1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/platform_data/brcmnand.h>
13 #include <linux/err.h>
14 #include <linux/completion.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/ioport.h>
19 #include <linux/bug.h>
20 #include <linux/kernel.h>
21 #include <linux/bitops.h>
22 #include <linux/mm.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/slab.h>
29 #include <linux/static_key.h>
30 #include <linux/list.h>
31 #include <linux/log2.h>
32 
33 #include "brcmnand.h"
34 
35 /*
36  * This flag controls if WP stays on between erase/write commands to mitigate
37  * flash corruption due to power glitches. Values:
38  * 0: NAND_WP is not used or not available
39  * 1: NAND_WP is set by default, cleared for erase/write operations
40  * 2: NAND_WP is always cleared
41  */
42 static int wp_on = 1;
43 module_param(wp_on, int, 0444);
44 
45 /***********************************************************************
46  * Definitions
47  ***********************************************************************/
48 
49 #define DRV_NAME			"brcmnand"
50 
51 #define CMD_NULL			0x00
52 #define CMD_PAGE_READ			0x01
53 #define CMD_SPARE_AREA_READ		0x02
54 #define CMD_STATUS_READ			0x03
55 #define CMD_PROGRAM_PAGE		0x04
56 #define CMD_PROGRAM_SPARE_AREA		0x05
57 #define CMD_COPY_BACK			0x06
58 #define CMD_DEVICE_ID_READ		0x07
59 #define CMD_BLOCK_ERASE			0x08
60 #define CMD_FLASH_RESET			0x09
61 #define CMD_BLOCKS_LOCK			0x0a
62 #define CMD_BLOCKS_LOCK_DOWN		0x0b
63 #define CMD_BLOCKS_UNLOCK		0x0c
64 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
65 #define CMD_PARAMETER_READ		0x0e
66 #define CMD_PARAMETER_CHANGE_COL	0x0f
67 #define CMD_LOW_LEVEL_OP		0x10
68 
69 struct brcm_nand_dma_desc {
70 	u32 next_desc;
71 	u32 next_desc_ext;
72 	u32 cmd_irq;
73 	u32 dram_addr;
74 	u32 dram_addr_ext;
75 	u32 tfr_len;
76 	u32 total_len;
77 	u32 flash_addr;
78 	u32 flash_addr_ext;
79 	u32 cs;
80 	u32 pad2[5];
81 	u32 status_valid;
82 } __packed;
83 
84 /* Bitfields for brcm_nand_dma_desc::status_valid */
85 #define FLASH_DMA_ECC_ERROR	(1 << 8)
86 #define FLASH_DMA_CORR_ERROR	(1 << 9)
87 
88 /* Bitfields for DMA_MODE */
89 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
90 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
91 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
92 						FLASH_DMA_MODE_MODE)
93 
94 /* 512B flash cache in the NAND controller HW */
95 #define FC_SHIFT		9U
96 #define FC_BYTES		512U
97 #define FC_WORDS		(FC_BYTES >> 2)
98 
99 #define BRCMNAND_MIN_PAGESIZE	512
100 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
101 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
102 
103 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
104 #define NAND_POLL_STATUS_TIMEOUT_MS	100
105 
106 #define EDU_CMD_WRITE          0x00
107 #define EDU_CMD_READ           0x01
108 #define EDU_STATUS_ACTIVE      BIT(0)
109 #define EDU_ERR_STATUS_ERRACK  BIT(0)
110 #define EDU_DONE_MASK		GENMASK(1, 0)
111 
112 #define EDU_CONFIG_MODE_NAND   BIT(0)
113 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
114 #ifdef CONFIG_CPU_BIG_ENDIAN
115 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
116 #else
117 #define EDU_CONFIG_SWAP_CFG     0
118 #endif
119 
120 /* edu registers */
121 enum edu_reg {
122 	EDU_CONFIG = 0,
123 	EDU_DRAM_ADDR,
124 	EDU_EXT_ADDR,
125 	EDU_LENGTH,
126 	EDU_CMD,
127 	EDU_STOP,
128 	EDU_STATUS,
129 	EDU_DONE,
130 	EDU_ERR_STATUS,
131 };
132 
133 static const u16  edu_regs[] = {
134 	[EDU_CONFIG] = 0x00,
135 	[EDU_DRAM_ADDR] = 0x04,
136 	[EDU_EXT_ADDR] = 0x08,
137 	[EDU_LENGTH] = 0x0c,
138 	[EDU_CMD] = 0x10,
139 	[EDU_STOP] = 0x14,
140 	[EDU_STATUS] = 0x18,
141 	[EDU_DONE] = 0x1c,
142 	[EDU_ERR_STATUS] = 0x20,
143 };
144 
145 /* flash_dma registers */
146 enum flash_dma_reg {
147 	FLASH_DMA_REVISION = 0,
148 	FLASH_DMA_FIRST_DESC,
149 	FLASH_DMA_FIRST_DESC_EXT,
150 	FLASH_DMA_CTRL,
151 	FLASH_DMA_MODE,
152 	FLASH_DMA_STATUS,
153 	FLASH_DMA_INTERRUPT_DESC,
154 	FLASH_DMA_INTERRUPT_DESC_EXT,
155 	FLASH_DMA_ERROR_STATUS,
156 	FLASH_DMA_CURRENT_DESC,
157 	FLASH_DMA_CURRENT_DESC_EXT,
158 };
159 
160 /* flash_dma registers v0*/
161 static const u16 flash_dma_regs_v0[] = {
162 	[FLASH_DMA_REVISION]		= 0x00,
163 	[FLASH_DMA_FIRST_DESC]		= 0x04,
164 	[FLASH_DMA_CTRL]		= 0x08,
165 	[FLASH_DMA_MODE]		= 0x0c,
166 	[FLASH_DMA_STATUS]		= 0x10,
167 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
168 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
169 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
170 };
171 
172 /* flash_dma registers v1*/
173 static const u16 flash_dma_regs_v1[] = {
174 	[FLASH_DMA_REVISION]		= 0x00,
175 	[FLASH_DMA_FIRST_DESC]		= 0x04,
176 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
177 	[FLASH_DMA_CTRL]		= 0x0c,
178 	[FLASH_DMA_MODE]		= 0x10,
179 	[FLASH_DMA_STATUS]		= 0x14,
180 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
181 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
182 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
183 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
184 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
185 };
186 
187 /* flash_dma registers v4 */
188 static const u16 flash_dma_regs_v4[] = {
189 	[FLASH_DMA_REVISION]		= 0x00,
190 	[FLASH_DMA_FIRST_DESC]		= 0x08,
191 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
192 	[FLASH_DMA_CTRL]		= 0x10,
193 	[FLASH_DMA_MODE]		= 0x14,
194 	[FLASH_DMA_STATUS]		= 0x18,
195 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
196 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
197 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
198 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
199 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
200 };
201 
202 /* Controller feature flags */
203 enum {
204 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
205 	BRCMNAND_HAS_PREFETCH			= BIT(1),
206 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
207 	BRCMNAND_HAS_WP				= BIT(3),
208 };
209 
210 struct brcmnand_host;
211 
212 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
213 
214 struct brcmnand_controller {
215 	struct device		*dev;
216 	struct nand_controller	controller;
217 	void __iomem		*nand_base;
218 	void __iomem		*nand_fc; /* flash cache */
219 	void __iomem		*flash_dma_base;
220 	int			irq;
221 	unsigned int		dma_irq;
222 	int			nand_version;
223 
224 	/* Some SoCs provide custom interrupt status register(s) */
225 	struct brcmnand_soc	*soc;
226 
227 	/* Some SoCs have a gateable clock for the controller */
228 	struct clk		*clk;
229 
230 	int			cmd_pending;
231 	bool			dma_pending;
232 	bool                    edu_pending;
233 	struct completion	done;
234 	struct completion	dma_done;
235 	struct completion       edu_done;
236 
237 	/* List of NAND hosts (one for each chip-select) */
238 	struct list_head host_list;
239 
240 	/* EDU info, per-transaction */
241 	const u16               *edu_offsets;
242 	void __iomem            *edu_base;
243 	int			edu_irq;
244 	int                     edu_count;
245 	u64                     edu_dram_addr;
246 	u32                     edu_ext_addr;
247 	u32                     edu_cmd;
248 	u32                     edu_config;
249 	int			sas; /* spare area size, per flash cache */
250 	int			sector_size_1k;
251 	u8			*oob;
252 
253 	/* flash_dma reg */
254 	const u16		*flash_dma_offsets;
255 	struct brcm_nand_dma_desc *dma_desc;
256 	dma_addr_t		dma_pa;
257 
258 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
259 			 u8 *oob, u32 len, u8 dma_cmd);
260 
261 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
262 	u8			flash_cache[FC_BYTES];
263 
264 	/* Controller revision details */
265 	const u16		*reg_offsets;
266 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
267 	const u8		*cs_offsets; /* within each chip-select */
268 	const u8		*cs0_offsets; /* within CS0, if different */
269 	unsigned int		max_block_size;
270 	const unsigned int	*block_sizes;
271 	unsigned int		max_page_size;
272 	const unsigned int	*page_sizes;
273 	unsigned int		page_size_shift;
274 	unsigned int		max_oob;
275 	u32			ecc_level_shift;
276 	u32			features;
277 
278 	/* for low-power standby/resume only */
279 	u32			nand_cs_nand_select;
280 	u32			nand_cs_nand_xor;
281 	u32			corr_stat_threshold;
282 	u32			flash_dma_mode;
283 	u32                     flash_edu_mode;
284 	bool			pio_poll_mode;
285 };
286 
287 struct brcmnand_cfg {
288 	u64			device_size;
289 	unsigned int		block_size;
290 	unsigned int		page_size;
291 	unsigned int		spare_area_size;
292 	unsigned int		device_width;
293 	unsigned int		col_adr_bytes;
294 	unsigned int		blk_adr_bytes;
295 	unsigned int		ful_adr_bytes;
296 	unsigned int		sector_size_1k;
297 	unsigned int		ecc_level;
298 	/* use for low-power standby/resume only */
299 	u32			acc_control;
300 	u32			config;
301 	u32			config_ext;
302 	u32			timing_1;
303 	u32			timing_2;
304 };
305 
306 struct brcmnand_host {
307 	struct list_head	node;
308 
309 	struct nand_chip	chip;
310 	struct platform_device	*pdev;
311 	int			cs;
312 
313 	unsigned int		last_cmd;
314 	unsigned int		last_byte;
315 	u64			last_addr;
316 	struct brcmnand_cfg	hwcfg;
317 	struct brcmnand_controller *ctrl;
318 };
319 
320 enum brcmnand_reg {
321 	BRCMNAND_CMD_START = 0,
322 	BRCMNAND_CMD_EXT_ADDRESS,
323 	BRCMNAND_CMD_ADDRESS,
324 	BRCMNAND_INTFC_STATUS,
325 	BRCMNAND_CS_SELECT,
326 	BRCMNAND_CS_XOR,
327 	BRCMNAND_LL_OP,
328 	BRCMNAND_CS0_BASE,
329 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
330 	BRCMNAND_CORR_THRESHOLD,
331 	BRCMNAND_CORR_THRESHOLD_EXT,
332 	BRCMNAND_UNCORR_COUNT,
333 	BRCMNAND_CORR_COUNT,
334 	BRCMNAND_CORR_EXT_ADDR,
335 	BRCMNAND_CORR_ADDR,
336 	BRCMNAND_UNCORR_EXT_ADDR,
337 	BRCMNAND_UNCORR_ADDR,
338 	BRCMNAND_SEMAPHORE,
339 	BRCMNAND_ID,
340 	BRCMNAND_ID_EXT,
341 	BRCMNAND_LL_RDATA,
342 	BRCMNAND_OOB_READ_BASE,
343 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
344 	BRCMNAND_OOB_WRITE_BASE,
345 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
346 	BRCMNAND_FC_BASE,
347 };
348 
349 /* BRCMNAND v2.1-v2.2 */
350 static const u16 brcmnand_regs_v21[] = {
351 	[BRCMNAND_CMD_START]		=  0x04,
352 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
353 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
354 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
355 	[BRCMNAND_CS_SELECT]		=  0x14,
356 	[BRCMNAND_CS_XOR]		=  0x18,
357 	[BRCMNAND_LL_OP]		=     0,
358 	[BRCMNAND_CS0_BASE]		=  0x40,
359 	[BRCMNAND_CS1_BASE]		=     0,
360 	[BRCMNAND_CORR_THRESHOLD]	=     0,
361 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
362 	[BRCMNAND_UNCORR_COUNT]		=     0,
363 	[BRCMNAND_CORR_COUNT]		=     0,
364 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
365 	[BRCMNAND_CORR_ADDR]		=  0x64,
366 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
367 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
368 	[BRCMNAND_SEMAPHORE]		=  0x50,
369 	[BRCMNAND_ID]			=  0x54,
370 	[BRCMNAND_ID_EXT]		=     0,
371 	[BRCMNAND_LL_RDATA]		=     0,
372 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
373 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
374 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
375 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
376 	[BRCMNAND_FC_BASE]		= 0x200,
377 };
378 
379 /* BRCMNAND v3.3-v4.0 */
380 static const u16 brcmnand_regs_v33[] = {
381 	[BRCMNAND_CMD_START]		=  0x04,
382 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
383 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
384 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
385 	[BRCMNAND_CS_SELECT]		=  0x14,
386 	[BRCMNAND_CS_XOR]		=  0x18,
387 	[BRCMNAND_LL_OP]		= 0x178,
388 	[BRCMNAND_CS0_BASE]		=  0x40,
389 	[BRCMNAND_CS1_BASE]		=  0xd0,
390 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
391 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
392 	[BRCMNAND_UNCORR_COUNT]		=     0,
393 	[BRCMNAND_CORR_COUNT]		=     0,
394 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
395 	[BRCMNAND_CORR_ADDR]		=  0x74,
396 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
397 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
398 	[BRCMNAND_SEMAPHORE]		=  0x58,
399 	[BRCMNAND_ID]			=  0x60,
400 	[BRCMNAND_ID_EXT]		=  0x64,
401 	[BRCMNAND_LL_RDATA]		= 0x17c,
402 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
403 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
404 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
405 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
406 	[BRCMNAND_FC_BASE]		= 0x200,
407 };
408 
409 /* BRCMNAND v5.0 */
410 static const u16 brcmnand_regs_v50[] = {
411 	[BRCMNAND_CMD_START]		=  0x04,
412 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
413 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
414 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
415 	[BRCMNAND_CS_SELECT]		=  0x14,
416 	[BRCMNAND_CS_XOR]		=  0x18,
417 	[BRCMNAND_LL_OP]		= 0x178,
418 	[BRCMNAND_CS0_BASE]		=  0x40,
419 	[BRCMNAND_CS1_BASE]		=  0xd0,
420 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
421 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
422 	[BRCMNAND_UNCORR_COUNT]		=     0,
423 	[BRCMNAND_CORR_COUNT]		=     0,
424 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
425 	[BRCMNAND_CORR_ADDR]		=  0x74,
426 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
427 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
428 	[BRCMNAND_SEMAPHORE]		=  0x58,
429 	[BRCMNAND_ID]			=  0x60,
430 	[BRCMNAND_ID_EXT]		=  0x64,
431 	[BRCMNAND_LL_RDATA]		= 0x17c,
432 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
433 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
434 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
435 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
436 	[BRCMNAND_FC_BASE]		= 0x200,
437 };
438 
439 /* BRCMNAND v6.0 - v7.1 */
440 static const u16 brcmnand_regs_v60[] = {
441 	[BRCMNAND_CMD_START]		=  0x04,
442 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
443 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
444 	[BRCMNAND_INTFC_STATUS]		=  0x14,
445 	[BRCMNAND_CS_SELECT]		=  0x18,
446 	[BRCMNAND_CS_XOR]		=  0x1c,
447 	[BRCMNAND_LL_OP]		=  0x20,
448 	[BRCMNAND_CS0_BASE]		=  0x50,
449 	[BRCMNAND_CS1_BASE]		=     0,
450 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
451 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
452 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
453 	[BRCMNAND_CORR_COUNT]		= 0x100,
454 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
455 	[BRCMNAND_CORR_ADDR]		= 0x110,
456 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
457 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
458 	[BRCMNAND_SEMAPHORE]		= 0x150,
459 	[BRCMNAND_ID]			= 0x194,
460 	[BRCMNAND_ID_EXT]		= 0x198,
461 	[BRCMNAND_LL_RDATA]		= 0x19c,
462 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
463 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
464 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
465 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
466 	[BRCMNAND_FC_BASE]		= 0x400,
467 };
468 
469 /* BRCMNAND v7.1 */
470 static const u16 brcmnand_regs_v71[] = {
471 	[BRCMNAND_CMD_START]		=  0x04,
472 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
473 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
474 	[BRCMNAND_INTFC_STATUS]		=  0x14,
475 	[BRCMNAND_CS_SELECT]		=  0x18,
476 	[BRCMNAND_CS_XOR]		=  0x1c,
477 	[BRCMNAND_LL_OP]		=  0x20,
478 	[BRCMNAND_CS0_BASE]		=  0x50,
479 	[BRCMNAND_CS1_BASE]		=     0,
480 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
481 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
482 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
483 	[BRCMNAND_CORR_COUNT]		= 0x100,
484 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
485 	[BRCMNAND_CORR_ADDR]		= 0x110,
486 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
487 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
488 	[BRCMNAND_SEMAPHORE]		= 0x150,
489 	[BRCMNAND_ID]			= 0x194,
490 	[BRCMNAND_ID_EXT]		= 0x198,
491 	[BRCMNAND_LL_RDATA]		= 0x19c,
492 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
493 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
494 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
495 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
496 	[BRCMNAND_FC_BASE]		= 0x400,
497 };
498 
499 /* BRCMNAND v7.2 */
500 static const u16 brcmnand_regs_v72[] = {
501 	[BRCMNAND_CMD_START]		=  0x04,
502 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
503 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
504 	[BRCMNAND_INTFC_STATUS]		=  0x14,
505 	[BRCMNAND_CS_SELECT]		=  0x18,
506 	[BRCMNAND_CS_XOR]		=  0x1c,
507 	[BRCMNAND_LL_OP]		=  0x20,
508 	[BRCMNAND_CS0_BASE]		=  0x50,
509 	[BRCMNAND_CS1_BASE]		=     0,
510 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
511 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
512 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
513 	[BRCMNAND_CORR_COUNT]		= 0x100,
514 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
515 	[BRCMNAND_CORR_ADDR]		= 0x110,
516 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
517 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
518 	[BRCMNAND_SEMAPHORE]		= 0x150,
519 	[BRCMNAND_ID]			= 0x194,
520 	[BRCMNAND_ID_EXT]		= 0x198,
521 	[BRCMNAND_LL_RDATA]		= 0x19c,
522 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
523 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
524 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
525 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
526 	[BRCMNAND_FC_BASE]		= 0x600,
527 };
528 
529 enum brcmnand_cs_reg {
530 	BRCMNAND_CS_CFG_EXT = 0,
531 	BRCMNAND_CS_CFG,
532 	BRCMNAND_CS_ACC_CONTROL,
533 	BRCMNAND_CS_TIMING1,
534 	BRCMNAND_CS_TIMING2,
535 };
536 
537 /* Per chip-select offsets for v7.1 */
538 static const u8 brcmnand_cs_offsets_v71[] = {
539 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
540 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
541 	[BRCMNAND_CS_CFG]		= 0x08,
542 	[BRCMNAND_CS_TIMING1]		= 0x0c,
543 	[BRCMNAND_CS_TIMING2]		= 0x10,
544 };
545 
546 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
547 static const u8 brcmnand_cs_offsets[] = {
548 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
549 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
550 	[BRCMNAND_CS_CFG]		= 0x04,
551 	[BRCMNAND_CS_TIMING1]		= 0x08,
552 	[BRCMNAND_CS_TIMING2]		= 0x0c,
553 };
554 
555 /* Per chip-select offset for <= v5.0 on CS0 only */
556 static const u8 brcmnand_cs_offsets_cs0[] = {
557 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
558 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
559 	[BRCMNAND_CS_CFG]		= 0x08,
560 	[BRCMNAND_CS_TIMING1]		= 0x10,
561 	[BRCMNAND_CS_TIMING2]		= 0x14,
562 };
563 
564 /*
565  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
566  * one config register, but once the bitfields overflowed, newer controllers
567  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
568  */
569 enum {
570 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
571 	CFG_COL_ADR_BYTES_SHIFT		= 12,
572 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
573 	CFG_BUS_WIDTH_SHIFT		= 23,
574 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
575 	CFG_DEVICE_SIZE_SHIFT		= 24,
576 
577 	/* Only for v2.1 */
578 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
579 
580 	/* Only for pre-v7.1 (with no CFG_EXT register) */
581 	CFG_PAGE_SIZE_SHIFT		= 20,
582 	CFG_BLK_SIZE_SHIFT		= 28,
583 
584 	/* Only for v7.1+ (with CFG_EXT register) */
585 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
586 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
587 };
588 
589 /* BRCMNAND_INTFC_STATUS */
590 enum {
591 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
592 
593 	INTFC_ERASED			= BIT(27),
594 	INTFC_OOB_VALID			= BIT(28),
595 	INTFC_CACHE_VALID		= BIT(29),
596 	INTFC_FLASH_READY		= BIT(30),
597 	INTFC_CTLR_READY		= BIT(31),
598 };
599 
600 /***********************************************************************
601  * NAND ACC CONTROL bitfield
602  *
603  * Some bits have remained constant throughout hardware revision, while
604  * others have shifted around.
605  ***********************************************************************/
606 
607 /* Constant for all versions (where supported) */
608 enum {
609 	/* See BRCMNAND_HAS_CACHE_MODE */
610 	ACC_CONTROL_CACHE_MODE				= BIT(22),
611 
612 	/* See BRCMNAND_HAS_PREFETCH */
613 	ACC_CONTROL_PREFETCH				= BIT(23),
614 
615 	ACC_CONTROL_PAGE_HIT				= BIT(24),
616 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
617 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
618 	ACC_CONTROL_RD_ERASED				= BIT(27),
619 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
620 	ACC_CONTROL_WR_ECC				= BIT(30),
621 	ACC_CONTROL_RD_ECC				= BIT(31),
622 };
623 
624 #define	ACC_CONTROL_ECC_SHIFT			16
625 /* Only for v7.2 */
626 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
627 
628 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
629 {
630 #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
631 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
632 #else
633 	return false;
634 #endif
635 }
636 
637 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
638 {
639 	if (brcmnand_non_mmio_ops(ctrl))
640 		return brcmnand_soc_read(ctrl->soc, offs);
641 	return brcmnand_readl(ctrl->nand_base + offs);
642 }
643 
644 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
645 				 u32 val)
646 {
647 	if (brcmnand_non_mmio_ops(ctrl))
648 		brcmnand_soc_write(ctrl->soc, val, offs);
649 	else
650 		brcmnand_writel(val, ctrl->nand_base + offs);
651 }
652 
653 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
654 {
655 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
656 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
657 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
658 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
659 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
660 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
661 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
662 
663 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
664 
665 	/* Only support v2.1+ */
666 	if (ctrl->nand_version < 0x0201) {
667 		dev_err(ctrl->dev, "version %#x not supported\n",
668 			ctrl->nand_version);
669 		return -ENODEV;
670 	}
671 
672 	/* Register offsets */
673 	if (ctrl->nand_version >= 0x0702)
674 		ctrl->reg_offsets = brcmnand_regs_v72;
675 	else if (ctrl->nand_version == 0x0701)
676 		ctrl->reg_offsets = brcmnand_regs_v71;
677 	else if (ctrl->nand_version >= 0x0600)
678 		ctrl->reg_offsets = brcmnand_regs_v60;
679 	else if (ctrl->nand_version >= 0x0500)
680 		ctrl->reg_offsets = brcmnand_regs_v50;
681 	else if (ctrl->nand_version >= 0x0303)
682 		ctrl->reg_offsets = brcmnand_regs_v33;
683 	else if (ctrl->nand_version >= 0x0201)
684 		ctrl->reg_offsets = brcmnand_regs_v21;
685 
686 	/* Chip-select stride */
687 	if (ctrl->nand_version >= 0x0701)
688 		ctrl->reg_spacing = 0x14;
689 	else
690 		ctrl->reg_spacing = 0x10;
691 
692 	/* Per chip-select registers */
693 	if (ctrl->nand_version >= 0x0701) {
694 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
695 	} else {
696 		ctrl->cs_offsets = brcmnand_cs_offsets;
697 
698 		/* v3.3-5.0 have a different CS0 offset layout */
699 		if (ctrl->nand_version >= 0x0303 &&
700 		    ctrl->nand_version <= 0x0500)
701 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
702 	}
703 
704 	/* Page / block sizes */
705 	if (ctrl->nand_version >= 0x0701) {
706 		/* >= v7.1 use nice power-of-2 values! */
707 		ctrl->max_page_size = 16 * 1024;
708 		ctrl->max_block_size = 2 * 1024 * 1024;
709 	} else {
710 		if (ctrl->nand_version >= 0x0304)
711 			ctrl->page_sizes = page_sizes_v3_4;
712 		else if (ctrl->nand_version >= 0x0202)
713 			ctrl->page_sizes = page_sizes_v2_2;
714 		else
715 			ctrl->page_sizes = page_sizes_v2_1;
716 
717 		if (ctrl->nand_version >= 0x0202)
718 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
719 		else
720 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
721 
722 		if (ctrl->nand_version >= 0x0600)
723 			ctrl->block_sizes = block_sizes_v6;
724 		else if (ctrl->nand_version >= 0x0400)
725 			ctrl->block_sizes = block_sizes_v4;
726 		else if (ctrl->nand_version >= 0x0202)
727 			ctrl->block_sizes = block_sizes_v2_2;
728 		else
729 			ctrl->block_sizes = block_sizes_v2_1;
730 
731 		if (ctrl->nand_version < 0x0400) {
732 			if (ctrl->nand_version < 0x0202)
733 				ctrl->max_page_size = 2048;
734 			else
735 				ctrl->max_page_size = 4096;
736 			ctrl->max_block_size = 512 * 1024;
737 		}
738 	}
739 
740 	/* Maximum spare area sector size (per 512B) */
741 	if (ctrl->nand_version == 0x0702)
742 		ctrl->max_oob = 128;
743 	else if (ctrl->nand_version >= 0x0600)
744 		ctrl->max_oob = 64;
745 	else if (ctrl->nand_version >= 0x0500)
746 		ctrl->max_oob = 32;
747 	else
748 		ctrl->max_oob = 16;
749 
750 	/* v6.0 and newer (except v6.1) have prefetch support */
751 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
752 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
753 
754 	/*
755 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
756 	 * now.
757 	 */
758 	if (ctrl->nand_version >= 0x0700)
759 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
760 
761 	if (ctrl->nand_version >= 0x0500)
762 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
763 
764 	if (ctrl->nand_version >= 0x0700)
765 		ctrl->features |= BRCMNAND_HAS_WP;
766 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
767 		ctrl->features |= BRCMNAND_HAS_WP;
768 
769 	/* v7.2 has different ecc level shift in the acc register */
770 	if (ctrl->nand_version == 0x0702)
771 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
772 	else
773 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
774 
775 	return 0;
776 }
777 
778 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
779 {
780 	/* flash_dma register offsets */
781 	if (ctrl->nand_version >= 0x0703)
782 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
783 	else if (ctrl->nand_version == 0x0602)
784 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
785 	else
786 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
787 }
788 
789 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
790 		enum brcmnand_reg reg)
791 {
792 	u16 offs = ctrl->reg_offsets[reg];
793 
794 	if (offs)
795 		return nand_readreg(ctrl, offs);
796 	else
797 		return 0;
798 }
799 
800 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
801 				      enum brcmnand_reg reg, u32 val)
802 {
803 	u16 offs = ctrl->reg_offsets[reg];
804 
805 	if (offs)
806 		nand_writereg(ctrl, offs, val);
807 }
808 
809 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
810 				    enum brcmnand_reg reg, u32 mask, unsigned
811 				    int shift, u32 val)
812 {
813 	u32 tmp = brcmnand_read_reg(ctrl, reg);
814 
815 	tmp &= ~mask;
816 	tmp |= val << shift;
817 	brcmnand_write_reg(ctrl, reg, tmp);
818 }
819 
820 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
821 {
822 	if (brcmnand_non_mmio_ops(ctrl))
823 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
824 	return __raw_readl(ctrl->nand_fc + word * 4);
825 }
826 
827 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
828 				     int word, u32 val)
829 {
830 	if (brcmnand_non_mmio_ops(ctrl))
831 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
832 	else
833 		__raw_writel(val, ctrl->nand_fc + word * 4);
834 }
835 
836 static inline void edu_writel(struct brcmnand_controller *ctrl,
837 			      enum edu_reg reg, u32 val)
838 {
839 	u16 offs = ctrl->edu_offsets[reg];
840 
841 	brcmnand_writel(val, ctrl->edu_base + offs);
842 }
843 
844 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
845 			    enum edu_reg reg)
846 {
847 	u16 offs = ctrl->edu_offsets[reg];
848 
849 	return brcmnand_readl(ctrl->edu_base + offs);
850 }
851 
852 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
853 {
854 
855 	/* Clear error addresses */
856 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
857 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
858 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
859 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
860 }
861 
862 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
863 {
864 	u64 err_addr;
865 
866 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
867 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
868 					     BRCMNAND_UNCORR_EXT_ADDR)
869 					     & 0xffff) << 32);
870 
871 	return err_addr;
872 }
873 
874 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
875 {
876 	u64 err_addr;
877 
878 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
879 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
880 					     BRCMNAND_CORR_EXT_ADDR)
881 					     & 0xffff) << 32);
882 
883 	return err_addr;
884 }
885 
886 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
887 {
888 	struct nand_chip *chip =  mtd_to_nand(mtd);
889 	struct brcmnand_host *host = nand_get_controller_data(chip);
890 	struct brcmnand_controller *ctrl = host->ctrl;
891 
892 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
893 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
894 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
895 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
896 			   lower_32_bits(addr));
897 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
898 }
899 
900 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
901 				     enum brcmnand_cs_reg reg)
902 {
903 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
904 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
905 	u8 cs_offs;
906 
907 	if (cs == 0 && ctrl->cs0_offsets)
908 		cs_offs = ctrl->cs0_offsets[reg];
909 	else
910 		cs_offs = ctrl->cs_offsets[reg];
911 
912 	if (cs && offs_cs1)
913 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
914 
915 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
916 }
917 
918 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
919 {
920 	if (ctrl->nand_version < 0x0600)
921 		return 1;
922 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
923 }
924 
925 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
926 {
927 	struct brcmnand_controller *ctrl = host->ctrl;
928 	unsigned int shift = 0, bits;
929 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
930 	int cs = host->cs;
931 
932 	if (!ctrl->reg_offsets[reg])
933 		return;
934 
935 	if (ctrl->nand_version == 0x0702)
936 		bits = 7;
937 	else if (ctrl->nand_version >= 0x0600)
938 		bits = 6;
939 	else if (ctrl->nand_version >= 0x0500)
940 		bits = 5;
941 	else
942 		bits = 4;
943 
944 	if (ctrl->nand_version >= 0x0702) {
945 		if (cs >= 4)
946 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
947 		shift = (cs % 4) * bits;
948 	} else if (ctrl->nand_version >= 0x0600) {
949 		if (cs >= 5)
950 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
951 		shift = (cs % 5) * bits;
952 	}
953 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
954 }
955 
956 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
957 {
958 	/* Kludge for the BCMA-based NAND controller which does not actually
959 	 * shift the command
960 	 */
961 	if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
962 		return 0;
963 
964 	if (ctrl->nand_version < 0x0602)
965 		return 24;
966 	return 0;
967 }
968 
969 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
970 {
971 	if (ctrl->nand_version == 0x0702)
972 		return GENMASK(7, 0);
973 	else if (ctrl->nand_version >= 0x0600)
974 		return GENMASK(6, 0);
975 	else if (ctrl->nand_version >= 0x0303)
976 		return GENMASK(5, 0);
977 	else
978 		return GENMASK(4, 0);
979 }
980 
981 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
982 {
983 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
984 
985 	mask <<= ACC_CONTROL_ECC_SHIFT;
986 
987 	/* v7.2 includes additional ECC levels */
988 	if (ctrl->nand_version == 0x0702)
989 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
990 
991 	return mask;
992 }
993 
994 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
995 {
996 	struct brcmnand_controller *ctrl = host->ctrl;
997 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
998 	u32 acc_control = nand_readreg(ctrl, offs);
999 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
1000 
1001 	if (en) {
1002 		acc_control |= ecc_flags; /* enable RD/WR ECC */
1003 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1004 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
1005 	} else {
1006 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
1007 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
1008 	}
1009 
1010 	nand_writereg(ctrl, offs, acc_control);
1011 }
1012 
1013 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1014 {
1015 	if (ctrl->nand_version >= 0x0702)
1016 		return 9;
1017 	else if (ctrl->nand_version >= 0x0600)
1018 		return 7;
1019 	else if (ctrl->nand_version >= 0x0500)
1020 		return 6;
1021 	else
1022 		return -1;
1023 }
1024 
1025 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1026 {
1027 	struct brcmnand_controller *ctrl = host->ctrl;
1028 	int shift = brcmnand_sector_1k_shift(ctrl);
1029 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1030 						  BRCMNAND_CS_ACC_CONTROL);
1031 
1032 	if (shift < 0)
1033 		return 0;
1034 
1035 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
1036 }
1037 
1038 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1039 {
1040 	struct brcmnand_controller *ctrl = host->ctrl;
1041 	int shift = brcmnand_sector_1k_shift(ctrl);
1042 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1043 						  BRCMNAND_CS_ACC_CONTROL);
1044 	u32 tmp;
1045 
1046 	if (shift < 0)
1047 		return;
1048 
1049 	tmp = nand_readreg(ctrl, acc_control_offs);
1050 	tmp &= ~(1 << shift);
1051 	tmp |= (!!val) << shift;
1052 	nand_writereg(ctrl, acc_control_offs, tmp);
1053 }
1054 
1055 /***********************************************************************
1056  * CS_NAND_SELECT
1057  ***********************************************************************/
1058 
1059 enum {
1060 	CS_SELECT_NAND_WP			= BIT(29),
1061 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1062 };
1063 
1064 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1065 				    u32 mask, u32 expected_val,
1066 				    unsigned long timeout_ms)
1067 {
1068 	unsigned long limit;
1069 	u32 val;
1070 
1071 	if (!timeout_ms)
1072 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1073 
1074 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1075 	do {
1076 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1077 		if ((val & mask) == expected_val)
1078 			return 0;
1079 
1080 		cpu_relax();
1081 	} while (time_after(limit, jiffies));
1082 
1083 	/*
1084 	 * do a final check after time out in case the CPU was busy and the driver
1085 	 * did not get enough time to perform the polling to avoid false alarms
1086 	 */
1087 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1088 	if ((val & mask) == expected_val)
1089 		return 0;
1090 
1091 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1092 		 expected_val, val & mask);
1093 
1094 	return -ETIMEDOUT;
1095 }
1096 
1097 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1098 {
1099 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1100 
1101 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1102 }
1103 
1104 /***********************************************************************
1105  * Flash DMA
1106  ***********************************************************************/
1107 
1108 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1109 {
1110 	return ctrl->flash_dma_base;
1111 }
1112 
1113 static inline bool has_edu(struct brcmnand_controller *ctrl)
1114 {
1115 	return ctrl->edu_base;
1116 }
1117 
1118 static inline bool use_dma(struct brcmnand_controller *ctrl)
1119 {
1120 	return has_flash_dma(ctrl) || has_edu(ctrl);
1121 }
1122 
1123 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1124 {
1125 	if (ctrl->pio_poll_mode)
1126 		return;
1127 
1128 	if (has_flash_dma(ctrl)) {
1129 		ctrl->flash_dma_base = NULL;
1130 		disable_irq(ctrl->dma_irq);
1131 	}
1132 
1133 	disable_irq(ctrl->irq);
1134 	ctrl->pio_poll_mode = true;
1135 }
1136 
1137 static inline bool flash_dma_buf_ok(const void *buf)
1138 {
1139 	return buf && !is_vmalloc_addr(buf) &&
1140 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1141 }
1142 
1143 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1144 				    enum flash_dma_reg dma_reg, u32 val)
1145 {
1146 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1147 
1148 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1149 }
1150 
1151 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1152 				  enum flash_dma_reg dma_reg)
1153 {
1154 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1155 
1156 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1157 }
1158 
1159 /* Low-level operation types: command, address, write, or read */
1160 enum brcmnand_llop_type {
1161 	LL_OP_CMD,
1162 	LL_OP_ADDR,
1163 	LL_OP_WR,
1164 	LL_OP_RD,
1165 };
1166 
1167 /***********************************************************************
1168  * Internal support functions
1169  ***********************************************************************/
1170 
1171 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1172 				  struct brcmnand_cfg *cfg)
1173 {
1174 	if (ctrl->nand_version <= 0x0701)
1175 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1176 			cfg->ecc_level == 15;
1177 	else
1178 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1179 			cfg->ecc_level == 15) ||
1180 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1181 }
1182 
1183 /*
1184  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1185  * the layout/configuration.
1186  * Returns -ERRCODE on failure.
1187  */
1188 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1189 					  struct mtd_oob_region *oobregion)
1190 {
1191 	struct nand_chip *chip = mtd_to_nand(mtd);
1192 	struct brcmnand_host *host = nand_get_controller_data(chip);
1193 	struct brcmnand_cfg *cfg = &host->hwcfg;
1194 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1195 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1196 
1197 	if (section >= sectors)
1198 		return -ERANGE;
1199 
1200 	oobregion->offset = (section * sas) + 6;
1201 	oobregion->length = 3;
1202 
1203 	return 0;
1204 }
1205 
1206 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1207 					   struct mtd_oob_region *oobregion)
1208 {
1209 	struct nand_chip *chip = mtd_to_nand(mtd);
1210 	struct brcmnand_host *host = nand_get_controller_data(chip);
1211 	struct brcmnand_cfg *cfg = &host->hwcfg;
1212 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1213 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1214 	u32 next;
1215 
1216 	if (section > sectors)
1217 		return -ERANGE;
1218 
1219 	next = (section * sas);
1220 	if (section < sectors)
1221 		next += 6;
1222 
1223 	if (section) {
1224 		oobregion->offset = ((section - 1) * sas) + 9;
1225 	} else {
1226 		if (cfg->page_size > 512) {
1227 			/* Large page NAND uses first 2 bytes for BBI */
1228 			oobregion->offset = 2;
1229 		} else {
1230 			/* Small page NAND uses last byte before ECC for BBI */
1231 			oobregion->offset = 0;
1232 			next--;
1233 		}
1234 	}
1235 
1236 	oobregion->length = next - oobregion->offset;
1237 
1238 	return 0;
1239 }
1240 
1241 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1242 	.ecc = brcmnand_hamming_ooblayout_ecc,
1243 	.free = brcmnand_hamming_ooblayout_free,
1244 };
1245 
1246 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1247 				      struct mtd_oob_region *oobregion)
1248 {
1249 	struct nand_chip *chip = mtd_to_nand(mtd);
1250 	struct brcmnand_host *host = nand_get_controller_data(chip);
1251 	struct brcmnand_cfg *cfg = &host->hwcfg;
1252 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1253 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1254 
1255 	if (section >= sectors)
1256 		return -ERANGE;
1257 
1258 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1259 	oobregion->length = chip->ecc.bytes;
1260 
1261 	return 0;
1262 }
1263 
1264 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1265 					  struct mtd_oob_region *oobregion)
1266 {
1267 	struct nand_chip *chip = mtd_to_nand(mtd);
1268 	struct brcmnand_host *host = nand_get_controller_data(chip);
1269 	struct brcmnand_cfg *cfg = &host->hwcfg;
1270 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1271 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1272 
1273 	if (section >= sectors)
1274 		return -ERANGE;
1275 
1276 	if (sas <= chip->ecc.bytes)
1277 		return 0;
1278 
1279 	oobregion->offset = section * sas;
1280 	oobregion->length = sas - chip->ecc.bytes;
1281 
1282 	if (!section) {
1283 		oobregion->offset++;
1284 		oobregion->length--;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1291 					  struct mtd_oob_region *oobregion)
1292 {
1293 	struct nand_chip *chip = mtd_to_nand(mtd);
1294 	struct brcmnand_host *host = nand_get_controller_data(chip);
1295 	struct brcmnand_cfg *cfg = &host->hwcfg;
1296 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1297 
1298 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1299 	    (section && sas - chip->ecc.bytes == 6))
1300 		return -ERANGE;
1301 
1302 	if (!section) {
1303 		oobregion->offset = 0;
1304 		oobregion->length = 5;
1305 	} else {
1306 		oobregion->offset = 6;
1307 		oobregion->length = sas - chip->ecc.bytes - 6;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1314 	.ecc = brcmnand_bch_ooblayout_ecc,
1315 	.free = brcmnand_bch_ooblayout_free_lp,
1316 };
1317 
1318 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1319 	.ecc = brcmnand_bch_ooblayout_ecc,
1320 	.free = brcmnand_bch_ooblayout_free_sp,
1321 };
1322 
1323 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1324 {
1325 	struct brcmnand_cfg *p = &host->hwcfg;
1326 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1327 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1328 	unsigned int ecc_level = p->ecc_level;
1329 	int sas = p->spare_area_size << p->sector_size_1k;
1330 	int sectors = p->page_size / (512 << p->sector_size_1k);
1331 
1332 	if (p->sector_size_1k)
1333 		ecc_level <<= 1;
1334 
1335 	if (is_hamming_ecc(host->ctrl, p)) {
1336 		ecc->bytes = 3 * sectors;
1337 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1338 		return 0;
1339 	}
1340 
1341 	/*
1342 	 * CONTROLLER_VERSION:
1343 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1344 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1345 	 * But we will just be conservative.
1346 	 */
1347 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1348 	if (p->page_size == 512)
1349 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1350 	else
1351 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1352 
1353 	if (ecc->bytes >= sas) {
1354 		dev_err(&host->pdev->dev,
1355 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1356 			ecc->bytes, sas);
1357 		return -EINVAL;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1364 {
1365 	struct nand_chip *chip = mtd_to_nand(mtd);
1366 	struct brcmnand_host *host = nand_get_controller_data(chip);
1367 	struct brcmnand_controller *ctrl = host->ctrl;
1368 
1369 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1370 		static int old_wp = -1;
1371 		int ret;
1372 
1373 		if (old_wp != wp) {
1374 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1375 			old_wp = wp;
1376 		}
1377 
1378 		/*
1379 		 * make sure ctrl/flash ready before and after
1380 		 * changing state of #WP pin
1381 		 */
1382 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1383 					       NAND_STATUS_READY,
1384 					       NAND_CTRL_RDY |
1385 					       NAND_STATUS_READY, 0);
1386 		if (ret)
1387 			return;
1388 
1389 		brcmnand_set_wp(ctrl, wp);
1390 		nand_status_op(chip, NULL);
1391 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1392 		ret = bcmnand_ctrl_poll_status(ctrl,
1393 					       NAND_CTRL_RDY |
1394 					       NAND_STATUS_READY |
1395 					       NAND_STATUS_WP,
1396 					       NAND_CTRL_RDY |
1397 					       NAND_STATUS_READY |
1398 					       (wp ? 0 : NAND_STATUS_WP), 0);
1399 
1400 		if (ret)
1401 			dev_err_ratelimited(&host->pdev->dev,
1402 					    "nand #WP expected %s\n",
1403 					    wp ? "on" : "off");
1404 	}
1405 }
1406 
1407 /* Helper functions for reading and writing OOB registers */
1408 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1409 {
1410 	u16 offset0, offset10, reg_offs;
1411 
1412 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1413 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1414 
1415 	if (offs >= ctrl->max_oob)
1416 		return 0x77;
1417 
1418 	if (offs >= 16 && offset10)
1419 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1420 	else
1421 		reg_offs = offset0 + (offs & ~0x03);
1422 
1423 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1424 }
1425 
1426 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1427 				 u32 data)
1428 {
1429 	u16 offset0, offset10, reg_offs;
1430 
1431 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1432 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1433 
1434 	if (offs >= ctrl->max_oob)
1435 		return;
1436 
1437 	if (offs >= 16 && offset10)
1438 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1439 	else
1440 		reg_offs = offset0 + (offs & ~0x03);
1441 
1442 	nand_writereg(ctrl, reg_offs, data);
1443 }
1444 
1445 /*
1446  * read_oob_from_regs - read data from OOB registers
1447  * @ctrl: NAND controller
1448  * @i: sub-page sector index
1449  * @oob: buffer to read to
1450  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1451  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1452  */
1453 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1454 			      int sas, int sector_1k)
1455 {
1456 	int tbytes = sas << sector_1k;
1457 	int j;
1458 
1459 	/* Adjust OOB values for 1K sector size */
1460 	if (sector_1k && (i & 0x01))
1461 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1462 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1463 
1464 	for (j = 0; j < tbytes; j++)
1465 		oob[j] = oob_reg_read(ctrl, j);
1466 	return tbytes;
1467 }
1468 
1469 /*
1470  * write_oob_to_regs - write data to OOB registers
1471  * @i: sub-page sector index
1472  * @oob: buffer to write from
1473  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1474  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1475  */
1476 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1477 			     const u8 *oob, int sas, int sector_1k)
1478 {
1479 	int tbytes = sas << sector_1k;
1480 	int j, k = 0;
1481 	u32 last = 0xffffffff;
1482 	u8 *plast = (u8 *)&last;
1483 
1484 	/* Adjust OOB values for 1K sector size */
1485 	if (sector_1k && (i & 0x01))
1486 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1487 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1488 
1489 	/*
1490 	 * tbytes may not be multiple of words. Make sure we don't read out of
1491 	 * the boundary and stop at last word.
1492 	 */
1493 	for (j = 0; (j + 3) < tbytes; j += 4)
1494 		oob_reg_write(ctrl, j,
1495 				(oob[j + 0] << 24) |
1496 				(oob[j + 1] << 16) |
1497 				(oob[j + 2] <<  8) |
1498 				(oob[j + 3] <<  0));
1499 
1500 	/* handle the remaing bytes */
1501 	while (j < tbytes)
1502 		plast[k++] = oob[j++];
1503 
1504 	if (tbytes & 0x3)
1505 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1506 
1507 	return tbytes;
1508 }
1509 
1510 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1511 {
1512 	/* initialize edu */
1513 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1514 	edu_readl(ctrl, EDU_ERR_STATUS);
1515 	edu_writel(ctrl, EDU_DONE, 0);
1516 	edu_writel(ctrl, EDU_DONE, 0);
1517 	edu_writel(ctrl, EDU_DONE, 0);
1518 	edu_writel(ctrl, EDU_DONE, 0);
1519 	edu_readl(ctrl, EDU_DONE);
1520 }
1521 
1522 /* edu irq */
1523 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1524 {
1525 	struct brcmnand_controller *ctrl = data;
1526 
1527 	if (ctrl->edu_count) {
1528 		ctrl->edu_count--;
1529 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1530 			udelay(1);
1531 		edu_writel(ctrl, EDU_DONE, 0);
1532 		edu_readl(ctrl, EDU_DONE);
1533 	}
1534 
1535 	if (ctrl->edu_count) {
1536 		ctrl->edu_dram_addr += FC_BYTES;
1537 		ctrl->edu_ext_addr += FC_BYTES;
1538 
1539 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1540 		edu_readl(ctrl, EDU_DRAM_ADDR);
1541 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1542 		edu_readl(ctrl, EDU_EXT_ADDR);
1543 
1544 		if (ctrl->oob) {
1545 			if (ctrl->edu_cmd == EDU_CMD_READ) {
1546 				ctrl->oob += read_oob_from_regs(ctrl,
1547 							ctrl->edu_count + 1,
1548 							ctrl->oob, ctrl->sas,
1549 							ctrl->sector_size_1k);
1550 			} else {
1551 				brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1552 						   ctrl->edu_ext_addr);
1553 				brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1554 				ctrl->oob += write_oob_to_regs(ctrl,
1555 							       ctrl->edu_count,
1556 							       ctrl->oob, ctrl->sas,
1557 							       ctrl->sector_size_1k);
1558 			}
1559 		}
1560 
1561 		mb(); /* flush previous writes */
1562 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1563 		edu_readl(ctrl, EDU_CMD);
1564 
1565 		return IRQ_HANDLED;
1566 	}
1567 
1568 	complete(&ctrl->edu_done);
1569 
1570 	return IRQ_HANDLED;
1571 }
1572 
1573 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1574 {
1575 	struct brcmnand_controller *ctrl = data;
1576 
1577 	/* Discard all NAND_CTLRDY interrupts during DMA */
1578 	if (ctrl->dma_pending)
1579 		return IRQ_HANDLED;
1580 
1581 	/* check if you need to piggy back on the ctrlrdy irq */
1582 	if (ctrl->edu_pending) {
1583 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1584 	/* Discard interrupts while using dedicated edu irq */
1585 			return IRQ_HANDLED;
1586 
1587 	/* no registered edu irq, call handler */
1588 		return brcmnand_edu_irq(irq, data);
1589 	}
1590 
1591 	complete(&ctrl->done);
1592 	return IRQ_HANDLED;
1593 }
1594 
1595 /* Handle SoC-specific interrupt hardware */
1596 static irqreturn_t brcmnand_irq(int irq, void *data)
1597 {
1598 	struct brcmnand_controller *ctrl = data;
1599 
1600 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1601 		return brcmnand_ctlrdy_irq(irq, data);
1602 
1603 	return IRQ_NONE;
1604 }
1605 
1606 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1607 {
1608 	struct brcmnand_controller *ctrl = data;
1609 
1610 	complete(&ctrl->dma_done);
1611 
1612 	return IRQ_HANDLED;
1613 }
1614 
1615 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1616 {
1617 	struct brcmnand_controller *ctrl = host->ctrl;
1618 	int ret;
1619 	u64 cmd_addr;
1620 
1621 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1622 
1623 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1624 
1625 	/*
1626 	 * If we came here through _panic_write and there is a pending
1627 	 * command, try to wait for it. If it times out, rather than
1628 	 * hitting BUG_ON, just return so we don't crash while crashing.
1629 	 */
1630 	if (oops_in_progress) {
1631 		if (ctrl->cmd_pending &&
1632 			bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1633 			return;
1634 	} else
1635 		BUG_ON(ctrl->cmd_pending != 0);
1636 	ctrl->cmd_pending = cmd;
1637 
1638 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1639 	WARN_ON(ret);
1640 
1641 	mb(); /* flush previous writes */
1642 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1643 			   cmd << brcmnand_cmd_shift(ctrl));
1644 }
1645 
1646 /***********************************************************************
1647  * NAND MTD API: read/program/erase
1648  ***********************************************************************/
1649 
1650 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1651 			      unsigned int ctrl)
1652 {
1653 	/* intentionally left blank */
1654 }
1655 
1656 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1657 {
1658 	struct brcmnand_host *host = nand_get_controller_data(chip);
1659 	struct brcmnand_controller *ctrl = host->ctrl;
1660 	struct mtd_info *mtd = nand_to_mtd(chip);
1661 	bool err = false;
1662 	int sts;
1663 
1664 	if (mtd->oops_panic_write || ctrl->irq < 0) {
1665 		/* switch to interrupt polling and PIO mode */
1666 		disable_ctrl_irqs(ctrl);
1667 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1668 					       NAND_CTRL_RDY, 0);
1669 		err = sts < 0;
1670 	} else {
1671 		unsigned long timeo = msecs_to_jiffies(
1672 						NAND_POLL_STATUS_TIMEOUT_MS);
1673 		/* wait for completion interrupt */
1674 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1675 		err = !sts;
1676 	}
1677 
1678 	return err;
1679 }
1680 
1681 static int brcmnand_waitfunc(struct nand_chip *chip)
1682 {
1683 	struct brcmnand_host *host = nand_get_controller_data(chip);
1684 	struct brcmnand_controller *ctrl = host->ctrl;
1685 	bool err = false;
1686 
1687 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1688 	if (ctrl->cmd_pending)
1689 		err = brcmstb_nand_wait_for_completion(chip);
1690 
1691 	ctrl->cmd_pending = 0;
1692 	if (err) {
1693 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1694 					>> brcmnand_cmd_shift(ctrl);
1695 
1696 		dev_err_ratelimited(ctrl->dev,
1697 			"timeout waiting for command %#02x\n", cmd);
1698 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1699 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1700 		return -ETIMEDOUT;
1701 	}
1702 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1703 				 INTFC_FLASH_STATUS;
1704 }
1705 
1706 enum {
1707 	LLOP_RE				= BIT(16),
1708 	LLOP_WE				= BIT(17),
1709 	LLOP_ALE			= BIT(18),
1710 	LLOP_CLE			= BIT(19),
1711 	LLOP_RETURN_IDLE		= BIT(31),
1712 
1713 	LLOP_DATA_MASK			= GENMASK(15, 0),
1714 };
1715 
1716 static int brcmnand_low_level_op(struct brcmnand_host *host,
1717 				 enum brcmnand_llop_type type, u32 data,
1718 				 bool last_op)
1719 {
1720 	struct nand_chip *chip = &host->chip;
1721 	struct brcmnand_controller *ctrl = host->ctrl;
1722 	u32 tmp;
1723 
1724 	tmp = data & LLOP_DATA_MASK;
1725 	switch (type) {
1726 	case LL_OP_CMD:
1727 		tmp |= LLOP_WE | LLOP_CLE;
1728 		break;
1729 	case LL_OP_ADDR:
1730 		/* WE | ALE */
1731 		tmp |= LLOP_WE | LLOP_ALE;
1732 		break;
1733 	case LL_OP_WR:
1734 		/* WE */
1735 		tmp |= LLOP_WE;
1736 		break;
1737 	case LL_OP_RD:
1738 		/* RE */
1739 		tmp |= LLOP_RE;
1740 		break;
1741 	}
1742 	if (last_op)
1743 		/* RETURN_IDLE */
1744 		tmp |= LLOP_RETURN_IDLE;
1745 
1746 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1747 
1748 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1749 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1750 
1751 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1752 	return brcmnand_waitfunc(chip);
1753 }
1754 
1755 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1756 			     int column, int page_addr)
1757 {
1758 	struct mtd_info *mtd = nand_to_mtd(chip);
1759 	struct brcmnand_host *host = nand_get_controller_data(chip);
1760 	struct brcmnand_controller *ctrl = host->ctrl;
1761 	u64 addr = (u64)page_addr << chip->page_shift;
1762 	int native_cmd = 0;
1763 
1764 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1765 			command == NAND_CMD_RNDOUT)
1766 		addr = (u64)column;
1767 	/* Avoid propagating a negative, don't-care address */
1768 	else if (page_addr < 0)
1769 		addr = 0;
1770 
1771 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1772 		(unsigned long long)addr);
1773 
1774 	host->last_cmd = command;
1775 	host->last_byte = 0;
1776 	host->last_addr = addr;
1777 
1778 	switch (command) {
1779 	case NAND_CMD_RESET:
1780 		native_cmd = CMD_FLASH_RESET;
1781 		break;
1782 	case NAND_CMD_STATUS:
1783 		native_cmd = CMD_STATUS_READ;
1784 		break;
1785 	case NAND_CMD_READID:
1786 		native_cmd = CMD_DEVICE_ID_READ;
1787 		break;
1788 	case NAND_CMD_READOOB:
1789 		native_cmd = CMD_SPARE_AREA_READ;
1790 		break;
1791 	case NAND_CMD_ERASE1:
1792 		native_cmd = CMD_BLOCK_ERASE;
1793 		brcmnand_wp(mtd, 0);
1794 		break;
1795 	case NAND_CMD_PARAM:
1796 		native_cmd = CMD_PARAMETER_READ;
1797 		break;
1798 	case NAND_CMD_SET_FEATURES:
1799 	case NAND_CMD_GET_FEATURES:
1800 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1801 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1802 		break;
1803 	case NAND_CMD_RNDOUT:
1804 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1805 		addr &= ~((u64)(FC_BYTES - 1));
1806 		/*
1807 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1808 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1809 		 */
1810 		if (brcmnand_get_sector_size_1k(host)) {
1811 			host->hwcfg.sector_size_1k =
1812 				brcmnand_get_sector_size_1k(host);
1813 			brcmnand_set_sector_size_1k(host, 0);
1814 		}
1815 		break;
1816 	}
1817 
1818 	if (!native_cmd)
1819 		return;
1820 
1821 	brcmnand_set_cmd_addr(mtd, addr);
1822 	brcmnand_send_cmd(host, native_cmd);
1823 	brcmnand_waitfunc(chip);
1824 
1825 	if (native_cmd == CMD_PARAMETER_READ ||
1826 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1827 		/* Copy flash cache word-wise */
1828 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1829 		int i;
1830 
1831 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1832 
1833 		/*
1834 		 * Must cache the FLASH_CACHE now, since changes in
1835 		 * SECTOR_SIZE_1K may invalidate it
1836 		 */
1837 		for (i = 0; i < FC_WORDS; i++)
1838 			/*
1839 			 * Flash cache is big endian for parameter pages, at
1840 			 * least on STB SoCs
1841 			 */
1842 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1843 
1844 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1845 
1846 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1847 		if (host->hwcfg.sector_size_1k)
1848 			brcmnand_set_sector_size_1k(host,
1849 						    host->hwcfg.sector_size_1k);
1850 	}
1851 
1852 	/* Re-enable protection is necessary only after erase */
1853 	if (command == NAND_CMD_ERASE1)
1854 		brcmnand_wp(mtd, 1);
1855 }
1856 
1857 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1858 {
1859 	struct brcmnand_host *host = nand_get_controller_data(chip);
1860 	struct brcmnand_controller *ctrl = host->ctrl;
1861 	uint8_t ret = 0;
1862 	int addr, offs;
1863 
1864 	switch (host->last_cmd) {
1865 	case NAND_CMD_READID:
1866 		if (host->last_byte < 4)
1867 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1868 				(24 - (host->last_byte << 3));
1869 		else if (host->last_byte < 8)
1870 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1871 				(56 - (host->last_byte << 3));
1872 		break;
1873 
1874 	case NAND_CMD_READOOB:
1875 		ret = oob_reg_read(ctrl, host->last_byte);
1876 		break;
1877 
1878 	case NAND_CMD_STATUS:
1879 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1880 					INTFC_FLASH_STATUS;
1881 		if (wp_on) /* hide WP status */
1882 			ret |= NAND_STATUS_WP;
1883 		break;
1884 
1885 	case NAND_CMD_PARAM:
1886 	case NAND_CMD_RNDOUT:
1887 		addr = host->last_addr + host->last_byte;
1888 		offs = addr & (FC_BYTES - 1);
1889 
1890 		/* At FC_BYTES boundary, switch to next column */
1891 		if (host->last_byte > 0 && offs == 0)
1892 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1893 
1894 		ret = ctrl->flash_cache[offs];
1895 		break;
1896 	case NAND_CMD_GET_FEATURES:
1897 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1898 			ret = 0;
1899 		} else {
1900 			bool last = host->last_byte ==
1901 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1902 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1903 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1904 		}
1905 	}
1906 
1907 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1908 	host->last_byte++;
1909 
1910 	return ret;
1911 }
1912 
1913 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1914 {
1915 	int i;
1916 
1917 	for (i = 0; i < len; i++, buf++)
1918 		*buf = brcmnand_read_byte(chip);
1919 }
1920 
1921 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1922 			       int len)
1923 {
1924 	int i;
1925 	struct brcmnand_host *host = nand_get_controller_data(chip);
1926 
1927 	switch (host->last_cmd) {
1928 	case NAND_CMD_SET_FEATURES:
1929 		for (i = 0; i < len; i++)
1930 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1931 						  (i + 1) == len);
1932 		break;
1933 	default:
1934 		BUG();
1935 		break;
1936 	}
1937 }
1938 
1939 /*
1940  *  Kick EDU engine
1941  */
1942 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1943 			      u8 *oob, u32 len, u8 cmd)
1944 {
1945 	struct brcmnand_controller *ctrl = host->ctrl;
1946 	struct brcmnand_cfg *cfg = &host->hwcfg;
1947 	unsigned long timeo = msecs_to_jiffies(200);
1948 	int ret = 0;
1949 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1950 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1951 	unsigned int trans = len >> FC_SHIFT;
1952 	dma_addr_t pa;
1953 
1954 	dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
1955 					      "read" : "write"), buf, oob);
1956 
1957 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1958 	if (dma_mapping_error(ctrl->dev, pa)) {
1959 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1960 		return -ENOMEM;
1961 	}
1962 
1963 	ctrl->edu_pending = true;
1964 	ctrl->edu_dram_addr = pa;
1965 	ctrl->edu_ext_addr = addr;
1966 	ctrl->edu_cmd = edu_cmd;
1967 	ctrl->edu_count = trans;
1968 	ctrl->sas = cfg->spare_area_size;
1969 	ctrl->oob = oob;
1970 
1971 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1972 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1973 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1974 	edu_readl(ctrl, EDU_EXT_ADDR);
1975 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1976 	edu_readl(ctrl, EDU_LENGTH);
1977 
1978 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
1979 		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
1980 				   ctrl->edu_ext_addr);
1981 		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1982 		ctrl->oob += write_oob_to_regs(ctrl,
1983 					       1,
1984 					       ctrl->oob, ctrl->sas,
1985 					       ctrl->sector_size_1k);
1986 	}
1987 
1988 	/* Start edu engine */
1989 	mb(); /* flush previous writes */
1990 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1991 	edu_readl(ctrl, EDU_CMD);
1992 
1993 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1994 		dev_err(ctrl->dev,
1995 			"timeout waiting for EDU; status %#x, error status %#x\n",
1996 			edu_readl(ctrl, EDU_STATUS),
1997 			edu_readl(ctrl, EDU_ERR_STATUS));
1998 	}
1999 
2000 	dma_unmap_single(ctrl->dev, pa, len, dir);
2001 
2002 	/* read last subpage oob */
2003 	if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
2004 		ctrl->oob += read_oob_from_regs(ctrl,
2005 						1,
2006 						ctrl->oob, ctrl->sas,
2007 						ctrl->sector_size_1k);
2008 	}
2009 
2010 	/* for program page check NAND status */
2011 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
2012 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
2013 	    edu_cmd == EDU_CMD_WRITE) {
2014 		dev_info(ctrl->dev, "program failed at %llx\n",
2015 			 (unsigned long long)addr);
2016 		ret = -EIO;
2017 	}
2018 
2019 	/* Make sure the EDU status is clean */
2020 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
2021 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
2022 			 edu_readl(ctrl, EDU_STATUS));
2023 
2024 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
2025 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
2026 			 (unsigned long long)addr);
2027 		ret = -EIO;
2028 	}
2029 
2030 	ctrl->edu_pending = false;
2031 	brcmnand_edu_init(ctrl);
2032 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
2033 	edu_readl(ctrl, EDU_STOP);
2034 
2035 	if (!ret && edu_cmd == EDU_CMD_READ) {
2036 		u64 err_addr = 0;
2037 
2038 		/*
2039 		 * check for ECC errors here, subpage ECC errors are
2040 		 * retained in ECC error address register
2041 		 */
2042 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2043 		if (!err_addr) {
2044 			err_addr = brcmnand_get_correcc_addr(ctrl);
2045 			if (err_addr)
2046 				ret = -EUCLEAN;
2047 		} else
2048 			ret = -EBADMSG;
2049 	}
2050 
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
2056  * following ahead of time:
2057  *  - Is this descriptor the beginning or end of a linked list?
2058  *  - What is the (DMA) address of the next descriptor in the linked list?
2059  */
2060 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
2061 				  struct brcm_nand_dma_desc *desc, u64 addr,
2062 				  dma_addr_t buf, u32 len, u8 dma_cmd,
2063 				  bool begin, bool end,
2064 				  dma_addr_t next_desc)
2065 {
2066 	memset(desc, 0, sizeof(*desc));
2067 	/* Descriptors are written in native byte order (wordwise) */
2068 	desc->next_desc = lower_32_bits(next_desc);
2069 	desc->next_desc_ext = upper_32_bits(next_desc);
2070 	desc->cmd_irq = (dma_cmd << 24) |
2071 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2072 		(!!begin) | ((!!end) << 1); /* head, tail */
2073 #ifdef CONFIG_CPU_BIG_ENDIAN
2074 	desc->cmd_irq |= 0x01 << 12;
2075 #endif
2076 	desc->dram_addr = lower_32_bits(buf);
2077 	desc->dram_addr_ext = upper_32_bits(buf);
2078 	desc->tfr_len = len;
2079 	desc->total_len = len;
2080 	desc->flash_addr = lower_32_bits(addr);
2081 	desc->flash_addr_ext = upper_32_bits(addr);
2082 	desc->cs = host->cs;
2083 	desc->status_valid = 0x01;
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Kick the FLASH_DMA engine, with a given DMA descriptor
2089  */
2090 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2091 {
2092 	struct brcmnand_controller *ctrl = host->ctrl;
2093 	unsigned long timeo = msecs_to_jiffies(100);
2094 
2095 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2096 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2097 	if (ctrl->nand_version > 0x0602) {
2098 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2099 				 upper_32_bits(desc));
2100 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2101 	}
2102 
2103 	/* Start FLASH_DMA engine */
2104 	ctrl->dma_pending = true;
2105 	mb(); /* flush previous writes */
2106 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2107 
2108 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2109 		dev_err(ctrl->dev,
2110 				"timeout waiting for DMA; status %#x, error status %#x\n",
2111 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2112 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2113 	}
2114 	ctrl->dma_pending = false;
2115 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2116 }
2117 
2118 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2119 			      u8 *oob, u32 len, u8 dma_cmd)
2120 {
2121 	struct brcmnand_controller *ctrl = host->ctrl;
2122 	dma_addr_t buf_pa;
2123 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2124 
2125 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2126 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2127 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2128 		return -ENOMEM;
2129 	}
2130 
2131 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2132 				   dma_cmd, true, true, 0);
2133 
2134 	brcmnand_dma_run(host, ctrl->dma_pa);
2135 
2136 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2137 
2138 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2139 		return -EBADMSG;
2140 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2141 		return -EUCLEAN;
2142 
2143 	return 0;
2144 }
2145 
2146 /*
2147  * Assumes proper CS is already set
2148  */
2149 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2150 				u64 addr, unsigned int trans, u32 *buf,
2151 				u8 *oob, u64 *err_addr)
2152 {
2153 	struct brcmnand_host *host = nand_get_controller_data(chip);
2154 	struct brcmnand_controller *ctrl = host->ctrl;
2155 	int i, j, ret = 0;
2156 
2157 	brcmnand_clear_ecc_addr(ctrl);
2158 
2159 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2160 		brcmnand_set_cmd_addr(mtd, addr);
2161 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2162 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2163 		brcmnand_waitfunc(chip);
2164 
2165 		if (likely(buf)) {
2166 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2167 
2168 			for (j = 0; j < FC_WORDS; j++, buf++)
2169 				*buf = brcmnand_read_fc(ctrl, j);
2170 
2171 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2172 		}
2173 
2174 		if (oob)
2175 			oob += read_oob_from_regs(ctrl, i, oob,
2176 					mtd->oobsize / trans,
2177 					host->hwcfg.sector_size_1k);
2178 
2179 		if (ret != -EBADMSG) {
2180 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2181 
2182 			if (*err_addr)
2183 				ret = -EBADMSG;
2184 		}
2185 
2186 		if (!ret) {
2187 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2188 
2189 			if (*err_addr)
2190 				ret = -EUCLEAN;
2191 		}
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 /*
2198  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2199  * error
2200  *
2201  * Because the HW ECC signals an ECC error if an erase paged has even a single
2202  * bitflip, we must check each ECC error to see if it is actually an erased
2203  * page with bitflips, not a truly corrupted page.
2204  *
2205  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2206  * buf will contain raw data.
2207  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2208  * bitflips-per-ECC-sector to the caller.
2209  *
2210  */
2211 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2212 		  struct nand_chip *chip, void *buf, u64 addr)
2213 {
2214 	struct mtd_oob_region ecc;
2215 	int i;
2216 	int bitflips = 0;
2217 	int page = addr >> chip->page_shift;
2218 	int ret;
2219 	void *ecc_bytes;
2220 	void *ecc_chunk;
2221 
2222 	if (!buf)
2223 		buf = nand_get_data_buf(chip);
2224 
2225 	/* read without ecc for verification */
2226 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2227 	if (ret)
2228 		return ret;
2229 
2230 	for (i = 0; i < chip->ecc.steps; i++) {
2231 		ecc_chunk = buf + chip->ecc.size * i;
2232 
2233 		mtd_ooblayout_ecc(mtd, i, &ecc);
2234 		ecc_bytes = chip->oob_poi + ecc.offset;
2235 
2236 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2237 						  ecc_bytes, ecc.length,
2238 						  NULL, 0,
2239 						  chip->ecc.strength);
2240 		if (ret < 0)
2241 			return ret;
2242 
2243 		bitflips = max(bitflips, ret);
2244 	}
2245 
2246 	return bitflips;
2247 }
2248 
2249 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2250 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2251 {
2252 	struct brcmnand_host *host = nand_get_controller_data(chip);
2253 	struct brcmnand_controller *ctrl = host->ctrl;
2254 	u64 err_addr = 0;
2255 	int err;
2256 	bool retry = true;
2257 	bool edu_err = false;
2258 
2259 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2260 
2261 try_dmaread:
2262 	brcmnand_clear_ecc_addr(ctrl);
2263 
2264 	if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
2265 	    flash_dma_buf_ok(buf)) {
2266 		err = ctrl->dma_trans(host, addr, buf, oob,
2267 				      trans * FC_BYTES,
2268 				      CMD_PAGE_READ);
2269 
2270 		if (err) {
2271 			if (mtd_is_bitflip_or_eccerr(err))
2272 				err_addr = addr;
2273 			else
2274 				return -EIO;
2275 		}
2276 
2277 		if (has_edu(ctrl) && err_addr)
2278 			edu_err = true;
2279 
2280 	} else {
2281 		if (oob)
2282 			memset(oob, 0x99, mtd->oobsize);
2283 
2284 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2285 					       oob, &err_addr);
2286 	}
2287 
2288 	if (mtd_is_eccerr(err)) {
2289 		/*
2290 		 * On controller version and 7.0, 7.1 , DMA read after a
2291 		 * prior PIO read that reported uncorrectable error,
2292 		 * the DMA engine captures this error following DMA read
2293 		 * cleared only on subsequent DMA read, so just retry once
2294 		 * to clear a possible false error reported for current DMA
2295 		 * read
2296 		 */
2297 		if ((ctrl->nand_version == 0x0700) ||
2298 		    (ctrl->nand_version == 0x0701)) {
2299 			if (retry) {
2300 				retry = false;
2301 				goto try_dmaread;
2302 			}
2303 		}
2304 
2305 		/*
2306 		 * Controller version 7.2 has hw encoder to detect erased page
2307 		 * bitflips, apply sw verification for older controllers only
2308 		 */
2309 		if (ctrl->nand_version < 0x0702) {
2310 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2311 							      addr);
2312 			/* erased page bitflips corrected */
2313 			if (err >= 0)
2314 				return err;
2315 		}
2316 
2317 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2318 			(unsigned long long)err_addr);
2319 		mtd->ecc_stats.failed++;
2320 		/* NAND layer expects zero on ECC errors */
2321 		return 0;
2322 	}
2323 
2324 	if (mtd_is_bitflip(err)) {
2325 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2326 
2327 		/* in case of EDU correctable error we read again using PIO */
2328 		if (edu_err)
2329 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2330 						   oob, &err_addr);
2331 
2332 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2333 			(unsigned long long)err_addr);
2334 		mtd->ecc_stats.corrected += corrected;
2335 		/* Always exceed the software-imposed threshold */
2336 		return max(mtd->bitflip_threshold, corrected);
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2343 			      int oob_required, int page)
2344 {
2345 	struct mtd_info *mtd = nand_to_mtd(chip);
2346 	struct brcmnand_host *host = nand_get_controller_data(chip);
2347 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2348 
2349 	nand_read_page_op(chip, page, 0, NULL, 0);
2350 
2351 	return brcmnand_read(mtd, chip, host->last_addr,
2352 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2353 }
2354 
2355 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2356 				  int oob_required, int page)
2357 {
2358 	struct brcmnand_host *host = nand_get_controller_data(chip);
2359 	struct mtd_info *mtd = nand_to_mtd(chip);
2360 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2361 	int ret;
2362 
2363 	nand_read_page_op(chip, page, 0, NULL, 0);
2364 
2365 	brcmnand_set_ecc_enabled(host, 0);
2366 	ret = brcmnand_read(mtd, chip, host->last_addr,
2367 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2368 	brcmnand_set_ecc_enabled(host, 1);
2369 	return ret;
2370 }
2371 
2372 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2373 {
2374 	struct mtd_info *mtd = nand_to_mtd(chip);
2375 
2376 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2377 			mtd->writesize >> FC_SHIFT,
2378 			NULL, (u8 *)chip->oob_poi);
2379 }
2380 
2381 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2382 {
2383 	struct mtd_info *mtd = nand_to_mtd(chip);
2384 	struct brcmnand_host *host = nand_get_controller_data(chip);
2385 
2386 	brcmnand_set_ecc_enabled(host, 0);
2387 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2388 		mtd->writesize >> FC_SHIFT,
2389 		NULL, (u8 *)chip->oob_poi);
2390 	brcmnand_set_ecc_enabled(host, 1);
2391 	return 0;
2392 }
2393 
2394 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2395 			  u64 addr, const u32 *buf, u8 *oob)
2396 {
2397 	struct brcmnand_host *host = nand_get_controller_data(chip);
2398 	struct brcmnand_controller *ctrl = host->ctrl;
2399 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2400 	int status, ret = 0;
2401 
2402 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2403 
2404 	if (unlikely((unsigned long)buf & 0x03)) {
2405 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2406 		buf = (u32 *)((unsigned long)buf & ~0x03);
2407 	}
2408 
2409 	brcmnand_wp(mtd, 0);
2410 
2411 	for (i = 0; i < ctrl->max_oob; i += 4)
2412 		oob_reg_write(ctrl, i, 0xffffffff);
2413 
2414 	if (mtd->oops_panic_write)
2415 		/* switch to interrupt polling and PIO mode */
2416 		disable_ctrl_irqs(ctrl);
2417 
2418 	if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
2419 		if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
2420 				    CMD_PROGRAM_PAGE))
2421 
2422 			ret = -EIO;
2423 
2424 		goto out;
2425 	}
2426 
2427 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2428 		/* full address MUST be set before populating FC */
2429 		brcmnand_set_cmd_addr(mtd, addr);
2430 
2431 		if (buf) {
2432 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2433 
2434 			for (j = 0; j < FC_WORDS; j++, buf++)
2435 				brcmnand_write_fc(ctrl, j, *buf);
2436 
2437 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2438 		} else if (oob) {
2439 			for (j = 0; j < FC_WORDS; j++)
2440 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2441 		}
2442 
2443 		if (oob) {
2444 			oob += write_oob_to_regs(ctrl, i, oob,
2445 					mtd->oobsize / trans,
2446 					host->hwcfg.sector_size_1k);
2447 		}
2448 
2449 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2450 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2451 		status = brcmnand_waitfunc(chip);
2452 
2453 		if (status & NAND_STATUS_FAIL) {
2454 			dev_info(ctrl->dev, "program failed at %llx\n",
2455 				(unsigned long long)addr);
2456 			ret = -EIO;
2457 			goto out;
2458 		}
2459 	}
2460 out:
2461 	brcmnand_wp(mtd, 1);
2462 	return ret;
2463 }
2464 
2465 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2466 			       int oob_required, int page)
2467 {
2468 	struct mtd_info *mtd = nand_to_mtd(chip);
2469 	struct brcmnand_host *host = nand_get_controller_data(chip);
2470 	void *oob = oob_required ? chip->oob_poi : NULL;
2471 
2472 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2473 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2474 
2475 	return nand_prog_page_end_op(chip);
2476 }
2477 
2478 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2479 				   int oob_required, int page)
2480 {
2481 	struct mtd_info *mtd = nand_to_mtd(chip);
2482 	struct brcmnand_host *host = nand_get_controller_data(chip);
2483 	void *oob = oob_required ? chip->oob_poi : NULL;
2484 
2485 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2486 	brcmnand_set_ecc_enabled(host, 0);
2487 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2488 	brcmnand_set_ecc_enabled(host, 1);
2489 
2490 	return nand_prog_page_end_op(chip);
2491 }
2492 
2493 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2494 {
2495 	return brcmnand_write(nand_to_mtd(chip), chip,
2496 			      (u64)page << chip->page_shift, NULL,
2497 			      chip->oob_poi);
2498 }
2499 
2500 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2501 {
2502 	struct mtd_info *mtd = nand_to_mtd(chip);
2503 	struct brcmnand_host *host = nand_get_controller_data(chip);
2504 	int ret;
2505 
2506 	brcmnand_set_ecc_enabled(host, 0);
2507 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2508 				 (u8 *)chip->oob_poi);
2509 	brcmnand_set_ecc_enabled(host, 1);
2510 
2511 	return ret;
2512 }
2513 
2514 /***********************************************************************
2515  * Per-CS setup (1 NAND device)
2516  ***********************************************************************/
2517 
2518 static int brcmnand_set_cfg(struct brcmnand_host *host,
2519 			    struct brcmnand_cfg *cfg)
2520 {
2521 	struct brcmnand_controller *ctrl = host->ctrl;
2522 	struct nand_chip *chip = &host->chip;
2523 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2524 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2525 			BRCMNAND_CS_CFG_EXT);
2526 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2527 			BRCMNAND_CS_ACC_CONTROL);
2528 	u8 block_size = 0, page_size = 0, device_size = 0;
2529 	u32 tmp;
2530 
2531 	if (ctrl->block_sizes) {
2532 		int i, found;
2533 
2534 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2535 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2536 				block_size = i;
2537 				found = 1;
2538 			}
2539 		if (!found) {
2540 			dev_warn(ctrl->dev, "invalid block size %u\n",
2541 					cfg->block_size);
2542 			return -EINVAL;
2543 		}
2544 	} else {
2545 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2546 	}
2547 
2548 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2549 				cfg->block_size > ctrl->max_block_size)) {
2550 		dev_warn(ctrl->dev, "invalid block size %u\n",
2551 				cfg->block_size);
2552 		block_size = 0;
2553 	}
2554 
2555 	if (ctrl->page_sizes) {
2556 		int i, found;
2557 
2558 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2559 			if (ctrl->page_sizes[i] == cfg->page_size) {
2560 				page_size = i;
2561 				found = 1;
2562 			}
2563 		if (!found) {
2564 			dev_warn(ctrl->dev, "invalid page size %u\n",
2565 					cfg->page_size);
2566 			return -EINVAL;
2567 		}
2568 	} else {
2569 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2570 	}
2571 
2572 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2573 				cfg->page_size > ctrl->max_page_size)) {
2574 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2579 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2580 			(unsigned long long)cfg->device_size);
2581 		return -EINVAL;
2582 	}
2583 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2584 
2585 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2586 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2587 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2588 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2589 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2590 	if (cfg_offs == cfg_ext_offs) {
2591 		tmp |= (page_size << ctrl->page_size_shift) |
2592 		       (block_size << CFG_BLK_SIZE_SHIFT);
2593 		nand_writereg(ctrl, cfg_offs, tmp);
2594 	} else {
2595 		nand_writereg(ctrl, cfg_offs, tmp);
2596 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2597 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2598 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2599 	}
2600 
2601 	tmp = nand_readreg(ctrl, acc_control_offs);
2602 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2603 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2604 	if (ctrl->nand_version >= 0x0302) {
2605 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2606 		tmp |= cfg->spare_area_size;
2607 	}
2608 	nand_writereg(ctrl, acc_control_offs, tmp);
2609 
2610 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2611 
2612 	/* threshold = ceil(BCH-level * 0.75) */
2613 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2614 
2615 	return 0;
2616 }
2617 
2618 static void brcmnand_print_cfg(struct brcmnand_host *host,
2619 			       char *buf, struct brcmnand_cfg *cfg)
2620 {
2621 	buf += sprintf(buf,
2622 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2623 		(unsigned long long)cfg->device_size >> 20,
2624 		cfg->block_size >> 10,
2625 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2626 		cfg->page_size >= 1024 ? "KiB" : "B",
2627 		cfg->spare_area_size, cfg->device_width);
2628 
2629 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2630 	if (is_hamming_ecc(host->ctrl, cfg))
2631 		sprintf(buf, ", Hamming ECC");
2632 	else if (cfg->sector_size_1k)
2633 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2634 	else
2635 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2636 }
2637 
2638 /*
2639  * Minimum number of bytes to address a page. Calculated as:
2640  *     roundup(log2(size / page-size) / 8)
2641  *
2642  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2643  *     OK because many other things will break if 'size' is irregular...
2644  */
2645 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2646 {
2647 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2648 }
2649 
2650 static int brcmnand_setup_dev(struct brcmnand_host *host)
2651 {
2652 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2653 	struct nand_chip *chip = &host->chip;
2654 	const struct nand_ecc_props *requirements =
2655 		nanddev_get_ecc_requirements(&chip->base);
2656 	struct nand_memory_organization *memorg =
2657 		nanddev_get_memorg(&chip->base);
2658 	struct brcmnand_controller *ctrl = host->ctrl;
2659 	struct brcmnand_cfg *cfg = &host->hwcfg;
2660 	char msg[128];
2661 	u32 offs, tmp, oob_sector;
2662 	int ret;
2663 
2664 	memset(cfg, 0, sizeof(*cfg));
2665 
2666 	ret = of_property_read_u32(nand_get_flash_node(chip),
2667 				   "brcm,nand-oob-sector-size",
2668 				   &oob_sector);
2669 	if (ret) {
2670 		/* Use detected size */
2671 		cfg->spare_area_size = mtd->oobsize /
2672 					(mtd->writesize >> FC_SHIFT);
2673 	} else {
2674 		cfg->spare_area_size = oob_sector;
2675 	}
2676 	if (cfg->spare_area_size > ctrl->max_oob)
2677 		cfg->spare_area_size = ctrl->max_oob;
2678 	/*
2679 	 * Set mtd and memorg oobsize to be consistent with controller's
2680 	 * spare_area_size, as the rest is inaccessible.
2681 	 */
2682 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2683 	memorg->oobsize = mtd->oobsize;
2684 
2685 	cfg->device_size = mtd->size;
2686 	cfg->block_size = mtd->erasesize;
2687 	cfg->page_size = mtd->writesize;
2688 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2689 	cfg->col_adr_bytes = 2;
2690 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2691 
2692 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2693 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2694 			chip->ecc.engine_type);
2695 		return -EINVAL;
2696 	}
2697 
2698 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2699 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2700 			/* Default to Hamming for 1-bit ECC, if unspecified */
2701 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2702 		else
2703 			/* Otherwise, BCH */
2704 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2705 	}
2706 
2707 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2708 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2709 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2710 			chip->ecc.strength, chip->ecc.size);
2711 		return -EINVAL;
2712 	}
2713 
2714 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2715 	    (!chip->ecc.size || !chip->ecc.strength)) {
2716 		if (requirements->step_size && requirements->strength) {
2717 			/* use detected ECC parameters */
2718 			chip->ecc.size = requirements->step_size;
2719 			chip->ecc.strength = requirements->strength;
2720 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2721 				chip->ecc.size, chip->ecc.strength);
2722 		}
2723 	}
2724 
2725 	switch (chip->ecc.size) {
2726 	case 512:
2727 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2728 			cfg->ecc_level = 15;
2729 		else
2730 			cfg->ecc_level = chip->ecc.strength;
2731 		cfg->sector_size_1k = 0;
2732 		break;
2733 	case 1024:
2734 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2735 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2736 			return -EINVAL;
2737 		}
2738 		if (chip->ecc.strength & 0x1) {
2739 			dev_err(ctrl->dev,
2740 				"odd ECC not supported with 1KB sectors\n");
2741 			return -EINVAL;
2742 		}
2743 
2744 		cfg->ecc_level = chip->ecc.strength >> 1;
2745 		cfg->sector_size_1k = 1;
2746 		break;
2747 	default:
2748 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2749 			chip->ecc.size);
2750 		return -EINVAL;
2751 	}
2752 
2753 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2754 	if (mtd->writesize > 512)
2755 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2756 	else
2757 		cfg->ful_adr_bytes += 1;
2758 
2759 	ret = brcmnand_set_cfg(host, cfg);
2760 	if (ret)
2761 		return ret;
2762 
2763 	brcmnand_set_ecc_enabled(host, 1);
2764 
2765 	brcmnand_print_cfg(host, msg, cfg);
2766 	dev_info(ctrl->dev, "detected %s\n", msg);
2767 
2768 	/* Configure ACC_CONTROL */
2769 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2770 	tmp = nand_readreg(ctrl, offs);
2771 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2772 	tmp &= ~ACC_CONTROL_RD_ERASED;
2773 
2774 	/* We need to turn on Read from erased paged protected by ECC */
2775 	if (ctrl->nand_version >= 0x0702)
2776 		tmp |= ACC_CONTROL_RD_ERASED;
2777 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2778 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2779 		tmp &= ~ACC_CONTROL_PREFETCH;
2780 
2781 	nand_writereg(ctrl, offs, tmp);
2782 
2783 	return 0;
2784 }
2785 
2786 static int brcmnand_attach_chip(struct nand_chip *chip)
2787 {
2788 	struct mtd_info *mtd = nand_to_mtd(chip);
2789 	struct brcmnand_host *host = nand_get_controller_data(chip);
2790 	int ret;
2791 
2792 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2793 	/*
2794 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2795 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2796 	 * needed.
2797 	 */
2798 	chip->options |= NAND_USES_DMA;
2799 
2800 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2801 		chip->bbt_options |= NAND_BBT_NO_OOB;
2802 
2803 	if (brcmnand_setup_dev(host))
2804 		return -ENXIO;
2805 
2806 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2807 
2808 	/* only use our internal HW threshold */
2809 	mtd->bitflip_threshold = 1;
2810 
2811 	ret = brcmstb_choose_ecc_layout(host);
2812 
2813 	/* If OOB is written with ECC enabled it will cause ECC errors */
2814 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2815 		chip->ecc.write_oob = brcmnand_write_oob_raw;
2816 		chip->ecc.read_oob = brcmnand_read_oob_raw;
2817 	}
2818 
2819 	return ret;
2820 }
2821 
2822 static const struct nand_controller_ops brcmnand_controller_ops = {
2823 	.attach_chip = brcmnand_attach_chip,
2824 };
2825 
2826 static int brcmnand_init_cs(struct brcmnand_host *host,
2827 			    const char * const *part_probe_types)
2828 {
2829 	struct brcmnand_controller *ctrl = host->ctrl;
2830 	struct device *dev = ctrl->dev;
2831 	struct mtd_info *mtd;
2832 	struct nand_chip *chip;
2833 	int ret;
2834 	u16 cfg_offs;
2835 
2836 	mtd = nand_to_mtd(&host->chip);
2837 	chip = &host->chip;
2838 
2839 	nand_set_controller_data(chip, host);
2840 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
2841 				   host->cs);
2842 	if (!mtd->name)
2843 		return -ENOMEM;
2844 
2845 	mtd->owner = THIS_MODULE;
2846 	mtd->dev.parent = dev;
2847 
2848 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2849 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2850 	chip->legacy.waitfunc = brcmnand_waitfunc;
2851 	chip->legacy.read_byte = brcmnand_read_byte;
2852 	chip->legacy.read_buf = brcmnand_read_buf;
2853 	chip->legacy.write_buf = brcmnand_write_buf;
2854 
2855 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2856 	chip->ecc.read_page = brcmnand_read_page;
2857 	chip->ecc.write_page = brcmnand_write_page;
2858 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2859 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2860 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2861 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2862 	chip->ecc.read_oob = brcmnand_read_oob;
2863 	chip->ecc.write_oob = brcmnand_write_oob;
2864 
2865 	chip->controller = &ctrl->controller;
2866 
2867 	/*
2868 	 * The bootloader might have configured 16bit mode but
2869 	 * NAND READID command only works in 8bit mode. We force
2870 	 * 8bit mode here to ensure that NAND READID commands works.
2871 	 */
2872 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2873 	nand_writereg(ctrl, cfg_offs,
2874 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2875 
2876 	ret = nand_scan(chip, 1);
2877 	if (ret)
2878 		return ret;
2879 
2880 	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
2881 	if (ret)
2882 		nand_cleanup(chip);
2883 
2884 	return ret;
2885 }
2886 
2887 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2888 					    int restore)
2889 {
2890 	struct brcmnand_controller *ctrl = host->ctrl;
2891 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2892 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2893 			BRCMNAND_CS_CFG_EXT);
2894 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2895 			BRCMNAND_CS_ACC_CONTROL);
2896 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2897 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2898 
2899 	if (restore) {
2900 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2901 		if (cfg_offs != cfg_ext_offs)
2902 			nand_writereg(ctrl, cfg_ext_offs,
2903 				      host->hwcfg.config_ext);
2904 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2905 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2906 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2907 	} else {
2908 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2909 		if (cfg_offs != cfg_ext_offs)
2910 			host->hwcfg.config_ext =
2911 				nand_readreg(ctrl, cfg_ext_offs);
2912 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2913 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2914 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2915 	}
2916 }
2917 
2918 static int brcmnand_suspend(struct device *dev)
2919 {
2920 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2921 	struct brcmnand_host *host;
2922 
2923 	list_for_each_entry(host, &ctrl->host_list, node)
2924 		brcmnand_save_restore_cs_config(host, 0);
2925 
2926 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2927 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2928 	ctrl->corr_stat_threshold =
2929 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2930 
2931 	if (has_flash_dma(ctrl))
2932 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2933 	else if (has_edu(ctrl))
2934 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2935 
2936 	return 0;
2937 }
2938 
2939 static int brcmnand_resume(struct device *dev)
2940 {
2941 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2942 	struct brcmnand_host *host;
2943 
2944 	if (has_flash_dma(ctrl)) {
2945 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2946 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2947 	}
2948 
2949 	if (has_edu(ctrl)) {
2950 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2951 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2952 		edu_readl(ctrl, EDU_CONFIG);
2953 		brcmnand_edu_init(ctrl);
2954 	}
2955 
2956 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2957 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2958 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2959 			ctrl->corr_stat_threshold);
2960 	if (ctrl->soc) {
2961 		/* Clear/re-enable interrupt */
2962 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2963 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2964 	}
2965 
2966 	list_for_each_entry(host, &ctrl->host_list, node) {
2967 		struct nand_chip *chip = &host->chip;
2968 
2969 		brcmnand_save_restore_cs_config(host, 1);
2970 
2971 		/* Reset the chip, required by some chips after power-up */
2972 		nand_reset_op(chip);
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 const struct dev_pm_ops brcmnand_pm_ops = {
2979 	.suspend		= brcmnand_suspend,
2980 	.resume			= brcmnand_resume,
2981 };
2982 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2983 
2984 static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
2985 	{ .compatible = "brcm,brcmnand-v2.1" },
2986 	{ .compatible = "brcm,brcmnand-v2.2" },
2987 	{ .compatible = "brcm,brcmnand-v4.0" },
2988 	{ .compatible = "brcm,brcmnand-v5.0" },
2989 	{ .compatible = "brcm,brcmnand-v6.0" },
2990 	{ .compatible = "brcm,brcmnand-v6.1" },
2991 	{ .compatible = "brcm,brcmnand-v6.2" },
2992 	{ .compatible = "brcm,brcmnand-v7.0" },
2993 	{ .compatible = "brcm,brcmnand-v7.1" },
2994 	{ .compatible = "brcm,brcmnand-v7.2" },
2995 	{ .compatible = "brcm,brcmnand-v7.3" },
2996 	{},
2997 };
2998 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2999 
3000 /***********************************************************************
3001  * Platform driver setup (per controller)
3002  ***********************************************************************/
3003 static int brcmnand_edu_setup(struct platform_device *pdev)
3004 {
3005 	struct device *dev = &pdev->dev;
3006 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3007 	struct resource *res;
3008 	int ret;
3009 
3010 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
3011 	if (res) {
3012 		ctrl->edu_base = devm_ioremap_resource(dev, res);
3013 		if (IS_ERR(ctrl->edu_base))
3014 			return PTR_ERR(ctrl->edu_base);
3015 
3016 		ctrl->edu_offsets = edu_regs;
3017 
3018 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
3019 			   EDU_CONFIG_SWAP_CFG);
3020 		edu_readl(ctrl, EDU_CONFIG);
3021 
3022 		/* initialize edu */
3023 		brcmnand_edu_init(ctrl);
3024 
3025 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
3026 		if (ctrl->edu_irq < 0) {
3027 			dev_warn(dev,
3028 				 "FLASH EDU enabled, using ctlrdy irq\n");
3029 		} else {
3030 			ret = devm_request_irq(dev, ctrl->edu_irq,
3031 					       brcmnand_edu_irq, 0,
3032 					       "brcmnand-edu", ctrl);
3033 			if (ret < 0) {
3034 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
3035 					ctrl->edu_irq, ret);
3036 				return ret;
3037 			}
3038 
3039 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
3040 				 ctrl->edu_irq);
3041 		}
3042 	}
3043 
3044 	return 0;
3045 }
3046 
3047 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
3048 {
3049 	struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
3050 	struct device *dev = &pdev->dev;
3051 	struct device_node *dn = dev->of_node, *child;
3052 	struct brcmnand_controller *ctrl;
3053 	struct brcmnand_host *host;
3054 	struct resource *res;
3055 	int ret;
3056 
3057 	if (dn && !of_match_node(brcmnand_of_match, dn))
3058 		return -ENODEV;
3059 
3060 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3061 	if (!ctrl)
3062 		return -ENOMEM;
3063 
3064 	dev_set_drvdata(dev, ctrl);
3065 	ctrl->dev = dev;
3066 	ctrl->soc = soc;
3067 
3068 	/* Enable the static key if the soc provides I/O operations indicating
3069 	 * that a non-memory mapped IO access path must be used
3070 	 */
3071 	if (brcmnand_soc_has_ops(ctrl->soc))
3072 		static_branch_enable(&brcmnand_soc_has_ops_key);
3073 
3074 	init_completion(&ctrl->done);
3075 	init_completion(&ctrl->dma_done);
3076 	init_completion(&ctrl->edu_done);
3077 	nand_controller_init(&ctrl->controller);
3078 	ctrl->controller.ops = &brcmnand_controller_ops;
3079 	INIT_LIST_HEAD(&ctrl->host_list);
3080 
3081 	/* NAND register range */
3082 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3083 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3084 	if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
3085 		return PTR_ERR(ctrl->nand_base);
3086 
3087 	/* Enable clock before using NAND registers */
3088 	ctrl->clk = devm_clk_get(dev, "nand");
3089 	if (!IS_ERR(ctrl->clk)) {
3090 		ret = clk_prepare_enable(ctrl->clk);
3091 		if (ret)
3092 			return ret;
3093 	} else {
3094 		ret = PTR_ERR(ctrl->clk);
3095 		if (ret == -EPROBE_DEFER)
3096 			return ret;
3097 
3098 		ctrl->clk = NULL;
3099 	}
3100 
3101 	/* Initialize NAND revision */
3102 	ret = brcmnand_revision_init(ctrl);
3103 	if (ret)
3104 		goto err;
3105 
3106 	/*
3107 	 * Most chips have this cache at a fixed offset within 'nand' block.
3108 	 * Some must specify this region separately.
3109 	 */
3110 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3111 	if (res) {
3112 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3113 		if (IS_ERR(ctrl->nand_fc)) {
3114 			ret = PTR_ERR(ctrl->nand_fc);
3115 			goto err;
3116 		}
3117 	} else {
3118 		ctrl->nand_fc = ctrl->nand_base +
3119 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3120 	}
3121 
3122 	/* FLASH_DMA */
3123 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3124 	if (res) {
3125 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3126 		if (IS_ERR(ctrl->flash_dma_base)) {
3127 			ret = PTR_ERR(ctrl->flash_dma_base);
3128 			goto err;
3129 		}
3130 
3131 		/* initialize the dma version */
3132 		brcmnand_flash_dma_revision_init(ctrl);
3133 
3134 		ret = -EIO;
3135 		if (ctrl->nand_version >= 0x0700)
3136 			ret = dma_set_mask_and_coherent(&pdev->dev,
3137 							DMA_BIT_MASK(40));
3138 		if (ret)
3139 			ret = dma_set_mask_and_coherent(&pdev->dev,
3140 							DMA_BIT_MASK(32));
3141 		if (ret)
3142 			goto err;
3143 
3144 		/* linked-list and stop on error */
3145 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3146 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3147 
3148 		/* Allocate descriptor(s) */
3149 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3150 						     sizeof(*ctrl->dma_desc),
3151 						     &ctrl->dma_pa, GFP_KERNEL);
3152 		if (!ctrl->dma_desc) {
3153 			ret = -ENOMEM;
3154 			goto err;
3155 		}
3156 
3157 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3158 		if ((int)ctrl->dma_irq < 0) {
3159 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3160 			ret = -ENODEV;
3161 			goto err;
3162 		}
3163 
3164 		ret = devm_request_irq(dev, ctrl->dma_irq,
3165 				brcmnand_dma_irq, 0, DRV_NAME,
3166 				ctrl);
3167 		if (ret < 0) {
3168 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3169 					ctrl->dma_irq, ret);
3170 			goto err;
3171 		}
3172 
3173 		dev_info(dev, "enabling FLASH_DMA\n");
3174 		/* set flash dma transfer function to call */
3175 		ctrl->dma_trans = brcmnand_dma_trans;
3176 	} else	{
3177 		ret = brcmnand_edu_setup(pdev);
3178 		if (ret < 0)
3179 			goto err;
3180 
3181 		if (has_edu(ctrl))
3182 			/* set edu transfer function to call */
3183 			ctrl->dma_trans = brcmnand_edu_trans;
3184 	}
3185 
3186 	/* Disable automatic device ID config, direct addressing */
3187 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3188 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3189 	/* Disable XOR addressing */
3190 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3191 
3192 	if (ctrl->features & BRCMNAND_HAS_WP) {
3193 		/* Permanently disable write protection */
3194 		if (wp_on == 2)
3195 			brcmnand_set_wp(ctrl, false);
3196 	} else {
3197 		wp_on = 0;
3198 	}
3199 
3200 	/* IRQ */
3201 	ctrl->irq = platform_get_irq_optional(pdev, 0);
3202 	if (ctrl->irq > 0) {
3203 		/*
3204 		 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3205 		 * interesting ways
3206 		 */
3207 		if (soc) {
3208 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3209 					       DRV_NAME, ctrl);
3210 
3211 			/* Enable interrupt */
3212 			ctrl->soc->ctlrdy_ack(ctrl->soc);
3213 			ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3214 		} else {
3215 			/* Use standard interrupt infrastructure */
3216 			ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3217 					       DRV_NAME, ctrl);
3218 		}
3219 		if (ret < 0) {
3220 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3221 				ctrl->irq, ret);
3222 			goto err;
3223 		}
3224 	}
3225 
3226 	for_each_available_child_of_node(dn, child) {
3227 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3228 
3229 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3230 			if (!host) {
3231 				of_node_put(child);
3232 				ret = -ENOMEM;
3233 				goto err;
3234 			}
3235 			host->pdev = pdev;
3236 			host->ctrl = ctrl;
3237 
3238 			ret = of_property_read_u32(child, "reg", &host->cs);
3239 			if (ret) {
3240 				dev_err(dev, "can't get chip-select\n");
3241 				devm_kfree(dev, host);
3242 				continue;
3243 			}
3244 
3245 			nand_set_flash_node(&host->chip, child);
3246 
3247 			ret = brcmnand_init_cs(host, NULL);
3248 			if (ret) {
3249 				if (ret == -EPROBE_DEFER) {
3250 					of_node_put(child);
3251 					goto err;
3252 				}
3253 				devm_kfree(dev, host);
3254 				continue; /* Try all chip-selects */
3255 			}
3256 
3257 			list_add_tail(&host->node, &ctrl->host_list);
3258 		}
3259 	}
3260 
3261 	if (!list_empty(&ctrl->host_list))
3262 		return 0;
3263 
3264 	if (!pd) {
3265 		ret = -ENODEV;
3266 		goto err;
3267 	}
3268 
3269 	/* If we got there we must have been probing via platform data */
3270 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3271 	if (!host) {
3272 		ret = -ENOMEM;
3273 		goto err;
3274 	}
3275 	host->pdev = pdev;
3276 	host->ctrl = ctrl;
3277 	host->cs = pd->chip_select;
3278 	host->chip.ecc.size = pd->ecc_stepsize;
3279 	host->chip.ecc.strength = pd->ecc_strength;
3280 
3281 	ret = brcmnand_init_cs(host, pd->part_probe_types);
3282 	if (ret)
3283 		goto err;
3284 
3285 	list_add_tail(&host->node, &ctrl->host_list);
3286 
3287 	/* No chip-selects could initialize properly */
3288 	if (list_empty(&ctrl->host_list)) {
3289 		ret = -ENODEV;
3290 		goto err;
3291 	}
3292 
3293 	return 0;
3294 
3295 err:
3296 	clk_disable_unprepare(ctrl->clk);
3297 	return ret;
3298 
3299 }
3300 EXPORT_SYMBOL_GPL(brcmnand_probe);
3301 
3302 int brcmnand_remove(struct platform_device *pdev)
3303 {
3304 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3305 	struct brcmnand_host *host;
3306 	struct nand_chip *chip;
3307 	int ret;
3308 
3309 	list_for_each_entry(host, &ctrl->host_list, node) {
3310 		chip = &host->chip;
3311 		ret = mtd_device_unregister(nand_to_mtd(chip));
3312 		WARN_ON(ret);
3313 		nand_cleanup(chip);
3314 	}
3315 
3316 	clk_disable_unprepare(ctrl->clk);
3317 
3318 	dev_set_drvdata(&pdev->dev, NULL);
3319 
3320 	return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(brcmnand_remove);
3323 
3324 MODULE_LICENSE("GPL v2");
3325 MODULE_AUTHOR("Kevin Cernekee");
3326 MODULE_AUTHOR("Brian Norris");
3327 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3328 MODULE_ALIAS("platform:brcmnand");
3329