1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/err.h>
13 #include <linux/completion.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/ioport.h>
18 #include <linux/bug.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/mm.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/mtd/partitions.h>
25 #include <linux/of.h>
26 #include <linux/of_platform.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/log2.h>
30 
31 #include "brcmnand.h"
32 
33 /*
34  * This flag controls if WP stays on between erase/write commands to mitigate
35  * flash corruption due to power glitches. Values:
36  * 0: NAND_WP is not used or not available
37  * 1: NAND_WP is set by default, cleared for erase/write operations
38  * 2: NAND_WP is always cleared
39  */
40 static int wp_on = 1;
41 module_param(wp_on, int, 0444);
42 
43 /***********************************************************************
44  * Definitions
45  ***********************************************************************/
46 
47 #define DRV_NAME			"brcmnand"
48 
49 #define CMD_NULL			0x00
50 #define CMD_PAGE_READ			0x01
51 #define CMD_SPARE_AREA_READ		0x02
52 #define CMD_STATUS_READ			0x03
53 #define CMD_PROGRAM_PAGE		0x04
54 #define CMD_PROGRAM_SPARE_AREA		0x05
55 #define CMD_COPY_BACK			0x06
56 #define CMD_DEVICE_ID_READ		0x07
57 #define CMD_BLOCK_ERASE			0x08
58 #define CMD_FLASH_RESET			0x09
59 #define CMD_BLOCKS_LOCK			0x0a
60 #define CMD_BLOCKS_LOCK_DOWN		0x0b
61 #define CMD_BLOCKS_UNLOCK		0x0c
62 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
63 #define CMD_PARAMETER_READ		0x0e
64 #define CMD_PARAMETER_CHANGE_COL	0x0f
65 #define CMD_LOW_LEVEL_OP		0x10
66 
67 struct brcm_nand_dma_desc {
68 	u32 next_desc;
69 	u32 next_desc_ext;
70 	u32 cmd_irq;
71 	u32 dram_addr;
72 	u32 dram_addr_ext;
73 	u32 tfr_len;
74 	u32 total_len;
75 	u32 flash_addr;
76 	u32 flash_addr_ext;
77 	u32 cs;
78 	u32 pad2[5];
79 	u32 status_valid;
80 } __packed;
81 
82 /* Bitfields for brcm_nand_dma_desc::status_valid */
83 #define FLASH_DMA_ECC_ERROR	(1 << 8)
84 #define FLASH_DMA_CORR_ERROR	(1 << 9)
85 
86 /* Bitfields for DMA_MODE */
87 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
88 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
89 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
90 						FLASH_DMA_MODE_MODE)
91 
92 /* 512B flash cache in the NAND controller HW */
93 #define FC_SHIFT		9U
94 #define FC_BYTES		512U
95 #define FC_WORDS		(FC_BYTES >> 2)
96 
97 #define BRCMNAND_MIN_PAGESIZE	512
98 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
99 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
100 
101 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
102 #define NAND_POLL_STATUS_TIMEOUT_MS	100
103 
104 #define EDU_CMD_WRITE          0x00
105 #define EDU_CMD_READ           0x01
106 #define EDU_STATUS_ACTIVE      BIT(0)
107 #define EDU_ERR_STATUS_ERRACK  BIT(0)
108 #define EDU_DONE_MASK		GENMASK(1, 0)
109 
110 #define EDU_CONFIG_MODE_NAND   BIT(0)
111 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
112 #ifdef CONFIG_CPU_BIG_ENDIAN
113 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
114 #else
115 #define EDU_CONFIG_SWAP_CFG     0
116 #endif
117 
118 /* edu registers */
119 enum edu_reg {
120 	EDU_CONFIG = 0,
121 	EDU_DRAM_ADDR,
122 	EDU_EXT_ADDR,
123 	EDU_LENGTH,
124 	EDU_CMD,
125 	EDU_STOP,
126 	EDU_STATUS,
127 	EDU_DONE,
128 	EDU_ERR_STATUS,
129 };
130 
131 static const u16  edu_regs[] = {
132 	[EDU_CONFIG] = 0x00,
133 	[EDU_DRAM_ADDR] = 0x04,
134 	[EDU_EXT_ADDR] = 0x08,
135 	[EDU_LENGTH] = 0x0c,
136 	[EDU_CMD] = 0x10,
137 	[EDU_STOP] = 0x14,
138 	[EDU_STATUS] = 0x18,
139 	[EDU_DONE] = 0x1c,
140 	[EDU_ERR_STATUS] = 0x20,
141 };
142 
143 /* flash_dma registers */
144 enum flash_dma_reg {
145 	FLASH_DMA_REVISION = 0,
146 	FLASH_DMA_FIRST_DESC,
147 	FLASH_DMA_FIRST_DESC_EXT,
148 	FLASH_DMA_CTRL,
149 	FLASH_DMA_MODE,
150 	FLASH_DMA_STATUS,
151 	FLASH_DMA_INTERRUPT_DESC,
152 	FLASH_DMA_INTERRUPT_DESC_EXT,
153 	FLASH_DMA_ERROR_STATUS,
154 	FLASH_DMA_CURRENT_DESC,
155 	FLASH_DMA_CURRENT_DESC_EXT,
156 };
157 
158 /* flash_dma registers v0*/
159 static const u16 flash_dma_regs_v0[] = {
160 	[FLASH_DMA_REVISION]		= 0x00,
161 	[FLASH_DMA_FIRST_DESC]		= 0x04,
162 	[FLASH_DMA_CTRL]		= 0x08,
163 	[FLASH_DMA_MODE]		= 0x0c,
164 	[FLASH_DMA_STATUS]		= 0x10,
165 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
166 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
167 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
168 };
169 
170 /* flash_dma registers v1*/
171 static const u16 flash_dma_regs_v1[] = {
172 	[FLASH_DMA_REVISION]		= 0x00,
173 	[FLASH_DMA_FIRST_DESC]		= 0x04,
174 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
175 	[FLASH_DMA_CTRL]		= 0x0c,
176 	[FLASH_DMA_MODE]		= 0x10,
177 	[FLASH_DMA_STATUS]		= 0x14,
178 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
179 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
180 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
181 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
182 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
183 };
184 
185 /* flash_dma registers v4 */
186 static const u16 flash_dma_regs_v4[] = {
187 	[FLASH_DMA_REVISION]		= 0x00,
188 	[FLASH_DMA_FIRST_DESC]		= 0x08,
189 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
190 	[FLASH_DMA_CTRL]		= 0x10,
191 	[FLASH_DMA_MODE]		= 0x14,
192 	[FLASH_DMA_STATUS]		= 0x18,
193 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
194 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
195 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
196 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
197 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
198 };
199 
200 /* Controller feature flags */
201 enum {
202 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
203 	BRCMNAND_HAS_PREFETCH			= BIT(1),
204 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
205 	BRCMNAND_HAS_WP				= BIT(3),
206 };
207 
208 struct brcmnand_host;
209 
210 struct brcmnand_controller {
211 	struct device		*dev;
212 	struct nand_controller	controller;
213 	void __iomem		*nand_base;
214 	void __iomem		*nand_fc; /* flash cache */
215 	void __iomem		*flash_dma_base;
216 	unsigned int		irq;
217 	unsigned int		dma_irq;
218 	int			nand_version;
219 
220 	/* Some SoCs provide custom interrupt status register(s) */
221 	struct brcmnand_soc	*soc;
222 
223 	/* Some SoCs have a gateable clock for the controller */
224 	struct clk		*clk;
225 
226 	int			cmd_pending;
227 	bool			dma_pending;
228 	bool                    edu_pending;
229 	struct completion	done;
230 	struct completion	dma_done;
231 	struct completion       edu_done;
232 
233 	/* List of NAND hosts (one for each chip-select) */
234 	struct list_head host_list;
235 
236 	/* EDU info, per-transaction */
237 	const u16               *edu_offsets;
238 	void __iomem            *edu_base;
239 	int			edu_irq;
240 	int                     edu_count;
241 	u64                     edu_dram_addr;
242 	u32                     edu_ext_addr;
243 	u32                     edu_cmd;
244 	u32                     edu_config;
245 
246 	/* flash_dma reg */
247 	const u16		*flash_dma_offsets;
248 	struct brcm_nand_dma_desc *dma_desc;
249 	dma_addr_t		dma_pa;
250 
251 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
252 			 u32 len, u8 dma_cmd);
253 
254 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
255 	u8			flash_cache[FC_BYTES];
256 
257 	/* Controller revision details */
258 	const u16		*reg_offsets;
259 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
260 	const u8		*cs_offsets; /* within each chip-select */
261 	const u8		*cs0_offsets; /* within CS0, if different */
262 	unsigned int		max_block_size;
263 	const unsigned int	*block_sizes;
264 	unsigned int		max_page_size;
265 	const unsigned int	*page_sizes;
266 	unsigned int		max_oob;
267 	u32			features;
268 
269 	/* for low-power standby/resume only */
270 	u32			nand_cs_nand_select;
271 	u32			nand_cs_nand_xor;
272 	u32			corr_stat_threshold;
273 	u32			flash_dma_mode;
274 	u32                     flash_edu_mode;
275 	bool			pio_poll_mode;
276 };
277 
278 struct brcmnand_cfg {
279 	u64			device_size;
280 	unsigned int		block_size;
281 	unsigned int		page_size;
282 	unsigned int		spare_area_size;
283 	unsigned int		device_width;
284 	unsigned int		col_adr_bytes;
285 	unsigned int		blk_adr_bytes;
286 	unsigned int		ful_adr_bytes;
287 	unsigned int		sector_size_1k;
288 	unsigned int		ecc_level;
289 	/* use for low-power standby/resume only */
290 	u32			acc_control;
291 	u32			config;
292 	u32			config_ext;
293 	u32			timing_1;
294 	u32			timing_2;
295 };
296 
297 struct brcmnand_host {
298 	struct list_head	node;
299 
300 	struct nand_chip	chip;
301 	struct platform_device	*pdev;
302 	int			cs;
303 
304 	unsigned int		last_cmd;
305 	unsigned int		last_byte;
306 	u64			last_addr;
307 	struct brcmnand_cfg	hwcfg;
308 	struct brcmnand_controller *ctrl;
309 };
310 
311 enum brcmnand_reg {
312 	BRCMNAND_CMD_START = 0,
313 	BRCMNAND_CMD_EXT_ADDRESS,
314 	BRCMNAND_CMD_ADDRESS,
315 	BRCMNAND_INTFC_STATUS,
316 	BRCMNAND_CS_SELECT,
317 	BRCMNAND_CS_XOR,
318 	BRCMNAND_LL_OP,
319 	BRCMNAND_CS0_BASE,
320 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
321 	BRCMNAND_CORR_THRESHOLD,
322 	BRCMNAND_CORR_THRESHOLD_EXT,
323 	BRCMNAND_UNCORR_COUNT,
324 	BRCMNAND_CORR_COUNT,
325 	BRCMNAND_CORR_EXT_ADDR,
326 	BRCMNAND_CORR_ADDR,
327 	BRCMNAND_UNCORR_EXT_ADDR,
328 	BRCMNAND_UNCORR_ADDR,
329 	BRCMNAND_SEMAPHORE,
330 	BRCMNAND_ID,
331 	BRCMNAND_ID_EXT,
332 	BRCMNAND_LL_RDATA,
333 	BRCMNAND_OOB_READ_BASE,
334 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
335 	BRCMNAND_OOB_WRITE_BASE,
336 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
337 	BRCMNAND_FC_BASE,
338 };
339 
340 /* BRCMNAND v3.3-v4.0 */
341 static const u16 brcmnand_regs_v33[] = {
342 	[BRCMNAND_CMD_START]		=  0x04,
343 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
344 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
345 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
346 	[BRCMNAND_CS_SELECT]		=  0x14,
347 	[BRCMNAND_CS_XOR]		=  0x18,
348 	[BRCMNAND_LL_OP]		= 0x178,
349 	[BRCMNAND_CS0_BASE]		=  0x40,
350 	[BRCMNAND_CS1_BASE]		=  0xd0,
351 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
352 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
353 	[BRCMNAND_UNCORR_COUNT]		=     0,
354 	[BRCMNAND_CORR_COUNT]		=     0,
355 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
356 	[BRCMNAND_CORR_ADDR]		=  0x74,
357 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
358 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
359 	[BRCMNAND_SEMAPHORE]		=  0x58,
360 	[BRCMNAND_ID]			=  0x60,
361 	[BRCMNAND_ID_EXT]		=  0x64,
362 	[BRCMNAND_LL_RDATA]		= 0x17c,
363 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
364 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
365 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
366 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
367 	[BRCMNAND_FC_BASE]		= 0x200,
368 };
369 
370 /* BRCMNAND v5.0 */
371 static const u16 brcmnand_regs_v50[] = {
372 	[BRCMNAND_CMD_START]		=  0x04,
373 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
374 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
375 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
376 	[BRCMNAND_CS_SELECT]		=  0x14,
377 	[BRCMNAND_CS_XOR]		=  0x18,
378 	[BRCMNAND_LL_OP]		= 0x178,
379 	[BRCMNAND_CS0_BASE]		=  0x40,
380 	[BRCMNAND_CS1_BASE]		=  0xd0,
381 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
382 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
383 	[BRCMNAND_UNCORR_COUNT]		=     0,
384 	[BRCMNAND_CORR_COUNT]		=     0,
385 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
386 	[BRCMNAND_CORR_ADDR]		=  0x74,
387 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
388 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
389 	[BRCMNAND_SEMAPHORE]		=  0x58,
390 	[BRCMNAND_ID]			=  0x60,
391 	[BRCMNAND_ID_EXT]		=  0x64,
392 	[BRCMNAND_LL_RDATA]		= 0x17c,
393 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
394 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
395 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
396 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
397 	[BRCMNAND_FC_BASE]		= 0x200,
398 };
399 
400 /* BRCMNAND v6.0 - v7.1 */
401 static const u16 brcmnand_regs_v60[] = {
402 	[BRCMNAND_CMD_START]		=  0x04,
403 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
404 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
405 	[BRCMNAND_INTFC_STATUS]		=  0x14,
406 	[BRCMNAND_CS_SELECT]		=  0x18,
407 	[BRCMNAND_CS_XOR]		=  0x1c,
408 	[BRCMNAND_LL_OP]		=  0x20,
409 	[BRCMNAND_CS0_BASE]		=  0x50,
410 	[BRCMNAND_CS1_BASE]		=     0,
411 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
412 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
413 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
414 	[BRCMNAND_CORR_COUNT]		= 0x100,
415 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
416 	[BRCMNAND_CORR_ADDR]		= 0x110,
417 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
418 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
419 	[BRCMNAND_SEMAPHORE]		= 0x150,
420 	[BRCMNAND_ID]			= 0x194,
421 	[BRCMNAND_ID_EXT]		= 0x198,
422 	[BRCMNAND_LL_RDATA]		= 0x19c,
423 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
424 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
425 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
426 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
427 	[BRCMNAND_FC_BASE]		= 0x400,
428 };
429 
430 /* BRCMNAND v7.1 */
431 static const u16 brcmnand_regs_v71[] = {
432 	[BRCMNAND_CMD_START]		=  0x04,
433 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
434 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
435 	[BRCMNAND_INTFC_STATUS]		=  0x14,
436 	[BRCMNAND_CS_SELECT]		=  0x18,
437 	[BRCMNAND_CS_XOR]		=  0x1c,
438 	[BRCMNAND_LL_OP]		=  0x20,
439 	[BRCMNAND_CS0_BASE]		=  0x50,
440 	[BRCMNAND_CS1_BASE]		=     0,
441 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
442 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
443 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
444 	[BRCMNAND_CORR_COUNT]		= 0x100,
445 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
446 	[BRCMNAND_CORR_ADDR]		= 0x110,
447 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
448 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
449 	[BRCMNAND_SEMAPHORE]		= 0x150,
450 	[BRCMNAND_ID]			= 0x194,
451 	[BRCMNAND_ID_EXT]		= 0x198,
452 	[BRCMNAND_LL_RDATA]		= 0x19c,
453 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
454 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
455 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
456 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
457 	[BRCMNAND_FC_BASE]		= 0x400,
458 };
459 
460 /* BRCMNAND v7.2 */
461 static const u16 brcmnand_regs_v72[] = {
462 	[BRCMNAND_CMD_START]		=  0x04,
463 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
464 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
465 	[BRCMNAND_INTFC_STATUS]		=  0x14,
466 	[BRCMNAND_CS_SELECT]		=  0x18,
467 	[BRCMNAND_CS_XOR]		=  0x1c,
468 	[BRCMNAND_LL_OP]		=  0x20,
469 	[BRCMNAND_CS0_BASE]		=  0x50,
470 	[BRCMNAND_CS1_BASE]		=     0,
471 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
472 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
473 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
474 	[BRCMNAND_CORR_COUNT]		= 0x100,
475 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
476 	[BRCMNAND_CORR_ADDR]		= 0x110,
477 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
478 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
479 	[BRCMNAND_SEMAPHORE]		= 0x150,
480 	[BRCMNAND_ID]			= 0x194,
481 	[BRCMNAND_ID_EXT]		= 0x198,
482 	[BRCMNAND_LL_RDATA]		= 0x19c,
483 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
484 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
485 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
486 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
487 	[BRCMNAND_FC_BASE]		= 0x600,
488 };
489 
490 enum brcmnand_cs_reg {
491 	BRCMNAND_CS_CFG_EXT = 0,
492 	BRCMNAND_CS_CFG,
493 	BRCMNAND_CS_ACC_CONTROL,
494 	BRCMNAND_CS_TIMING1,
495 	BRCMNAND_CS_TIMING2,
496 };
497 
498 /* Per chip-select offsets for v7.1 */
499 static const u8 brcmnand_cs_offsets_v71[] = {
500 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
501 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
502 	[BRCMNAND_CS_CFG]		= 0x08,
503 	[BRCMNAND_CS_TIMING1]		= 0x0c,
504 	[BRCMNAND_CS_TIMING2]		= 0x10,
505 };
506 
507 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
508 static const u8 brcmnand_cs_offsets[] = {
509 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
510 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
511 	[BRCMNAND_CS_CFG]		= 0x04,
512 	[BRCMNAND_CS_TIMING1]		= 0x08,
513 	[BRCMNAND_CS_TIMING2]		= 0x0c,
514 };
515 
516 /* Per chip-select offset for <= v5.0 on CS0 only */
517 static const u8 brcmnand_cs_offsets_cs0[] = {
518 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
519 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
520 	[BRCMNAND_CS_CFG]		= 0x08,
521 	[BRCMNAND_CS_TIMING1]		= 0x10,
522 	[BRCMNAND_CS_TIMING2]		= 0x14,
523 };
524 
525 /*
526  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
527  * one config register, but once the bitfields overflowed, newer controllers
528  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
529  */
530 enum {
531 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
532 	CFG_COL_ADR_BYTES_SHIFT		= 12,
533 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
534 	CFG_BUS_WIDTH_SHIFT		= 23,
535 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
536 	CFG_DEVICE_SIZE_SHIFT		= 24,
537 
538 	/* Only for pre-v7.1 (with no CFG_EXT register) */
539 	CFG_PAGE_SIZE_SHIFT		= 20,
540 	CFG_BLK_SIZE_SHIFT		= 28,
541 
542 	/* Only for v7.1+ (with CFG_EXT register) */
543 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
544 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
545 };
546 
547 /* BRCMNAND_INTFC_STATUS */
548 enum {
549 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
550 
551 	INTFC_ERASED			= BIT(27),
552 	INTFC_OOB_VALID			= BIT(28),
553 	INTFC_CACHE_VALID		= BIT(29),
554 	INTFC_FLASH_READY		= BIT(30),
555 	INTFC_CTLR_READY		= BIT(31),
556 };
557 
558 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
559 {
560 	return brcmnand_readl(ctrl->nand_base + offs);
561 }
562 
563 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
564 				 u32 val)
565 {
566 	brcmnand_writel(val, ctrl->nand_base + offs);
567 }
568 
569 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
570 {
571 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
572 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
573 	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
574 
575 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
576 
577 	/* Only support v4.0+? */
578 	if (ctrl->nand_version < 0x0400) {
579 		dev_err(ctrl->dev, "version %#x not supported\n",
580 			ctrl->nand_version);
581 		return -ENODEV;
582 	}
583 
584 	/* Register offsets */
585 	if (ctrl->nand_version >= 0x0702)
586 		ctrl->reg_offsets = brcmnand_regs_v72;
587 	else if (ctrl->nand_version == 0x0701)
588 		ctrl->reg_offsets = brcmnand_regs_v71;
589 	else if (ctrl->nand_version >= 0x0600)
590 		ctrl->reg_offsets = brcmnand_regs_v60;
591 	else if (ctrl->nand_version >= 0x0500)
592 		ctrl->reg_offsets = brcmnand_regs_v50;
593 	else if (ctrl->nand_version >= 0x0303)
594 		ctrl->reg_offsets = brcmnand_regs_v33;
595 
596 	/* Chip-select stride */
597 	if (ctrl->nand_version >= 0x0701)
598 		ctrl->reg_spacing = 0x14;
599 	else
600 		ctrl->reg_spacing = 0x10;
601 
602 	/* Per chip-select registers */
603 	if (ctrl->nand_version >= 0x0701) {
604 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
605 	} else {
606 		ctrl->cs_offsets = brcmnand_cs_offsets;
607 
608 		/* v3.3-5.0 have a different CS0 offset layout */
609 		if (ctrl->nand_version >= 0x0303 &&
610 		    ctrl->nand_version <= 0x0500)
611 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
612 	}
613 
614 	/* Page / block sizes */
615 	if (ctrl->nand_version >= 0x0701) {
616 		/* >= v7.1 use nice power-of-2 values! */
617 		ctrl->max_page_size = 16 * 1024;
618 		ctrl->max_block_size = 2 * 1024 * 1024;
619 	} else {
620 		ctrl->page_sizes = page_sizes;
621 		if (ctrl->nand_version >= 0x0600)
622 			ctrl->block_sizes = block_sizes_v6;
623 		else
624 			ctrl->block_sizes = block_sizes_v4;
625 
626 		if (ctrl->nand_version < 0x0400) {
627 			ctrl->max_page_size = 4096;
628 			ctrl->max_block_size = 512 * 1024;
629 		}
630 	}
631 
632 	/* Maximum spare area sector size (per 512B) */
633 	if (ctrl->nand_version == 0x0702)
634 		ctrl->max_oob = 128;
635 	else if (ctrl->nand_version >= 0x0600)
636 		ctrl->max_oob = 64;
637 	else if (ctrl->nand_version >= 0x0500)
638 		ctrl->max_oob = 32;
639 	else
640 		ctrl->max_oob = 16;
641 
642 	/* v6.0 and newer (except v6.1) have prefetch support */
643 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
644 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
645 
646 	/*
647 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
648 	 * now.
649 	 */
650 	if (ctrl->nand_version >= 0x0700)
651 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
652 
653 	if (ctrl->nand_version >= 0x0500)
654 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
655 
656 	if (ctrl->nand_version >= 0x0700)
657 		ctrl->features |= BRCMNAND_HAS_WP;
658 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
659 		ctrl->features |= BRCMNAND_HAS_WP;
660 
661 	return 0;
662 }
663 
664 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
665 {
666 	/* flash_dma register offsets */
667 	if (ctrl->nand_version >= 0x0703)
668 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
669 	else if (ctrl->nand_version == 0x0602)
670 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
671 	else
672 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
673 }
674 
675 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
676 		enum brcmnand_reg reg)
677 {
678 	u16 offs = ctrl->reg_offsets[reg];
679 
680 	if (offs)
681 		return nand_readreg(ctrl, offs);
682 	else
683 		return 0;
684 }
685 
686 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
687 				      enum brcmnand_reg reg, u32 val)
688 {
689 	u16 offs = ctrl->reg_offsets[reg];
690 
691 	if (offs)
692 		nand_writereg(ctrl, offs, val);
693 }
694 
695 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
696 				    enum brcmnand_reg reg, u32 mask, unsigned
697 				    int shift, u32 val)
698 {
699 	u32 tmp = brcmnand_read_reg(ctrl, reg);
700 
701 	tmp &= ~mask;
702 	tmp |= val << shift;
703 	brcmnand_write_reg(ctrl, reg, tmp);
704 }
705 
706 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
707 {
708 	return __raw_readl(ctrl->nand_fc + word * 4);
709 }
710 
711 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
712 				     int word, u32 val)
713 {
714 	__raw_writel(val, ctrl->nand_fc + word * 4);
715 }
716 
717 static inline void edu_writel(struct brcmnand_controller *ctrl,
718 			      enum edu_reg reg, u32 val)
719 {
720 	u16 offs = ctrl->edu_offsets[reg];
721 
722 	brcmnand_writel(val, ctrl->edu_base + offs);
723 }
724 
725 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
726 			    enum edu_reg reg)
727 {
728 	u16 offs = ctrl->edu_offsets[reg];
729 
730 	return brcmnand_readl(ctrl->edu_base + offs);
731 }
732 
733 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
734 {
735 
736 	/* Clear error addresses */
737 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
738 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
739 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
740 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
741 }
742 
743 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
744 {
745 	u64 err_addr;
746 
747 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
748 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
749 					     BRCMNAND_UNCORR_EXT_ADDR)
750 					     & 0xffff) << 32);
751 
752 	return err_addr;
753 }
754 
755 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
756 {
757 	u64 err_addr;
758 
759 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
760 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
761 					     BRCMNAND_CORR_EXT_ADDR)
762 					     & 0xffff) << 32);
763 
764 	return err_addr;
765 }
766 
767 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
768 {
769 	struct nand_chip *chip =  mtd_to_nand(mtd);
770 	struct brcmnand_host *host = nand_get_controller_data(chip);
771 	struct brcmnand_controller *ctrl = host->ctrl;
772 
773 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
774 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
775 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
776 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
777 			   lower_32_bits(addr));
778 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
779 }
780 
781 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
782 				     enum brcmnand_cs_reg reg)
783 {
784 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
785 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
786 	u8 cs_offs;
787 
788 	if (cs == 0 && ctrl->cs0_offsets)
789 		cs_offs = ctrl->cs0_offsets[reg];
790 	else
791 		cs_offs = ctrl->cs_offsets[reg];
792 
793 	if (cs && offs_cs1)
794 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
795 
796 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
797 }
798 
799 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
800 {
801 	if (ctrl->nand_version < 0x0600)
802 		return 1;
803 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
804 }
805 
806 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
807 {
808 	struct brcmnand_controller *ctrl = host->ctrl;
809 	unsigned int shift = 0, bits;
810 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
811 	int cs = host->cs;
812 
813 	if (ctrl->nand_version == 0x0702)
814 		bits = 7;
815 	else if (ctrl->nand_version >= 0x0600)
816 		bits = 6;
817 	else if (ctrl->nand_version >= 0x0500)
818 		bits = 5;
819 	else
820 		bits = 4;
821 
822 	if (ctrl->nand_version >= 0x0702) {
823 		if (cs >= 4)
824 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
825 		shift = (cs % 4) * bits;
826 	} else if (ctrl->nand_version >= 0x0600) {
827 		if (cs >= 5)
828 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
829 		shift = (cs % 5) * bits;
830 	}
831 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
832 }
833 
834 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
835 {
836 	if (ctrl->nand_version < 0x0602)
837 		return 24;
838 	return 0;
839 }
840 
841 /***********************************************************************
842  * NAND ACC CONTROL bitfield
843  *
844  * Some bits have remained constant throughout hardware revision, while
845  * others have shifted around.
846  ***********************************************************************/
847 
848 /* Constant for all versions (where supported) */
849 enum {
850 	/* See BRCMNAND_HAS_CACHE_MODE */
851 	ACC_CONTROL_CACHE_MODE				= BIT(22),
852 
853 	/* See BRCMNAND_HAS_PREFETCH */
854 	ACC_CONTROL_PREFETCH				= BIT(23),
855 
856 	ACC_CONTROL_PAGE_HIT				= BIT(24),
857 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
858 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
859 	ACC_CONTROL_RD_ERASED				= BIT(27),
860 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
861 	ACC_CONTROL_WR_ECC				= BIT(30),
862 	ACC_CONTROL_RD_ECC				= BIT(31),
863 };
864 
865 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
866 {
867 	if (ctrl->nand_version == 0x0702)
868 		return GENMASK(7, 0);
869 	else if (ctrl->nand_version >= 0x0600)
870 		return GENMASK(6, 0);
871 	else
872 		return GENMASK(5, 0);
873 }
874 
875 #define NAND_ACC_CONTROL_ECC_SHIFT	16
876 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT	13
877 
878 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
879 {
880 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
881 
882 	mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
883 
884 	/* v7.2 includes additional ECC levels */
885 	if (ctrl->nand_version >= 0x0702)
886 		mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
887 
888 	return mask;
889 }
890 
891 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
892 {
893 	struct brcmnand_controller *ctrl = host->ctrl;
894 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
895 	u32 acc_control = nand_readreg(ctrl, offs);
896 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
897 
898 	if (en) {
899 		acc_control |= ecc_flags; /* enable RD/WR ECC */
900 		acc_control |= host->hwcfg.ecc_level
901 			       << NAND_ACC_CONTROL_ECC_SHIFT;
902 	} else {
903 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
904 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
905 	}
906 
907 	nand_writereg(ctrl, offs, acc_control);
908 }
909 
910 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
911 {
912 	if (ctrl->nand_version >= 0x0702)
913 		return 9;
914 	else if (ctrl->nand_version >= 0x0600)
915 		return 7;
916 	else if (ctrl->nand_version >= 0x0500)
917 		return 6;
918 	else
919 		return -1;
920 }
921 
922 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
923 {
924 	struct brcmnand_controller *ctrl = host->ctrl;
925 	int shift = brcmnand_sector_1k_shift(ctrl);
926 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
927 						  BRCMNAND_CS_ACC_CONTROL);
928 
929 	if (shift < 0)
930 		return 0;
931 
932 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
933 }
934 
935 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
936 {
937 	struct brcmnand_controller *ctrl = host->ctrl;
938 	int shift = brcmnand_sector_1k_shift(ctrl);
939 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
940 						  BRCMNAND_CS_ACC_CONTROL);
941 	u32 tmp;
942 
943 	if (shift < 0)
944 		return;
945 
946 	tmp = nand_readreg(ctrl, acc_control_offs);
947 	tmp &= ~(1 << shift);
948 	tmp |= (!!val) << shift;
949 	nand_writereg(ctrl, acc_control_offs, tmp);
950 }
951 
952 /***********************************************************************
953  * CS_NAND_SELECT
954  ***********************************************************************/
955 
956 enum {
957 	CS_SELECT_NAND_WP			= BIT(29),
958 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
959 };
960 
961 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
962 				    u32 mask, u32 expected_val,
963 				    unsigned long timeout_ms)
964 {
965 	unsigned long limit;
966 	u32 val;
967 
968 	if (!timeout_ms)
969 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
970 
971 	limit = jiffies + msecs_to_jiffies(timeout_ms);
972 	do {
973 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
974 		if ((val & mask) == expected_val)
975 			return 0;
976 
977 		cpu_relax();
978 	} while (time_after(limit, jiffies));
979 
980 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
981 		 expected_val, val & mask);
982 
983 	return -ETIMEDOUT;
984 }
985 
986 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
987 {
988 	u32 val = en ? CS_SELECT_NAND_WP : 0;
989 
990 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
991 }
992 
993 /***********************************************************************
994  * Flash DMA
995  ***********************************************************************/
996 
997 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
998 {
999 	return ctrl->flash_dma_base;
1000 }
1001 
1002 static inline bool has_edu(struct brcmnand_controller *ctrl)
1003 {
1004 	return ctrl->edu_base;
1005 }
1006 
1007 static inline bool use_dma(struct brcmnand_controller *ctrl)
1008 {
1009 	return has_flash_dma(ctrl) || has_edu(ctrl);
1010 }
1011 
1012 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1013 {
1014 	if (ctrl->pio_poll_mode)
1015 		return;
1016 
1017 	if (has_flash_dma(ctrl)) {
1018 		ctrl->flash_dma_base = NULL;
1019 		disable_irq(ctrl->dma_irq);
1020 	}
1021 
1022 	disable_irq(ctrl->irq);
1023 	ctrl->pio_poll_mode = true;
1024 }
1025 
1026 static inline bool flash_dma_buf_ok(const void *buf)
1027 {
1028 	return buf && !is_vmalloc_addr(buf) &&
1029 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1030 }
1031 
1032 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1033 				    enum flash_dma_reg dma_reg, u32 val)
1034 {
1035 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1036 
1037 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1038 }
1039 
1040 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1041 				  enum flash_dma_reg dma_reg)
1042 {
1043 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1044 
1045 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1046 }
1047 
1048 /* Low-level operation types: command, address, write, or read */
1049 enum brcmnand_llop_type {
1050 	LL_OP_CMD,
1051 	LL_OP_ADDR,
1052 	LL_OP_WR,
1053 	LL_OP_RD,
1054 };
1055 
1056 /***********************************************************************
1057  * Internal support functions
1058  ***********************************************************************/
1059 
1060 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1061 				  struct brcmnand_cfg *cfg)
1062 {
1063 	if (ctrl->nand_version <= 0x0701)
1064 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1065 			cfg->ecc_level == 15;
1066 	else
1067 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1068 			cfg->ecc_level == 15) ||
1069 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1070 }
1071 
1072 /*
1073  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1074  * the layout/configuration.
1075  * Returns -ERRCODE on failure.
1076  */
1077 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1078 					  struct mtd_oob_region *oobregion)
1079 {
1080 	struct nand_chip *chip = mtd_to_nand(mtd);
1081 	struct brcmnand_host *host = nand_get_controller_data(chip);
1082 	struct brcmnand_cfg *cfg = &host->hwcfg;
1083 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1084 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1085 
1086 	if (section >= sectors)
1087 		return -ERANGE;
1088 
1089 	oobregion->offset = (section * sas) + 6;
1090 	oobregion->length = 3;
1091 
1092 	return 0;
1093 }
1094 
1095 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1096 					   struct mtd_oob_region *oobregion)
1097 {
1098 	struct nand_chip *chip = mtd_to_nand(mtd);
1099 	struct brcmnand_host *host = nand_get_controller_data(chip);
1100 	struct brcmnand_cfg *cfg = &host->hwcfg;
1101 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1102 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1103 	u32 next;
1104 
1105 	if (section > sectors)
1106 		return -ERANGE;
1107 
1108 	next = (section * sas);
1109 	if (section < sectors)
1110 		next += 6;
1111 
1112 	if (section) {
1113 		oobregion->offset = ((section - 1) * sas) + 9;
1114 	} else {
1115 		if (cfg->page_size > 512) {
1116 			/* Large page NAND uses first 2 bytes for BBI */
1117 			oobregion->offset = 2;
1118 		} else {
1119 			/* Small page NAND uses last byte before ECC for BBI */
1120 			oobregion->offset = 0;
1121 			next--;
1122 		}
1123 	}
1124 
1125 	oobregion->length = next - oobregion->offset;
1126 
1127 	return 0;
1128 }
1129 
1130 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1131 	.ecc = brcmnand_hamming_ooblayout_ecc,
1132 	.free = brcmnand_hamming_ooblayout_free,
1133 };
1134 
1135 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1136 				      struct mtd_oob_region *oobregion)
1137 {
1138 	struct nand_chip *chip = mtd_to_nand(mtd);
1139 	struct brcmnand_host *host = nand_get_controller_data(chip);
1140 	struct brcmnand_cfg *cfg = &host->hwcfg;
1141 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1142 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1143 
1144 	if (section >= sectors)
1145 		return -ERANGE;
1146 
1147 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1148 	oobregion->length = chip->ecc.bytes;
1149 
1150 	return 0;
1151 }
1152 
1153 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1154 					  struct mtd_oob_region *oobregion)
1155 {
1156 	struct nand_chip *chip = mtd_to_nand(mtd);
1157 	struct brcmnand_host *host = nand_get_controller_data(chip);
1158 	struct brcmnand_cfg *cfg = &host->hwcfg;
1159 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1160 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1161 
1162 	if (section >= sectors)
1163 		return -ERANGE;
1164 
1165 	if (sas <= chip->ecc.bytes)
1166 		return 0;
1167 
1168 	oobregion->offset = section * sas;
1169 	oobregion->length = sas - chip->ecc.bytes;
1170 
1171 	if (!section) {
1172 		oobregion->offset++;
1173 		oobregion->length--;
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1180 					  struct mtd_oob_region *oobregion)
1181 {
1182 	struct nand_chip *chip = mtd_to_nand(mtd);
1183 	struct brcmnand_host *host = nand_get_controller_data(chip);
1184 	struct brcmnand_cfg *cfg = &host->hwcfg;
1185 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1186 
1187 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1188 	    (section && sas - chip->ecc.bytes == 6))
1189 		return -ERANGE;
1190 
1191 	if (!section) {
1192 		oobregion->offset = 0;
1193 		oobregion->length = 5;
1194 	} else {
1195 		oobregion->offset = 6;
1196 		oobregion->length = sas - chip->ecc.bytes - 6;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1203 	.ecc = brcmnand_bch_ooblayout_ecc,
1204 	.free = brcmnand_bch_ooblayout_free_lp,
1205 };
1206 
1207 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1208 	.ecc = brcmnand_bch_ooblayout_ecc,
1209 	.free = brcmnand_bch_ooblayout_free_sp,
1210 };
1211 
1212 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1213 {
1214 	struct brcmnand_cfg *p = &host->hwcfg;
1215 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1216 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1217 	unsigned int ecc_level = p->ecc_level;
1218 	int sas = p->spare_area_size << p->sector_size_1k;
1219 	int sectors = p->page_size / (512 << p->sector_size_1k);
1220 
1221 	if (p->sector_size_1k)
1222 		ecc_level <<= 1;
1223 
1224 	if (is_hamming_ecc(host->ctrl, p)) {
1225 		ecc->bytes = 3 * sectors;
1226 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1227 		return 0;
1228 	}
1229 
1230 	/*
1231 	 * CONTROLLER_VERSION:
1232 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1233 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1234 	 * But we will just be conservative.
1235 	 */
1236 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1237 	if (p->page_size == 512)
1238 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1239 	else
1240 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1241 
1242 	if (ecc->bytes >= sas) {
1243 		dev_err(&host->pdev->dev,
1244 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1245 			ecc->bytes, sas);
1246 		return -EINVAL;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1253 {
1254 	struct nand_chip *chip = mtd_to_nand(mtd);
1255 	struct brcmnand_host *host = nand_get_controller_data(chip);
1256 	struct brcmnand_controller *ctrl = host->ctrl;
1257 
1258 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1259 		static int old_wp = -1;
1260 		int ret;
1261 
1262 		if (old_wp != wp) {
1263 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1264 			old_wp = wp;
1265 		}
1266 
1267 		/*
1268 		 * make sure ctrl/flash ready before and after
1269 		 * changing state of #WP pin
1270 		 */
1271 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1272 					       NAND_STATUS_READY,
1273 					       NAND_CTRL_RDY |
1274 					       NAND_STATUS_READY, 0);
1275 		if (ret)
1276 			return;
1277 
1278 		brcmnand_set_wp(ctrl, wp);
1279 		nand_status_op(chip, NULL);
1280 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1281 		ret = bcmnand_ctrl_poll_status(ctrl,
1282 					       NAND_CTRL_RDY |
1283 					       NAND_STATUS_READY |
1284 					       NAND_STATUS_WP,
1285 					       NAND_CTRL_RDY |
1286 					       NAND_STATUS_READY |
1287 					       (wp ? 0 : NAND_STATUS_WP), 0);
1288 
1289 		if (ret)
1290 			dev_err_ratelimited(&host->pdev->dev,
1291 					    "nand #WP expected %s\n",
1292 					    wp ? "on" : "off");
1293 	}
1294 }
1295 
1296 /* Helper functions for reading and writing OOB registers */
1297 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1298 {
1299 	u16 offset0, offset10, reg_offs;
1300 
1301 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1302 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1303 
1304 	if (offs >= ctrl->max_oob)
1305 		return 0x77;
1306 
1307 	if (offs >= 16 && offset10)
1308 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1309 	else
1310 		reg_offs = offset0 + (offs & ~0x03);
1311 
1312 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1313 }
1314 
1315 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1316 				 u32 data)
1317 {
1318 	u16 offset0, offset10, reg_offs;
1319 
1320 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1321 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1322 
1323 	if (offs >= ctrl->max_oob)
1324 		return;
1325 
1326 	if (offs >= 16 && offset10)
1327 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1328 	else
1329 		reg_offs = offset0 + (offs & ~0x03);
1330 
1331 	nand_writereg(ctrl, reg_offs, data);
1332 }
1333 
1334 /*
1335  * read_oob_from_regs - read data from OOB registers
1336  * @ctrl: NAND controller
1337  * @i: sub-page sector index
1338  * @oob: buffer to read to
1339  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1340  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1341  */
1342 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1343 			      int sas, int sector_1k)
1344 {
1345 	int tbytes = sas << sector_1k;
1346 	int j;
1347 
1348 	/* Adjust OOB values for 1K sector size */
1349 	if (sector_1k && (i & 0x01))
1350 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1351 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1352 
1353 	for (j = 0; j < tbytes; j++)
1354 		oob[j] = oob_reg_read(ctrl, j);
1355 	return tbytes;
1356 }
1357 
1358 /*
1359  * write_oob_to_regs - write data to OOB registers
1360  * @i: sub-page sector index
1361  * @oob: buffer to write from
1362  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1363  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1364  */
1365 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1366 			     const u8 *oob, int sas, int sector_1k)
1367 {
1368 	int tbytes = sas << sector_1k;
1369 	int j;
1370 
1371 	/* Adjust OOB values for 1K sector size */
1372 	if (sector_1k && (i & 0x01))
1373 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1374 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1375 
1376 	for (j = 0; j < tbytes; j += 4)
1377 		oob_reg_write(ctrl, j,
1378 				(oob[j + 0] << 24) |
1379 				(oob[j + 1] << 16) |
1380 				(oob[j + 2] <<  8) |
1381 				(oob[j + 3] <<  0));
1382 	return tbytes;
1383 }
1384 
1385 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1386 {
1387 	/* initialize edu */
1388 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1389 	edu_readl(ctrl, EDU_ERR_STATUS);
1390 	edu_writel(ctrl, EDU_DONE, 0);
1391 	edu_writel(ctrl, EDU_DONE, 0);
1392 	edu_writel(ctrl, EDU_DONE, 0);
1393 	edu_writel(ctrl, EDU_DONE, 0);
1394 	edu_readl(ctrl, EDU_DONE);
1395 }
1396 
1397 /* edu irq */
1398 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1399 {
1400 	struct brcmnand_controller *ctrl = data;
1401 
1402 	if (ctrl->edu_count) {
1403 		ctrl->edu_count--;
1404 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1405 			udelay(1);
1406 		edu_writel(ctrl, EDU_DONE, 0);
1407 		edu_readl(ctrl, EDU_DONE);
1408 	}
1409 
1410 	if (ctrl->edu_count) {
1411 		ctrl->edu_dram_addr += FC_BYTES;
1412 		ctrl->edu_ext_addr += FC_BYTES;
1413 
1414 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1415 		edu_readl(ctrl, EDU_DRAM_ADDR);
1416 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1417 		edu_readl(ctrl, EDU_EXT_ADDR);
1418 
1419 		mb(); /* flush previous writes */
1420 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1421 		edu_readl(ctrl, EDU_CMD);
1422 
1423 		return IRQ_HANDLED;
1424 	}
1425 
1426 	complete(&ctrl->edu_done);
1427 
1428 	return IRQ_HANDLED;
1429 }
1430 
1431 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1432 {
1433 	struct brcmnand_controller *ctrl = data;
1434 
1435 	/* Discard all NAND_CTLRDY interrupts during DMA */
1436 	if (ctrl->dma_pending)
1437 		return IRQ_HANDLED;
1438 
1439 	/* check if you need to piggy back on the ctrlrdy irq */
1440 	if (ctrl->edu_pending) {
1441 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1442 	/* Discard interrupts while using dedicated edu irq */
1443 			return IRQ_HANDLED;
1444 
1445 	/* no registered edu irq, call handler */
1446 		return brcmnand_edu_irq(irq, data);
1447 	}
1448 
1449 	complete(&ctrl->done);
1450 	return IRQ_HANDLED;
1451 }
1452 
1453 /* Handle SoC-specific interrupt hardware */
1454 static irqreturn_t brcmnand_irq(int irq, void *data)
1455 {
1456 	struct brcmnand_controller *ctrl = data;
1457 
1458 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1459 		return brcmnand_ctlrdy_irq(irq, data);
1460 
1461 	return IRQ_NONE;
1462 }
1463 
1464 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1465 {
1466 	struct brcmnand_controller *ctrl = data;
1467 
1468 	complete(&ctrl->dma_done);
1469 
1470 	return IRQ_HANDLED;
1471 }
1472 
1473 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1474 {
1475 	struct brcmnand_controller *ctrl = host->ctrl;
1476 	int ret;
1477 	u64 cmd_addr;
1478 
1479 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1480 
1481 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1482 
1483 	BUG_ON(ctrl->cmd_pending != 0);
1484 	ctrl->cmd_pending = cmd;
1485 
1486 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1487 	WARN_ON(ret);
1488 
1489 	mb(); /* flush previous writes */
1490 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1491 			   cmd << brcmnand_cmd_shift(ctrl));
1492 }
1493 
1494 /***********************************************************************
1495  * NAND MTD API: read/program/erase
1496  ***********************************************************************/
1497 
1498 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1499 			      unsigned int ctrl)
1500 {
1501 	/* intentionally left blank */
1502 }
1503 
1504 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1505 {
1506 	struct brcmnand_host *host = nand_get_controller_data(chip);
1507 	struct brcmnand_controller *ctrl = host->ctrl;
1508 	struct mtd_info *mtd = nand_to_mtd(chip);
1509 	bool err = false;
1510 	int sts;
1511 
1512 	if (mtd->oops_panic_write) {
1513 		/* switch to interrupt polling and PIO mode */
1514 		disable_ctrl_irqs(ctrl);
1515 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1516 					       NAND_CTRL_RDY, 0);
1517 		err = (sts < 0) ? true : false;
1518 	} else {
1519 		unsigned long timeo = msecs_to_jiffies(
1520 						NAND_POLL_STATUS_TIMEOUT_MS);
1521 		/* wait for completion interrupt */
1522 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1523 		err = (sts <= 0) ? true : false;
1524 	}
1525 
1526 	return err;
1527 }
1528 
1529 static int brcmnand_waitfunc(struct nand_chip *chip)
1530 {
1531 	struct brcmnand_host *host = nand_get_controller_data(chip);
1532 	struct brcmnand_controller *ctrl = host->ctrl;
1533 	bool err = false;
1534 
1535 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1536 	if (ctrl->cmd_pending)
1537 		err = brcmstb_nand_wait_for_completion(chip);
1538 
1539 	if (err) {
1540 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1541 					>> brcmnand_cmd_shift(ctrl);
1542 
1543 		dev_err_ratelimited(ctrl->dev,
1544 			"timeout waiting for command %#02x\n", cmd);
1545 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1546 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1547 	}
1548 	ctrl->cmd_pending = 0;
1549 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1550 				 INTFC_FLASH_STATUS;
1551 }
1552 
1553 enum {
1554 	LLOP_RE				= BIT(16),
1555 	LLOP_WE				= BIT(17),
1556 	LLOP_ALE			= BIT(18),
1557 	LLOP_CLE			= BIT(19),
1558 	LLOP_RETURN_IDLE		= BIT(31),
1559 
1560 	LLOP_DATA_MASK			= GENMASK(15, 0),
1561 };
1562 
1563 static int brcmnand_low_level_op(struct brcmnand_host *host,
1564 				 enum brcmnand_llop_type type, u32 data,
1565 				 bool last_op)
1566 {
1567 	struct nand_chip *chip = &host->chip;
1568 	struct brcmnand_controller *ctrl = host->ctrl;
1569 	u32 tmp;
1570 
1571 	tmp = data & LLOP_DATA_MASK;
1572 	switch (type) {
1573 	case LL_OP_CMD:
1574 		tmp |= LLOP_WE | LLOP_CLE;
1575 		break;
1576 	case LL_OP_ADDR:
1577 		/* WE | ALE */
1578 		tmp |= LLOP_WE | LLOP_ALE;
1579 		break;
1580 	case LL_OP_WR:
1581 		/* WE */
1582 		tmp |= LLOP_WE;
1583 		break;
1584 	case LL_OP_RD:
1585 		/* RE */
1586 		tmp |= LLOP_RE;
1587 		break;
1588 	}
1589 	if (last_op)
1590 		/* RETURN_IDLE */
1591 		tmp |= LLOP_RETURN_IDLE;
1592 
1593 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1594 
1595 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1596 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1597 
1598 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1599 	return brcmnand_waitfunc(chip);
1600 }
1601 
1602 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1603 			     int column, int page_addr)
1604 {
1605 	struct mtd_info *mtd = nand_to_mtd(chip);
1606 	struct brcmnand_host *host = nand_get_controller_data(chip);
1607 	struct brcmnand_controller *ctrl = host->ctrl;
1608 	u64 addr = (u64)page_addr << chip->page_shift;
1609 	int native_cmd = 0;
1610 
1611 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1612 			command == NAND_CMD_RNDOUT)
1613 		addr = (u64)column;
1614 	/* Avoid propagating a negative, don't-care address */
1615 	else if (page_addr < 0)
1616 		addr = 0;
1617 
1618 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1619 		(unsigned long long)addr);
1620 
1621 	host->last_cmd = command;
1622 	host->last_byte = 0;
1623 	host->last_addr = addr;
1624 
1625 	switch (command) {
1626 	case NAND_CMD_RESET:
1627 		native_cmd = CMD_FLASH_RESET;
1628 		break;
1629 	case NAND_CMD_STATUS:
1630 		native_cmd = CMD_STATUS_READ;
1631 		break;
1632 	case NAND_CMD_READID:
1633 		native_cmd = CMD_DEVICE_ID_READ;
1634 		break;
1635 	case NAND_CMD_READOOB:
1636 		native_cmd = CMD_SPARE_AREA_READ;
1637 		break;
1638 	case NAND_CMD_ERASE1:
1639 		native_cmd = CMD_BLOCK_ERASE;
1640 		brcmnand_wp(mtd, 0);
1641 		break;
1642 	case NAND_CMD_PARAM:
1643 		native_cmd = CMD_PARAMETER_READ;
1644 		break;
1645 	case NAND_CMD_SET_FEATURES:
1646 	case NAND_CMD_GET_FEATURES:
1647 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1648 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1649 		break;
1650 	case NAND_CMD_RNDOUT:
1651 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1652 		addr &= ~((u64)(FC_BYTES - 1));
1653 		/*
1654 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1655 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1656 		 */
1657 		if (brcmnand_get_sector_size_1k(host)) {
1658 			host->hwcfg.sector_size_1k =
1659 				brcmnand_get_sector_size_1k(host);
1660 			brcmnand_set_sector_size_1k(host, 0);
1661 		}
1662 		break;
1663 	}
1664 
1665 	if (!native_cmd)
1666 		return;
1667 
1668 	brcmnand_set_cmd_addr(mtd, addr);
1669 	brcmnand_send_cmd(host, native_cmd);
1670 	brcmnand_waitfunc(chip);
1671 
1672 	if (native_cmd == CMD_PARAMETER_READ ||
1673 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1674 		/* Copy flash cache word-wise */
1675 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1676 		int i;
1677 
1678 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1679 
1680 		/*
1681 		 * Must cache the FLASH_CACHE now, since changes in
1682 		 * SECTOR_SIZE_1K may invalidate it
1683 		 */
1684 		for (i = 0; i < FC_WORDS; i++)
1685 			/*
1686 			 * Flash cache is big endian for parameter pages, at
1687 			 * least on STB SoCs
1688 			 */
1689 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1690 
1691 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1692 
1693 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1694 		if (host->hwcfg.sector_size_1k)
1695 			brcmnand_set_sector_size_1k(host,
1696 						    host->hwcfg.sector_size_1k);
1697 	}
1698 
1699 	/* Re-enable protection is necessary only after erase */
1700 	if (command == NAND_CMD_ERASE1)
1701 		brcmnand_wp(mtd, 1);
1702 }
1703 
1704 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1705 {
1706 	struct brcmnand_host *host = nand_get_controller_data(chip);
1707 	struct brcmnand_controller *ctrl = host->ctrl;
1708 	uint8_t ret = 0;
1709 	int addr, offs;
1710 
1711 	switch (host->last_cmd) {
1712 	case NAND_CMD_READID:
1713 		if (host->last_byte < 4)
1714 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1715 				(24 - (host->last_byte << 3));
1716 		else if (host->last_byte < 8)
1717 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1718 				(56 - (host->last_byte << 3));
1719 		break;
1720 
1721 	case NAND_CMD_READOOB:
1722 		ret = oob_reg_read(ctrl, host->last_byte);
1723 		break;
1724 
1725 	case NAND_CMD_STATUS:
1726 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1727 					INTFC_FLASH_STATUS;
1728 		if (wp_on) /* hide WP status */
1729 			ret |= NAND_STATUS_WP;
1730 		break;
1731 
1732 	case NAND_CMD_PARAM:
1733 	case NAND_CMD_RNDOUT:
1734 		addr = host->last_addr + host->last_byte;
1735 		offs = addr & (FC_BYTES - 1);
1736 
1737 		/* At FC_BYTES boundary, switch to next column */
1738 		if (host->last_byte > 0 && offs == 0)
1739 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1740 
1741 		ret = ctrl->flash_cache[offs];
1742 		break;
1743 	case NAND_CMD_GET_FEATURES:
1744 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1745 			ret = 0;
1746 		} else {
1747 			bool last = host->last_byte ==
1748 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1749 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1750 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1751 		}
1752 	}
1753 
1754 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1755 	host->last_byte++;
1756 
1757 	return ret;
1758 }
1759 
1760 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1761 {
1762 	int i;
1763 
1764 	for (i = 0; i < len; i++, buf++)
1765 		*buf = brcmnand_read_byte(chip);
1766 }
1767 
1768 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1769 			       int len)
1770 {
1771 	int i;
1772 	struct brcmnand_host *host = nand_get_controller_data(chip);
1773 
1774 	switch (host->last_cmd) {
1775 	case NAND_CMD_SET_FEATURES:
1776 		for (i = 0; i < len; i++)
1777 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1778 						  (i + 1) == len);
1779 		break;
1780 	default:
1781 		BUG();
1782 		break;
1783 	}
1784 }
1785 
1786 /**
1787  *  Kick EDU engine
1788  */
1789 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1790 			      u32 len, u8 cmd)
1791 {
1792 	struct brcmnand_controller *ctrl = host->ctrl;
1793 	unsigned long timeo = msecs_to_jiffies(200);
1794 	int ret = 0;
1795 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1796 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1797 	unsigned int trans = len >> FC_SHIFT;
1798 	dma_addr_t pa;
1799 
1800 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1801 	if (dma_mapping_error(ctrl->dev, pa)) {
1802 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1803 		return -ENOMEM;
1804 	}
1805 
1806 	ctrl->edu_pending = true;
1807 	ctrl->edu_dram_addr = pa;
1808 	ctrl->edu_ext_addr = addr;
1809 	ctrl->edu_cmd = edu_cmd;
1810 	ctrl->edu_count = trans;
1811 
1812 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1813 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1814 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1815 	edu_readl(ctrl, EDU_EXT_ADDR);
1816 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1817 	edu_readl(ctrl, EDU_LENGTH);
1818 
1819 	/* Start edu engine */
1820 	mb(); /* flush previous writes */
1821 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1822 	edu_readl(ctrl, EDU_CMD);
1823 
1824 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1825 		dev_err(ctrl->dev,
1826 			"timeout waiting for EDU; status %#x, error status %#x\n",
1827 			edu_readl(ctrl, EDU_STATUS),
1828 			edu_readl(ctrl, EDU_ERR_STATUS));
1829 	}
1830 
1831 	dma_unmap_single(ctrl->dev, pa, len, dir);
1832 
1833 	/* for program page check NAND status */
1834 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1835 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1836 	    edu_cmd == EDU_CMD_WRITE) {
1837 		dev_info(ctrl->dev, "program failed at %llx\n",
1838 			 (unsigned long long)addr);
1839 		ret = -EIO;
1840 	}
1841 
1842 	/* Make sure the EDU status is clean */
1843 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1844 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1845 			 edu_readl(ctrl, EDU_STATUS));
1846 
1847 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1848 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1849 			 (unsigned long long)addr);
1850 		ret = -EIO;
1851 	}
1852 
1853 	ctrl->edu_pending = false;
1854 	brcmnand_edu_init(ctrl);
1855 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1856 	edu_readl(ctrl, EDU_STOP);
1857 
1858 	return ret;
1859 }
1860 
1861 /**
1862  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
1863  * following ahead of time:
1864  *  - Is this descriptor the beginning or end of a linked list?
1865  *  - What is the (DMA) address of the next descriptor in the linked list?
1866  */
1867 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
1868 				  struct brcm_nand_dma_desc *desc, u64 addr,
1869 				  dma_addr_t buf, u32 len, u8 dma_cmd,
1870 				  bool begin, bool end,
1871 				  dma_addr_t next_desc)
1872 {
1873 	memset(desc, 0, sizeof(*desc));
1874 	/* Descriptors are written in native byte order (wordwise) */
1875 	desc->next_desc = lower_32_bits(next_desc);
1876 	desc->next_desc_ext = upper_32_bits(next_desc);
1877 	desc->cmd_irq = (dma_cmd << 24) |
1878 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
1879 		(!!begin) | ((!!end) << 1); /* head, tail */
1880 #ifdef CONFIG_CPU_BIG_ENDIAN
1881 	desc->cmd_irq |= 0x01 << 12;
1882 #endif
1883 	desc->dram_addr = lower_32_bits(buf);
1884 	desc->dram_addr_ext = upper_32_bits(buf);
1885 	desc->tfr_len = len;
1886 	desc->total_len = len;
1887 	desc->flash_addr = lower_32_bits(addr);
1888 	desc->flash_addr_ext = upper_32_bits(addr);
1889 	desc->cs = host->cs;
1890 	desc->status_valid = 0x01;
1891 	return 0;
1892 }
1893 
1894 /**
1895  * Kick the FLASH_DMA engine, with a given DMA descriptor
1896  */
1897 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
1898 {
1899 	struct brcmnand_controller *ctrl = host->ctrl;
1900 	unsigned long timeo = msecs_to_jiffies(100);
1901 
1902 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
1903 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
1904 	if (ctrl->nand_version > 0x0602) {
1905 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
1906 				 upper_32_bits(desc));
1907 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
1908 	}
1909 
1910 	/* Start FLASH_DMA engine */
1911 	ctrl->dma_pending = true;
1912 	mb(); /* flush previous writes */
1913 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
1914 
1915 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
1916 		dev_err(ctrl->dev,
1917 				"timeout waiting for DMA; status %#x, error status %#x\n",
1918 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
1919 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
1920 	}
1921 	ctrl->dma_pending = false;
1922 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
1923 }
1924 
1925 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1926 			      u32 len, u8 dma_cmd)
1927 {
1928 	struct brcmnand_controller *ctrl = host->ctrl;
1929 	dma_addr_t buf_pa;
1930 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1931 
1932 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
1933 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
1934 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
1935 		return -ENOMEM;
1936 	}
1937 
1938 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
1939 				   dma_cmd, true, true, 0);
1940 
1941 	brcmnand_dma_run(host, ctrl->dma_pa);
1942 
1943 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
1944 
1945 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
1946 		return -EBADMSG;
1947 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
1948 		return -EUCLEAN;
1949 
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Assumes proper CS is already set
1955  */
1956 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
1957 				u64 addr, unsigned int trans, u32 *buf,
1958 				u8 *oob, u64 *err_addr)
1959 {
1960 	struct brcmnand_host *host = nand_get_controller_data(chip);
1961 	struct brcmnand_controller *ctrl = host->ctrl;
1962 	int i, j, ret = 0;
1963 
1964 	brcmnand_clear_ecc_addr(ctrl);
1965 
1966 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
1967 		brcmnand_set_cmd_addr(mtd, addr);
1968 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
1969 		brcmnand_send_cmd(host, CMD_PAGE_READ);
1970 		brcmnand_waitfunc(chip);
1971 
1972 		if (likely(buf)) {
1973 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
1974 
1975 			for (j = 0; j < FC_WORDS; j++, buf++)
1976 				*buf = brcmnand_read_fc(ctrl, j);
1977 
1978 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
1979 		}
1980 
1981 		if (oob)
1982 			oob += read_oob_from_regs(ctrl, i, oob,
1983 					mtd->oobsize / trans,
1984 					host->hwcfg.sector_size_1k);
1985 
1986 		if (!ret) {
1987 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1988 
1989 			if (*err_addr)
1990 				ret = -EBADMSG;
1991 		}
1992 
1993 		if (!ret) {
1994 			*err_addr = brcmnand_get_correcc_addr(ctrl);
1995 
1996 			if (*err_addr)
1997 				ret = -EUCLEAN;
1998 		}
1999 	}
2000 
2001 	return ret;
2002 }
2003 
2004 /*
2005  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2006  * error
2007  *
2008  * Because the HW ECC signals an ECC error if an erase paged has even a single
2009  * bitflip, we must check each ECC error to see if it is actually an erased
2010  * page with bitflips, not a truly corrupted page.
2011  *
2012  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2013  * buf will contain raw data.
2014  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2015  * bitflips-per-ECC-sector to the caller.
2016  *
2017  */
2018 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2019 		  struct nand_chip *chip, void *buf, u64 addr)
2020 {
2021 	struct mtd_oob_region ecc;
2022 	int i;
2023 	int bitflips = 0;
2024 	int page = addr >> chip->page_shift;
2025 	int ret;
2026 	void *ecc_bytes;
2027 	void *ecc_chunk;
2028 
2029 	if (!buf)
2030 		buf = nand_get_data_buf(chip);
2031 
2032 	/* read without ecc for verification */
2033 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2034 	if (ret)
2035 		return ret;
2036 
2037 	for (i = 0; i < chip->ecc.steps; i++) {
2038 		ecc_chunk = buf + chip->ecc.size * i;
2039 
2040 		mtd_ooblayout_ecc(mtd, i, &ecc);
2041 		ecc_bytes = chip->oob_poi + ecc.offset;
2042 
2043 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2044 						  ecc_bytes, ecc.length,
2045 						  NULL, 0,
2046 						  chip->ecc.strength);
2047 		if (ret < 0)
2048 			return ret;
2049 
2050 		bitflips = max(bitflips, ret);
2051 	}
2052 
2053 	return bitflips;
2054 }
2055 
2056 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2057 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2058 {
2059 	struct brcmnand_host *host = nand_get_controller_data(chip);
2060 	struct brcmnand_controller *ctrl = host->ctrl;
2061 	u64 err_addr = 0;
2062 	int err;
2063 	bool retry = true;
2064 
2065 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2066 
2067 try_dmaread:
2068 	brcmnand_clear_ecc_addr(ctrl);
2069 
2070 	if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2071 		err = ctrl->dma_trans(host, addr, buf,
2072 				      trans * FC_BYTES,
2073 				      CMD_PAGE_READ);
2074 
2075 		if (err) {
2076 			if (mtd_is_bitflip_or_eccerr(err))
2077 				err_addr = addr;
2078 			else
2079 				return -EIO;
2080 		}
2081 	} else {
2082 		if (oob)
2083 			memset(oob, 0x99, mtd->oobsize);
2084 
2085 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2086 					       oob, &err_addr);
2087 	}
2088 
2089 	if (mtd_is_eccerr(err)) {
2090 		/*
2091 		 * On controller version and 7.0, 7.1 , DMA read after a
2092 		 * prior PIO read that reported uncorrectable error,
2093 		 * the DMA engine captures this error following DMA read
2094 		 * cleared only on subsequent DMA read, so just retry once
2095 		 * to clear a possible false error reported for current DMA
2096 		 * read
2097 		 */
2098 		if ((ctrl->nand_version == 0x0700) ||
2099 		    (ctrl->nand_version == 0x0701)) {
2100 			if (retry) {
2101 				retry = false;
2102 				goto try_dmaread;
2103 			}
2104 		}
2105 
2106 		/*
2107 		 * Controller version 7.2 has hw encoder to detect erased page
2108 		 * bitflips, apply sw verification for older controllers only
2109 		 */
2110 		if (ctrl->nand_version < 0x0702) {
2111 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2112 							      addr);
2113 			/* erased page bitflips corrected */
2114 			if (err >= 0)
2115 				return err;
2116 		}
2117 
2118 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2119 			(unsigned long long)err_addr);
2120 		mtd->ecc_stats.failed++;
2121 		/* NAND layer expects zero on ECC errors */
2122 		return 0;
2123 	}
2124 
2125 	if (mtd_is_bitflip(err)) {
2126 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2127 
2128 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2129 			(unsigned long long)err_addr);
2130 		mtd->ecc_stats.corrected += corrected;
2131 		/* Always exceed the software-imposed threshold */
2132 		return max(mtd->bitflip_threshold, corrected);
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2139 			      int oob_required, int page)
2140 {
2141 	struct mtd_info *mtd = nand_to_mtd(chip);
2142 	struct brcmnand_host *host = nand_get_controller_data(chip);
2143 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2144 
2145 	nand_read_page_op(chip, page, 0, NULL, 0);
2146 
2147 	return brcmnand_read(mtd, chip, host->last_addr,
2148 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2149 }
2150 
2151 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2152 				  int oob_required, int page)
2153 {
2154 	struct brcmnand_host *host = nand_get_controller_data(chip);
2155 	struct mtd_info *mtd = nand_to_mtd(chip);
2156 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2157 	int ret;
2158 
2159 	nand_read_page_op(chip, page, 0, NULL, 0);
2160 
2161 	brcmnand_set_ecc_enabled(host, 0);
2162 	ret = brcmnand_read(mtd, chip, host->last_addr,
2163 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2164 	brcmnand_set_ecc_enabled(host, 1);
2165 	return ret;
2166 }
2167 
2168 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2169 {
2170 	struct mtd_info *mtd = nand_to_mtd(chip);
2171 
2172 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2173 			mtd->writesize >> FC_SHIFT,
2174 			NULL, (u8 *)chip->oob_poi);
2175 }
2176 
2177 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2178 {
2179 	struct mtd_info *mtd = nand_to_mtd(chip);
2180 	struct brcmnand_host *host = nand_get_controller_data(chip);
2181 
2182 	brcmnand_set_ecc_enabled(host, 0);
2183 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2184 		mtd->writesize >> FC_SHIFT,
2185 		NULL, (u8 *)chip->oob_poi);
2186 	brcmnand_set_ecc_enabled(host, 1);
2187 	return 0;
2188 }
2189 
2190 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2191 			  u64 addr, const u32 *buf, u8 *oob)
2192 {
2193 	struct brcmnand_host *host = nand_get_controller_data(chip);
2194 	struct brcmnand_controller *ctrl = host->ctrl;
2195 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2196 	int status, ret = 0;
2197 
2198 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2199 
2200 	if (unlikely((unsigned long)buf & 0x03)) {
2201 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2202 		buf = (u32 *)((unsigned long)buf & ~0x03);
2203 	}
2204 
2205 	brcmnand_wp(mtd, 0);
2206 
2207 	for (i = 0; i < ctrl->max_oob; i += 4)
2208 		oob_reg_write(ctrl, i, 0xffffffff);
2209 
2210 	if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2211 		if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2212 				    CMD_PROGRAM_PAGE))
2213 
2214 			ret = -EIO;
2215 
2216 		goto out;
2217 	}
2218 
2219 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2220 		/* full address MUST be set before populating FC */
2221 		brcmnand_set_cmd_addr(mtd, addr);
2222 
2223 		if (buf) {
2224 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2225 
2226 			for (j = 0; j < FC_WORDS; j++, buf++)
2227 				brcmnand_write_fc(ctrl, j, *buf);
2228 
2229 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2230 		} else if (oob) {
2231 			for (j = 0; j < FC_WORDS; j++)
2232 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2233 		}
2234 
2235 		if (oob) {
2236 			oob += write_oob_to_regs(ctrl, i, oob,
2237 					mtd->oobsize / trans,
2238 					host->hwcfg.sector_size_1k);
2239 		}
2240 
2241 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2242 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2243 		status = brcmnand_waitfunc(chip);
2244 
2245 		if (status & NAND_STATUS_FAIL) {
2246 			dev_info(ctrl->dev, "program failed at %llx\n",
2247 				(unsigned long long)addr);
2248 			ret = -EIO;
2249 			goto out;
2250 		}
2251 	}
2252 out:
2253 	brcmnand_wp(mtd, 1);
2254 	return ret;
2255 }
2256 
2257 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2258 			       int oob_required, int page)
2259 {
2260 	struct mtd_info *mtd = nand_to_mtd(chip);
2261 	struct brcmnand_host *host = nand_get_controller_data(chip);
2262 	void *oob = oob_required ? chip->oob_poi : NULL;
2263 
2264 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2265 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2266 
2267 	return nand_prog_page_end_op(chip);
2268 }
2269 
2270 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2271 				   int oob_required, int page)
2272 {
2273 	struct mtd_info *mtd = nand_to_mtd(chip);
2274 	struct brcmnand_host *host = nand_get_controller_data(chip);
2275 	void *oob = oob_required ? chip->oob_poi : NULL;
2276 
2277 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2278 	brcmnand_set_ecc_enabled(host, 0);
2279 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2280 	brcmnand_set_ecc_enabled(host, 1);
2281 
2282 	return nand_prog_page_end_op(chip);
2283 }
2284 
2285 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2286 {
2287 	return brcmnand_write(nand_to_mtd(chip), chip,
2288 			      (u64)page << chip->page_shift, NULL,
2289 			      chip->oob_poi);
2290 }
2291 
2292 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2293 {
2294 	struct mtd_info *mtd = nand_to_mtd(chip);
2295 	struct brcmnand_host *host = nand_get_controller_data(chip);
2296 	int ret;
2297 
2298 	brcmnand_set_ecc_enabled(host, 0);
2299 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2300 				 (u8 *)chip->oob_poi);
2301 	brcmnand_set_ecc_enabled(host, 1);
2302 
2303 	return ret;
2304 }
2305 
2306 /***********************************************************************
2307  * Per-CS setup (1 NAND device)
2308  ***********************************************************************/
2309 
2310 static int brcmnand_set_cfg(struct brcmnand_host *host,
2311 			    struct brcmnand_cfg *cfg)
2312 {
2313 	struct brcmnand_controller *ctrl = host->ctrl;
2314 	struct nand_chip *chip = &host->chip;
2315 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2316 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2317 			BRCMNAND_CS_CFG_EXT);
2318 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2319 			BRCMNAND_CS_ACC_CONTROL);
2320 	u8 block_size = 0, page_size = 0, device_size = 0;
2321 	u32 tmp;
2322 
2323 	if (ctrl->block_sizes) {
2324 		int i, found;
2325 
2326 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2327 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2328 				block_size = i;
2329 				found = 1;
2330 			}
2331 		if (!found) {
2332 			dev_warn(ctrl->dev, "invalid block size %u\n",
2333 					cfg->block_size);
2334 			return -EINVAL;
2335 		}
2336 	} else {
2337 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2338 	}
2339 
2340 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2341 				cfg->block_size > ctrl->max_block_size)) {
2342 		dev_warn(ctrl->dev, "invalid block size %u\n",
2343 				cfg->block_size);
2344 		block_size = 0;
2345 	}
2346 
2347 	if (ctrl->page_sizes) {
2348 		int i, found;
2349 
2350 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2351 			if (ctrl->page_sizes[i] == cfg->page_size) {
2352 				page_size = i;
2353 				found = 1;
2354 			}
2355 		if (!found) {
2356 			dev_warn(ctrl->dev, "invalid page size %u\n",
2357 					cfg->page_size);
2358 			return -EINVAL;
2359 		}
2360 	} else {
2361 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2362 	}
2363 
2364 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2365 				cfg->page_size > ctrl->max_page_size)) {
2366 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2371 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2372 			(unsigned long long)cfg->device_size);
2373 		return -EINVAL;
2374 	}
2375 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2376 
2377 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2378 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2379 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2380 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2381 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2382 	if (cfg_offs == cfg_ext_offs) {
2383 		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
2384 		       (block_size << CFG_BLK_SIZE_SHIFT);
2385 		nand_writereg(ctrl, cfg_offs, tmp);
2386 	} else {
2387 		nand_writereg(ctrl, cfg_offs, tmp);
2388 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2389 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2390 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2391 	}
2392 
2393 	tmp = nand_readreg(ctrl, acc_control_offs);
2394 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2395 	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
2396 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2397 	tmp |= cfg->spare_area_size;
2398 	nand_writereg(ctrl, acc_control_offs, tmp);
2399 
2400 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2401 
2402 	/* threshold = ceil(BCH-level * 0.75) */
2403 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2404 
2405 	return 0;
2406 }
2407 
2408 static void brcmnand_print_cfg(struct brcmnand_host *host,
2409 			       char *buf, struct brcmnand_cfg *cfg)
2410 {
2411 	buf += sprintf(buf,
2412 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2413 		(unsigned long long)cfg->device_size >> 20,
2414 		cfg->block_size >> 10,
2415 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2416 		cfg->page_size >= 1024 ? "KiB" : "B",
2417 		cfg->spare_area_size, cfg->device_width);
2418 
2419 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2420 	if (is_hamming_ecc(host->ctrl, cfg))
2421 		sprintf(buf, ", Hamming ECC");
2422 	else if (cfg->sector_size_1k)
2423 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2424 	else
2425 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2426 }
2427 
2428 /*
2429  * Minimum number of bytes to address a page. Calculated as:
2430  *     roundup(log2(size / page-size) / 8)
2431  *
2432  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2433  *     OK because many other things will break if 'size' is irregular...
2434  */
2435 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2436 {
2437 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2438 }
2439 
2440 static int brcmnand_setup_dev(struct brcmnand_host *host)
2441 {
2442 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2443 	struct nand_chip *chip = &host->chip;
2444 	struct brcmnand_controller *ctrl = host->ctrl;
2445 	struct brcmnand_cfg *cfg = &host->hwcfg;
2446 	char msg[128];
2447 	u32 offs, tmp, oob_sector;
2448 	int ret;
2449 
2450 	memset(cfg, 0, sizeof(*cfg));
2451 
2452 	ret = of_property_read_u32(nand_get_flash_node(chip),
2453 				   "brcm,nand-oob-sector-size",
2454 				   &oob_sector);
2455 	if (ret) {
2456 		/* Use detected size */
2457 		cfg->spare_area_size = mtd->oobsize /
2458 					(mtd->writesize >> FC_SHIFT);
2459 	} else {
2460 		cfg->spare_area_size = oob_sector;
2461 	}
2462 	if (cfg->spare_area_size > ctrl->max_oob)
2463 		cfg->spare_area_size = ctrl->max_oob;
2464 	/*
2465 	 * Set oobsize to be consistent with controller's spare_area_size, as
2466 	 * the rest is inaccessible.
2467 	 */
2468 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2469 
2470 	cfg->device_size = mtd->size;
2471 	cfg->block_size = mtd->erasesize;
2472 	cfg->page_size = mtd->writesize;
2473 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2474 	cfg->col_adr_bytes = 2;
2475 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2476 
2477 	if (chip->ecc.mode != NAND_ECC_HW) {
2478 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2479 			chip->ecc.mode);
2480 		return -EINVAL;
2481 	}
2482 
2483 	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
2484 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2485 			/* Default to Hamming for 1-bit ECC, if unspecified */
2486 			chip->ecc.algo = NAND_ECC_HAMMING;
2487 		else
2488 			/* Otherwise, BCH */
2489 			chip->ecc.algo = NAND_ECC_BCH;
2490 	}
2491 
2492 	if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
2493 						   chip->ecc.size != 512)) {
2494 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2495 			chip->ecc.strength, chip->ecc.size);
2496 		return -EINVAL;
2497 	}
2498 
2499 	if (chip->ecc.mode != NAND_ECC_NONE &&
2500 	    (!chip->ecc.size || !chip->ecc.strength)) {
2501 		if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
2502 			/* use detected ECC parameters */
2503 			chip->ecc.size = chip->base.eccreq.step_size;
2504 			chip->ecc.strength = chip->base.eccreq.strength;
2505 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2506 				chip->ecc.size, chip->ecc.strength);
2507 		}
2508 	}
2509 
2510 	switch (chip->ecc.size) {
2511 	case 512:
2512 		if (chip->ecc.algo == NAND_ECC_HAMMING)
2513 			cfg->ecc_level = 15;
2514 		else
2515 			cfg->ecc_level = chip->ecc.strength;
2516 		cfg->sector_size_1k = 0;
2517 		break;
2518 	case 1024:
2519 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2520 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2521 			return -EINVAL;
2522 		}
2523 		if (chip->ecc.strength & 0x1) {
2524 			dev_err(ctrl->dev,
2525 				"odd ECC not supported with 1KB sectors\n");
2526 			return -EINVAL;
2527 		}
2528 
2529 		cfg->ecc_level = chip->ecc.strength >> 1;
2530 		cfg->sector_size_1k = 1;
2531 		break;
2532 	default:
2533 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2534 			chip->ecc.size);
2535 		return -EINVAL;
2536 	}
2537 
2538 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2539 	if (mtd->writesize > 512)
2540 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2541 	else
2542 		cfg->ful_adr_bytes += 1;
2543 
2544 	ret = brcmnand_set_cfg(host, cfg);
2545 	if (ret)
2546 		return ret;
2547 
2548 	brcmnand_set_ecc_enabled(host, 1);
2549 
2550 	brcmnand_print_cfg(host, msg, cfg);
2551 	dev_info(ctrl->dev, "detected %s\n", msg);
2552 
2553 	/* Configure ACC_CONTROL */
2554 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2555 	tmp = nand_readreg(ctrl, offs);
2556 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2557 	tmp &= ~ACC_CONTROL_RD_ERASED;
2558 
2559 	/* We need to turn on Read from erased paged protected by ECC */
2560 	if (ctrl->nand_version >= 0x0702)
2561 		tmp |= ACC_CONTROL_RD_ERASED;
2562 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2563 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2564 		tmp &= ~ACC_CONTROL_PREFETCH;
2565 
2566 	nand_writereg(ctrl, offs, tmp);
2567 
2568 	return 0;
2569 }
2570 
2571 static int brcmnand_attach_chip(struct nand_chip *chip)
2572 {
2573 	struct mtd_info *mtd = nand_to_mtd(chip);
2574 	struct brcmnand_host *host = nand_get_controller_data(chip);
2575 	int ret;
2576 
2577 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2578 	/*
2579 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2580 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2581 	 * needed.
2582 	 */
2583 	chip->options |= NAND_USES_DMA;
2584 
2585 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2586 		chip->bbt_options |= NAND_BBT_NO_OOB;
2587 
2588 	if (brcmnand_setup_dev(host))
2589 		return -ENXIO;
2590 
2591 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2592 
2593 	/* only use our internal HW threshold */
2594 	mtd->bitflip_threshold = 1;
2595 
2596 	ret = brcmstb_choose_ecc_layout(host);
2597 
2598 	return ret;
2599 }
2600 
2601 static const struct nand_controller_ops brcmnand_controller_ops = {
2602 	.attach_chip = brcmnand_attach_chip,
2603 };
2604 
2605 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2606 {
2607 	struct brcmnand_controller *ctrl = host->ctrl;
2608 	struct platform_device *pdev = host->pdev;
2609 	struct mtd_info *mtd;
2610 	struct nand_chip *chip;
2611 	int ret;
2612 	u16 cfg_offs;
2613 
2614 	ret = of_property_read_u32(dn, "reg", &host->cs);
2615 	if (ret) {
2616 		dev_err(&pdev->dev, "can't get chip-select\n");
2617 		return -ENXIO;
2618 	}
2619 
2620 	mtd = nand_to_mtd(&host->chip);
2621 	chip = &host->chip;
2622 
2623 	nand_set_flash_node(chip, dn);
2624 	nand_set_controller_data(chip, host);
2625 	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2626 				   host->cs);
2627 	if (!mtd->name)
2628 		return -ENOMEM;
2629 
2630 	mtd->owner = THIS_MODULE;
2631 	mtd->dev.parent = &pdev->dev;
2632 
2633 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2634 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2635 	chip->legacy.waitfunc = brcmnand_waitfunc;
2636 	chip->legacy.read_byte = brcmnand_read_byte;
2637 	chip->legacy.read_buf = brcmnand_read_buf;
2638 	chip->legacy.write_buf = brcmnand_write_buf;
2639 
2640 	chip->ecc.mode = NAND_ECC_HW;
2641 	chip->ecc.read_page = brcmnand_read_page;
2642 	chip->ecc.write_page = brcmnand_write_page;
2643 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2644 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2645 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2646 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2647 	chip->ecc.read_oob = brcmnand_read_oob;
2648 	chip->ecc.write_oob = brcmnand_write_oob;
2649 
2650 	chip->controller = &ctrl->controller;
2651 
2652 	/*
2653 	 * The bootloader might have configured 16bit mode but
2654 	 * NAND READID command only works in 8bit mode. We force
2655 	 * 8bit mode here to ensure that NAND READID commands works.
2656 	 */
2657 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2658 	nand_writereg(ctrl, cfg_offs,
2659 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2660 
2661 	ret = nand_scan(chip, 1);
2662 	if (ret)
2663 		return ret;
2664 
2665 	ret = mtd_device_register(mtd, NULL, 0);
2666 	if (ret)
2667 		nand_cleanup(chip);
2668 
2669 	return ret;
2670 }
2671 
2672 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2673 					    int restore)
2674 {
2675 	struct brcmnand_controller *ctrl = host->ctrl;
2676 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2677 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2678 			BRCMNAND_CS_CFG_EXT);
2679 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2680 			BRCMNAND_CS_ACC_CONTROL);
2681 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2682 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2683 
2684 	if (restore) {
2685 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2686 		if (cfg_offs != cfg_ext_offs)
2687 			nand_writereg(ctrl, cfg_ext_offs,
2688 				      host->hwcfg.config_ext);
2689 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2690 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2691 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2692 	} else {
2693 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2694 		if (cfg_offs != cfg_ext_offs)
2695 			host->hwcfg.config_ext =
2696 				nand_readreg(ctrl, cfg_ext_offs);
2697 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2698 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2699 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2700 	}
2701 }
2702 
2703 static int brcmnand_suspend(struct device *dev)
2704 {
2705 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2706 	struct brcmnand_host *host;
2707 
2708 	list_for_each_entry(host, &ctrl->host_list, node)
2709 		brcmnand_save_restore_cs_config(host, 0);
2710 
2711 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2712 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2713 	ctrl->corr_stat_threshold =
2714 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2715 
2716 	if (has_flash_dma(ctrl))
2717 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2718 	else if (has_edu(ctrl))
2719 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2720 
2721 	return 0;
2722 }
2723 
2724 static int brcmnand_resume(struct device *dev)
2725 {
2726 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2727 	struct brcmnand_host *host;
2728 
2729 	if (has_flash_dma(ctrl)) {
2730 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2731 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2732 	}
2733 
2734 	if (has_edu(ctrl))
2735 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2736 	else {
2737 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2738 		edu_readl(ctrl, EDU_CONFIG);
2739 		brcmnand_edu_init(ctrl);
2740 	}
2741 
2742 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2743 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2744 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2745 			ctrl->corr_stat_threshold);
2746 	if (ctrl->soc) {
2747 		/* Clear/re-enable interrupt */
2748 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2749 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2750 	}
2751 
2752 	list_for_each_entry(host, &ctrl->host_list, node) {
2753 		struct nand_chip *chip = &host->chip;
2754 
2755 		brcmnand_save_restore_cs_config(host, 1);
2756 
2757 		/* Reset the chip, required by some chips after power-up */
2758 		nand_reset_op(chip);
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 const struct dev_pm_ops brcmnand_pm_ops = {
2765 	.suspend		= brcmnand_suspend,
2766 	.resume			= brcmnand_resume,
2767 };
2768 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2769 
2770 static const struct of_device_id brcmnand_of_match[] = {
2771 	{ .compatible = "brcm,brcmnand-v4.0" },
2772 	{ .compatible = "brcm,brcmnand-v5.0" },
2773 	{ .compatible = "brcm,brcmnand-v6.0" },
2774 	{ .compatible = "brcm,brcmnand-v6.1" },
2775 	{ .compatible = "brcm,brcmnand-v6.2" },
2776 	{ .compatible = "brcm,brcmnand-v7.0" },
2777 	{ .compatible = "brcm,brcmnand-v7.1" },
2778 	{ .compatible = "brcm,brcmnand-v7.2" },
2779 	{ .compatible = "brcm,brcmnand-v7.3" },
2780 	{},
2781 };
2782 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2783 
2784 /***********************************************************************
2785  * Platform driver setup (per controller)
2786  ***********************************************************************/
2787 static int brcmnand_edu_setup(struct platform_device *pdev)
2788 {
2789 	struct device *dev = &pdev->dev;
2790 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2791 	struct resource *res;
2792 	int ret;
2793 
2794 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2795 	if (res) {
2796 		ctrl->edu_base = devm_ioremap_resource(dev, res);
2797 		if (IS_ERR(ctrl->edu_base))
2798 			return PTR_ERR(ctrl->edu_base);
2799 
2800 		ctrl->edu_offsets = edu_regs;
2801 
2802 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2803 			   EDU_CONFIG_SWAP_CFG);
2804 		edu_readl(ctrl, EDU_CONFIG);
2805 
2806 		/* initialize edu */
2807 		brcmnand_edu_init(ctrl);
2808 
2809 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2810 		if (ctrl->edu_irq < 0) {
2811 			dev_warn(dev,
2812 				 "FLASH EDU enabled, using ctlrdy irq\n");
2813 		} else {
2814 			ret = devm_request_irq(dev, ctrl->edu_irq,
2815 					       brcmnand_edu_irq, 0,
2816 					       "brcmnand-edu", ctrl);
2817 			if (ret < 0) {
2818 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2819 					ctrl->edu_irq, ret);
2820 				return ret;
2821 			}
2822 
2823 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2824 				 ctrl->edu_irq);
2825 		}
2826 	}
2827 
2828 	return 0;
2829 }
2830 
2831 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2832 {
2833 	struct device *dev = &pdev->dev;
2834 	struct device_node *dn = dev->of_node, *child;
2835 	struct brcmnand_controller *ctrl;
2836 	struct resource *res;
2837 	int ret;
2838 
2839 	/* We only support device-tree instantiation */
2840 	if (!dn)
2841 		return -ENODEV;
2842 
2843 	if (!of_match_node(brcmnand_of_match, dn))
2844 		return -ENODEV;
2845 
2846 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
2847 	if (!ctrl)
2848 		return -ENOMEM;
2849 
2850 	dev_set_drvdata(dev, ctrl);
2851 	ctrl->dev = dev;
2852 
2853 	init_completion(&ctrl->done);
2854 	init_completion(&ctrl->dma_done);
2855 	init_completion(&ctrl->edu_done);
2856 	nand_controller_init(&ctrl->controller);
2857 	ctrl->controller.ops = &brcmnand_controller_ops;
2858 	INIT_LIST_HEAD(&ctrl->host_list);
2859 
2860 	/* NAND register range */
2861 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2862 	ctrl->nand_base = devm_ioremap_resource(dev, res);
2863 	if (IS_ERR(ctrl->nand_base))
2864 		return PTR_ERR(ctrl->nand_base);
2865 
2866 	/* Enable clock before using NAND registers */
2867 	ctrl->clk = devm_clk_get(dev, "nand");
2868 	if (!IS_ERR(ctrl->clk)) {
2869 		ret = clk_prepare_enable(ctrl->clk);
2870 		if (ret)
2871 			return ret;
2872 	} else {
2873 		ret = PTR_ERR(ctrl->clk);
2874 		if (ret == -EPROBE_DEFER)
2875 			return ret;
2876 
2877 		ctrl->clk = NULL;
2878 	}
2879 
2880 	/* Initialize NAND revision */
2881 	ret = brcmnand_revision_init(ctrl);
2882 	if (ret)
2883 		goto err;
2884 
2885 	/*
2886 	 * Most chips have this cache at a fixed offset within 'nand' block.
2887 	 * Some must specify this region separately.
2888 	 */
2889 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
2890 	if (res) {
2891 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
2892 		if (IS_ERR(ctrl->nand_fc)) {
2893 			ret = PTR_ERR(ctrl->nand_fc);
2894 			goto err;
2895 		}
2896 	} else {
2897 		ctrl->nand_fc = ctrl->nand_base +
2898 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
2899 	}
2900 
2901 	/* FLASH_DMA */
2902 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
2903 	if (res) {
2904 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
2905 		if (IS_ERR(ctrl->flash_dma_base)) {
2906 			ret = PTR_ERR(ctrl->flash_dma_base);
2907 			goto err;
2908 		}
2909 
2910 		/* initialize the dma version */
2911 		brcmnand_flash_dma_revision_init(ctrl);
2912 
2913 		ret = -EIO;
2914 		if (ctrl->nand_version >= 0x0700)
2915 			ret = dma_set_mask_and_coherent(&pdev->dev,
2916 							DMA_BIT_MASK(40));
2917 		if (ret)
2918 			ret = dma_set_mask_and_coherent(&pdev->dev,
2919 							DMA_BIT_MASK(32));
2920 		if (ret)
2921 			goto err;
2922 
2923 		/* linked-list and stop on error */
2924 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
2925 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2926 
2927 		/* Allocate descriptor(s) */
2928 		ctrl->dma_desc = dmam_alloc_coherent(dev,
2929 						     sizeof(*ctrl->dma_desc),
2930 						     &ctrl->dma_pa, GFP_KERNEL);
2931 		if (!ctrl->dma_desc) {
2932 			ret = -ENOMEM;
2933 			goto err;
2934 		}
2935 
2936 		ctrl->dma_irq = platform_get_irq(pdev, 1);
2937 		if ((int)ctrl->dma_irq < 0) {
2938 			dev_err(dev, "missing FLASH_DMA IRQ\n");
2939 			ret = -ENODEV;
2940 			goto err;
2941 		}
2942 
2943 		ret = devm_request_irq(dev, ctrl->dma_irq,
2944 				brcmnand_dma_irq, 0, DRV_NAME,
2945 				ctrl);
2946 		if (ret < 0) {
2947 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
2948 					ctrl->dma_irq, ret);
2949 			goto err;
2950 		}
2951 
2952 		dev_info(dev, "enabling FLASH_DMA\n");
2953 		/* set flash dma transfer function to call */
2954 		ctrl->dma_trans = brcmnand_dma_trans;
2955 	} else	{
2956 		ret = brcmnand_edu_setup(pdev);
2957 		if (ret < 0)
2958 			goto err;
2959 
2960 		/* set edu transfer function to call */
2961 		ctrl->dma_trans = brcmnand_edu_trans;
2962 	}
2963 
2964 	/* Disable automatic device ID config, direct addressing */
2965 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
2966 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
2967 	/* Disable XOR addressing */
2968 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
2969 
2970 	if (ctrl->features & BRCMNAND_HAS_WP) {
2971 		/* Permanently disable write protection */
2972 		if (wp_on == 2)
2973 			brcmnand_set_wp(ctrl, false);
2974 	} else {
2975 		wp_on = 0;
2976 	}
2977 
2978 	/* IRQ */
2979 	ctrl->irq = platform_get_irq(pdev, 0);
2980 	if ((int)ctrl->irq < 0) {
2981 		dev_err(dev, "no IRQ defined\n");
2982 		ret = -ENODEV;
2983 		goto err;
2984 	}
2985 
2986 	/*
2987 	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
2988 	 * interesting ways
2989 	 */
2990 	if (soc) {
2991 		ctrl->soc = soc;
2992 
2993 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
2994 				       DRV_NAME, ctrl);
2995 
2996 		/* Enable interrupt */
2997 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2998 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2999 	} else {
3000 		/* Use standard interrupt infrastructure */
3001 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3002 				       DRV_NAME, ctrl);
3003 	}
3004 	if (ret < 0) {
3005 		dev_err(dev, "can't allocate IRQ %d: error %d\n",
3006 			ctrl->irq, ret);
3007 		goto err;
3008 	}
3009 
3010 	for_each_available_child_of_node(dn, child) {
3011 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3012 			struct brcmnand_host *host;
3013 
3014 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3015 			if (!host) {
3016 				of_node_put(child);
3017 				ret = -ENOMEM;
3018 				goto err;
3019 			}
3020 			host->pdev = pdev;
3021 			host->ctrl = ctrl;
3022 
3023 			ret = brcmnand_init_cs(host, child);
3024 			if (ret) {
3025 				devm_kfree(dev, host);
3026 				continue; /* Try all chip-selects */
3027 			}
3028 
3029 			list_add_tail(&host->node, &ctrl->host_list);
3030 		}
3031 	}
3032 
3033 	/* No chip-selects could initialize properly */
3034 	if (list_empty(&ctrl->host_list)) {
3035 		ret = -ENODEV;
3036 		goto err;
3037 	}
3038 
3039 	return 0;
3040 
3041 err:
3042 	clk_disable_unprepare(ctrl->clk);
3043 	return ret;
3044 
3045 }
3046 EXPORT_SYMBOL_GPL(brcmnand_probe);
3047 
3048 int brcmnand_remove(struct platform_device *pdev)
3049 {
3050 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3051 	struct brcmnand_host *host;
3052 	struct nand_chip *chip;
3053 	int ret;
3054 
3055 	list_for_each_entry(host, &ctrl->host_list, node) {
3056 		chip = &host->chip;
3057 		ret = mtd_device_unregister(nand_to_mtd(chip));
3058 		WARN_ON(ret);
3059 		nand_cleanup(chip);
3060 	}
3061 
3062 	clk_disable_unprepare(ctrl->clk);
3063 
3064 	dev_set_drvdata(&pdev->dev, NULL);
3065 
3066 	return 0;
3067 }
3068 EXPORT_SYMBOL_GPL(brcmnand_remove);
3069 
3070 MODULE_LICENSE("GPL v2");
3071 MODULE_AUTHOR("Kevin Cernekee");
3072 MODULE_AUTHOR("Brian Norris");
3073 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3074 MODULE_ALIAS("platform:brcmnand");
3075