
402 u16 command_flags;
403 u16 rsvd2;
404
405 /* System/host memory address required for data DMA commands. */
406 u64 memory_pointer;
407
408 /* Status of operation. */
409 u32 status;
410 u32 rsvd3;
411
412 /* Address pointer to sync buffer location. */
413 u64 sync_flag_pointer;
414
415 /* Controls the buffer sync mechanism. */
416 u32 sync_arguments;
417 u32 rsvd4;
418
419 /* Control data pointer. */
420 u64 ctrl_data_ptr;
421 };
422
423 /* Interrupt status. */
424 struct cadence_nand_irq_status {
425 /* Thread operation complete status. */
426 u32 trd_status;
427 /* Thread operation error. */
428 u32 trd_error;
429 /* Controller status. */
430 u32 status;
431 };
432
433 /* Cadence NAND flash controller capabilities get from driver data. */
434 struct cadence_nand_dt_devdata {
435 /* Skew value of the output signals of the NAND Flash interface. */
436 u32 if_skew;
437 /* It informs if slave DMA interface is connected to DMA engine. */
438 unsigned int has_dma:1;
439 };
440
441 /* Cadence NAND flash controller capabilities read from registers. */
442 struct cdns_nand_caps {
443 /* Maximum number of banks supported by hardware. */
444 u8 max_banks;
445 /* Slave and Master DMA data width in bytes (4 or 8). */
446 u8 data_dma_width;
447 /* Control Data feature supported. */
448 bool data_control_supp;
449 /* Is PHY type DLL. */
450 bool is_phy_type_dll;
451 };
452
453 struct cdns_nand_ctrl {
454 struct device *dev;
455 struct nand_controller controller;
456 struct cadence_nand_cdma_desc *cdma_desc;
457 /* IP capability. */
458 const struct cadence_nand_dt_devdata *caps1;
459 struct cdns_nand_caps caps2;
460 u8 ctrl_rev;
461 dma_addr_t dma_cdma_desc;
462 u8 *buf;
463 u32 buf_size;
464 u8 curr_corr_str_idx;
465
466 /* Register interface. */
467 void __iomem *reg;
468
469 struct {
470 void __iomem *virt;
471 dma_addr_t dma;
472 } io;
473
474 int irq;
475 /* Interrupts that have happened. */
476 struct cadence_nand_irq_status irq_status;
477 /* Interrupts we are waiting for. */
478 struct cadence_nand_irq_status irq_mask;
479 struct completion complete;
480 /* Protect irq_mask and irq_status. */
481 spinlock_t irq_lock;
482
483 int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
484 struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
485 struct nand_ecc_caps ecc_caps;
486
487 int curr_trans_type;
488
489 struct dma_chan *dmac;
490
491 u32 nf_clk_rate;
492 /*
493 * Estimated Board delay. The value includes the total
494 * round trip delay for the signals and is used for deciding on values
495 * associated with data read capture.
496 */
497 u32 board_delay;
498
499 struct nand_chip *selected_chip;
500
501 unsigned long assigned_cs;
502 struct list_head chips;
503 u8 bch_metadata_size;
504 };
505
506 struct cdns_nand_chip {
507 struct cadence_nand_timings timings;
508 struct nand_chip chip;
509 u8 nsels;
510 struct list_head node;
511
512 /*
513 * part of oob area of NAND flash memory page.
514 * This part is available for user to read or write.
515 */
516 u32 avail_oob_size;
517
518 /* Sector size. There are few sectors per mtd->writesize */
519 u32 sector_size;
520 u32 sector_count;
521
522 /* Offset of BBM. */
523 u8 bbm_offs;
524 /* Number of bytes reserved for BBM. */
525 u8 bbm_len;
526 /* ECC strength index. */
527 u8 corr_str_idx;
528
529 u8 cs[];
530 };
531
532 struct ecc_info {
533 int (*calc_ecc_bytes)(int step_size, int strength);
534 int max_step_size;
535 };
536
537 static inline struct
to_cdns_nand_chip(struct nand_chip * chip)538 cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
539 {
540 return container_of(chip, struct cdns_nand_chip, chip);
541 }
542
543 static inline struct
to_cdns_nand_ctrl(struct nand_controller * controller)544 cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
545 {
546 return container_of(controller, struct cdns_nand_ctrl, controller);
547 }
548
549 static bool
cadence_nand_dma_buf_ok(struct cdns_nand_ctrl * cdns_ctrl,const void * buf,u32 buf_len)550 cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
551 u32 buf_len)
552 {
553 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
554
555 return buf && virt_addr_valid(buf) &&
556 likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
557 likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
558 }
559
cadence_nand_wait_for_value(struct cdns_nand_ctrl * cdns_ctrl,u32 reg_offset,u32 timeout_us,u32 mask,bool is_clear)560 static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
561 u32 reg_offset, u32 timeout_us,
562 u32 mask, bool is_clear)
563 {
564 u32 val;
565 int ret;
566
567 ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
568 val, !(val & mask) == is_clear,
569 10, timeout_us);
570
571 if (ret < 0) {
572 dev_err(cdns_ctrl->dev,
573 "Timeout while waiting for reg %x with mask %x is clear %d\n",
574 reg_offset, mask, is_clear);
575 }
576
577 return ret;
578 }
579
cadence_nand_set_ecc_enable(struct cdns_nand_ctrl * cdns_ctrl,bool enable)580 static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
581 bool enable)
582 {
583 u32 reg;
584
585 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
586 1000000,
587 CTRL_STATUS_CTRL_BUSY, true))
588 return -ETIMEDOUT;
589
590 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
591
592 if (enable)
593 reg |= ECC_CONFIG_0_ECC_EN;
594 else
595 reg &= ~ECC_CONFIG_0_ECC_EN;
596
597 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
598
599 return 0;
600 }
601
cadence_nand_set_ecc_strength(struct cdns_nand_ctrl * cdns_ctrl,u8 corr_str_idx)602 static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
603 u8 corr_str_idx)
604 {
605 u32 reg;
606
607 if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
608 return;
609
610 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
611 reg &= ~ECC_CONFIG_0_CORR_STR;
612 reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
613 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
614
615 cdns_ctrl->curr_corr_str_idx = corr_str_idx;
616 }
617
cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl * cdns_ctrl,u8 strength)618 static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
619 u8 strength)
620 {
621 int i, corr_str_idx = -1;
622
623 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
624 if (cdns_ctrl->ecc_strengths[i] == strength) {
625 corr_str_idx = i;
626 break;
627 }
628 }
629
630 return corr_str_idx;
631 }
632
cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl * cdns_ctrl,u16 marker_value)633 static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
634 u16 marker_value)
635 {
636 u32 reg;
637
638 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
639 1000000,
640 CTRL_STATUS_CTRL_BUSY, true))
641 return -ETIMEDOUT;
642
643 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
644 reg &= ~SKIP_BYTES_MARKER_VALUE;
645 reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
646 marker_value);
647
648 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
649
650 return 0;
651 }
652
cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl * cdns_ctrl,u8 num_of_bytes,u32 offset_value,int enable)653 static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
654 u8 num_of_bytes,
655 u32 offset_value,
656 int enable)
657 {
658 u32 reg, skip_bytes_offset;
659
660 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
661 1000000,
662 CTRL_STATUS_CTRL_BUSY, true))
663 return -ETIMEDOUT;
664
665 if (!enable) {
666 num_of_bytes = 0;
667 offset_value = 0;
668 }
669
670 reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
671 reg &= ~SKIP_BYTES_NUM_OF_BYTES;
672 reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
673 num_of_bytes);
674 skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
675 offset_value);
676
677 writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
678 writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
679
680 return 0;
681 }
682
683 /* Functions enables/disables hardware detection of erased data */
cadence_nand_set_erase_detection(struct cdns_nand_ctrl * cdns_ctrl,bool enable,u8 bitflips_threshold)684 static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
685 bool enable,
686 u8 bitflips_threshold)
687 {
688 u32 reg;
689
690 reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
691
692 if (enable)
693 reg |= ECC_CONFIG_0_ERASE_DET_EN;
694 else
695 reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
696
697 writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
698 writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
699 }
700
cadence_nand_set_access_width16(struct cdns_nand_ctrl * cdns_ctrl,bool bit_bus16)701 static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
702 bool bit_bus16)
703 {
704 u32 reg;
705
706 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
707 1000000,
708 CTRL_STATUS_CTRL_BUSY, true))
709 return -ETIMEDOUT;
710
711 reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
712
713 if (!bit_bus16)
714 reg &= ~COMMON_SET_DEVICE_16BIT;
715 else
716 reg |= COMMON_SET_DEVICE_16BIT;
717 writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
718
719 return 0;
720 }
721
722 static void
cadence_nand_clear_interrupt(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)723 cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
724 struct cadence_nand_irq_status *irq_status)
725 {
726 writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
727 writel_relaxed(irq_status->trd_status,
728 cdns_ctrl->reg + TRD_COMP_INT_STATUS);
729 writel_relaxed(irq_status->trd_error,
730 cdns_ctrl->reg + TRD_ERR_INT_STATUS);
731 }
732
733 static void
cadence_nand_read_int_status(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)734 cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
735 struct cadence_nand_irq_status *irq_status)
736 {
737 irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
738 irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
739 + TRD_COMP_INT_STATUS);
740 irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
741 + TRD_ERR_INT_STATUS);
742 }
743
irq_detected(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_status)744 static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
745 struct cadence_nand_irq_status *irq_status)
746 {
747 cadence_nand_read_int_status(cdns_ctrl, irq_status);
748
749 return irq_status->status || irq_status->trd_status ||
750 irq_status->trd_error;
751 }
752
cadence_nand_reset_irq(struct cdns_nand_ctrl * cdns_ctrl)753 static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
754 {
755 unsigned long flags;
756
757 spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
758 memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
759 memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
760 spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
761 }
762
763 /*
764 * This is the interrupt service routine. It handles all interrupts
765 * sent to this device.
766 */
cadence_nand_isr(int irq,void * dev_id)767 static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
768 {
769 struct cdns_nand_ctrl *cdns_ctrl = dev_id;
770 struct cadence_nand_irq_status irq_status;
771 irqreturn_t result = IRQ_NONE;
772
773 spin_lock(&cdns_ctrl->irq_lock);
774
775 if (irq_detected(cdns_ctrl, &irq_status)) {
776 /* Handle interrupt. */
777 /* First acknowledge it. */
778 cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
779 /* Status in the device context for someone to read. */
780 cdns_ctrl->irq_status.status |= irq_status.status;
781 cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
782 cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
783 /* Notify anyone who cares that it happened. */
784 complete(&cdns_ctrl->complete);
785 /* Tell the OS that we've handled this. */
786 result = IRQ_HANDLED;
787 }
788 spin_unlock(&cdns_ctrl->irq_lock);
789
790 return result;
791 }
792
cadence_nand_set_irq_mask(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_mask)793 static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
794 struct cadence_nand_irq_status *irq_mask)
795 {
796 writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
797 cdns_ctrl->reg + INTR_ENABLE);
798
799 writel_relaxed(irq_mask->trd_error,
800 cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
801 }
802
803 static void
cadence_nand_wait_for_irq(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_irq_status * irq_mask,struct cadence_nand_irq_status * irq_status)804 cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
805 struct cadence_nand_irq_status *irq_mask,
806 struct cadence_nand_irq_status *irq_status)
807 {
808 unsigned long timeout = msecs_to_jiffies(10000);
809 unsigned long time_left;
810
811 time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
812 timeout);
813
814 *irq_status = cdns_ctrl->irq_status;
815 if (time_left == 0) {
816 /* Timeout error. */
817 dev_err(cdns_ctrl->dev, "timeout occurred:\n");
818 dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
819 irq_status->status, irq_mask->status);
820 dev_err(cdns_ctrl->dev,
821 "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
822 irq_status->trd_status, irq_mask->trd_status);
823 dev_err(cdns_ctrl->dev,
824 "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
825 irq_status->trd_error, irq_mask->trd_error);
826 }
827 }
828
829 /* Execute generic command on NAND controller. */
cadence_nand_generic_cmd_send(struct cdns_nand_ctrl * cdns_ctrl,u8 chip_nr,u64 mini_ctrl_cmd)830 static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
831 u8 chip_nr,
832 u64 mini_ctrl_cmd)
833 {
834 u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
835
836 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
837 mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
838 mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
839
840 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
841 1000000,
842 CTRL_STATUS_CTRL_BUSY, true))
843 return -ETIMEDOUT;
844
845 cadence_nand_reset_irq(cdns_ctrl);
846
847 writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
848 writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
849
850 /* Select generic command. */
851 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
852 /* Thread number. */
853 reg |= FIELD_PREP(CMD_REG0_TN, 0);
854
855 /* Issue command. */
856 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
857
858 return 0;
859 }
860
861 /* Wait for data on slave DMA interface. */
cadence_nand_wait_on_sdma(struct cdns_nand_ctrl * cdns_ctrl,u8 * out_sdma_trd,u32 * out_sdma_size)862 static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
863 u8 *out_sdma_trd,
864 u32 *out_sdma_size)
865 {
866 struct cadence_nand_irq_status irq_mask, irq_status;
867
868 irq_mask.trd_status = 0;
869 irq_mask.trd_error = 0;
870 irq_mask.status = INTR_STATUS_SDMA_TRIGG
871 | INTR_STATUS_SDMA_ERR
872 | INTR_STATUS_UNSUPP_CMD;
873
874 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
875 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
876 if (irq_status.status == 0) {
877 dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
878 return -ETIMEDOUT;
879 }
880
881 if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
882 *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
883 *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
884 *out_sdma_trd =
885 FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
886 } else {
887 dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
888 irq_status.status);
889 return -EIO;
890 }
891
892 return 0;
893 }
894
cadence_nand_get_caps(struct cdns_nand_ctrl * cdns_ctrl)895 static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
896 {
897 u32 reg;
898
899 reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
900
901 cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
902
903 if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
904 cdns_ctrl->caps2.data_dma_width = 8;
905 else
906 cdns_ctrl->caps2.data_dma_width = 4;
907
908 if (reg & CTRL_FEATURES_CONTROL_DATA)
909 cdns_ctrl->caps2.data_control_supp = true;
910
911 if (reg & (CTRL_FEATURES_NVDDR_2_3
912 | CTRL_FEATURES_NVDDR))
913 cdns_ctrl->caps2.is_phy_type_dll = true;
914 }
915
916 /* Prepare CDMA descriptor. */
917 static void
cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl * cdns_ctrl,char nf_mem,u32 flash_ptr,dma_addr_t mem_ptr,dma_addr_t ctrl_data_ptr,u16 ctype)918 cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
919 char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
920 dma_addr_t ctrl_data_ptr, u16 ctype)
921 {
922 struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
923
924 memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
925
926 /* Set fields for one descriptor. */
927 cdma_desc->flash_pointer = flash_ptr;
928 if (cdns_ctrl->ctrl_rev >= 13)
929 cdma_desc->bank = nf_mem;
930 else
931 cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
932
933 cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
934 cdma_desc->command_flags |= CDMA_CF_INT;
935
936 cdma_desc->memory_pointer = mem_ptr;
937 cdma_desc->status = 0;
938 cdma_desc->sync_flag_pointer = 0;
939 cdma_desc->sync_arguments = 0;
940
941 cdma_desc->command_type = ctype;
942 cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
943 }
944
cadence_nand_check_desc_error(struct cdns_nand_ctrl * cdns_ctrl,u32 desc_status)945 static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
946 u32 desc_status)
947 {
948 if (desc_status & CDMA_CS_ERP)
949 return STAT_ERASED;
950
951 if (desc_status & CDMA_CS_UNCE)
952 return STAT_ECC_UNCORR;
953
954 if (desc_status & CDMA_CS_ERR) {
955 dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
956 return STAT_FAIL;
957 }
958
959 if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
960 return STAT_ECC_CORR;
961
962 return STAT_FAIL;
963 }
964
cadence_nand_cdma_finish(struct cdns_nand_ctrl * cdns_ctrl)965 static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
966 {
967 struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
968 u8 status = STAT_BUSY;
969
970 if (desc_ptr->status & CDMA_CS_FAIL) {
971 status = cadence_nand_check_desc_error(cdns_ctrl,
972 desc_ptr->status);
973 dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
974 } else if (desc_ptr->status & CDMA_CS_COMP) {
975 /* Descriptor finished with no errors. */
976 if (desc_ptr->command_flags & CDMA_CF_CONT) {
977 dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
978 status = STAT_UNKNOWN;
979 } else {
980 /* Last descriptor. */
981 status = STAT_OK;
982 }
983 }
984
985 return status;
986 }
987
cadence_nand_cdma_send(struct cdns_nand_ctrl * cdns_ctrl,u8 thread)988 static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
989 u8 thread)
990 {
991 u32 reg;
992 int status;
993
994 /* Wait for thread ready. */
995 status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
996 1000000,
997 BIT(thread), true);
998 if (status)
999 return status;
1000
1001 cadence_nand_reset_irq(cdns_ctrl);
1002 reinit_completion(&cdns_ctrl->complete);
1003
1004 writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
1005 cdns_ctrl->reg + CMD_REG2);
1006 writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
1007
1008 /* Select CDMA mode. */
1009 reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
1010 /* Thread number. */
1011 reg |= FIELD_PREP(CMD_REG0_TN, thread);
1012 /* Issue command. */
1013 writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
1014
1015 return 0;
1016 }
1017
1018 /* Send SDMA command and wait for finish. */
1019 static u32
cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl * cdns_ctrl,u8 thread)1020 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
1021 u8 thread)
1022 {
1023 struct cadence_nand_irq_status irq_mask, irq_status = {0};
1024 int status;
1025
1026 irq_mask.trd_status = BIT(thread);
1027 irq_mask.trd_error = BIT(thread);
1028 irq_mask.status = INTR_STATUS_CDMA_TERR;
1029
1030 cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
1031
1032 status = cadence_nand_cdma_send(cdns_ctrl, thread);
1033 if (status)
1034 return status;
1035
1036 cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
1037
1038 if (irq_status.status == 0 && irq_status.trd_status == 0 &&
1039 irq_status.trd_error == 0) {
1040 dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
1041 return -ETIMEDOUT;
1042 }
1043 if (irq_status.status & irq_mask.status) {
1044 dev_err(cdns_ctrl->dev, "CDMA command failed\n");
1045 return -EIO;
1046 }
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * ECC size depends on configured ECC strength and on maximum supported
1053 * ECC step size.
1054 */
cadence_nand_calc_ecc_bytes(int max_step_size,int strength)1055 static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
1056 {
1057 int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
1058
1059 return ALIGN(nbytes, 2);
1060 }
1061
1062 #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
1063 static int \
1064 cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
1065 int strength)\
1066 {\
1067 return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
1068 }
1069
1070 CADENCE_NAND_CALC_ECC_BYTES(256)
1071 CADENCE_NAND_CALC_ECC_BYTES(512)
1072 CADENCE_NAND_CALC_ECC_BYTES(1024)
1073 CADENCE_NAND_CALC_ECC_BYTES(2048)
1074 CADENCE_NAND_CALC_ECC_BYTES(4096)
1075
1076 /* Function reads BCH capabilities. */
cadence_nand_read_bch_caps(struct cdns_nand_ctrl * cdns_ctrl)1077 static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
1078 {
1079 struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
1080 int max_step_size = 0, nstrengths, i;
1081 u32 reg;
1082
1083 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
1084 cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
1085 if (cdns_ctrl->bch_metadata_size < 4) {
1086 dev_err(cdns_ctrl->dev,
1087 "Driver needs at least 4 bytes of BCH meta data\n");
1088 return -EIO;
1089 }
1090
1091 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
1092 cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
1093 cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
1094 cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
1095 cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
1096
1097 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
1098 cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
1099 cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
1100 cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
1101 cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
1102
1103 reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
1104 cdns_ctrl->ecc_stepinfos[0].stepsize =
1105 FIELD_GET(BCH_CFG_2_SECT_0, reg);
1106
1107 cdns_ctrl->ecc_stepinfos[1].stepsize =
1108 FIELD_GET(BCH_CFG_2_SECT_1, reg);
1109
1110 nstrengths = 0;
1111 for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
1112 if (cdns_ctrl->ecc_strengths[i] != 0)
1113 nstrengths++;
1114 }
1115
1116 ecc_caps->nstepinfos = 0;
1117 for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
1118 /* ECC strengths are common for all step infos. */
1119 cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
1120 cdns_ctrl->ecc_stepinfos[i].strengths =
1121 cdns_ctrl->ecc_strengths;
1122
1123 if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
1124 ecc_caps->nstepinfos++;
1125
1126 if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
1127 max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
1128 }
1129 ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
1130
1131 switch (max_step_size) {
1132 case 256:
1133 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
1134 break;
1135 case 512:
1136 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
1137 break;
1138 case 1024:
1139 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
1140 break;
1141 case 2048:
1142 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
1143 break;
1144 case 4096:
1145 ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
1146 break;
1147 default:
1148 dev_err(cdns_ctrl->dev,
1149 "Unsupported sector size(ecc step size) %d\n",
1150 max_step_size);
1151 return -EIO;
1152 }
1153
1154 return 0;
1155 }
1156
1157 /* Hardware initialization. */
cadence_nand_hw_init(struct cdns_nand_ctrl * cdns_ctrl)1158 static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
1159 {
1160 int status;
1161 u32 reg;
1162
1163 status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1164 1000000,
1165 CTRL_STATUS_INIT_COMP, false);
1166 if (status)
1167 return status;
1168
1169 reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
1170 cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
1171
1172 dev_info(cdns_ctrl->dev,
1173 "%s: cadence nand controller version reg %x\n",
1174 __func__, reg);
1175
1176 /* Disable cache and multiplane. */
1177 writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
1178 writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
1179
1180 /* Clear all interrupts. */
1181 writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
1182
1183 cadence_nand_get_caps(cdns_ctrl);
1184 if (cadence_nand_read_bch_caps(cdns_ctrl))
1185 return -EIO;
1186
1187 #ifndef CONFIG_64BIT
1188 if (cdns_ctrl->caps2.data_dma_width == 8) {
1189 dev_err(cdns_ctrl->dev,
1190 "cannot access 64-bit dma on !64-bit architectures");
1191 return -EIO;
1192 }
1193 #endif
1194
1195 /*
1196 * Set IO width access to 8.
1197 * It is because during SW device discovering width access
1198 * is expected to be 8.
1199 */
1200 status = cadence_nand_set_access_width16(cdns_ctrl, false);
1201
1202 return status;
1203 }
1204
1205 #define TT_MAIN_OOB_AREAS 2
1206 #define TT_RAW_PAGE 3
1207 #define TT_BBM 4
1208 #define TT_MAIN_OOB_AREA_EXT 5
1209
1210 /* Prepare size of data to transfer. */
1211 static void
cadence_nand_prepare_data_size(struct nand_chip * chip,int transfer_type)1212 cadence_nand_prepare_data_size(struct nand_chip *chip,
1213 int transfer_type)
1214 {
1215 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1216 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1217 struct mtd_info *mtd = nand_to_mtd(chip);
1218 u32 sec_size = 0, offset = 0, sec_cnt = 1;
1219 u32 last_sec_size = cdns_chip->sector_size;
1220 u32 data_ctrl_size = 0;
1221 u32 reg = 0;
1222
1223 if (cdns_ctrl->curr_trans_type == transfer_type)
1224 return;
1225
1226 switch (transfer_type) {
1227 case TT_MAIN_OOB_AREA_EXT:
1228 sec_cnt = cdns_chip->sector_count;
1229 sec_size = cdns_chip->sector_size;
1230 data_ctrl_size = cdns_chip->avail_oob_size;
1231 break;
1232 case TT_MAIN_OOB_AREAS:
1233 sec_cnt = cdns_chip->sector_count;
1234 last_sec_size = cdns_chip->sector_size
1235 + cdns_chip->avail_oob_size;
1236 sec_size = cdns_chip->sector_size;
1237 break;
1238 case TT_RAW_PAGE:
1239 last_sec_size = mtd->writesize + mtd->oobsize;
1240 break;
1241 case TT_BBM:
1242 offset = mtd->writesize + cdns_chip->bbm_offs;
1243 last_sec_size = 8;
1244 break;
1245 }
1246
1247 reg = 0;
1248 reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
1249 reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
1250 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
1251
1252 reg = 0;
1253 reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
1254 reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
1255 writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
1256
1257 if (cdns_ctrl->caps2.data_control_supp) {
1258 reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
1259 reg &= ~CONTROL_DATA_CTRL_SIZE;
1260 reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
1261 writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
1262 }
1263
1264 cdns_ctrl->curr_trans_type = transfer_type;
1265 }
1266
1267 static int
cadence_nand_cdma_transfer(struct cdns_nand_ctrl * cdns_ctrl,u8 chip_nr,int page,void * buf,void * ctrl_dat,u32 buf_size,u32 ctrl_dat_size,enum dma_data_direction dir,bool with_ecc)1268 cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
1269 int page, void *buf, void *ctrl_dat, u32 buf_size,
1270 u32 ctrl_dat_size, enum dma_data_direction dir,
1271 bool with_ecc)
1272 {
1273 dma_addr_t dma_buf, dma_ctrl_dat = 0;
1274 u8 thread_nr = chip_nr;
1275 int status;
1276 u16 ctype;
1277
1278 if (dir == DMA_FROM_DEVICE)
1279 ctype = CDMA_CT_RD;
1280 else
1281 ctype = CDMA_CT_WR;
1282
1283 cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
1284
1285 dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
1286 if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
1287 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1288 return -EIO;
1289 }
1290
1291 if (ctrl_dat && ctrl_dat_size) {
1292 dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
1293 ctrl_dat_size, dir);
1294 if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
1295 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1296 buf_size, dir);
1297 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1298 return -EIO;
1299 }
1300 }
1301
1302 cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
1303 dma_buf, dma_ctrl_dat, ctype);
1304
1305 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1306
1307 dma_unmap_single(cdns_ctrl->dev, dma_buf,
1308 buf_size, dir);
1309
1310 if (ctrl_dat && ctrl_dat_size)
1311 dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
1312 ctrl_dat_size, dir);
1313 if (status)
1314 return status;
1315
1316 return cadence_nand_cdma_finish(cdns_ctrl);
1317 }
1318
cadence_nand_set_timings(struct cdns_nand_ctrl * cdns_ctrl,struct cadence_nand_timings * t)1319 static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
1320 struct cadence_nand_timings *t)
1321 {
1322 writel_relaxed(t->async_toggle_timings,
1323 cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
1324 writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
1325 writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
1326 writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
1327
1328 if (cdns_ctrl->caps2.is_phy_type_dll)
1329 writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
1330
1331 writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
1332
1333 if (cdns_ctrl->caps2.is_phy_type_dll) {
1334 writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
1335 writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
1336 writel_relaxed(t->phy_dqs_timing,
1337 cdns_ctrl->reg + PHY_DQS_TIMING);
1338 writel_relaxed(t->phy_gate_lpbk_ctrl,
1339 cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
1340 writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
1341 cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
1342 writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
1343 }
1344 }
1345
cadence_nand_select_target(struct nand_chip * chip)1346 static int cadence_nand_select_target(struct nand_chip *chip)
1347 {
1348 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1349 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1350
1351 if (chip == cdns_ctrl->selected_chip)
1352 return 0;
1353
1354 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
1355 1000000,
1356 CTRL_STATUS_CTRL_BUSY, true))
1357 return -ETIMEDOUT;
1358
1359 cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
1360
1361 cadence_nand_set_ecc_strength(cdns_ctrl,
1362 cdns_chip->corr_str_idx);
1363
1364 cadence_nand_set_erase_detection(cdns_ctrl, true,
1365 chip->ecc.strength);
1366
1367 cdns_ctrl->curr_trans_type = -1;
1368 cdns_ctrl->selected_chip = chip;
1369
1370 return 0;
1371 }
1372
cadence_nand_erase(struct nand_chip * chip,u32 page)1373 static int cadence_nand_erase(struct nand_chip *chip, u32 page)
1374 {
1375 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1376 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1377 int status;
1378 u8 thread_nr = cdns_chip->cs[chip->cur_cs];
1379
1380 cadence_nand_cdma_desc_prepare(cdns_ctrl,
1381 cdns_chip->cs[chip->cur_cs],
1382 page, 0, 0,
1383 CDMA_CT_ERASE);
1384 status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
1385 if (status) {
1386 dev_err(cdns_ctrl->dev, "erase operation failed\n");
1387 return -EIO;
1388 }
1389
1390 status = cadence_nand_cdma_finish(cdns_ctrl);
1391 if (status)
1392 return status;
1393
1394 return 0;
1395 }
1396
cadence_nand_read_bbm(struct nand_chip * chip,int page,u8 * buf)1397 static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
1398 {
1399 int status;
1400 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1401 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1402 struct mtd_info *mtd = nand_to_mtd(chip);
1403
1404 cadence_nand_prepare_data_size(chip, TT_BBM);
1405
1406 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1407
1408 /*
1409 * Read only bad block marker from offset
1410 * defined by a memory manufacturer.
1411 */
1412 status = cadence_nand_cdma_transfer(cdns_ctrl,
1413 cdns_chip->cs[chip->cur_cs],
1414 page, cdns_ctrl->buf, NULL,
1415 mtd->oobsize,
1416 0, DMA_FROM_DEVICE, false);
1417 if (status) {
1418 dev_err(cdns_ctrl->dev, "read BBM failed\n");
1419 return -EIO;
1420 }
1421
1422 memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
1423
1424 return 0;
1425 }
1426
cadence_nand_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1427 static int cadence_nand_write_page(struct nand_chip *chip,
1428 const u8 *buf, int oob_required,
1429 int page)
1430 {
1431 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1432 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1433 struct mtd_info *mtd = nand_to_mtd(chip);
1434 int status;
1435 u16 marker_val = 0xFFFF;
1436
1437 status = cadence_nand_select_target(chip);
1438 if (status)
1439 return status;
1440
1441 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1442 mtd->writesize
1443 + cdns_chip->bbm_offs,
1444 1);
1445
1446 if (oob_required) {
1447 marker_val = *(u16 *)(chip->oob_poi
1448 + cdns_chip->bbm_offs);
1449 } else {
1450 /* Set oob data to 0xFF. */
1451 memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
1452 cdns_chip->avail_oob_size);
1453 }
1454
1455 cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
1456
1457 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1458
1459 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1460 cdns_ctrl->caps2.data_control_supp) {
1461 u8 *oob;
1462
1463 if (oob_required)
1464 oob = chip->oob_poi;
1465 else
1466 oob = cdns_ctrl->buf + mtd->writesize;
1467
1468 status = cadence_nand_cdma_transfer(cdns_ctrl,
1469 cdns_chip->cs[chip->cur_cs],
1470 page, (void *)buf, oob,
1471 mtd->writesize,
1472 cdns_chip->avail_oob_size,
1473 DMA_TO_DEVICE, true);
1474 if (status) {
1475 dev_err(cdns_ctrl->dev, "write page failed\n");
1476 return -EIO;
1477 }
1478
1479 return 0;
1480 }
1481
1482 if (oob_required) {
1483 /* Transfer the data to the oob area. */
1484 memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
1485 cdns_chip->avail_oob_size);
1486 }
1487
1488 memcpy(cdns_ctrl->buf, buf, mtd->writesize);
1489
1490 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1491
1492 return cadence_nand_cdma_transfer(cdns_ctrl,
1493 cdns_chip->cs[chip->cur_cs],
1494 page, cdns_ctrl->buf, NULL,
1495 mtd->writesize
1496 + cdns_chip->avail_oob_size,
1497 0, DMA_TO_DEVICE, true);
1498 }
1499
cadence_nand_write_oob(struct nand_chip * chip,int page)1500 static int cadence_nand_write_oob(struct nand_chip *chip, int page)
1501 {
1502 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1503 struct mtd_info *mtd = nand_to_mtd(chip);
1504
1505 memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
1506
1507 return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
1508 }
1509
cadence_nand_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1510 static int cadence_nand_write_page_raw(struct nand_chip *chip,
1511 const u8 *buf, int oob_required,
1512 int page)
1513 {
1514 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1515 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1516 struct mtd_info *mtd = nand_to_mtd(chip);
1517 int writesize = mtd->writesize;
1518 int oobsize = mtd->oobsize;
1519 int ecc_steps = chip->ecc.steps;
1520 int ecc_size = chip->ecc.size;
1521 int ecc_bytes = chip->ecc.bytes;
1522 void *tmp_buf = cdns_ctrl->buf;
1523 int oob_skip = cdns_chip->bbm_len;
1524 size_t size = writesize + oobsize;
1525 int i, pos, len;
1526 int status = 0;
1527
1528 status = cadence_nand_select_target(chip);
1529 if (status)
1530 return status;
1531
1532 /*
1533 * Fill the buffer with 0xff first except the full page transfer.
1534 * This simplifies the logic.
1535 */
1536 if (!buf || !oob_required)
1537 memset(tmp_buf, 0xff, size);
1538
1539 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1540
1541 /* Arrange the buffer for syndrome payload/ecc layout. */
1542 if (buf) {
1543 for (i = 0; i < ecc_steps; i++) {
1544 pos = i * (ecc_size + ecc_bytes);
1545 len = ecc_size;
1546
1547 if (pos >= writesize)
1548 pos += oob_skip;
1549 else if (pos + len > writesize)
1550 len = writesize - pos;
1551
1552 memcpy(tmp_buf + pos, buf, len);
1553 buf += len;
1554 if (len < ecc_size) {
1555 len = ecc_size - len;
1556 memcpy(tmp_buf + writesize + oob_skip, buf,
1557 len);
1558 buf += len;
1559 }
1560 }
1561 }
1562
1563 if (oob_required) {
1564 const u8 *oob = chip->oob_poi;
1565 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1566 (cdns_chip->sector_size + chip->ecc.bytes)
1567 + cdns_chip->sector_size + oob_skip;
1568
1569 /* BBM at the beginning of the OOB area. */
1570 memcpy(tmp_buf + writesize, oob, oob_skip);
1571
1572 /* OOB free. */
1573 memcpy(tmp_buf + oob_data_offset, oob,
1574 cdns_chip->avail_oob_size);
1575 oob += cdns_chip->avail_oob_size;
1576
1577 /* OOB ECC. */
1578 for (i = 0; i < ecc_steps; i++) {
1579 pos = ecc_size + i * (ecc_size + ecc_bytes);
1580 if (i == (ecc_steps - 1))
1581 pos += cdns_chip->avail_oob_size;
1582
1583 len = ecc_bytes;
1584
1585 if (pos >= writesize)
1586 pos += oob_skip;
1587 else if (pos + len > writesize)
1588 len = writesize - pos;
1589
1590 memcpy(tmp_buf + pos, oob, len);
1591 oob += len;
1592 if (len < ecc_bytes) {
1593 len = ecc_bytes - len;
1594 memcpy(tmp_buf + writesize + oob_skip, oob,
1595 len);
1596 oob += len;
1597 }
1598 }
1599 }
1600
1601 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1602
1603 return cadence_nand_cdma_transfer(cdns_ctrl,
1604 cdns_chip->cs[chip->cur_cs],
1605 page, cdns_ctrl->buf, NULL,
1606 mtd->writesize +
1607 mtd->oobsize,
1608 0, DMA_TO_DEVICE, false);
1609 }
1610
cadence_nand_write_oob_raw(struct nand_chip * chip,int page)1611 static int cadence_nand_write_oob_raw(struct nand_chip *chip,
1612 int page)
1613 {
1614 return cadence_nand_write_page_raw(chip, NULL, true, page);
1615 }
1616
cadence_nand_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1617 static int cadence_nand_read_page(struct nand_chip *chip,
1618 u8 *buf, int oob_required, int page)
1619 {
1620 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1621 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1622 struct mtd_info *mtd = nand_to_mtd(chip);
1623 int status = 0;
1624 int ecc_err_count = 0;
1625
1626 status = cadence_nand_select_target(chip);
1627 if (status)
1628 return status;
1629
1630 cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
1631 mtd->writesize
1632 + cdns_chip->bbm_offs, 1);
1633
1634 /*
1635 * If data buffer can be accessed by DMA and data_control feature
1636 * is supported then transfer data and oob directly.
1637 */
1638 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
1639 cdns_ctrl->caps2.data_control_supp) {
1640 u8 *oob;
1641
1642 if (oob_required)
1643 oob = chip->oob_poi;
1644 else
1645 oob = cdns_ctrl->buf + mtd->writesize;
1646
1647 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
1648 status = cadence_nand_cdma_transfer(cdns_ctrl,
1649 cdns_chip->cs[chip->cur_cs],
1650 page, buf, oob,
1651 mtd->writesize,
1652 cdns_chip->avail_oob_size,
1653 DMA_FROM_DEVICE, true);
1654 /* Otherwise use bounce buffer. */
1655 } else {
1656 cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
1657 status = cadence_nand_cdma_transfer(cdns_ctrl,
1658 cdns_chip->cs[chip->cur_cs],
1659 page, cdns_ctrl->buf,
1660 NULL, mtd->writesize
1661 + cdns_chip->avail_oob_size,
1662 0, DMA_FROM_DEVICE, true);
1663
1664 memcpy(buf, cdns_ctrl->buf, mtd->writesize);
1665 if (oob_required)
1666 memcpy(chip->oob_poi,
1667 cdns_ctrl->buf + mtd->writesize,
1668 mtd->oobsize);
1669 }
1670
1671 switch (status) {
1672 case STAT_ECC_UNCORR:
1673 mtd->ecc_stats.failed++;
1674 ecc_err_count++;
1675 break;
1676 case STAT_ECC_CORR:
1677 ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
1678 cdns_ctrl->cdma_desc->status);
1679 mtd->ecc_stats.corrected += ecc_err_count;
1680 break;
1681 case STAT_ERASED:
1682 case STAT_OK:
1683 break;
1684 default:
1685 dev_err(cdns_ctrl->dev, "read page failed\n");
1686 return -EIO;
1687 }
1688
1689 if (oob_required)
1690 if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
1691 return -EIO;
1692
1693 return ecc_err_count;
1694 }
1695
1696 /* Reads OOB data from the device. */
cadence_nand_read_oob(struct nand_chip * chip,int page)1697 static int cadence_nand_read_oob(struct nand_chip *chip, int page)
1698 {
1699 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1700
1701 return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
1702 }
1703
cadence_nand_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1704 static int cadence_nand_read_page_raw(struct nand_chip *chip,
1705 u8 *buf, int oob_required, int page)
1706 {
1707 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
1708 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
1709 struct mtd_info *mtd = nand_to_mtd(chip);
1710 int oob_skip = cdns_chip->bbm_len;
1711 int writesize = mtd->writesize;
1712 int ecc_steps = chip->ecc.steps;
1713 int ecc_size = chip->ecc.size;
1714 int ecc_bytes = chip->ecc.bytes;
1715 void *tmp_buf = cdns_ctrl->buf;
1716 int i, pos, len;
1717 int status = 0;
1718
1719 status = cadence_nand_select_target(chip);
1720 if (status)
1721 return status;
1722
1723 cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
1724
1725 cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
1726 status = cadence_nand_cdma_transfer(cdns_ctrl,
1727 cdns_chip->cs[chip->cur_cs],
1728 page, cdns_ctrl->buf, NULL,
1729 mtd->writesize
1730 + mtd->oobsize,
1731 0, DMA_FROM_DEVICE, false);
1732
1733 switch (status) {
1734 case STAT_ERASED:
1735 case STAT_OK:
1736 break;
1737 default:
1738 dev_err(cdns_ctrl->dev, "read raw page failed\n");
1739 return -EIO;
1740 }
1741
1742 /* Arrange the buffer for syndrome payload/ecc layout. */
1743 if (buf) {
1744 for (i = 0; i < ecc_steps; i++) {
1745 pos = i * (ecc_size + ecc_bytes);
1746 len = ecc_size;
1747
1748 if (pos >= writesize)
1749 pos += oob_skip;
1750 else if (pos + len > writesize)
1751 len = writesize - pos;
1752
1753 memcpy(buf, tmp_buf + pos, len);
1754 buf += len;
1755 if (len < ecc_size) {
1756 len = ecc_size - len;
1757 memcpy(buf, tmp_buf + writesize + oob_skip,
1758 len);
1759 buf += len;
1760 }
1761 }
1762 }
1763
1764 if (oob_required) {
1765 u8 *oob = chip->oob_poi;
1766 u32 oob_data_offset = (cdns_chip->sector_count - 1) *
1767 (cdns_chip->sector_size + chip->ecc.bytes)
1768 + cdns_chip->sector_size + oob_skip;
1769
1770 /* OOB free. */
1771 memcpy(oob, tmp_buf + oob_data_offset,
1772 cdns_chip->avail_oob_size);
1773
1774 /* BBM at the beginning of the OOB area. */
1775 memcpy(oob, tmp_buf + writesize, oob_skip);
1776
1777 oob += cdns_chip->avail_oob_size;
1778
1779 /* OOB ECC */
1780 for (i = 0; i < ecc_steps; i++) {
1781 pos = ecc_size + i * (ecc_size + ecc_bytes);
1782 len = ecc_bytes;
1783
1784 if (i == (ecc_steps - 1))
1785 pos += cdns_chip->avail_oob_size;
1786
1787 if (pos >= writesize)
1788 pos += oob_skip;
1789 else if (pos + len > writesize)
1790 len = writesize - pos;
1791
1792 memcpy(oob, tmp_buf + pos, len);
1793 oob += len;
1794 if (len < ecc_bytes) {
1795 len = ecc_bytes - len;
1796 memcpy(oob, tmp_buf + writesize + oob_skip,
1797 len);
1798 oob += len;
1799 }
1800 }
1801 }
1802
1803 return 0;
1804 }
1805
cadence_nand_read_oob_raw(struct nand_chip * chip,int page)1806 static int cadence_nand_read_oob_raw(struct nand_chip *chip,
1807 int page)
1808 {
1809 return cadence_nand_read_page_raw(chip, NULL, true, page);
1810 }
1811
cadence_nand_slave_dma_transfer_finished(void * data)1812 static void cadence_nand_slave_dma_transfer_finished(void *data)
1813 {
1814 struct completion *finished = data;
1815
1816 complete(finished);
1817 }
1818
cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl * cdns_ctrl,void * buf,dma_addr_t dev_dma,size_t len,enum dma_data_direction dir)1819 static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
1820 void *buf,
1821 dma_addr_t dev_dma, size_t len,
1822 enum dma_data_direction dir)
1823 {
1824 DECLARE_COMPLETION_ONSTACK(finished);
1825 struct dma_chan *chan;
1826 struct dma_device *dma_dev;
1827 dma_addr_t src_dma, dst_dma, buf_dma;
1828 struct dma_async_tx_descriptor *tx;
1829 dma_cookie_t cookie;
1830
1831 chan = cdns_ctrl->dmac;
1832 dma_dev = chan->device;
1833
1834 buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
1835 if (dma_mapping_error(dma_dev->dev, buf_dma)) {
1836 dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
1837 goto err;
1838 }
1839
1840 if (dir == DMA_FROM_DEVICE) {
1841 src_dma = cdns_ctrl->io.dma;
1842 dst_dma = buf_dma;
1843 } else {
1844 src_dma = buf_dma;
1845 dst_dma = cdns_ctrl->io.dma;
1846 }
1847
1848 tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
1849 DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
1850 if (!tx) {
1851 dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
1852 goto err_unmap;
1853 }
1854
1855 tx->callback = cadence_nand_slave_dma_transfer_finished;
1856 tx->callback_param = &finished;
1857
1858 cookie = dmaengine_submit(tx);
1859 if (dma_submit_error(cookie)) {
1860 dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
1861 goto err_unmap;
1862 }
1863
1864 dma_async_issue_pending(cdns_ctrl->dmac);
1865 wait_for_completion(&finished);
1866
1867 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1868
1869 return 0;
1870
1871 err_unmap:
1872 dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
1873
1874 err:
1875 dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
1876
1877 return -EIO;
1878 }
1879
cadence_nand_read_buf(struct cdns_nand_ctrl * cdns_ctrl,u8 * buf,int len)1880 static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
1881 u8 *buf, int len)
1882 {
1883 u8 thread_nr = 0;
1884 u32 sdma_size;
1885 int status;
1886
1887 /* Wait until slave DMA interface is ready to data transfer. */
1888 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1889 if (status)
1890 return status;
1891
1892 if (!cdns_ctrl->caps1->has_dma) {
1893 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1894
1895 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1896
1897 /* read alingment data */
1898 if (data_dma_width == 4)
1899 ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1900 #ifdef CONFIG_64BIT
1901 else
1902 readsq(cdns_ctrl->io.virt, buf, len_in_words);
1903 #endif
1904
1905 if (sdma_size > len) {
1906 int read_bytes = (data_dma_width == 4) ?
1907 len_in_words << 2 : len_in_words << 3;
1908
1909 /* read rest data from slave DMA interface if any */
1910 if (data_dma_width == 4)
1911 ioread32_rep(cdns_ctrl->io.virt,
1912 cdns_ctrl->buf,
1913 sdma_size / 4 - len_in_words);
1914 #ifdef CONFIG_64BIT
1915 else
1916 readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1917 sdma_size / 8 - len_in_words);
1918 #endif
1919
1920 /* copy rest of data */
1921 memcpy(buf + read_bytes, cdns_ctrl->buf,
1922 len - read_bytes);
1923 }
1924 return 0;
1925 }
1926
1927 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
1928 status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
1929 cdns_ctrl->io.dma,
1930 len, DMA_FROM_DEVICE);
1931 if (status == 0)
1932 return 0;
1933
1934 dev_warn(cdns_ctrl->dev,
1935 "Slave DMA transfer failed. Try again using bounce buffer.");
1936 }
1937
1938 /* If DMA transfer is not possible or failed then use bounce buffer. */
1939 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
1940 cdns_ctrl->io.dma,
1941 sdma_size, DMA_FROM_DEVICE);
1942
1943 if (status) {
1944 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
1945 return status;
1946 }
1947
1948 memcpy(buf, cdns_ctrl->buf, len);
1949
1950 return 0;
1951 }
1952
cadence_nand_write_buf(struct cdns_nand_ctrl * cdns_ctrl,const u8 * buf,int len)1953 static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
1954 const u8 *buf, int len)
1955 {
1956 u8 thread_nr = 0;
1957 u32 sdma_size;
1958 int status;
1959
1960 /* Wait until slave DMA interface is ready to data transfer. */
1961 status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
1962 if (status)
1963 return status;
1964
1965 if (!cdns_ctrl->caps1->has_dma) {
1966 u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
1967
1968 int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
1969
1970 if (data_dma_width == 4)
1971 iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
1972 #ifdef CONFIG_64BIT
1973 else
1974 writesq(cdns_ctrl->io.virt, buf, len_in_words);
1975 #endif
1976
1977 if (sdma_size > len) {
1978 int written_bytes = (data_dma_width == 4) ?
1979 len_in_words << 2 : len_in_words << 3;
1980
1981 /* copy rest of data */
1982 memcpy(cdns_ctrl->buf, buf + written_bytes,
1983 len - written_bytes);
1984
1985 /* write all expected by nand controller data */
1986 if (data_dma_width == 4)
1987 iowrite32_rep(cdns_ctrl->io.virt,
1988 cdns_ctrl->buf,
1989 sdma_size / 4 - len_in_words);
1990 #ifdef CONFIG_64BIT
1991 else
1992 writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
1993 sdma_size / 8 - len_in_words);
1994 #endif
1995 }
1996
1997 return 0;
1998 }
1999
2000 if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
2001 status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
2002 cdns_ctrl->io.dma,
2003 len, DMA_TO_DEVICE);
2004 if (status == 0)
2005 return 0;
2006
2007 dev_warn(cdns_ctrl->dev,
2008 "Slave DMA transfer failed. Try again using bounce buffer.");
2009 }
2010
2011 /* If DMA transfer is not possible or failed then use bounce buffer. */
2012 memcpy(cdns_ctrl->buf, buf, len);
2013
2014 status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
2015 cdns_ctrl->io.dma,
2016 sdma_size, DMA_TO_DEVICE);
2017
2018 if (status)
2019 dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
2020
2021 return status;
2022 }
2023
cadence_nand_force_byte_access(struct nand_chip * chip,bool force_8bit)2024 static int cadence_nand_force_byte_access(struct nand_chip *chip,
2025 bool force_8bit)
2026 {
2027 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2028
2029 /*
2030 * Callers of this function do not verify if the NAND is using a 16-bit
2031 * an 8-bit bus for normal operations, so we need to take care of that
2032 * here by leaving the configuration unchanged if the NAND does not have
2033 * the NAND_BUSWIDTH_16 flag set.
2034 */
2035 if (!(chip->options & NAND_BUSWIDTH_16))
2036 return 0;
2037
2038 return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
2039 }
2040
cadence_nand_cmd_opcode(struct nand_chip * chip,const struct nand_subop * subop)2041 static int cadence_nand_cmd_opcode(struct nand_chip *chip,
2042 const struct nand_subop *subop)
2043 {
2044 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2045 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2046 const struct nand_op_instr *instr;
2047 unsigned int op_id = 0;
2048 u64 mini_ctrl_cmd = 0;
2049 int ret;
2050
2051 instr = &subop->instrs[op_id];
2052
2053 if (instr->delay_ns > 0)
2054 mini_ctrl_cmd |= GCMD_LAY_TWB;
2055
2056 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2057 GCMD_LAY_INSTR_CMD);
2058 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
2059 instr->ctx.cmd.opcode);
2060
2061 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2062 cdns_chip->cs[chip->cur_cs],
2063 mini_ctrl_cmd);
2064 if (ret)
2065 dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
2066 instr->ctx.cmd.opcode);
2067
2068 return ret;
2069 }
2070
cadence_nand_cmd_address(struct nand_chip * chip,const struct nand_subop * subop)2071 static int cadence_nand_cmd_address(struct nand_chip *chip,
2072 const struct nand_subop *subop)
2073 {
2074 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2075 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2076 const struct nand_op_instr *instr;
2077 unsigned int op_id = 0;
2078 u64 mini_ctrl_cmd = 0;
2079 unsigned int offset, naddrs;
2080 u64 address = 0;
2081 const u8 *addrs;
2082 int ret;
2083 int i;
2084
2085 instr = &subop->instrs[op_id];
2086
2087 if (instr->delay_ns > 0)
2088 mini_ctrl_cmd |= GCMD_LAY_TWB;
2089
2090 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2091 GCMD_LAY_INSTR_ADDR);
2092
2093 offset = nand_subop_get_addr_start_off(subop, op_id);
2094 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2095 addrs = &instr->ctx.addr.addrs[offset];
2096
2097 for (i = 0; i < naddrs; i++)
2098 address |= (u64)addrs[i] << (8 * i);
2099
2100 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
2101 address);
2102 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
2103 naddrs - 1);
2104
2105 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2106 cdns_chip->cs[chip->cur_cs],
2107 mini_ctrl_cmd);
2108 if (ret)
2109 dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
2110
2111 return ret;
2112 }
2113
cadence_nand_cmd_erase(struct nand_chip * chip,const struct nand_subop * subop)2114 static int cadence_nand_cmd_erase(struct nand_chip *chip,
2115 const struct nand_subop *subop)
2116 {
2117 unsigned int op_id;
2118
2119 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
2120 int i;
2121 const struct nand_op_instr *instr = NULL;
2122 unsigned int offset, naddrs;
2123 const u8 *addrs;
2124 u32 page = 0;
2125
2126 instr = &subop->instrs[1];
2127 offset = nand_subop_get_addr_start_off(subop, 1);
2128 naddrs = nand_subop_get_num_addr_cyc(subop, 1);
2129 addrs = &instr->ctx.addr.addrs[offset];
2130
2131 for (i = 0; i < naddrs; i++)
2132 page |= (u32)addrs[i] << (8 * i);
2133
2134 return cadence_nand_erase(chip, page);
2135 }
2136
2137 /*
2138 * If it is not an erase operation then handle operation
2139 * by calling exec_op function.
2140 */
2141 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2142 int ret;
2143 const struct nand_operation nand_op = {
2144 .cs = chip->cur_cs,
2145 .instrs = &subop->instrs[op_id],
2146 .ninstrs = 1};
2147 ret = chip->controller->ops->exec_op(chip, &nand_op, false);
2148 if (ret)
2149 return ret;
2150 }
2151
2152 return 0;
2153 }
2154
cadence_nand_cmd_data(struct nand_chip * chip,const struct nand_subop * subop)2155 static int cadence_nand_cmd_data(struct nand_chip *chip,
2156 const struct nand_subop *subop)
2157 {
2158 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2159 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2160 const struct nand_op_instr *instr;
2161 unsigned int offset, op_id = 0;
2162 u64 mini_ctrl_cmd = 0;
2163 int len = 0;
2164 int ret;
2165
2166 instr = &subop->instrs[op_id];
2167
2168 if (instr->delay_ns > 0)
2169 mini_ctrl_cmd |= GCMD_LAY_TWB;
2170
2171 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
2172 GCMD_LAY_INSTR_DATA);
2173
2174 if (instr->type == NAND_OP_DATA_OUT_INSTR)
2175 mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
2176 GCMD_DIR_WRITE);
2177
2178 len = nand_subop_get_data_len(subop, op_id);
2179 offset = nand_subop_get_data_start_off(subop, op_id);
2180 mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
2181 mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
2182 if (instr->ctx.data.force_8bit) {
2183 ret = cadence_nand_force_byte_access(chip, true);
2184 if (ret) {
2185 dev_err(cdns_ctrl->dev,
2186 "cannot change byte access generic data cmd failed\n");
2187 return ret;
2188 }
2189 }
2190
2191 ret = cadence_nand_generic_cmd_send(cdns_ctrl,
2192 cdns_chip->cs[chip->cur_cs],
2193 mini_ctrl_cmd);
2194 if (ret) {
2195 dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
2196 return ret;
2197 }
2198
2199 if (instr->type == NAND_OP_DATA_IN_INSTR) {
2200 void *buf = instr->ctx.data.buf.in + offset;
2201
2202 ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
2203 } else {
2204 const void *buf = instr->ctx.data.buf.out + offset;
2205
2206 ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
2207 }
2208
2209 if (ret) {
2210 dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
2211 return ret;
2212 }
2213
2214 if (instr->ctx.data.force_8bit) {
2215 ret = cadence_nand_force_byte_access(chip, false);
2216 if (ret) {
2217 dev_err(cdns_ctrl->dev,
2218 "cannot change byte access generic data cmd failed\n");
2219 }
2220 }
2221
2222 return ret;
2223 }
2224
cadence_nand_cmd_waitrdy(struct nand_chip * chip,const struct nand_subop * subop)2225 static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
2226 const struct nand_subop *subop)
2227 {
2228 int status;
2229 unsigned int op_id = 0;
2230 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2231 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2232 const struct nand_op_instr *instr = &subop->instrs[op_id];
2233 u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
2234
2235 status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
2236 timeout_us,
2237 BIT(cdns_chip->cs[chip->cur_cs]),
2238 false);
2239 return status;
2240 }
2241
2242 static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
2243 NAND_OP_PARSER_PATTERN(
2244 cadence_nand_cmd_erase,
2245 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2246 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
2247 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2248 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2249 NAND_OP_PARSER_PATTERN(
2250 cadence_nand_cmd_opcode,
2251 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2252 NAND_OP_PARSER_PATTERN(
2253 cadence_nand_cmd_address,
2254 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
2255 NAND_OP_PARSER_PATTERN(
2256 cadence_nand_cmd_data,
2257 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
2258 NAND_OP_PARSER_PATTERN(
2259 cadence_nand_cmd_data,
2260 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
2261 NAND_OP_PARSER_PATTERN(
2262 cadence_nand_cmd_waitrdy,
2263 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
2264 );
2265
cadence_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2266 static int cadence_nand_exec_op(struct nand_chip *chip,
2267 const struct nand_operation *op,
2268 bool check_only)
2269 {
2270 if (!check_only) {
2271 int status = cadence_nand_select_target(chip);
2272
2273 if (status)
2274 return status;
2275 }
2276
2277 return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
2278 check_only);
2279 }
2280
cadence_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2281 static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
2282 struct mtd_oob_region *oobregion)
2283 {
2284 struct nand_chip *chip = mtd_to_nand(mtd);
2285 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2286
2287 if (section)
2288 return -ERANGE;
2289
2290 oobregion->offset = cdns_chip->bbm_len;
2291 oobregion->length = cdns_chip->avail_oob_size
2292 - cdns_chip->bbm_len;
2293
2294 return 0;
2295 }
2296
cadence_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2297 static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2298 struct mtd_oob_region *oobregion)
2299 {
2300 struct nand_chip *chip = mtd_to_nand(mtd);
2301 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2302
2303 if (section)
2304 return -ERANGE;
2305
2306 oobregion->offset = cdns_chip->avail_oob_size;
2307 oobregion->length = chip->ecc.total;
2308
2309 return 0;
2310 }
2311
2312 static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
2313 .free = cadence_nand_ooblayout_free,
2314 .ecc = cadence_nand_ooblayout_ecc,
2315 };
2316
calc_cycl(u32 timing,u32 clock)2317 static int calc_cycl(u32 timing, u32 clock)
2318 {
2319 if (timing == 0 || clock == 0)
2320 return 0;
2321
2322 if ((timing % clock) > 0)
2323 return timing / clock;
2324 else
2325 return timing / clock - 1;
2326 }
2327
2328 /* Calculate max data valid window. */
calc_tdvw_max(u32 trp_cnt,u32 clk_period,u32 trhoh_min,u32 board_delay_skew_min,u32 ext_mode)2329 static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2330 u32 board_delay_skew_min, u32 ext_mode)
2331 {
2332 if (ext_mode == 0)
2333 clk_period /= 2;
2334
2335 return (trp_cnt + 1) * clk_period + trhoh_min +
2336 board_delay_skew_min;
2337 }
2338
2339 /* Calculate data valid window. */
calc_tdvw(u32 trp_cnt,u32 clk_period,u32 trhoh_min,u32 trea_max,u32 ext_mode)2340 static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
2341 u32 trea_max, u32 ext_mode)
2342 {
2343 if (ext_mode == 0)
2344 clk_period /= 2;
2345
2346 return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
2347 }
2348
2349 static int
cadence_nand_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)2350 cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
2351 const struct nand_interface_config *conf)
2352 {
2353 const struct nand_sdr_timings *sdr;
2354 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2355 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2356 struct cadence_nand_timings *t = &cdns_chip->timings;
2357 u32 reg;
2358 u32 board_delay = cdns_ctrl->board_delay;
2359 u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
2360 cdns_ctrl->nf_clk_rate);
2361 u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
2362 u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
2363 u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
2364 u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
2365 u32 if_skew = cdns_ctrl->caps1->if_skew;
2366 u32 board_delay_skew_min = board_delay - if_skew;
2367 u32 board_delay_skew_max = board_delay + if_skew;
2368 u32 dqs_sampl_res, phony_dqs_mod;
2369 u32 tdvw, tdvw_min, tdvw_max;
2370 u32 ext_rd_mode, ext_wr_mode;
2371 u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
2372 u32 sampling_point;
2373
2374 sdr = nand_get_sdr_timings(conf);
2375 if (IS_ERR(sdr))
2376 return PTR_ERR(sdr);
2377
2378 memset(t, 0, sizeof(*t));
2379 /* Sampling point calculation. */
2380
2381 if (cdns_ctrl->caps2.is_phy_type_dll)
2382 phony_dqs_mod = 2;
2383 else
2384 phony_dqs_mod = 1;
2385
2386 dqs_sampl_res = clk_period / phony_dqs_mod;
2387
2388 tdvw_min = sdr->tREA_max + board_delay_skew_max;
2389 /*
2390 * The idea of those calculation is to get the optimum value
2391 * for tRP and tRH timings. If it is NOT possible to sample data
2392 * with optimal tRP/tRH settings, the parameters will be extended.
2393 * If clk_period is 50ns (the lowest value) this condition is met
2394 * for SDR timing modes 1, 2, 3, 4 and 5.
2395 * If clk_period is 20ns the condition is met only for SDR timing
2396 * mode 5.
2397 */
2398 if (sdr->tRC_min <= clk_period &&
2399 sdr->tRP_min <= (clk_period / 2) &&
2400 sdr->tREH_min <= (clk_period / 2)) {
2401 /* Performance mode. */
2402 ext_rd_mode = 0;
2403 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2404 sdr->tREA_max, ext_rd_mode);
2405 tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
2406 board_delay_skew_min,
2407 ext_rd_mode);
2408 /*
2409 * Check if data valid window and sampling point can be found
2410 * and is not on the edge (ie. we have hold margin).
2411 * If not extend the tRP timings.
2412 */
2413 if (tdvw > 0) {
2414 if (tdvw_max <= tdvw_min ||
2415 (tdvw_max % dqs_sampl_res) == 0) {
2416 /*
2417 * No valid sampling point so the RE pulse need
2418 * to be widen widening by half clock cycle.
2419 */
2420 ext_rd_mode = 1;
2421 }
2422 } else {
2423 /*
2424 * There is no valid window
2425 * to be able to sample data the tRP need to be widen.
2426 * Very safe calculations are performed here.
2427 */
2428 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2429 + dqs_sampl_res) / clk_period;
2430 ext_rd_mode = 1;
2431 }
2432
2433 } else {
2434 /* Extended read mode. */
2435 u32 trh;
2436
2437 ext_rd_mode = 1;
2438 trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
2439 trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
2440 if (sdr->tREH_min >= trh)
2441 trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
2442 else
2443 trh_cnt = calc_cycl(trh, clk_period);
2444
2445 tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
2446 sdr->tREA_max, ext_rd_mode);
2447 /*
2448 * Check if data valid window and sampling point can be found
2449 * or if it is at the edge check if previous is valid
2450 * - if not extend the tRP timings.
2451 */
2452 if (tdvw > 0) {
2453 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2454 sdr->tRHOH_min,
2455 board_delay_skew_min,
2456 ext_rd_mode);
2457
2458 if ((((tdvw_max / dqs_sampl_res)
2459 * dqs_sampl_res) <= tdvw_min) ||
2460 (((tdvw_max % dqs_sampl_res) == 0) &&
2461 (((tdvw_max / dqs_sampl_res - 1)
2462 * dqs_sampl_res) <= tdvw_min))) {
2463 /*
2464 * Data valid window width is lower than
2465 * sampling resolution and do not hit any
2466 * sampling point to be sure the sampling point
2467 * will be found the RE low pulse width will be
2468 * extended by one clock cycle.
2469 */
2470 trp_cnt = trp_cnt + 1;
2471 }
2472 } else {
2473 /*
2474 * There is no valid window to be able to sample data.
2475 * The tRP need to be widen.
2476 * Very safe calculations are performed here.
2477 */
2478 trp_cnt = (sdr->tREA_max + board_delay_skew_max
2479 + dqs_sampl_res) / clk_period;
2480 }
2481 }
2482
2483 tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
2484 sdr->tRHOH_min,
2485 board_delay_skew_min, ext_rd_mode);
2486
2487 if (sdr->tWC_min <= clk_period &&
2488 (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
2489 (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
2490 ext_wr_mode = 0;
2491 } else {
2492 u32 twh;
2493
2494 ext_wr_mode = 1;
2495 twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
2496 if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
2497 twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
2498 clk_period);
2499
2500 twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
2501 if (sdr->tWH_min >= twh)
2502 twh = sdr->tWH_min;
2503
2504 twh_cnt = calc_cycl(twh + if_skew, clk_period);
2505 }
2506
2507 reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
2508 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
2509 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
2510 reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
2511 t->async_toggle_timings = reg;
2512 dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
2513
2514 tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
2515 tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
2516 twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
2517 trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
2518 reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
2519
2520 /*
2521 * If timing exceeds delay field in timing register
2522 * then use maximum value.
2523 */
2524 if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
2525 reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
2526 else
2527 reg |= TIMINGS0_TCCS;
2528
2529 reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
2530 reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
2531 t->timings0 = reg;
2532 dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
2533
2534 /* The following is related to single signal so skew is not needed. */
2535 trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
2536 trhz_cnt = trhz_cnt + 1;
2537 twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
2538 /*
2539 * Because of the two stage syncflop the value must be increased by 3
2540 * first value is related with sync, second value is related
2541 * with output if delay.
2542 */
2543 twb_cnt = twb_cnt + 3 + 5;
2544 /*
2545 * The following is related to the we edge of the random data input
2546 * sequence so skew is not needed.
2547 */
2548 tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
2549 reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
2550 reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
2551 reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
2552 t->timings1 = reg;
2553 dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
2554
2555 tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
2556 if (tfeat_cnt < twb_cnt)
2557 tfeat_cnt = twb_cnt;
2558
2559 tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
2560 tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
2561
2562 reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
2563 reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
2564 reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
2565 t->timings2 = reg;
2566 dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
2567
2568 if (cdns_ctrl->caps2.is_phy_type_dll) {
2569 reg = DLL_PHY_CTRL_DLL_RST_N;
2570 if (ext_wr_mode)
2571 reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
2572 if (ext_rd_mode)
2573 reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
2574
2575 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
2576 reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
2577 t->dll_phy_ctrl = reg;
2578 dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
2579 }
2580
2581 /* Sampling point calculation. */
2582 if ((tdvw_max % dqs_sampl_res) > 0)
2583 sampling_point = tdvw_max / dqs_sampl_res;
2584 else
2585 sampling_point = (tdvw_max / dqs_sampl_res - 1);
2586
2587 if (sampling_point * dqs_sampl_res > tdvw_min) {
2588 dll_phy_dqs_timing =
2589 FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
2590 dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
2591 phony_dqs_timing = sampling_point / phony_dqs_mod;
2592
2593 if ((sampling_point % 2) > 0) {
2594 dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
2595 if ((tdvw_max % dqs_sampl_res) == 0)
2596 /*
2597 * Calculation for sampling point at the edge
2598 * of data and being odd number.
2599 */
2600 phony_dqs_timing = (tdvw_max / dqs_sampl_res)
2601 / phony_dqs_mod - 1;
2602
2603 if (!cdns_ctrl->caps2.is_phy_type_dll)
2604 phony_dqs_timing--;
2605
2606 } else {
2607 phony_dqs_timing--;
2608 }
2609 rd_del_sel = phony_dqs_timing + 3;
2610 } else {
2611 dev_warn(cdns_ctrl->dev,
2612 "ERROR : cannot find valid sampling point\n");
2613 }
2614
2615 reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
2616 if (cdns_ctrl->caps2.is_phy_type_dll)
2617 reg |= PHY_CTRL_SDR_DQS;
2618 t->phy_ctrl = reg;
2619 dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
2620
2621 if (cdns_ctrl->caps2.is_phy_type_dll) {
2622 dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
2623 dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
2624 dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
2625 dll_phy_dqs_timing);
2626 t->phy_dqs_timing = dll_phy_dqs_timing;
2627
2628 reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
2629 dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
2630 reg);
2631 t->phy_gate_lpbk_ctrl = reg;
2632
2633 dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
2634 PHY_DLL_MASTER_CTRL_BYPASS_MODE);
2635 dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
2636 }
2637
2638 return 0;
2639 }
2640
cadence_nand_attach_chip(struct nand_chip * chip)2641 static int cadence_nand_attach_chip(struct nand_chip *chip)
2642 {
2643 struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
2644 struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
2645 u32 ecc_size;
2646 struct mtd_info *mtd = nand_to_mtd(chip);
2647 int ret;
2648
2649 if (chip->options & NAND_BUSWIDTH_16) {
2650 ret = cadence_nand_set_access_width16(cdns_ctrl, true);
2651 if (ret)
2652 return ret;
2653 }
2654
2655 chip->bbt_options |= NAND_BBT_USE_FLASH;
2656 chip->bbt_options |= NAND_BBT_NO_OOB;
2657 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2658
2659 chip->options |= NAND_NO_SUBPAGE_WRITE;
2660
2661 cdns_chip->bbm_offs = chip->badblockpos;
2662 cdns_chip->bbm_offs &= ~0x01;
2663 /* this value should be even number */
2664 cdns_chip->bbm_len = 2;
2665
2666 ret = nand_ecc_choose_conf(chip,
2667 &cdns_ctrl->ecc_caps,
2668 mtd->oobsize - cdns_chip->bbm_len);
2669 if (ret) {
2670 dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
2671 return ret;
2672 }
2673
2674 dev_dbg(cdns_ctrl->dev,
2675 "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
2676 chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
2677
2678 /* Error correction configuration. */
2679 cdns_chip->sector_size = chip->ecc.size;
2680 cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
2681 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
2682
2683 cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
2684
2685 if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
2686 cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
2687
2688 if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
2689 > mtd->oobsize)
2690 cdns_chip->avail_oob_size -= 4;
2691
2692 ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
2693 if (ret < 0)
2694 return -EINVAL;
2695
2696 cdns_chip->corr_str_idx = (u8)ret;
2697
2698 if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
2699 1000000,
2700 CTRL_STATUS_CTRL_BUSY, true))
2701 return -ETIMEDOUT;
2702
2703 cadence_nand_set_ecc_strength(cdns_ctrl,
2704 cdns_chip->corr_str_idx);
2705
2706 cadence_nand_set_erase_detection(cdns_ctrl, true,
2707 chip->ecc.strength);
2708
2709 /* Override the default read operations. */
2710 chip->ecc.read_page = cadence_nand_read_page;
2711 chip->ecc.read_page_raw = cadence_nand_read_page_raw;
2712 chip->ecc.write_page = cadence_nand_write_page;
2713 chip->ecc.write_page_raw = cadence_nand_write_page_raw;
2714 chip->ecc.read_oob = cadence_nand_read_oob;
2715 chip->ecc.write_oob = cadence_nand_write_oob;
2716 chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
2717 chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
2718
2719 if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
2720 cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
2721
2722 /* Is 32-bit DMA supported? */
2723 ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
2724 if (ret) {
2725 dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
2726 return ret;
2727 }
2728
2729 mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
2730
2731 return 0;
2732 }
2733
2734 static const struct nand_controller_ops cadence_nand_controller_ops = {
2735 .attach_chip = cadence_nand_attach_chip,
2736 .exec_op = cadence_nand_exec_op,
2737 .setup_interface = cadence_nand_setup_interface,
2738 };
2739
cadence_nand_chip_init(struct cdns_nand_ctrl * cdns_ctrl,struct device_node * np)2740 static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
2741 struct device_node *np)
2742 {
2743 struct cdns_nand_chip *cdns_chip;
2744 struct mtd_info *mtd;
2745 struct nand_chip *chip;
2746 int nsels, ret, i;
2747 u32 cs;
2748
2749 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2750 if (nsels <= 0) {
2751 dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
2752 return -EINVAL;
2753 }
2754
2755 /* Allocate the nand chip structure. */
2756 cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
2757 (nsels * sizeof(u8)),
2758 GFP_KERNEL);
2759 if (!cdns_chip) {
2760 dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
2761 return -ENOMEM;
2762 }
2763
2764 cdns_chip->nsels = nsels;
2765
2766 for (i = 0; i < nsels; i++) {
2767 /* Retrieve CS id. */
2768 ret = of_property_read_u32_index(np, "reg", i, &cs);
2769 if (ret) {
2770 dev_err(cdns_ctrl->dev,
2771 "could not retrieve reg property: %d\n",
2772 ret);
2773 return ret;
2774 }
2775
2776 if (cs >= cdns_ctrl->caps2.max_banks) {
2777 dev_err(cdns_ctrl->dev,
2778 "invalid reg value: %u (max CS = %d)\n",
2779 cs, cdns_ctrl->caps2.max_banks);
2780 return -EINVAL;
2781 }
2782
2783 if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
2784 dev_err(cdns_ctrl->dev,
2785 "CS %d already assigned\n", cs);
2786 return -EINVAL;
2787 }
2788
2789 cdns_chip->cs[i] = cs;
2790 }
2791
2792 chip = &cdns_chip->chip;
2793 chip->controller = &cdns_ctrl->controller;
2794 nand_set_flash_node(chip, np);
2795
2796 mtd = nand_to_mtd(chip);
2797 mtd->dev.parent = cdns_ctrl->dev;
2798
2799 /*
2800 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
2801 * in the DT node, this entry will be overwritten in nand_scan_ident().
2802 */
2803 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2804
2805 ret = nand_scan(chip, cdns_chip->nsels);
2806 if (ret) {
2807 dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
2808 return ret;
2809 }
2810
2811 ret = mtd_device_register(mtd, NULL, 0);
2812 if (ret) {
2813 dev_err(cdns_ctrl->dev,
2814 "failed to register mtd device: %d\n", ret);
2815 nand_cleanup(chip);
2816 return ret;
2817 }
2818
2819 list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
2820
2821 return 0;
2822 }
2823
cadence_nand_chips_cleanup(struct cdns_nand_ctrl * cdns_ctrl)2824 static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
2825 {
2826 struct cdns_nand_chip *entry, *temp;
2827 struct nand_chip *chip;
2828 int ret;
2829
2830 list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
2831 chip = &entry->chip;
2832 ret = mtd_device_unregister(nand_to_mtd(chip));
2833 WARN_ON(ret);
2834 nand_cleanup(chip);
2835 list_del(&entry->node);
2836 }
2837 }
2838
cadence_nand_chips_init(struct cdns_nand_ctrl * cdns_ctrl)2839 static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
2840 {
2841 struct device_node *np = cdns_ctrl->dev->of_node;
2842 struct device_node *nand_np;
2843 int max_cs = cdns_ctrl->caps2.max_banks;
2844 int nchips, ret;
2845
2846 nchips = of_get_child_count(np);
2847
2848 if (nchips > max_cs) {
2849 dev_err(cdns_ctrl->dev,
2850 "too many NAND chips: %d (max = %d CS)\n",
2851 nchips, max_cs);
2852 return -EINVAL;
2853 }
2854
2855 for_each_child_of_node(np, nand_np) {
2856 ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
2857 if (ret) {
2858 of_node_put(nand_np);
2859 cadence_nand_chips_cleanup(cdns_ctrl);
2860 return ret;
2861 }
2862 }
2863
2864 return 0;
2865 }
2866
2867 static void
cadence_nand_irq_cleanup(int irqnum,struct cdns_nand_ctrl * cdns_ctrl)2868 cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
2869 {
2870 /* Disable interrupts. */
2871 writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
2872 }
2873
cadence_nand_init(struct cdns_nand_ctrl * cdns_ctrl)2874 static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
2875 {
2876 dma_cap_mask_t mask;
2877 int ret;
2878
2879 cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
2880 sizeof(*cdns_ctrl->cdma_desc),
2881 &cdns_ctrl->dma_cdma_desc,
2882 GFP_KERNEL);
2883 if (!cdns_ctrl->dma_cdma_desc)
2884 return -ENOMEM;
2885
2886 cdns_ctrl->buf_size = SZ_16K;
2887 cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2888 if (!cdns_ctrl->buf) {
2889 ret = -ENOMEM;
2890 goto free_buf_desc;
2891 }
2892
2893 if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
2894 IRQF_SHARED, "cadence-nand-controller",
2895 cdns_ctrl)) {
2896 dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
2897 ret = -ENODEV;
2898 goto free_buf;
2899 }
2900
2901 spin_lock_init(&cdns_ctrl->irq_lock);
2902 init_completion(&cdns_ctrl->complete);
2903
2904 ret = cadence_nand_hw_init(cdns_ctrl);
2905 if (ret)
2906 goto disable_irq;
2907
2908 dma_cap_zero(mask);
2909 dma_cap_set(DMA_MEMCPY, mask);
2910
2911 if (cdns_ctrl->caps1->has_dma) {
2912 cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
2913 if (!cdns_ctrl->dmac) {
2914 dev_err(cdns_ctrl->dev,
2915 "Unable to get a DMA channel\n");
2916 ret = -EBUSY;
2917 goto disable_irq;
2918 }
2919 }
2920
2921 nand_controller_init(&cdns_ctrl->controller);
2922 INIT_LIST_HEAD(&cdns_ctrl->chips);
2923
2924 cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
2925 cdns_ctrl->curr_corr_str_idx = 0xFF;
2926
2927 ret = cadence_nand_chips_init(cdns_ctrl);
2928 if (ret) {
2929 dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
2930 ret);
2931 goto dma_release_chnl;
2932 }
2933
2934 kfree(cdns_ctrl->buf);
2935 cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
2936 if (!cdns_ctrl->buf) {
2937 ret = -ENOMEM;
2938 goto dma_release_chnl;
2939 }
2940
2941 return 0;
2942
2943 dma_release_chnl:
2944 if (cdns_ctrl->dmac)
2945 dma_release_channel(cdns_ctrl->dmac);
2946
2947 disable_irq:
2948 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2949
2950 free_buf:
2951 kfree(cdns_ctrl->buf);
2952
2953 free_buf_desc:
2954 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2955 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2956
2957 return ret;
2958 }
2959
2960 /* Driver exit point. */
cadence_nand_remove(struct cdns_nand_ctrl * cdns_ctrl)2961 static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
2962 {
2963 cadence_nand_chips_cleanup(cdns_ctrl);
2964 cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
2965 kfree(cdns_ctrl->buf);
2966 dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
2967 cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
2968
2969 if (cdns_ctrl->dmac)
2970 dma_release_channel(cdns_ctrl->dmac);
2971 }
2972
2973 struct cadence_nand_dt {
2974 struct cdns_nand_ctrl cdns_ctrl;
2975 struct clk *clk;
2976 };
2977
2978 static const struct cadence_nand_dt_devdata cadence_nand_default = {
2979 .if_skew = 0,
2980 .has_dma = 1,
2981 };
2982
2983 static const struct of_device_id cadence_nand_dt_ids[] = {
2984 {
2985 .compatible = "cdns,hp-nfc",
2986 .data = &cadence_nand_default
2987 }, {}
2988 };
2989
2990 MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
2991
cadence_nand_dt_probe(struct platform_device * ofdev)2992 static int cadence_nand_dt_probe(struct platform_device *ofdev)
2993 {
2994 struct resource *res;
2995 struct cadence_nand_dt *dt;
2996 struct cdns_nand_ctrl *cdns_ctrl;
2997 int ret;
2998 const struct of_device_id *of_id;
2999 const struct cadence_nand_dt_devdata *devdata;
3000 u32 val;
3001
3002 of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
3003 if (of_id) {
3004 ofdev->id_entry = of_id->data;
3005 devdata = of_id->data;
3006 } else {
3007 pr_err("Failed to find the right device id.\n");
3008 return -ENOMEM;
3009 }
3010
3011 dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
3012 if (!dt)
3013 return -ENOMEM;
3014
3015 cdns_ctrl = &dt->cdns_ctrl;
3016 cdns_ctrl->caps1 = devdata;
3017
3018 cdns_ctrl->dev = &ofdev->dev;
3019 cdns_ctrl->irq = platform_get_irq(ofdev, 0);
3020 if (cdns_ctrl->irq < 0)
3021 return cdns_ctrl->irq;
3022
3023 dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
3024
3025 cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
3026 if (IS_ERR(cdns_ctrl->reg))
3027 return PTR_ERR(cdns_ctrl->reg);
3028
3029 cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
3030 if (IS_ERR(cdns_ctrl->io.virt))
3031 return PTR_ERR(cdns_ctrl->io.virt);
3032 cdns_ctrl->io.dma = res->start;
3033
3034 dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
3035 if (IS_ERR(dt->clk))
3036 return PTR_ERR(dt->clk);
3037
3038 cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
3039
3040 ret = of_property_read_u32(ofdev->dev.of_node,
3041 "cdns,board-delay-ps", &val);
3042 if (ret) {
3043 val = 4830;
3044 dev_info(cdns_ctrl->dev,
3045 "missing cdns,board-delay-ps property, %d was set\n",
3046 val);
3047 }
3048 cdns_ctrl->board_delay = val;
3049
3050 ret = cadence_nand_init(cdns_ctrl);
3051 if (ret)
3052 return ret;
3053
3054 platform_set_drvdata(ofdev, dt);
3055 return 0;
3056 }
3057
cadence_nand_dt_remove(struct platform_device * ofdev)3058 static void cadence_nand_dt_remove(struct platform_device *ofdev)
3059 {
3060 struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
3061
3062 cadence_nand_remove(&dt->cdns_ctrl);
3063 }
3064
3065 static struct platform_driver cadence_nand_dt_driver = {
3066 .probe = cadence_nand_dt_probe,
3067 .remove_new = cadence_nand_dt_remove,
3068 .driver = {
3069 .name = "cadence-nand-controller",
3070 .of_match_table = cadence_nand_dt_ids,
3071 },
3072 };
3073
3074 module_platform_driver(cadence_nand_dt_driver);
3075
3076 MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
3077 MODULE_LICENSE("GPL v2");
3078 MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
3079
3080