1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2010-2015 Broadcom Corporation 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/module.h> 8 #include <linux/init.h> 9 #include <linux/delay.h> 10 #include <linux/device.h> 11 #include <linux/platform_device.h> 12 #include <linux/err.h> 13 #include <linux/completion.h> 14 #include <linux/interrupt.h> 15 #include <linux/spinlock.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/ioport.h> 18 #include <linux/bug.h> 19 #include <linux/kernel.h> 20 #include <linux/bitops.h> 21 #include <linux/mm.h> 22 #include <linux/mtd/mtd.h> 23 #include <linux/mtd/rawnand.h> 24 #include <linux/mtd/partitions.h> 25 #include <linux/of.h> 26 #include <linux/of_platform.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/log2.h> 30 31 #include "brcmnand.h" 32 33 /* 34 * This flag controls if WP stays on between erase/write commands to mitigate 35 * flash corruption due to power glitches. Values: 36 * 0: NAND_WP is not used or not available 37 * 1: NAND_WP is set by default, cleared for erase/write operations 38 * 2: NAND_WP is always cleared 39 */ 40 static int wp_on = 1; 41 module_param(wp_on, int, 0444); 42 43 /*********************************************************************** 44 * Definitions 45 ***********************************************************************/ 46 47 #define DRV_NAME "brcmnand" 48 49 #define CMD_NULL 0x00 50 #define CMD_PAGE_READ 0x01 51 #define CMD_SPARE_AREA_READ 0x02 52 #define CMD_STATUS_READ 0x03 53 #define CMD_PROGRAM_PAGE 0x04 54 #define CMD_PROGRAM_SPARE_AREA 0x05 55 #define CMD_COPY_BACK 0x06 56 #define CMD_DEVICE_ID_READ 0x07 57 #define CMD_BLOCK_ERASE 0x08 58 #define CMD_FLASH_RESET 0x09 59 #define CMD_BLOCKS_LOCK 0x0a 60 #define CMD_BLOCKS_LOCK_DOWN 0x0b 61 #define CMD_BLOCKS_UNLOCK 0x0c 62 #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d 63 #define CMD_PARAMETER_READ 0x0e 64 #define CMD_PARAMETER_CHANGE_COL 0x0f 65 #define CMD_LOW_LEVEL_OP 0x10 66 67 struct brcm_nand_dma_desc { 68 u32 next_desc; 69 u32 next_desc_ext; 70 u32 cmd_irq; 71 u32 dram_addr; 72 u32 dram_addr_ext; 73 u32 tfr_len; 74 u32 total_len; 75 u32 flash_addr; 76 u32 flash_addr_ext; 77 u32 cs; 78 u32 pad2[5]; 79 u32 status_valid; 80 } __packed; 81 82 /* Bitfields for brcm_nand_dma_desc::status_valid */ 83 #define FLASH_DMA_ECC_ERROR (1 << 8) 84 #define FLASH_DMA_CORR_ERROR (1 << 9) 85 86 /* Bitfields for DMA_MODE */ 87 #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */ 88 #define FLASH_DMA_MODE_MODE BIT(0) /* link list */ 89 #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \ 90 FLASH_DMA_MODE_MODE) 91 92 /* 512B flash cache in the NAND controller HW */ 93 #define FC_SHIFT 9U 94 #define FC_BYTES 512U 95 #define FC_WORDS (FC_BYTES >> 2) 96 97 #define BRCMNAND_MIN_PAGESIZE 512 98 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) 99 #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) 100 101 #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) 102 #define NAND_POLL_STATUS_TIMEOUT_MS 100 103 104 #define EDU_CMD_WRITE 0x00 105 #define EDU_CMD_READ 0x01 106 #define EDU_STATUS_ACTIVE BIT(0) 107 #define EDU_ERR_STATUS_ERRACK BIT(0) 108 #define EDU_DONE_MASK GENMASK(1, 0) 109 110 #define EDU_CONFIG_MODE_NAND BIT(0) 111 #define EDU_CONFIG_SWAP_BYTE BIT(1) 112 #ifdef CONFIG_CPU_BIG_ENDIAN 113 #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE 114 #else 115 #define EDU_CONFIG_SWAP_CFG 0 116 #endif 117 118 /* edu registers */ 119 enum edu_reg { 120 EDU_CONFIG = 0, 121 EDU_DRAM_ADDR, 122 EDU_EXT_ADDR, 123 EDU_LENGTH, 124 EDU_CMD, 125 EDU_STOP, 126 EDU_STATUS, 127 EDU_DONE, 128 EDU_ERR_STATUS, 129 }; 130 131 static const u16 edu_regs[] = { 132 [EDU_CONFIG] = 0x00, 133 [EDU_DRAM_ADDR] = 0x04, 134 [EDU_EXT_ADDR] = 0x08, 135 [EDU_LENGTH] = 0x0c, 136 [EDU_CMD] = 0x10, 137 [EDU_STOP] = 0x14, 138 [EDU_STATUS] = 0x18, 139 [EDU_DONE] = 0x1c, 140 [EDU_ERR_STATUS] = 0x20, 141 }; 142 143 /* flash_dma registers */ 144 enum flash_dma_reg { 145 FLASH_DMA_REVISION = 0, 146 FLASH_DMA_FIRST_DESC, 147 FLASH_DMA_FIRST_DESC_EXT, 148 FLASH_DMA_CTRL, 149 FLASH_DMA_MODE, 150 FLASH_DMA_STATUS, 151 FLASH_DMA_INTERRUPT_DESC, 152 FLASH_DMA_INTERRUPT_DESC_EXT, 153 FLASH_DMA_ERROR_STATUS, 154 FLASH_DMA_CURRENT_DESC, 155 FLASH_DMA_CURRENT_DESC_EXT, 156 }; 157 158 /* flash_dma registers v0*/ 159 static const u16 flash_dma_regs_v0[] = { 160 [FLASH_DMA_REVISION] = 0x00, 161 [FLASH_DMA_FIRST_DESC] = 0x04, 162 [FLASH_DMA_CTRL] = 0x08, 163 [FLASH_DMA_MODE] = 0x0c, 164 [FLASH_DMA_STATUS] = 0x10, 165 [FLASH_DMA_INTERRUPT_DESC] = 0x14, 166 [FLASH_DMA_ERROR_STATUS] = 0x18, 167 [FLASH_DMA_CURRENT_DESC] = 0x1c, 168 }; 169 170 /* flash_dma registers v1*/ 171 static const u16 flash_dma_regs_v1[] = { 172 [FLASH_DMA_REVISION] = 0x00, 173 [FLASH_DMA_FIRST_DESC] = 0x04, 174 [FLASH_DMA_FIRST_DESC_EXT] = 0x08, 175 [FLASH_DMA_CTRL] = 0x0c, 176 [FLASH_DMA_MODE] = 0x10, 177 [FLASH_DMA_STATUS] = 0x14, 178 [FLASH_DMA_INTERRUPT_DESC] = 0x18, 179 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c, 180 [FLASH_DMA_ERROR_STATUS] = 0x20, 181 [FLASH_DMA_CURRENT_DESC] = 0x24, 182 [FLASH_DMA_CURRENT_DESC_EXT] = 0x28, 183 }; 184 185 /* flash_dma registers v4 */ 186 static const u16 flash_dma_regs_v4[] = { 187 [FLASH_DMA_REVISION] = 0x00, 188 [FLASH_DMA_FIRST_DESC] = 0x08, 189 [FLASH_DMA_FIRST_DESC_EXT] = 0x0c, 190 [FLASH_DMA_CTRL] = 0x10, 191 [FLASH_DMA_MODE] = 0x14, 192 [FLASH_DMA_STATUS] = 0x18, 193 [FLASH_DMA_INTERRUPT_DESC] = 0x20, 194 [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24, 195 [FLASH_DMA_ERROR_STATUS] = 0x28, 196 [FLASH_DMA_CURRENT_DESC] = 0x30, 197 [FLASH_DMA_CURRENT_DESC_EXT] = 0x34, 198 }; 199 200 /* Controller feature flags */ 201 enum { 202 BRCMNAND_HAS_1K_SECTORS = BIT(0), 203 BRCMNAND_HAS_PREFETCH = BIT(1), 204 BRCMNAND_HAS_CACHE_MODE = BIT(2), 205 BRCMNAND_HAS_WP = BIT(3), 206 }; 207 208 struct brcmnand_host; 209 210 struct brcmnand_controller { 211 struct device *dev; 212 struct nand_controller controller; 213 void __iomem *nand_base; 214 void __iomem *nand_fc; /* flash cache */ 215 void __iomem *flash_dma_base; 216 unsigned int irq; 217 unsigned int dma_irq; 218 int nand_version; 219 220 /* Some SoCs provide custom interrupt status register(s) */ 221 struct brcmnand_soc *soc; 222 223 /* Some SoCs have a gateable clock for the controller */ 224 struct clk *clk; 225 226 int cmd_pending; 227 bool dma_pending; 228 bool edu_pending; 229 struct completion done; 230 struct completion dma_done; 231 struct completion edu_done; 232 233 /* List of NAND hosts (one for each chip-select) */ 234 struct list_head host_list; 235 236 /* EDU info, per-transaction */ 237 const u16 *edu_offsets; 238 void __iomem *edu_base; 239 int edu_irq; 240 int edu_count; 241 u64 edu_dram_addr; 242 u32 edu_ext_addr; 243 u32 edu_cmd; 244 u32 edu_config; 245 246 /* flash_dma reg */ 247 const u16 *flash_dma_offsets; 248 struct brcm_nand_dma_desc *dma_desc; 249 dma_addr_t dma_pa; 250 251 int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf, 252 u32 len, u8 dma_cmd); 253 254 /* in-memory cache of the FLASH_CACHE, used only for some commands */ 255 u8 flash_cache[FC_BYTES]; 256 257 /* Controller revision details */ 258 const u16 *reg_offsets; 259 unsigned int reg_spacing; /* between CS1, CS2, ... regs */ 260 const u8 *cs_offsets; /* within each chip-select */ 261 const u8 *cs0_offsets; /* within CS0, if different */ 262 unsigned int max_block_size; 263 const unsigned int *block_sizes; 264 unsigned int max_page_size; 265 const unsigned int *page_sizes; 266 unsigned int page_size_shift; 267 unsigned int max_oob; 268 u32 features; 269 270 /* for low-power standby/resume only */ 271 u32 nand_cs_nand_select; 272 u32 nand_cs_nand_xor; 273 u32 corr_stat_threshold; 274 u32 flash_dma_mode; 275 u32 flash_edu_mode; 276 bool pio_poll_mode; 277 }; 278 279 struct brcmnand_cfg { 280 u64 device_size; 281 unsigned int block_size; 282 unsigned int page_size; 283 unsigned int spare_area_size; 284 unsigned int device_width; 285 unsigned int col_adr_bytes; 286 unsigned int blk_adr_bytes; 287 unsigned int ful_adr_bytes; 288 unsigned int sector_size_1k; 289 unsigned int ecc_level; 290 /* use for low-power standby/resume only */ 291 u32 acc_control; 292 u32 config; 293 u32 config_ext; 294 u32 timing_1; 295 u32 timing_2; 296 }; 297 298 struct brcmnand_host { 299 struct list_head node; 300 301 struct nand_chip chip; 302 struct platform_device *pdev; 303 int cs; 304 305 unsigned int last_cmd; 306 unsigned int last_byte; 307 u64 last_addr; 308 struct brcmnand_cfg hwcfg; 309 struct brcmnand_controller *ctrl; 310 }; 311 312 enum brcmnand_reg { 313 BRCMNAND_CMD_START = 0, 314 BRCMNAND_CMD_EXT_ADDRESS, 315 BRCMNAND_CMD_ADDRESS, 316 BRCMNAND_INTFC_STATUS, 317 BRCMNAND_CS_SELECT, 318 BRCMNAND_CS_XOR, 319 BRCMNAND_LL_OP, 320 BRCMNAND_CS0_BASE, 321 BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ 322 BRCMNAND_CORR_THRESHOLD, 323 BRCMNAND_CORR_THRESHOLD_EXT, 324 BRCMNAND_UNCORR_COUNT, 325 BRCMNAND_CORR_COUNT, 326 BRCMNAND_CORR_EXT_ADDR, 327 BRCMNAND_CORR_ADDR, 328 BRCMNAND_UNCORR_EXT_ADDR, 329 BRCMNAND_UNCORR_ADDR, 330 BRCMNAND_SEMAPHORE, 331 BRCMNAND_ID, 332 BRCMNAND_ID_EXT, 333 BRCMNAND_LL_RDATA, 334 BRCMNAND_OOB_READ_BASE, 335 BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ 336 BRCMNAND_OOB_WRITE_BASE, 337 BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ 338 BRCMNAND_FC_BASE, 339 }; 340 341 /* BRCMNAND v2.1-v2.2 */ 342 static const u16 brcmnand_regs_v21[] = { 343 [BRCMNAND_CMD_START] = 0x04, 344 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 345 [BRCMNAND_CMD_ADDRESS] = 0x0c, 346 [BRCMNAND_INTFC_STATUS] = 0x5c, 347 [BRCMNAND_CS_SELECT] = 0x14, 348 [BRCMNAND_CS_XOR] = 0x18, 349 [BRCMNAND_LL_OP] = 0, 350 [BRCMNAND_CS0_BASE] = 0x40, 351 [BRCMNAND_CS1_BASE] = 0, 352 [BRCMNAND_CORR_THRESHOLD] = 0, 353 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 354 [BRCMNAND_UNCORR_COUNT] = 0, 355 [BRCMNAND_CORR_COUNT] = 0, 356 [BRCMNAND_CORR_EXT_ADDR] = 0x60, 357 [BRCMNAND_CORR_ADDR] = 0x64, 358 [BRCMNAND_UNCORR_EXT_ADDR] = 0x68, 359 [BRCMNAND_UNCORR_ADDR] = 0x6c, 360 [BRCMNAND_SEMAPHORE] = 0x50, 361 [BRCMNAND_ID] = 0x54, 362 [BRCMNAND_ID_EXT] = 0, 363 [BRCMNAND_LL_RDATA] = 0, 364 [BRCMNAND_OOB_READ_BASE] = 0x20, 365 [BRCMNAND_OOB_READ_10_BASE] = 0, 366 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 367 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 368 [BRCMNAND_FC_BASE] = 0x200, 369 }; 370 371 /* BRCMNAND v3.3-v4.0 */ 372 static const u16 brcmnand_regs_v33[] = { 373 [BRCMNAND_CMD_START] = 0x04, 374 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 375 [BRCMNAND_CMD_ADDRESS] = 0x0c, 376 [BRCMNAND_INTFC_STATUS] = 0x6c, 377 [BRCMNAND_CS_SELECT] = 0x14, 378 [BRCMNAND_CS_XOR] = 0x18, 379 [BRCMNAND_LL_OP] = 0x178, 380 [BRCMNAND_CS0_BASE] = 0x40, 381 [BRCMNAND_CS1_BASE] = 0xd0, 382 [BRCMNAND_CORR_THRESHOLD] = 0x84, 383 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 384 [BRCMNAND_UNCORR_COUNT] = 0, 385 [BRCMNAND_CORR_COUNT] = 0, 386 [BRCMNAND_CORR_EXT_ADDR] = 0x70, 387 [BRCMNAND_CORR_ADDR] = 0x74, 388 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, 389 [BRCMNAND_UNCORR_ADDR] = 0x7c, 390 [BRCMNAND_SEMAPHORE] = 0x58, 391 [BRCMNAND_ID] = 0x60, 392 [BRCMNAND_ID_EXT] = 0x64, 393 [BRCMNAND_LL_RDATA] = 0x17c, 394 [BRCMNAND_OOB_READ_BASE] = 0x20, 395 [BRCMNAND_OOB_READ_10_BASE] = 0x130, 396 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 397 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 398 [BRCMNAND_FC_BASE] = 0x200, 399 }; 400 401 /* BRCMNAND v5.0 */ 402 static const u16 brcmnand_regs_v50[] = { 403 [BRCMNAND_CMD_START] = 0x04, 404 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 405 [BRCMNAND_CMD_ADDRESS] = 0x0c, 406 [BRCMNAND_INTFC_STATUS] = 0x6c, 407 [BRCMNAND_CS_SELECT] = 0x14, 408 [BRCMNAND_CS_XOR] = 0x18, 409 [BRCMNAND_LL_OP] = 0x178, 410 [BRCMNAND_CS0_BASE] = 0x40, 411 [BRCMNAND_CS1_BASE] = 0xd0, 412 [BRCMNAND_CORR_THRESHOLD] = 0x84, 413 [BRCMNAND_CORR_THRESHOLD_EXT] = 0, 414 [BRCMNAND_UNCORR_COUNT] = 0, 415 [BRCMNAND_CORR_COUNT] = 0, 416 [BRCMNAND_CORR_EXT_ADDR] = 0x70, 417 [BRCMNAND_CORR_ADDR] = 0x74, 418 [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, 419 [BRCMNAND_UNCORR_ADDR] = 0x7c, 420 [BRCMNAND_SEMAPHORE] = 0x58, 421 [BRCMNAND_ID] = 0x60, 422 [BRCMNAND_ID_EXT] = 0x64, 423 [BRCMNAND_LL_RDATA] = 0x17c, 424 [BRCMNAND_OOB_READ_BASE] = 0x20, 425 [BRCMNAND_OOB_READ_10_BASE] = 0x130, 426 [BRCMNAND_OOB_WRITE_BASE] = 0x30, 427 [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, 428 [BRCMNAND_FC_BASE] = 0x200, 429 }; 430 431 /* BRCMNAND v6.0 - v7.1 */ 432 static const u16 brcmnand_regs_v60[] = { 433 [BRCMNAND_CMD_START] = 0x04, 434 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 435 [BRCMNAND_CMD_ADDRESS] = 0x0c, 436 [BRCMNAND_INTFC_STATUS] = 0x14, 437 [BRCMNAND_CS_SELECT] = 0x18, 438 [BRCMNAND_CS_XOR] = 0x1c, 439 [BRCMNAND_LL_OP] = 0x20, 440 [BRCMNAND_CS0_BASE] = 0x50, 441 [BRCMNAND_CS1_BASE] = 0, 442 [BRCMNAND_CORR_THRESHOLD] = 0xc0, 443 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, 444 [BRCMNAND_UNCORR_COUNT] = 0xfc, 445 [BRCMNAND_CORR_COUNT] = 0x100, 446 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 447 [BRCMNAND_CORR_ADDR] = 0x110, 448 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 449 [BRCMNAND_UNCORR_ADDR] = 0x118, 450 [BRCMNAND_SEMAPHORE] = 0x150, 451 [BRCMNAND_ID] = 0x194, 452 [BRCMNAND_ID_EXT] = 0x198, 453 [BRCMNAND_LL_RDATA] = 0x19c, 454 [BRCMNAND_OOB_READ_BASE] = 0x200, 455 [BRCMNAND_OOB_READ_10_BASE] = 0, 456 [BRCMNAND_OOB_WRITE_BASE] = 0x280, 457 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 458 [BRCMNAND_FC_BASE] = 0x400, 459 }; 460 461 /* BRCMNAND v7.1 */ 462 static const u16 brcmnand_regs_v71[] = { 463 [BRCMNAND_CMD_START] = 0x04, 464 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 465 [BRCMNAND_CMD_ADDRESS] = 0x0c, 466 [BRCMNAND_INTFC_STATUS] = 0x14, 467 [BRCMNAND_CS_SELECT] = 0x18, 468 [BRCMNAND_CS_XOR] = 0x1c, 469 [BRCMNAND_LL_OP] = 0x20, 470 [BRCMNAND_CS0_BASE] = 0x50, 471 [BRCMNAND_CS1_BASE] = 0, 472 [BRCMNAND_CORR_THRESHOLD] = 0xdc, 473 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, 474 [BRCMNAND_UNCORR_COUNT] = 0xfc, 475 [BRCMNAND_CORR_COUNT] = 0x100, 476 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 477 [BRCMNAND_CORR_ADDR] = 0x110, 478 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 479 [BRCMNAND_UNCORR_ADDR] = 0x118, 480 [BRCMNAND_SEMAPHORE] = 0x150, 481 [BRCMNAND_ID] = 0x194, 482 [BRCMNAND_ID_EXT] = 0x198, 483 [BRCMNAND_LL_RDATA] = 0x19c, 484 [BRCMNAND_OOB_READ_BASE] = 0x200, 485 [BRCMNAND_OOB_READ_10_BASE] = 0, 486 [BRCMNAND_OOB_WRITE_BASE] = 0x280, 487 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 488 [BRCMNAND_FC_BASE] = 0x400, 489 }; 490 491 /* BRCMNAND v7.2 */ 492 static const u16 brcmnand_regs_v72[] = { 493 [BRCMNAND_CMD_START] = 0x04, 494 [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, 495 [BRCMNAND_CMD_ADDRESS] = 0x0c, 496 [BRCMNAND_INTFC_STATUS] = 0x14, 497 [BRCMNAND_CS_SELECT] = 0x18, 498 [BRCMNAND_CS_XOR] = 0x1c, 499 [BRCMNAND_LL_OP] = 0x20, 500 [BRCMNAND_CS0_BASE] = 0x50, 501 [BRCMNAND_CS1_BASE] = 0, 502 [BRCMNAND_CORR_THRESHOLD] = 0xdc, 503 [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, 504 [BRCMNAND_UNCORR_COUNT] = 0xfc, 505 [BRCMNAND_CORR_COUNT] = 0x100, 506 [BRCMNAND_CORR_EXT_ADDR] = 0x10c, 507 [BRCMNAND_CORR_ADDR] = 0x110, 508 [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, 509 [BRCMNAND_UNCORR_ADDR] = 0x118, 510 [BRCMNAND_SEMAPHORE] = 0x150, 511 [BRCMNAND_ID] = 0x194, 512 [BRCMNAND_ID_EXT] = 0x198, 513 [BRCMNAND_LL_RDATA] = 0x19c, 514 [BRCMNAND_OOB_READ_BASE] = 0x200, 515 [BRCMNAND_OOB_READ_10_BASE] = 0, 516 [BRCMNAND_OOB_WRITE_BASE] = 0x400, 517 [BRCMNAND_OOB_WRITE_10_BASE] = 0, 518 [BRCMNAND_FC_BASE] = 0x600, 519 }; 520 521 enum brcmnand_cs_reg { 522 BRCMNAND_CS_CFG_EXT = 0, 523 BRCMNAND_CS_CFG, 524 BRCMNAND_CS_ACC_CONTROL, 525 BRCMNAND_CS_TIMING1, 526 BRCMNAND_CS_TIMING2, 527 }; 528 529 /* Per chip-select offsets for v7.1 */ 530 static const u8 brcmnand_cs_offsets_v71[] = { 531 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 532 [BRCMNAND_CS_CFG_EXT] = 0x04, 533 [BRCMNAND_CS_CFG] = 0x08, 534 [BRCMNAND_CS_TIMING1] = 0x0c, 535 [BRCMNAND_CS_TIMING2] = 0x10, 536 }; 537 538 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ 539 static const u8 brcmnand_cs_offsets[] = { 540 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 541 [BRCMNAND_CS_CFG_EXT] = 0x04, 542 [BRCMNAND_CS_CFG] = 0x04, 543 [BRCMNAND_CS_TIMING1] = 0x08, 544 [BRCMNAND_CS_TIMING2] = 0x0c, 545 }; 546 547 /* Per chip-select offset for <= v5.0 on CS0 only */ 548 static const u8 brcmnand_cs_offsets_cs0[] = { 549 [BRCMNAND_CS_ACC_CONTROL] = 0x00, 550 [BRCMNAND_CS_CFG_EXT] = 0x08, 551 [BRCMNAND_CS_CFG] = 0x08, 552 [BRCMNAND_CS_TIMING1] = 0x10, 553 [BRCMNAND_CS_TIMING2] = 0x14, 554 }; 555 556 /* 557 * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had 558 * one config register, but once the bitfields overflowed, newer controllers 559 * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. 560 */ 561 enum { 562 CFG_BLK_ADR_BYTES_SHIFT = 8, 563 CFG_COL_ADR_BYTES_SHIFT = 12, 564 CFG_FUL_ADR_BYTES_SHIFT = 16, 565 CFG_BUS_WIDTH_SHIFT = 23, 566 CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), 567 CFG_DEVICE_SIZE_SHIFT = 24, 568 569 /* Only for v2.1 */ 570 CFG_PAGE_SIZE_SHIFT_v2_1 = 30, 571 572 /* Only for pre-v7.1 (with no CFG_EXT register) */ 573 CFG_PAGE_SIZE_SHIFT = 20, 574 CFG_BLK_SIZE_SHIFT = 28, 575 576 /* Only for v7.1+ (with CFG_EXT register) */ 577 CFG_EXT_PAGE_SIZE_SHIFT = 0, 578 CFG_EXT_BLK_SIZE_SHIFT = 4, 579 }; 580 581 /* BRCMNAND_INTFC_STATUS */ 582 enum { 583 INTFC_FLASH_STATUS = GENMASK(7, 0), 584 585 INTFC_ERASED = BIT(27), 586 INTFC_OOB_VALID = BIT(28), 587 INTFC_CACHE_VALID = BIT(29), 588 INTFC_FLASH_READY = BIT(30), 589 INTFC_CTLR_READY = BIT(31), 590 }; 591 592 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) 593 { 594 return brcmnand_readl(ctrl->nand_base + offs); 595 } 596 597 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, 598 u32 val) 599 { 600 brcmnand_writel(val, ctrl->nand_base + offs); 601 } 602 603 static int brcmnand_revision_init(struct brcmnand_controller *ctrl) 604 { 605 static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; 606 static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; 607 static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 }; 608 static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 }; 609 static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 }; 610 static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 }; 611 static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 }; 612 613 ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; 614 615 /* Only support v2.1+ */ 616 if (ctrl->nand_version < 0x0201) { 617 dev_err(ctrl->dev, "version %#x not supported\n", 618 ctrl->nand_version); 619 return -ENODEV; 620 } 621 622 /* Register offsets */ 623 if (ctrl->nand_version >= 0x0702) 624 ctrl->reg_offsets = brcmnand_regs_v72; 625 else if (ctrl->nand_version == 0x0701) 626 ctrl->reg_offsets = brcmnand_regs_v71; 627 else if (ctrl->nand_version >= 0x0600) 628 ctrl->reg_offsets = brcmnand_regs_v60; 629 else if (ctrl->nand_version >= 0x0500) 630 ctrl->reg_offsets = brcmnand_regs_v50; 631 else if (ctrl->nand_version >= 0x0303) 632 ctrl->reg_offsets = brcmnand_regs_v33; 633 else if (ctrl->nand_version >= 0x0201) 634 ctrl->reg_offsets = brcmnand_regs_v21; 635 636 /* Chip-select stride */ 637 if (ctrl->nand_version >= 0x0701) 638 ctrl->reg_spacing = 0x14; 639 else 640 ctrl->reg_spacing = 0x10; 641 642 /* Per chip-select registers */ 643 if (ctrl->nand_version >= 0x0701) { 644 ctrl->cs_offsets = brcmnand_cs_offsets_v71; 645 } else { 646 ctrl->cs_offsets = brcmnand_cs_offsets; 647 648 /* v3.3-5.0 have a different CS0 offset layout */ 649 if (ctrl->nand_version >= 0x0303 && 650 ctrl->nand_version <= 0x0500) 651 ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; 652 } 653 654 /* Page / block sizes */ 655 if (ctrl->nand_version >= 0x0701) { 656 /* >= v7.1 use nice power-of-2 values! */ 657 ctrl->max_page_size = 16 * 1024; 658 ctrl->max_block_size = 2 * 1024 * 1024; 659 } else { 660 if (ctrl->nand_version >= 0x0304) 661 ctrl->page_sizes = page_sizes_v3_4; 662 else if (ctrl->nand_version >= 0x0202) 663 ctrl->page_sizes = page_sizes_v2_2; 664 else 665 ctrl->page_sizes = page_sizes_v2_1; 666 667 if (ctrl->nand_version >= 0x0202) 668 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT; 669 else 670 ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1; 671 672 if (ctrl->nand_version >= 0x0600) 673 ctrl->block_sizes = block_sizes_v6; 674 else if (ctrl->nand_version >= 0x0400) 675 ctrl->block_sizes = block_sizes_v4; 676 else if (ctrl->nand_version >= 0x0202) 677 ctrl->block_sizes = block_sizes_v2_2; 678 else 679 ctrl->block_sizes = block_sizes_v2_1; 680 681 if (ctrl->nand_version < 0x0400) { 682 if (ctrl->nand_version < 0x0202) 683 ctrl->max_page_size = 2048; 684 else 685 ctrl->max_page_size = 4096; 686 ctrl->max_block_size = 512 * 1024; 687 } 688 } 689 690 /* Maximum spare area sector size (per 512B) */ 691 if (ctrl->nand_version == 0x0702) 692 ctrl->max_oob = 128; 693 else if (ctrl->nand_version >= 0x0600) 694 ctrl->max_oob = 64; 695 else if (ctrl->nand_version >= 0x0500) 696 ctrl->max_oob = 32; 697 else 698 ctrl->max_oob = 16; 699 700 /* v6.0 and newer (except v6.1) have prefetch support */ 701 if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) 702 ctrl->features |= BRCMNAND_HAS_PREFETCH; 703 704 /* 705 * v6.x has cache mode, but it's implemented differently. Ignore it for 706 * now. 707 */ 708 if (ctrl->nand_version >= 0x0700) 709 ctrl->features |= BRCMNAND_HAS_CACHE_MODE; 710 711 if (ctrl->nand_version >= 0x0500) 712 ctrl->features |= BRCMNAND_HAS_1K_SECTORS; 713 714 if (ctrl->nand_version >= 0x0700) 715 ctrl->features |= BRCMNAND_HAS_WP; 716 else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) 717 ctrl->features |= BRCMNAND_HAS_WP; 718 719 return 0; 720 } 721 722 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl) 723 { 724 /* flash_dma register offsets */ 725 if (ctrl->nand_version >= 0x0703) 726 ctrl->flash_dma_offsets = flash_dma_regs_v4; 727 else if (ctrl->nand_version == 0x0602) 728 ctrl->flash_dma_offsets = flash_dma_regs_v0; 729 else 730 ctrl->flash_dma_offsets = flash_dma_regs_v1; 731 } 732 733 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, 734 enum brcmnand_reg reg) 735 { 736 u16 offs = ctrl->reg_offsets[reg]; 737 738 if (offs) 739 return nand_readreg(ctrl, offs); 740 else 741 return 0; 742 } 743 744 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, 745 enum brcmnand_reg reg, u32 val) 746 { 747 u16 offs = ctrl->reg_offsets[reg]; 748 749 if (offs) 750 nand_writereg(ctrl, offs, val); 751 } 752 753 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, 754 enum brcmnand_reg reg, u32 mask, unsigned 755 int shift, u32 val) 756 { 757 u32 tmp = brcmnand_read_reg(ctrl, reg); 758 759 tmp &= ~mask; 760 tmp |= val << shift; 761 brcmnand_write_reg(ctrl, reg, tmp); 762 } 763 764 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) 765 { 766 return __raw_readl(ctrl->nand_fc + word * 4); 767 } 768 769 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, 770 int word, u32 val) 771 { 772 __raw_writel(val, ctrl->nand_fc + word * 4); 773 } 774 775 static inline void edu_writel(struct brcmnand_controller *ctrl, 776 enum edu_reg reg, u32 val) 777 { 778 u16 offs = ctrl->edu_offsets[reg]; 779 780 brcmnand_writel(val, ctrl->edu_base + offs); 781 } 782 783 static inline u32 edu_readl(struct brcmnand_controller *ctrl, 784 enum edu_reg reg) 785 { 786 u16 offs = ctrl->edu_offsets[reg]; 787 788 return brcmnand_readl(ctrl->edu_base + offs); 789 } 790 791 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl) 792 { 793 794 /* Clear error addresses */ 795 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); 796 brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); 797 brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); 798 brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); 799 } 800 801 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl) 802 { 803 u64 err_addr; 804 805 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR); 806 err_addr |= ((u64)(brcmnand_read_reg(ctrl, 807 BRCMNAND_UNCORR_EXT_ADDR) 808 & 0xffff) << 32); 809 810 return err_addr; 811 } 812 813 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl) 814 { 815 u64 err_addr; 816 817 err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR); 818 err_addr |= ((u64)(brcmnand_read_reg(ctrl, 819 BRCMNAND_CORR_EXT_ADDR) 820 & 0xffff) << 32); 821 822 return err_addr; 823 } 824 825 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr) 826 { 827 struct nand_chip *chip = mtd_to_nand(mtd); 828 struct brcmnand_host *host = nand_get_controller_data(chip); 829 struct brcmnand_controller *ctrl = host->ctrl; 830 831 brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, 832 (host->cs << 16) | ((addr >> 32) & 0xffff)); 833 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); 834 brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, 835 lower_32_bits(addr)); 836 (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 837 } 838 839 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, 840 enum brcmnand_cs_reg reg) 841 { 842 u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; 843 u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; 844 u8 cs_offs; 845 846 if (cs == 0 && ctrl->cs0_offsets) 847 cs_offs = ctrl->cs0_offsets[reg]; 848 else 849 cs_offs = ctrl->cs_offsets[reg]; 850 851 if (cs && offs_cs1) 852 return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; 853 854 return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; 855 } 856 857 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) 858 { 859 if (ctrl->nand_version < 0x0600) 860 return 1; 861 return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); 862 } 863 864 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) 865 { 866 struct brcmnand_controller *ctrl = host->ctrl; 867 unsigned int shift = 0, bits; 868 enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; 869 int cs = host->cs; 870 871 if (!ctrl->reg_offsets[reg]) 872 return; 873 874 if (ctrl->nand_version == 0x0702) 875 bits = 7; 876 else if (ctrl->nand_version >= 0x0600) 877 bits = 6; 878 else if (ctrl->nand_version >= 0x0500) 879 bits = 5; 880 else 881 bits = 4; 882 883 if (ctrl->nand_version >= 0x0702) { 884 if (cs >= 4) 885 reg = BRCMNAND_CORR_THRESHOLD_EXT; 886 shift = (cs % 4) * bits; 887 } else if (ctrl->nand_version >= 0x0600) { 888 if (cs >= 5) 889 reg = BRCMNAND_CORR_THRESHOLD_EXT; 890 shift = (cs % 5) * bits; 891 } 892 brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); 893 } 894 895 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) 896 { 897 if (ctrl->nand_version < 0x0602) 898 return 24; 899 return 0; 900 } 901 902 /*********************************************************************** 903 * NAND ACC CONTROL bitfield 904 * 905 * Some bits have remained constant throughout hardware revision, while 906 * others have shifted around. 907 ***********************************************************************/ 908 909 /* Constant for all versions (where supported) */ 910 enum { 911 /* See BRCMNAND_HAS_CACHE_MODE */ 912 ACC_CONTROL_CACHE_MODE = BIT(22), 913 914 /* See BRCMNAND_HAS_PREFETCH */ 915 ACC_CONTROL_PREFETCH = BIT(23), 916 917 ACC_CONTROL_PAGE_HIT = BIT(24), 918 ACC_CONTROL_WR_PREEMPT = BIT(25), 919 ACC_CONTROL_PARTIAL_PAGE = BIT(26), 920 ACC_CONTROL_RD_ERASED = BIT(27), 921 ACC_CONTROL_FAST_PGM_RDIN = BIT(28), 922 ACC_CONTROL_WR_ECC = BIT(30), 923 ACC_CONTROL_RD_ECC = BIT(31), 924 }; 925 926 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) 927 { 928 if (ctrl->nand_version == 0x0702) 929 return GENMASK(7, 0); 930 else if (ctrl->nand_version >= 0x0600) 931 return GENMASK(6, 0); 932 else if (ctrl->nand_version >= 0x0303) 933 return GENMASK(5, 0); 934 else 935 return GENMASK(4, 0); 936 } 937 938 #define NAND_ACC_CONTROL_ECC_SHIFT 16 939 #define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13 940 941 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) 942 { 943 u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; 944 945 mask <<= NAND_ACC_CONTROL_ECC_SHIFT; 946 947 /* v7.2 includes additional ECC levels */ 948 if (ctrl->nand_version >= 0x0702) 949 mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT; 950 951 return mask; 952 } 953 954 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) 955 { 956 struct brcmnand_controller *ctrl = host->ctrl; 957 u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); 958 u32 acc_control = nand_readreg(ctrl, offs); 959 u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; 960 961 if (en) { 962 acc_control |= ecc_flags; /* enable RD/WR ECC */ 963 acc_control |= host->hwcfg.ecc_level 964 << NAND_ACC_CONTROL_ECC_SHIFT; 965 } else { 966 acc_control &= ~ecc_flags; /* disable RD/WR ECC */ 967 acc_control &= ~brcmnand_ecc_level_mask(ctrl); 968 } 969 970 nand_writereg(ctrl, offs, acc_control); 971 } 972 973 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) 974 { 975 if (ctrl->nand_version >= 0x0702) 976 return 9; 977 else if (ctrl->nand_version >= 0x0600) 978 return 7; 979 else if (ctrl->nand_version >= 0x0500) 980 return 6; 981 else 982 return -1; 983 } 984 985 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host) 986 { 987 struct brcmnand_controller *ctrl = host->ctrl; 988 int shift = brcmnand_sector_1k_shift(ctrl); 989 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 990 BRCMNAND_CS_ACC_CONTROL); 991 992 if (shift < 0) 993 return 0; 994 995 return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1; 996 } 997 998 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) 999 { 1000 struct brcmnand_controller *ctrl = host->ctrl; 1001 int shift = brcmnand_sector_1k_shift(ctrl); 1002 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 1003 BRCMNAND_CS_ACC_CONTROL); 1004 u32 tmp; 1005 1006 if (shift < 0) 1007 return; 1008 1009 tmp = nand_readreg(ctrl, acc_control_offs); 1010 tmp &= ~(1 << shift); 1011 tmp |= (!!val) << shift; 1012 nand_writereg(ctrl, acc_control_offs, tmp); 1013 } 1014 1015 /*********************************************************************** 1016 * CS_NAND_SELECT 1017 ***********************************************************************/ 1018 1019 enum { 1020 CS_SELECT_NAND_WP = BIT(29), 1021 CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), 1022 }; 1023 1024 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl, 1025 u32 mask, u32 expected_val, 1026 unsigned long timeout_ms) 1027 { 1028 unsigned long limit; 1029 u32 val; 1030 1031 if (!timeout_ms) 1032 timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; 1033 1034 limit = jiffies + msecs_to_jiffies(timeout_ms); 1035 do { 1036 val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); 1037 if ((val & mask) == expected_val) 1038 return 0; 1039 1040 cpu_relax(); 1041 } while (time_after(limit, jiffies)); 1042 1043 dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n", 1044 expected_val, val & mask); 1045 1046 return -ETIMEDOUT; 1047 } 1048 1049 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) 1050 { 1051 u32 val = en ? CS_SELECT_NAND_WP : 0; 1052 1053 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); 1054 } 1055 1056 /*********************************************************************** 1057 * Flash DMA 1058 ***********************************************************************/ 1059 1060 static inline bool has_flash_dma(struct brcmnand_controller *ctrl) 1061 { 1062 return ctrl->flash_dma_base; 1063 } 1064 1065 static inline bool has_edu(struct brcmnand_controller *ctrl) 1066 { 1067 return ctrl->edu_base; 1068 } 1069 1070 static inline bool use_dma(struct brcmnand_controller *ctrl) 1071 { 1072 return has_flash_dma(ctrl) || has_edu(ctrl); 1073 } 1074 1075 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl) 1076 { 1077 if (ctrl->pio_poll_mode) 1078 return; 1079 1080 if (has_flash_dma(ctrl)) { 1081 ctrl->flash_dma_base = NULL; 1082 disable_irq(ctrl->dma_irq); 1083 } 1084 1085 disable_irq(ctrl->irq); 1086 ctrl->pio_poll_mode = true; 1087 } 1088 1089 static inline bool flash_dma_buf_ok(const void *buf) 1090 { 1091 return buf && !is_vmalloc_addr(buf) && 1092 likely(IS_ALIGNED((uintptr_t)buf, 4)); 1093 } 1094 1095 static inline void flash_dma_writel(struct brcmnand_controller *ctrl, 1096 enum flash_dma_reg dma_reg, u32 val) 1097 { 1098 u16 offs = ctrl->flash_dma_offsets[dma_reg]; 1099 1100 brcmnand_writel(val, ctrl->flash_dma_base + offs); 1101 } 1102 1103 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, 1104 enum flash_dma_reg dma_reg) 1105 { 1106 u16 offs = ctrl->flash_dma_offsets[dma_reg]; 1107 1108 return brcmnand_readl(ctrl->flash_dma_base + offs); 1109 } 1110 1111 /* Low-level operation types: command, address, write, or read */ 1112 enum brcmnand_llop_type { 1113 LL_OP_CMD, 1114 LL_OP_ADDR, 1115 LL_OP_WR, 1116 LL_OP_RD, 1117 }; 1118 1119 /*********************************************************************** 1120 * Internal support functions 1121 ***********************************************************************/ 1122 1123 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, 1124 struct brcmnand_cfg *cfg) 1125 { 1126 if (ctrl->nand_version <= 0x0701) 1127 return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && 1128 cfg->ecc_level == 15; 1129 else 1130 return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && 1131 cfg->ecc_level == 15) || 1132 (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); 1133 } 1134 1135 /* 1136 * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given 1137 * the layout/configuration. 1138 * Returns -ERRCODE on failure. 1139 */ 1140 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, 1141 struct mtd_oob_region *oobregion) 1142 { 1143 struct nand_chip *chip = mtd_to_nand(mtd); 1144 struct brcmnand_host *host = nand_get_controller_data(chip); 1145 struct brcmnand_cfg *cfg = &host->hwcfg; 1146 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1147 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1148 1149 if (section >= sectors) 1150 return -ERANGE; 1151 1152 oobregion->offset = (section * sas) + 6; 1153 oobregion->length = 3; 1154 1155 return 0; 1156 } 1157 1158 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, 1159 struct mtd_oob_region *oobregion) 1160 { 1161 struct nand_chip *chip = mtd_to_nand(mtd); 1162 struct brcmnand_host *host = nand_get_controller_data(chip); 1163 struct brcmnand_cfg *cfg = &host->hwcfg; 1164 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1165 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1166 u32 next; 1167 1168 if (section > sectors) 1169 return -ERANGE; 1170 1171 next = (section * sas); 1172 if (section < sectors) 1173 next += 6; 1174 1175 if (section) { 1176 oobregion->offset = ((section - 1) * sas) + 9; 1177 } else { 1178 if (cfg->page_size > 512) { 1179 /* Large page NAND uses first 2 bytes for BBI */ 1180 oobregion->offset = 2; 1181 } else { 1182 /* Small page NAND uses last byte before ECC for BBI */ 1183 oobregion->offset = 0; 1184 next--; 1185 } 1186 } 1187 1188 oobregion->length = next - oobregion->offset; 1189 1190 return 0; 1191 } 1192 1193 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { 1194 .ecc = brcmnand_hamming_ooblayout_ecc, 1195 .free = brcmnand_hamming_ooblayout_free, 1196 }; 1197 1198 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, 1199 struct mtd_oob_region *oobregion) 1200 { 1201 struct nand_chip *chip = mtd_to_nand(mtd); 1202 struct brcmnand_host *host = nand_get_controller_data(chip); 1203 struct brcmnand_cfg *cfg = &host->hwcfg; 1204 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1205 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1206 1207 if (section >= sectors) 1208 return -ERANGE; 1209 1210 oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes; 1211 oobregion->length = chip->ecc.bytes; 1212 1213 return 0; 1214 } 1215 1216 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, 1217 struct mtd_oob_region *oobregion) 1218 { 1219 struct nand_chip *chip = mtd_to_nand(mtd); 1220 struct brcmnand_host *host = nand_get_controller_data(chip); 1221 struct brcmnand_cfg *cfg = &host->hwcfg; 1222 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1223 int sectors = cfg->page_size / (512 << cfg->sector_size_1k); 1224 1225 if (section >= sectors) 1226 return -ERANGE; 1227 1228 if (sas <= chip->ecc.bytes) 1229 return 0; 1230 1231 oobregion->offset = section * sas; 1232 oobregion->length = sas - chip->ecc.bytes; 1233 1234 if (!section) { 1235 oobregion->offset++; 1236 oobregion->length--; 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, 1243 struct mtd_oob_region *oobregion) 1244 { 1245 struct nand_chip *chip = mtd_to_nand(mtd); 1246 struct brcmnand_host *host = nand_get_controller_data(chip); 1247 struct brcmnand_cfg *cfg = &host->hwcfg; 1248 int sas = cfg->spare_area_size << cfg->sector_size_1k; 1249 1250 if (section > 1 || sas - chip->ecc.bytes < 6 || 1251 (section && sas - chip->ecc.bytes == 6)) 1252 return -ERANGE; 1253 1254 if (!section) { 1255 oobregion->offset = 0; 1256 oobregion->length = 5; 1257 } else { 1258 oobregion->offset = 6; 1259 oobregion->length = sas - chip->ecc.bytes - 6; 1260 } 1261 1262 return 0; 1263 } 1264 1265 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { 1266 .ecc = brcmnand_bch_ooblayout_ecc, 1267 .free = brcmnand_bch_ooblayout_free_lp, 1268 }; 1269 1270 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { 1271 .ecc = brcmnand_bch_ooblayout_ecc, 1272 .free = brcmnand_bch_ooblayout_free_sp, 1273 }; 1274 1275 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) 1276 { 1277 struct brcmnand_cfg *p = &host->hwcfg; 1278 struct mtd_info *mtd = nand_to_mtd(&host->chip); 1279 struct nand_ecc_ctrl *ecc = &host->chip.ecc; 1280 unsigned int ecc_level = p->ecc_level; 1281 int sas = p->spare_area_size << p->sector_size_1k; 1282 int sectors = p->page_size / (512 << p->sector_size_1k); 1283 1284 if (p->sector_size_1k) 1285 ecc_level <<= 1; 1286 1287 if (is_hamming_ecc(host->ctrl, p)) { 1288 ecc->bytes = 3 * sectors; 1289 mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); 1290 return 0; 1291 } 1292 1293 /* 1294 * CONTROLLER_VERSION: 1295 * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) 1296 * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) 1297 * But we will just be conservative. 1298 */ 1299 ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); 1300 if (p->page_size == 512) 1301 mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); 1302 else 1303 mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); 1304 1305 if (ecc->bytes >= sas) { 1306 dev_err(&host->pdev->dev, 1307 "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", 1308 ecc->bytes, sas); 1309 return -EINVAL; 1310 } 1311 1312 return 0; 1313 } 1314 1315 static void brcmnand_wp(struct mtd_info *mtd, int wp) 1316 { 1317 struct nand_chip *chip = mtd_to_nand(mtd); 1318 struct brcmnand_host *host = nand_get_controller_data(chip); 1319 struct brcmnand_controller *ctrl = host->ctrl; 1320 1321 if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { 1322 static int old_wp = -1; 1323 int ret; 1324 1325 if (old_wp != wp) { 1326 dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); 1327 old_wp = wp; 1328 } 1329 1330 /* 1331 * make sure ctrl/flash ready before and after 1332 * changing state of #WP pin 1333 */ 1334 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY | 1335 NAND_STATUS_READY, 1336 NAND_CTRL_RDY | 1337 NAND_STATUS_READY, 0); 1338 if (ret) 1339 return; 1340 1341 brcmnand_set_wp(ctrl, wp); 1342 nand_status_op(chip, NULL); 1343 /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ 1344 ret = bcmnand_ctrl_poll_status(ctrl, 1345 NAND_CTRL_RDY | 1346 NAND_STATUS_READY | 1347 NAND_STATUS_WP, 1348 NAND_CTRL_RDY | 1349 NAND_STATUS_READY | 1350 (wp ? 0 : NAND_STATUS_WP), 0); 1351 1352 if (ret) 1353 dev_err_ratelimited(&host->pdev->dev, 1354 "nand #WP expected %s\n", 1355 wp ? "on" : "off"); 1356 } 1357 } 1358 1359 /* Helper functions for reading and writing OOB registers */ 1360 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) 1361 { 1362 u16 offset0, offset10, reg_offs; 1363 1364 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; 1365 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; 1366 1367 if (offs >= ctrl->max_oob) 1368 return 0x77; 1369 1370 if (offs >= 16 && offset10) 1371 reg_offs = offset10 + ((offs - 0x10) & ~0x03); 1372 else 1373 reg_offs = offset0 + (offs & ~0x03); 1374 1375 return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); 1376 } 1377 1378 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, 1379 u32 data) 1380 { 1381 u16 offset0, offset10, reg_offs; 1382 1383 offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; 1384 offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; 1385 1386 if (offs >= ctrl->max_oob) 1387 return; 1388 1389 if (offs >= 16 && offset10) 1390 reg_offs = offset10 + ((offs - 0x10) & ~0x03); 1391 else 1392 reg_offs = offset0 + (offs & ~0x03); 1393 1394 nand_writereg(ctrl, reg_offs, data); 1395 } 1396 1397 /* 1398 * read_oob_from_regs - read data from OOB registers 1399 * @ctrl: NAND controller 1400 * @i: sub-page sector index 1401 * @oob: buffer to read to 1402 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) 1403 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal 1404 */ 1405 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, 1406 int sas, int sector_1k) 1407 { 1408 int tbytes = sas << sector_1k; 1409 int j; 1410 1411 /* Adjust OOB values for 1K sector size */ 1412 if (sector_1k && (i & 0x01)) 1413 tbytes = max(0, tbytes - (int)ctrl->max_oob); 1414 tbytes = min_t(int, tbytes, ctrl->max_oob); 1415 1416 for (j = 0; j < tbytes; j++) 1417 oob[j] = oob_reg_read(ctrl, j); 1418 return tbytes; 1419 } 1420 1421 /* 1422 * write_oob_to_regs - write data to OOB registers 1423 * @i: sub-page sector index 1424 * @oob: buffer to write from 1425 * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) 1426 * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal 1427 */ 1428 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, 1429 const u8 *oob, int sas, int sector_1k) 1430 { 1431 int tbytes = sas << sector_1k; 1432 int j; 1433 1434 /* Adjust OOB values for 1K sector size */ 1435 if (sector_1k && (i & 0x01)) 1436 tbytes = max(0, tbytes - (int)ctrl->max_oob); 1437 tbytes = min_t(int, tbytes, ctrl->max_oob); 1438 1439 for (j = 0; j < tbytes; j += 4) 1440 oob_reg_write(ctrl, j, 1441 (oob[j + 0] << 24) | 1442 (oob[j + 1] << 16) | 1443 (oob[j + 2] << 8) | 1444 (oob[j + 3] << 0)); 1445 return tbytes; 1446 } 1447 1448 static void brcmnand_edu_init(struct brcmnand_controller *ctrl) 1449 { 1450 /* initialize edu */ 1451 edu_writel(ctrl, EDU_ERR_STATUS, 0); 1452 edu_readl(ctrl, EDU_ERR_STATUS); 1453 edu_writel(ctrl, EDU_DONE, 0); 1454 edu_writel(ctrl, EDU_DONE, 0); 1455 edu_writel(ctrl, EDU_DONE, 0); 1456 edu_writel(ctrl, EDU_DONE, 0); 1457 edu_readl(ctrl, EDU_DONE); 1458 } 1459 1460 /* edu irq */ 1461 static irqreturn_t brcmnand_edu_irq(int irq, void *data) 1462 { 1463 struct brcmnand_controller *ctrl = data; 1464 1465 if (ctrl->edu_count) { 1466 ctrl->edu_count--; 1467 while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK)) 1468 udelay(1); 1469 edu_writel(ctrl, EDU_DONE, 0); 1470 edu_readl(ctrl, EDU_DONE); 1471 } 1472 1473 if (ctrl->edu_count) { 1474 ctrl->edu_dram_addr += FC_BYTES; 1475 ctrl->edu_ext_addr += FC_BYTES; 1476 1477 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); 1478 edu_readl(ctrl, EDU_DRAM_ADDR); 1479 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); 1480 edu_readl(ctrl, EDU_EXT_ADDR); 1481 1482 mb(); /* flush previous writes */ 1483 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); 1484 edu_readl(ctrl, EDU_CMD); 1485 1486 return IRQ_HANDLED; 1487 } 1488 1489 complete(&ctrl->edu_done); 1490 1491 return IRQ_HANDLED; 1492 } 1493 1494 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) 1495 { 1496 struct brcmnand_controller *ctrl = data; 1497 1498 /* Discard all NAND_CTLRDY interrupts during DMA */ 1499 if (ctrl->dma_pending) 1500 return IRQ_HANDLED; 1501 1502 /* check if you need to piggy back on the ctrlrdy irq */ 1503 if (ctrl->edu_pending) { 1504 if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0)) 1505 /* Discard interrupts while using dedicated edu irq */ 1506 return IRQ_HANDLED; 1507 1508 /* no registered edu irq, call handler */ 1509 return brcmnand_edu_irq(irq, data); 1510 } 1511 1512 complete(&ctrl->done); 1513 return IRQ_HANDLED; 1514 } 1515 1516 /* Handle SoC-specific interrupt hardware */ 1517 static irqreturn_t brcmnand_irq(int irq, void *data) 1518 { 1519 struct brcmnand_controller *ctrl = data; 1520 1521 if (ctrl->soc->ctlrdy_ack(ctrl->soc)) 1522 return brcmnand_ctlrdy_irq(irq, data); 1523 1524 return IRQ_NONE; 1525 } 1526 1527 static irqreturn_t brcmnand_dma_irq(int irq, void *data) 1528 { 1529 struct brcmnand_controller *ctrl = data; 1530 1531 complete(&ctrl->dma_done); 1532 1533 return IRQ_HANDLED; 1534 } 1535 1536 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) 1537 { 1538 struct brcmnand_controller *ctrl = host->ctrl; 1539 int ret; 1540 u64 cmd_addr; 1541 1542 cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); 1543 1544 dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr); 1545 1546 BUG_ON(ctrl->cmd_pending != 0); 1547 ctrl->cmd_pending = cmd; 1548 1549 ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); 1550 WARN_ON(ret); 1551 1552 mb(); /* flush previous writes */ 1553 brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, 1554 cmd << brcmnand_cmd_shift(ctrl)); 1555 } 1556 1557 /*********************************************************************** 1558 * NAND MTD API: read/program/erase 1559 ***********************************************************************/ 1560 1561 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat, 1562 unsigned int ctrl) 1563 { 1564 /* intentionally left blank */ 1565 } 1566 1567 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip) 1568 { 1569 struct brcmnand_host *host = nand_get_controller_data(chip); 1570 struct brcmnand_controller *ctrl = host->ctrl; 1571 struct mtd_info *mtd = nand_to_mtd(chip); 1572 bool err = false; 1573 int sts; 1574 1575 if (mtd->oops_panic_write) { 1576 /* switch to interrupt polling and PIO mode */ 1577 disable_ctrl_irqs(ctrl); 1578 sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, 1579 NAND_CTRL_RDY, 0); 1580 err = (sts < 0) ? true : false; 1581 } else { 1582 unsigned long timeo = msecs_to_jiffies( 1583 NAND_POLL_STATUS_TIMEOUT_MS); 1584 /* wait for completion interrupt */ 1585 sts = wait_for_completion_timeout(&ctrl->done, timeo); 1586 err = (sts <= 0) ? true : false; 1587 } 1588 1589 return err; 1590 } 1591 1592 static int brcmnand_waitfunc(struct nand_chip *chip) 1593 { 1594 struct brcmnand_host *host = nand_get_controller_data(chip); 1595 struct brcmnand_controller *ctrl = host->ctrl; 1596 bool err = false; 1597 1598 dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); 1599 if (ctrl->cmd_pending) 1600 err = brcmstb_nand_wait_for_completion(chip); 1601 1602 if (err) { 1603 u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) 1604 >> brcmnand_cmd_shift(ctrl); 1605 1606 dev_err_ratelimited(ctrl->dev, 1607 "timeout waiting for command %#02x\n", cmd); 1608 dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", 1609 brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); 1610 } 1611 ctrl->cmd_pending = 0; 1612 return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & 1613 INTFC_FLASH_STATUS; 1614 } 1615 1616 enum { 1617 LLOP_RE = BIT(16), 1618 LLOP_WE = BIT(17), 1619 LLOP_ALE = BIT(18), 1620 LLOP_CLE = BIT(19), 1621 LLOP_RETURN_IDLE = BIT(31), 1622 1623 LLOP_DATA_MASK = GENMASK(15, 0), 1624 }; 1625 1626 static int brcmnand_low_level_op(struct brcmnand_host *host, 1627 enum brcmnand_llop_type type, u32 data, 1628 bool last_op) 1629 { 1630 struct nand_chip *chip = &host->chip; 1631 struct brcmnand_controller *ctrl = host->ctrl; 1632 u32 tmp; 1633 1634 tmp = data & LLOP_DATA_MASK; 1635 switch (type) { 1636 case LL_OP_CMD: 1637 tmp |= LLOP_WE | LLOP_CLE; 1638 break; 1639 case LL_OP_ADDR: 1640 /* WE | ALE */ 1641 tmp |= LLOP_WE | LLOP_ALE; 1642 break; 1643 case LL_OP_WR: 1644 /* WE */ 1645 tmp |= LLOP_WE; 1646 break; 1647 case LL_OP_RD: 1648 /* RE */ 1649 tmp |= LLOP_RE; 1650 break; 1651 } 1652 if (last_op) 1653 /* RETURN_IDLE */ 1654 tmp |= LLOP_RETURN_IDLE; 1655 1656 dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); 1657 1658 brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); 1659 (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); 1660 1661 brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); 1662 return brcmnand_waitfunc(chip); 1663 } 1664 1665 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command, 1666 int column, int page_addr) 1667 { 1668 struct mtd_info *mtd = nand_to_mtd(chip); 1669 struct brcmnand_host *host = nand_get_controller_data(chip); 1670 struct brcmnand_controller *ctrl = host->ctrl; 1671 u64 addr = (u64)page_addr << chip->page_shift; 1672 int native_cmd = 0; 1673 1674 if (command == NAND_CMD_READID || command == NAND_CMD_PARAM || 1675 command == NAND_CMD_RNDOUT) 1676 addr = (u64)column; 1677 /* Avoid propagating a negative, don't-care address */ 1678 else if (page_addr < 0) 1679 addr = 0; 1680 1681 dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command, 1682 (unsigned long long)addr); 1683 1684 host->last_cmd = command; 1685 host->last_byte = 0; 1686 host->last_addr = addr; 1687 1688 switch (command) { 1689 case NAND_CMD_RESET: 1690 native_cmd = CMD_FLASH_RESET; 1691 break; 1692 case NAND_CMD_STATUS: 1693 native_cmd = CMD_STATUS_READ; 1694 break; 1695 case NAND_CMD_READID: 1696 native_cmd = CMD_DEVICE_ID_READ; 1697 break; 1698 case NAND_CMD_READOOB: 1699 native_cmd = CMD_SPARE_AREA_READ; 1700 break; 1701 case NAND_CMD_ERASE1: 1702 native_cmd = CMD_BLOCK_ERASE; 1703 brcmnand_wp(mtd, 0); 1704 break; 1705 case NAND_CMD_PARAM: 1706 native_cmd = CMD_PARAMETER_READ; 1707 break; 1708 case NAND_CMD_SET_FEATURES: 1709 case NAND_CMD_GET_FEATURES: 1710 brcmnand_low_level_op(host, LL_OP_CMD, command, false); 1711 brcmnand_low_level_op(host, LL_OP_ADDR, column, false); 1712 break; 1713 case NAND_CMD_RNDOUT: 1714 native_cmd = CMD_PARAMETER_CHANGE_COL; 1715 addr &= ~((u64)(FC_BYTES - 1)); 1716 /* 1717 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0 1718 * NB: hwcfg.sector_size_1k may not be initialized yet 1719 */ 1720 if (brcmnand_get_sector_size_1k(host)) { 1721 host->hwcfg.sector_size_1k = 1722 brcmnand_get_sector_size_1k(host); 1723 brcmnand_set_sector_size_1k(host, 0); 1724 } 1725 break; 1726 } 1727 1728 if (!native_cmd) 1729 return; 1730 1731 brcmnand_set_cmd_addr(mtd, addr); 1732 brcmnand_send_cmd(host, native_cmd); 1733 brcmnand_waitfunc(chip); 1734 1735 if (native_cmd == CMD_PARAMETER_READ || 1736 native_cmd == CMD_PARAMETER_CHANGE_COL) { 1737 /* Copy flash cache word-wise */ 1738 u32 *flash_cache = (u32 *)ctrl->flash_cache; 1739 int i; 1740 1741 brcmnand_soc_data_bus_prepare(ctrl->soc, true); 1742 1743 /* 1744 * Must cache the FLASH_CACHE now, since changes in 1745 * SECTOR_SIZE_1K may invalidate it 1746 */ 1747 for (i = 0; i < FC_WORDS; i++) 1748 /* 1749 * Flash cache is big endian for parameter pages, at 1750 * least on STB SoCs 1751 */ 1752 flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i)); 1753 1754 brcmnand_soc_data_bus_unprepare(ctrl->soc, true); 1755 1756 /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */ 1757 if (host->hwcfg.sector_size_1k) 1758 brcmnand_set_sector_size_1k(host, 1759 host->hwcfg.sector_size_1k); 1760 } 1761 1762 /* Re-enable protection is necessary only after erase */ 1763 if (command == NAND_CMD_ERASE1) 1764 brcmnand_wp(mtd, 1); 1765 } 1766 1767 static uint8_t brcmnand_read_byte(struct nand_chip *chip) 1768 { 1769 struct brcmnand_host *host = nand_get_controller_data(chip); 1770 struct brcmnand_controller *ctrl = host->ctrl; 1771 uint8_t ret = 0; 1772 int addr, offs; 1773 1774 switch (host->last_cmd) { 1775 case NAND_CMD_READID: 1776 if (host->last_byte < 4) 1777 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >> 1778 (24 - (host->last_byte << 3)); 1779 else if (host->last_byte < 8) 1780 ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >> 1781 (56 - (host->last_byte << 3)); 1782 break; 1783 1784 case NAND_CMD_READOOB: 1785 ret = oob_reg_read(ctrl, host->last_byte); 1786 break; 1787 1788 case NAND_CMD_STATUS: 1789 ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & 1790 INTFC_FLASH_STATUS; 1791 if (wp_on) /* hide WP status */ 1792 ret |= NAND_STATUS_WP; 1793 break; 1794 1795 case NAND_CMD_PARAM: 1796 case NAND_CMD_RNDOUT: 1797 addr = host->last_addr + host->last_byte; 1798 offs = addr & (FC_BYTES - 1); 1799 1800 /* At FC_BYTES boundary, switch to next column */ 1801 if (host->last_byte > 0 && offs == 0) 1802 nand_change_read_column_op(chip, addr, NULL, 0, false); 1803 1804 ret = ctrl->flash_cache[offs]; 1805 break; 1806 case NAND_CMD_GET_FEATURES: 1807 if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) { 1808 ret = 0; 1809 } else { 1810 bool last = host->last_byte == 1811 ONFI_SUBFEATURE_PARAM_LEN - 1; 1812 brcmnand_low_level_op(host, LL_OP_RD, 0, last); 1813 ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff; 1814 } 1815 } 1816 1817 dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret); 1818 host->last_byte++; 1819 1820 return ret; 1821 } 1822 1823 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len) 1824 { 1825 int i; 1826 1827 for (i = 0; i < len; i++, buf++) 1828 *buf = brcmnand_read_byte(chip); 1829 } 1830 1831 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf, 1832 int len) 1833 { 1834 int i; 1835 struct brcmnand_host *host = nand_get_controller_data(chip); 1836 1837 switch (host->last_cmd) { 1838 case NAND_CMD_SET_FEATURES: 1839 for (i = 0; i < len; i++) 1840 brcmnand_low_level_op(host, LL_OP_WR, buf[i], 1841 (i + 1) == len); 1842 break; 1843 default: 1844 BUG(); 1845 break; 1846 } 1847 } 1848 1849 /** 1850 * Kick EDU engine 1851 */ 1852 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf, 1853 u32 len, u8 cmd) 1854 { 1855 struct brcmnand_controller *ctrl = host->ctrl; 1856 unsigned long timeo = msecs_to_jiffies(200); 1857 int ret = 0; 1858 int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE); 1859 u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE); 1860 unsigned int trans = len >> FC_SHIFT; 1861 dma_addr_t pa; 1862 1863 pa = dma_map_single(ctrl->dev, buf, len, dir); 1864 if (dma_mapping_error(ctrl->dev, pa)) { 1865 dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n"); 1866 return -ENOMEM; 1867 } 1868 1869 ctrl->edu_pending = true; 1870 ctrl->edu_dram_addr = pa; 1871 ctrl->edu_ext_addr = addr; 1872 ctrl->edu_cmd = edu_cmd; 1873 ctrl->edu_count = trans; 1874 1875 edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); 1876 edu_readl(ctrl, EDU_DRAM_ADDR); 1877 edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); 1878 edu_readl(ctrl, EDU_EXT_ADDR); 1879 edu_writel(ctrl, EDU_LENGTH, FC_BYTES); 1880 edu_readl(ctrl, EDU_LENGTH); 1881 1882 /* Start edu engine */ 1883 mb(); /* flush previous writes */ 1884 edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); 1885 edu_readl(ctrl, EDU_CMD); 1886 1887 if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) { 1888 dev_err(ctrl->dev, 1889 "timeout waiting for EDU; status %#x, error status %#x\n", 1890 edu_readl(ctrl, EDU_STATUS), 1891 edu_readl(ctrl, EDU_ERR_STATUS)); 1892 } 1893 1894 dma_unmap_single(ctrl->dev, pa, len, dir); 1895 1896 /* for program page check NAND status */ 1897 if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & 1898 INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) && 1899 edu_cmd == EDU_CMD_WRITE) { 1900 dev_info(ctrl->dev, "program failed at %llx\n", 1901 (unsigned long long)addr); 1902 ret = -EIO; 1903 } 1904 1905 /* Make sure the EDU status is clean */ 1906 if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE) 1907 dev_warn(ctrl->dev, "EDU still active: %#x\n", 1908 edu_readl(ctrl, EDU_STATUS)); 1909 1910 if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) { 1911 dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n", 1912 (unsigned long long)addr); 1913 ret = -EIO; 1914 } 1915 1916 ctrl->edu_pending = false; 1917 brcmnand_edu_init(ctrl); 1918 edu_writel(ctrl, EDU_STOP, 0); /* force stop */ 1919 edu_readl(ctrl, EDU_STOP); 1920 1921 if (!ret && edu_cmd == EDU_CMD_READ) { 1922 u64 err_addr = 0; 1923 1924 /* 1925 * check for ECC errors here, subpage ECC errors are 1926 * retained in ECC error address register 1927 */ 1928 err_addr = brcmnand_get_uncorrecc_addr(ctrl); 1929 if (!err_addr) { 1930 err_addr = brcmnand_get_correcc_addr(ctrl); 1931 if (err_addr) 1932 ret = -EUCLEAN; 1933 } else 1934 ret = -EBADMSG; 1935 } 1936 1937 return ret; 1938 } 1939 1940 /** 1941 * Construct a FLASH_DMA descriptor as part of a linked list. You must know the 1942 * following ahead of time: 1943 * - Is this descriptor the beginning or end of a linked list? 1944 * - What is the (DMA) address of the next descriptor in the linked list? 1945 */ 1946 static int brcmnand_fill_dma_desc(struct brcmnand_host *host, 1947 struct brcm_nand_dma_desc *desc, u64 addr, 1948 dma_addr_t buf, u32 len, u8 dma_cmd, 1949 bool begin, bool end, 1950 dma_addr_t next_desc) 1951 { 1952 memset(desc, 0, sizeof(*desc)); 1953 /* Descriptors are written in native byte order (wordwise) */ 1954 desc->next_desc = lower_32_bits(next_desc); 1955 desc->next_desc_ext = upper_32_bits(next_desc); 1956 desc->cmd_irq = (dma_cmd << 24) | 1957 (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ 1958 (!!begin) | ((!!end) << 1); /* head, tail */ 1959 #ifdef CONFIG_CPU_BIG_ENDIAN 1960 desc->cmd_irq |= 0x01 << 12; 1961 #endif 1962 desc->dram_addr = lower_32_bits(buf); 1963 desc->dram_addr_ext = upper_32_bits(buf); 1964 desc->tfr_len = len; 1965 desc->total_len = len; 1966 desc->flash_addr = lower_32_bits(addr); 1967 desc->flash_addr_ext = upper_32_bits(addr); 1968 desc->cs = host->cs; 1969 desc->status_valid = 0x01; 1970 return 0; 1971 } 1972 1973 /** 1974 * Kick the FLASH_DMA engine, with a given DMA descriptor 1975 */ 1976 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) 1977 { 1978 struct brcmnand_controller *ctrl = host->ctrl; 1979 unsigned long timeo = msecs_to_jiffies(100); 1980 1981 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); 1982 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); 1983 if (ctrl->nand_version > 0x0602) { 1984 flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, 1985 upper_32_bits(desc)); 1986 (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); 1987 } 1988 1989 /* Start FLASH_DMA engine */ 1990 ctrl->dma_pending = true; 1991 mb(); /* flush previous writes */ 1992 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ 1993 1994 if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { 1995 dev_err(ctrl->dev, 1996 "timeout waiting for DMA; status %#x, error status %#x\n", 1997 flash_dma_readl(ctrl, FLASH_DMA_STATUS), 1998 flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); 1999 } 2000 ctrl->dma_pending = false; 2001 flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ 2002 } 2003 2004 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, 2005 u32 len, u8 dma_cmd) 2006 { 2007 struct brcmnand_controller *ctrl = host->ctrl; 2008 dma_addr_t buf_pa; 2009 int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2010 2011 buf_pa = dma_map_single(ctrl->dev, buf, len, dir); 2012 if (dma_mapping_error(ctrl->dev, buf_pa)) { 2013 dev_err(ctrl->dev, "unable to map buffer for DMA\n"); 2014 return -ENOMEM; 2015 } 2016 2017 brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, 2018 dma_cmd, true, true, 0); 2019 2020 brcmnand_dma_run(host, ctrl->dma_pa); 2021 2022 dma_unmap_single(ctrl->dev, buf_pa, len, dir); 2023 2024 if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) 2025 return -EBADMSG; 2026 else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) 2027 return -EUCLEAN; 2028 2029 return 0; 2030 } 2031 2032 /* 2033 * Assumes proper CS is already set 2034 */ 2035 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, 2036 u64 addr, unsigned int trans, u32 *buf, 2037 u8 *oob, u64 *err_addr) 2038 { 2039 struct brcmnand_host *host = nand_get_controller_data(chip); 2040 struct brcmnand_controller *ctrl = host->ctrl; 2041 int i, j, ret = 0; 2042 2043 brcmnand_clear_ecc_addr(ctrl); 2044 2045 for (i = 0; i < trans; i++, addr += FC_BYTES) { 2046 brcmnand_set_cmd_addr(mtd, addr); 2047 /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ 2048 brcmnand_send_cmd(host, CMD_PAGE_READ); 2049 brcmnand_waitfunc(chip); 2050 2051 if (likely(buf)) { 2052 brcmnand_soc_data_bus_prepare(ctrl->soc, false); 2053 2054 for (j = 0; j < FC_WORDS; j++, buf++) 2055 *buf = brcmnand_read_fc(ctrl, j); 2056 2057 brcmnand_soc_data_bus_unprepare(ctrl->soc, false); 2058 } 2059 2060 if (oob) 2061 oob += read_oob_from_regs(ctrl, i, oob, 2062 mtd->oobsize / trans, 2063 host->hwcfg.sector_size_1k); 2064 2065 if (!ret) { 2066 *err_addr = brcmnand_get_uncorrecc_addr(ctrl); 2067 2068 if (*err_addr) 2069 ret = -EBADMSG; 2070 } 2071 2072 if (!ret) { 2073 *err_addr = brcmnand_get_correcc_addr(ctrl); 2074 2075 if (*err_addr) 2076 ret = -EUCLEAN; 2077 } 2078 } 2079 2080 return ret; 2081 } 2082 2083 /* 2084 * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC 2085 * error 2086 * 2087 * Because the HW ECC signals an ECC error if an erase paged has even a single 2088 * bitflip, we must check each ECC error to see if it is actually an erased 2089 * page with bitflips, not a truly corrupted page. 2090 * 2091 * On a real error, return a negative error code (-EBADMSG for ECC error), and 2092 * buf will contain raw data. 2093 * Otherwise, buf gets filled with 0xffs and return the maximum number of 2094 * bitflips-per-ECC-sector to the caller. 2095 * 2096 */ 2097 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, 2098 struct nand_chip *chip, void *buf, u64 addr) 2099 { 2100 struct mtd_oob_region ecc; 2101 int i; 2102 int bitflips = 0; 2103 int page = addr >> chip->page_shift; 2104 int ret; 2105 void *ecc_bytes; 2106 void *ecc_chunk; 2107 2108 if (!buf) 2109 buf = nand_get_data_buf(chip); 2110 2111 /* read without ecc for verification */ 2112 ret = chip->ecc.read_page_raw(chip, buf, true, page); 2113 if (ret) 2114 return ret; 2115 2116 for (i = 0; i < chip->ecc.steps; i++) { 2117 ecc_chunk = buf + chip->ecc.size * i; 2118 2119 mtd_ooblayout_ecc(mtd, i, &ecc); 2120 ecc_bytes = chip->oob_poi + ecc.offset; 2121 2122 ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size, 2123 ecc_bytes, ecc.length, 2124 NULL, 0, 2125 chip->ecc.strength); 2126 if (ret < 0) 2127 return ret; 2128 2129 bitflips = max(bitflips, ret); 2130 } 2131 2132 return bitflips; 2133 } 2134 2135 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, 2136 u64 addr, unsigned int trans, u32 *buf, u8 *oob) 2137 { 2138 struct brcmnand_host *host = nand_get_controller_data(chip); 2139 struct brcmnand_controller *ctrl = host->ctrl; 2140 u64 err_addr = 0; 2141 int err; 2142 bool retry = true; 2143 bool edu_err = false; 2144 2145 dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); 2146 2147 try_dmaread: 2148 brcmnand_clear_ecc_addr(ctrl); 2149 2150 if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) { 2151 err = ctrl->dma_trans(host, addr, buf, 2152 trans * FC_BYTES, 2153 CMD_PAGE_READ); 2154 2155 if (err) { 2156 if (mtd_is_bitflip_or_eccerr(err)) 2157 err_addr = addr; 2158 else 2159 return -EIO; 2160 } 2161 2162 if (has_edu(ctrl) && err_addr) 2163 edu_err = true; 2164 2165 } else { 2166 if (oob) 2167 memset(oob, 0x99, mtd->oobsize); 2168 2169 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, 2170 oob, &err_addr); 2171 } 2172 2173 if (mtd_is_eccerr(err)) { 2174 /* 2175 * On controller version and 7.0, 7.1 , DMA read after a 2176 * prior PIO read that reported uncorrectable error, 2177 * the DMA engine captures this error following DMA read 2178 * cleared only on subsequent DMA read, so just retry once 2179 * to clear a possible false error reported for current DMA 2180 * read 2181 */ 2182 if ((ctrl->nand_version == 0x0700) || 2183 (ctrl->nand_version == 0x0701)) { 2184 if (retry) { 2185 retry = false; 2186 goto try_dmaread; 2187 } 2188 } 2189 2190 /* 2191 * Controller version 7.2 has hw encoder to detect erased page 2192 * bitflips, apply sw verification for older controllers only 2193 */ 2194 if (ctrl->nand_version < 0x0702) { 2195 err = brcmstb_nand_verify_erased_page(mtd, chip, buf, 2196 addr); 2197 /* erased page bitflips corrected */ 2198 if (err >= 0) 2199 return err; 2200 } 2201 2202 dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", 2203 (unsigned long long)err_addr); 2204 mtd->ecc_stats.failed++; 2205 /* NAND layer expects zero on ECC errors */ 2206 return 0; 2207 } 2208 2209 if (mtd_is_bitflip(err)) { 2210 unsigned int corrected = brcmnand_count_corrected(ctrl); 2211 2212 /* in case of EDU correctable error we read again using PIO */ 2213 if (edu_err) 2214 err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, 2215 oob, &err_addr); 2216 2217 dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", 2218 (unsigned long long)err_addr); 2219 mtd->ecc_stats.corrected += corrected; 2220 /* Always exceed the software-imposed threshold */ 2221 return max(mtd->bitflip_threshold, corrected); 2222 } 2223 2224 return 0; 2225 } 2226 2227 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf, 2228 int oob_required, int page) 2229 { 2230 struct mtd_info *mtd = nand_to_mtd(chip); 2231 struct brcmnand_host *host = nand_get_controller_data(chip); 2232 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; 2233 2234 nand_read_page_op(chip, page, 0, NULL, 0); 2235 2236 return brcmnand_read(mtd, chip, host->last_addr, 2237 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); 2238 } 2239 2240 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf, 2241 int oob_required, int page) 2242 { 2243 struct brcmnand_host *host = nand_get_controller_data(chip); 2244 struct mtd_info *mtd = nand_to_mtd(chip); 2245 u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; 2246 int ret; 2247 2248 nand_read_page_op(chip, page, 0, NULL, 0); 2249 2250 brcmnand_set_ecc_enabled(host, 0); 2251 ret = brcmnand_read(mtd, chip, host->last_addr, 2252 mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); 2253 brcmnand_set_ecc_enabled(host, 1); 2254 return ret; 2255 } 2256 2257 static int brcmnand_read_oob(struct nand_chip *chip, int page) 2258 { 2259 struct mtd_info *mtd = nand_to_mtd(chip); 2260 2261 return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, 2262 mtd->writesize >> FC_SHIFT, 2263 NULL, (u8 *)chip->oob_poi); 2264 } 2265 2266 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page) 2267 { 2268 struct mtd_info *mtd = nand_to_mtd(chip); 2269 struct brcmnand_host *host = nand_get_controller_data(chip); 2270 2271 brcmnand_set_ecc_enabled(host, 0); 2272 brcmnand_read(mtd, chip, (u64)page << chip->page_shift, 2273 mtd->writesize >> FC_SHIFT, 2274 NULL, (u8 *)chip->oob_poi); 2275 brcmnand_set_ecc_enabled(host, 1); 2276 return 0; 2277 } 2278 2279 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, 2280 u64 addr, const u32 *buf, u8 *oob) 2281 { 2282 struct brcmnand_host *host = nand_get_controller_data(chip); 2283 struct brcmnand_controller *ctrl = host->ctrl; 2284 unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; 2285 int status, ret = 0; 2286 2287 dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); 2288 2289 if (unlikely((unsigned long)buf & 0x03)) { 2290 dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); 2291 buf = (u32 *)((unsigned long)buf & ~0x03); 2292 } 2293 2294 brcmnand_wp(mtd, 0); 2295 2296 for (i = 0; i < ctrl->max_oob; i += 4) 2297 oob_reg_write(ctrl, i, 0xffffffff); 2298 2299 if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { 2300 if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize, 2301 CMD_PROGRAM_PAGE)) 2302 2303 ret = -EIO; 2304 2305 goto out; 2306 } 2307 2308 for (i = 0; i < trans; i++, addr += FC_BYTES) { 2309 /* full address MUST be set before populating FC */ 2310 brcmnand_set_cmd_addr(mtd, addr); 2311 2312 if (buf) { 2313 brcmnand_soc_data_bus_prepare(ctrl->soc, false); 2314 2315 for (j = 0; j < FC_WORDS; j++, buf++) 2316 brcmnand_write_fc(ctrl, j, *buf); 2317 2318 brcmnand_soc_data_bus_unprepare(ctrl->soc, false); 2319 } else if (oob) { 2320 for (j = 0; j < FC_WORDS; j++) 2321 brcmnand_write_fc(ctrl, j, 0xffffffff); 2322 } 2323 2324 if (oob) { 2325 oob += write_oob_to_regs(ctrl, i, oob, 2326 mtd->oobsize / trans, 2327 host->hwcfg.sector_size_1k); 2328 } 2329 2330 /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ 2331 brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); 2332 status = brcmnand_waitfunc(chip); 2333 2334 if (status & NAND_STATUS_FAIL) { 2335 dev_info(ctrl->dev, "program failed at %llx\n", 2336 (unsigned long long)addr); 2337 ret = -EIO; 2338 goto out; 2339 } 2340 } 2341 out: 2342 brcmnand_wp(mtd, 1); 2343 return ret; 2344 } 2345 2346 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf, 2347 int oob_required, int page) 2348 { 2349 struct mtd_info *mtd = nand_to_mtd(chip); 2350 struct brcmnand_host *host = nand_get_controller_data(chip); 2351 void *oob = oob_required ? chip->oob_poi : NULL; 2352 2353 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2354 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); 2355 2356 return nand_prog_page_end_op(chip); 2357 } 2358 2359 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 2360 int oob_required, int page) 2361 { 2362 struct mtd_info *mtd = nand_to_mtd(chip); 2363 struct brcmnand_host *host = nand_get_controller_data(chip); 2364 void *oob = oob_required ? chip->oob_poi : NULL; 2365 2366 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 2367 brcmnand_set_ecc_enabled(host, 0); 2368 brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); 2369 brcmnand_set_ecc_enabled(host, 1); 2370 2371 return nand_prog_page_end_op(chip); 2372 } 2373 2374 static int brcmnand_write_oob(struct nand_chip *chip, int page) 2375 { 2376 return brcmnand_write(nand_to_mtd(chip), chip, 2377 (u64)page << chip->page_shift, NULL, 2378 chip->oob_poi); 2379 } 2380 2381 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page) 2382 { 2383 struct mtd_info *mtd = nand_to_mtd(chip); 2384 struct brcmnand_host *host = nand_get_controller_data(chip); 2385 int ret; 2386 2387 brcmnand_set_ecc_enabled(host, 0); 2388 ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, 2389 (u8 *)chip->oob_poi); 2390 brcmnand_set_ecc_enabled(host, 1); 2391 2392 return ret; 2393 } 2394 2395 /*********************************************************************** 2396 * Per-CS setup (1 NAND device) 2397 ***********************************************************************/ 2398 2399 static int brcmnand_set_cfg(struct brcmnand_host *host, 2400 struct brcmnand_cfg *cfg) 2401 { 2402 struct brcmnand_controller *ctrl = host->ctrl; 2403 struct nand_chip *chip = &host->chip; 2404 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 2405 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, 2406 BRCMNAND_CS_CFG_EXT); 2407 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 2408 BRCMNAND_CS_ACC_CONTROL); 2409 u8 block_size = 0, page_size = 0, device_size = 0; 2410 u32 tmp; 2411 2412 if (ctrl->block_sizes) { 2413 int i, found; 2414 2415 for (i = 0, found = 0; ctrl->block_sizes[i]; i++) 2416 if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { 2417 block_size = i; 2418 found = 1; 2419 } 2420 if (!found) { 2421 dev_warn(ctrl->dev, "invalid block size %u\n", 2422 cfg->block_size); 2423 return -EINVAL; 2424 } 2425 } else { 2426 block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); 2427 } 2428 2429 if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && 2430 cfg->block_size > ctrl->max_block_size)) { 2431 dev_warn(ctrl->dev, "invalid block size %u\n", 2432 cfg->block_size); 2433 block_size = 0; 2434 } 2435 2436 if (ctrl->page_sizes) { 2437 int i, found; 2438 2439 for (i = 0, found = 0; ctrl->page_sizes[i]; i++) 2440 if (ctrl->page_sizes[i] == cfg->page_size) { 2441 page_size = i; 2442 found = 1; 2443 } 2444 if (!found) { 2445 dev_warn(ctrl->dev, "invalid page size %u\n", 2446 cfg->page_size); 2447 return -EINVAL; 2448 } 2449 } else { 2450 page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); 2451 } 2452 2453 if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && 2454 cfg->page_size > ctrl->max_page_size)) { 2455 dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); 2456 return -EINVAL; 2457 } 2458 2459 if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { 2460 dev_warn(ctrl->dev, "invalid device size 0x%llx\n", 2461 (unsigned long long)cfg->device_size); 2462 return -EINVAL; 2463 } 2464 device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); 2465 2466 tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | 2467 (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | 2468 (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | 2469 (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | 2470 (device_size << CFG_DEVICE_SIZE_SHIFT); 2471 if (cfg_offs == cfg_ext_offs) { 2472 tmp |= (page_size << ctrl->page_size_shift) | 2473 (block_size << CFG_BLK_SIZE_SHIFT); 2474 nand_writereg(ctrl, cfg_offs, tmp); 2475 } else { 2476 nand_writereg(ctrl, cfg_offs, tmp); 2477 tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | 2478 (block_size << CFG_EXT_BLK_SIZE_SHIFT); 2479 nand_writereg(ctrl, cfg_ext_offs, tmp); 2480 } 2481 2482 tmp = nand_readreg(ctrl, acc_control_offs); 2483 tmp &= ~brcmnand_ecc_level_mask(ctrl); 2484 tmp &= ~brcmnand_spare_area_mask(ctrl); 2485 if (ctrl->nand_version >= 0x0302) { 2486 tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT; 2487 tmp |= cfg->spare_area_size; 2488 } 2489 nand_writereg(ctrl, acc_control_offs, tmp); 2490 2491 brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); 2492 2493 /* threshold = ceil(BCH-level * 0.75) */ 2494 brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); 2495 2496 return 0; 2497 } 2498 2499 static void brcmnand_print_cfg(struct brcmnand_host *host, 2500 char *buf, struct brcmnand_cfg *cfg) 2501 { 2502 buf += sprintf(buf, 2503 "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", 2504 (unsigned long long)cfg->device_size >> 20, 2505 cfg->block_size >> 10, 2506 cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, 2507 cfg->page_size >= 1024 ? "KiB" : "B", 2508 cfg->spare_area_size, cfg->device_width); 2509 2510 /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ 2511 if (is_hamming_ecc(host->ctrl, cfg)) 2512 sprintf(buf, ", Hamming ECC"); 2513 else if (cfg->sector_size_1k) 2514 sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); 2515 else 2516 sprintf(buf, ", BCH-%u", cfg->ecc_level); 2517 } 2518 2519 /* 2520 * Minimum number of bytes to address a page. Calculated as: 2521 * roundup(log2(size / page-size) / 8) 2522 * 2523 * NB: the following does not "round up" for non-power-of-2 'size'; but this is 2524 * OK because many other things will break if 'size' is irregular... 2525 */ 2526 static inline int get_blk_adr_bytes(u64 size, u32 writesize) 2527 { 2528 return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; 2529 } 2530 2531 static int brcmnand_setup_dev(struct brcmnand_host *host) 2532 { 2533 struct mtd_info *mtd = nand_to_mtd(&host->chip); 2534 struct nand_chip *chip = &host->chip; 2535 struct brcmnand_controller *ctrl = host->ctrl; 2536 struct brcmnand_cfg *cfg = &host->hwcfg; 2537 char msg[128]; 2538 u32 offs, tmp, oob_sector; 2539 int ret; 2540 2541 memset(cfg, 0, sizeof(*cfg)); 2542 2543 ret = of_property_read_u32(nand_get_flash_node(chip), 2544 "brcm,nand-oob-sector-size", 2545 &oob_sector); 2546 if (ret) { 2547 /* Use detected size */ 2548 cfg->spare_area_size = mtd->oobsize / 2549 (mtd->writesize >> FC_SHIFT); 2550 } else { 2551 cfg->spare_area_size = oob_sector; 2552 } 2553 if (cfg->spare_area_size > ctrl->max_oob) 2554 cfg->spare_area_size = ctrl->max_oob; 2555 /* 2556 * Set oobsize to be consistent with controller's spare_area_size, as 2557 * the rest is inaccessible. 2558 */ 2559 mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); 2560 2561 cfg->device_size = mtd->size; 2562 cfg->block_size = mtd->erasesize; 2563 cfg->page_size = mtd->writesize; 2564 cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; 2565 cfg->col_adr_bytes = 2; 2566 cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); 2567 2568 if (chip->ecc.mode != NAND_ECC_HW) { 2569 dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", 2570 chip->ecc.mode); 2571 return -EINVAL; 2572 } 2573 2574 if (chip->ecc.algo == NAND_ECC_UNKNOWN) { 2575 if (chip->ecc.strength == 1 && chip->ecc.size == 512) 2576 /* Default to Hamming for 1-bit ECC, if unspecified */ 2577 chip->ecc.algo = NAND_ECC_HAMMING; 2578 else 2579 /* Otherwise, BCH */ 2580 chip->ecc.algo = NAND_ECC_BCH; 2581 } 2582 2583 if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 || 2584 chip->ecc.size != 512)) { 2585 dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", 2586 chip->ecc.strength, chip->ecc.size); 2587 return -EINVAL; 2588 } 2589 2590 if (chip->ecc.mode != NAND_ECC_NONE && 2591 (!chip->ecc.size || !chip->ecc.strength)) { 2592 if (chip->base.eccreq.step_size && chip->base.eccreq.strength) { 2593 /* use detected ECC parameters */ 2594 chip->ecc.size = chip->base.eccreq.step_size; 2595 chip->ecc.strength = chip->base.eccreq.strength; 2596 dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n", 2597 chip->ecc.size, chip->ecc.strength); 2598 } 2599 } 2600 2601 switch (chip->ecc.size) { 2602 case 512: 2603 if (chip->ecc.algo == NAND_ECC_HAMMING) 2604 cfg->ecc_level = 15; 2605 else 2606 cfg->ecc_level = chip->ecc.strength; 2607 cfg->sector_size_1k = 0; 2608 break; 2609 case 1024: 2610 if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { 2611 dev_err(ctrl->dev, "1KB sectors not supported\n"); 2612 return -EINVAL; 2613 } 2614 if (chip->ecc.strength & 0x1) { 2615 dev_err(ctrl->dev, 2616 "odd ECC not supported with 1KB sectors\n"); 2617 return -EINVAL; 2618 } 2619 2620 cfg->ecc_level = chip->ecc.strength >> 1; 2621 cfg->sector_size_1k = 1; 2622 break; 2623 default: 2624 dev_err(ctrl->dev, "unsupported ECC size: %d\n", 2625 chip->ecc.size); 2626 return -EINVAL; 2627 } 2628 2629 cfg->ful_adr_bytes = cfg->blk_adr_bytes; 2630 if (mtd->writesize > 512) 2631 cfg->ful_adr_bytes += cfg->col_adr_bytes; 2632 else 2633 cfg->ful_adr_bytes += 1; 2634 2635 ret = brcmnand_set_cfg(host, cfg); 2636 if (ret) 2637 return ret; 2638 2639 brcmnand_set_ecc_enabled(host, 1); 2640 2641 brcmnand_print_cfg(host, msg, cfg); 2642 dev_info(ctrl->dev, "detected %s\n", msg); 2643 2644 /* Configure ACC_CONTROL */ 2645 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); 2646 tmp = nand_readreg(ctrl, offs); 2647 tmp &= ~ACC_CONTROL_PARTIAL_PAGE; 2648 tmp &= ~ACC_CONTROL_RD_ERASED; 2649 2650 /* We need to turn on Read from erased paged protected by ECC */ 2651 if (ctrl->nand_version >= 0x0702) 2652 tmp |= ACC_CONTROL_RD_ERASED; 2653 tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; 2654 if (ctrl->features & BRCMNAND_HAS_PREFETCH) 2655 tmp &= ~ACC_CONTROL_PREFETCH; 2656 2657 nand_writereg(ctrl, offs, tmp); 2658 2659 return 0; 2660 } 2661 2662 static int brcmnand_attach_chip(struct nand_chip *chip) 2663 { 2664 struct mtd_info *mtd = nand_to_mtd(chip); 2665 struct brcmnand_host *host = nand_get_controller_data(chip); 2666 int ret; 2667 2668 chip->options |= NAND_NO_SUBPAGE_WRITE; 2669 /* 2670 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA 2671 * to/from, and have nand_base pass us a bounce buffer instead, as 2672 * needed. 2673 */ 2674 chip->options |= NAND_USES_DMA; 2675 2676 if (chip->bbt_options & NAND_BBT_USE_FLASH) 2677 chip->bbt_options |= NAND_BBT_NO_OOB; 2678 2679 if (brcmnand_setup_dev(host)) 2680 return -ENXIO; 2681 2682 chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; 2683 2684 /* only use our internal HW threshold */ 2685 mtd->bitflip_threshold = 1; 2686 2687 ret = brcmstb_choose_ecc_layout(host); 2688 2689 return ret; 2690 } 2691 2692 static const struct nand_controller_ops brcmnand_controller_ops = { 2693 .attach_chip = brcmnand_attach_chip, 2694 }; 2695 2696 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn) 2697 { 2698 struct brcmnand_controller *ctrl = host->ctrl; 2699 struct platform_device *pdev = host->pdev; 2700 struct mtd_info *mtd; 2701 struct nand_chip *chip; 2702 int ret; 2703 u16 cfg_offs; 2704 2705 ret = of_property_read_u32(dn, "reg", &host->cs); 2706 if (ret) { 2707 dev_err(&pdev->dev, "can't get chip-select\n"); 2708 return -ENXIO; 2709 } 2710 2711 mtd = nand_to_mtd(&host->chip); 2712 chip = &host->chip; 2713 2714 nand_set_flash_node(chip, dn); 2715 nand_set_controller_data(chip, host); 2716 mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d", 2717 host->cs); 2718 if (!mtd->name) 2719 return -ENOMEM; 2720 2721 mtd->owner = THIS_MODULE; 2722 mtd->dev.parent = &pdev->dev; 2723 2724 chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl; 2725 chip->legacy.cmdfunc = brcmnand_cmdfunc; 2726 chip->legacy.waitfunc = brcmnand_waitfunc; 2727 chip->legacy.read_byte = brcmnand_read_byte; 2728 chip->legacy.read_buf = brcmnand_read_buf; 2729 chip->legacy.write_buf = brcmnand_write_buf; 2730 2731 chip->ecc.mode = NAND_ECC_HW; 2732 chip->ecc.read_page = brcmnand_read_page; 2733 chip->ecc.write_page = brcmnand_write_page; 2734 chip->ecc.read_page_raw = brcmnand_read_page_raw; 2735 chip->ecc.write_page_raw = brcmnand_write_page_raw; 2736 chip->ecc.write_oob_raw = brcmnand_write_oob_raw; 2737 chip->ecc.read_oob_raw = brcmnand_read_oob_raw; 2738 chip->ecc.read_oob = brcmnand_read_oob; 2739 chip->ecc.write_oob = brcmnand_write_oob; 2740 2741 chip->controller = &ctrl->controller; 2742 2743 /* 2744 * The bootloader might have configured 16bit mode but 2745 * NAND READID command only works in 8bit mode. We force 2746 * 8bit mode here to ensure that NAND READID commands works. 2747 */ 2748 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 2749 nand_writereg(ctrl, cfg_offs, 2750 nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); 2751 2752 ret = nand_scan(chip, 1); 2753 if (ret) 2754 return ret; 2755 2756 ret = mtd_device_register(mtd, NULL, 0); 2757 if (ret) 2758 nand_cleanup(chip); 2759 2760 return ret; 2761 } 2762 2763 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, 2764 int restore) 2765 { 2766 struct brcmnand_controller *ctrl = host->ctrl; 2767 u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); 2768 u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, 2769 BRCMNAND_CS_CFG_EXT); 2770 u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, 2771 BRCMNAND_CS_ACC_CONTROL); 2772 u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); 2773 u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); 2774 2775 if (restore) { 2776 nand_writereg(ctrl, cfg_offs, host->hwcfg.config); 2777 if (cfg_offs != cfg_ext_offs) 2778 nand_writereg(ctrl, cfg_ext_offs, 2779 host->hwcfg.config_ext); 2780 nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); 2781 nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); 2782 nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); 2783 } else { 2784 host->hwcfg.config = nand_readreg(ctrl, cfg_offs); 2785 if (cfg_offs != cfg_ext_offs) 2786 host->hwcfg.config_ext = 2787 nand_readreg(ctrl, cfg_ext_offs); 2788 host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); 2789 host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); 2790 host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); 2791 } 2792 } 2793 2794 static int brcmnand_suspend(struct device *dev) 2795 { 2796 struct brcmnand_controller *ctrl = dev_get_drvdata(dev); 2797 struct brcmnand_host *host; 2798 2799 list_for_each_entry(host, &ctrl->host_list, node) 2800 brcmnand_save_restore_cs_config(host, 0); 2801 2802 ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); 2803 ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); 2804 ctrl->corr_stat_threshold = 2805 brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); 2806 2807 if (has_flash_dma(ctrl)) 2808 ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); 2809 else if (has_edu(ctrl)) 2810 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); 2811 2812 return 0; 2813 } 2814 2815 static int brcmnand_resume(struct device *dev) 2816 { 2817 struct brcmnand_controller *ctrl = dev_get_drvdata(dev); 2818 struct brcmnand_host *host; 2819 2820 if (has_flash_dma(ctrl)) { 2821 flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); 2822 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); 2823 } 2824 2825 if (has_edu(ctrl)) { 2826 ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); 2827 edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config); 2828 edu_readl(ctrl, EDU_CONFIG); 2829 brcmnand_edu_init(ctrl); 2830 } 2831 2832 brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); 2833 brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); 2834 brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, 2835 ctrl->corr_stat_threshold); 2836 if (ctrl->soc) { 2837 /* Clear/re-enable interrupt */ 2838 ctrl->soc->ctlrdy_ack(ctrl->soc); 2839 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); 2840 } 2841 2842 list_for_each_entry(host, &ctrl->host_list, node) { 2843 struct nand_chip *chip = &host->chip; 2844 2845 brcmnand_save_restore_cs_config(host, 1); 2846 2847 /* Reset the chip, required by some chips after power-up */ 2848 nand_reset_op(chip); 2849 } 2850 2851 return 0; 2852 } 2853 2854 const struct dev_pm_ops brcmnand_pm_ops = { 2855 .suspend = brcmnand_suspend, 2856 .resume = brcmnand_resume, 2857 }; 2858 EXPORT_SYMBOL_GPL(brcmnand_pm_ops); 2859 2860 static const struct of_device_id brcmnand_of_match[] = { 2861 { .compatible = "brcm,brcmnand-v2.1" }, 2862 { .compatible = "brcm,brcmnand-v2.2" }, 2863 { .compatible = "brcm,brcmnand-v4.0" }, 2864 { .compatible = "brcm,brcmnand-v5.0" }, 2865 { .compatible = "brcm,brcmnand-v6.0" }, 2866 { .compatible = "brcm,brcmnand-v6.1" }, 2867 { .compatible = "brcm,brcmnand-v6.2" }, 2868 { .compatible = "brcm,brcmnand-v7.0" }, 2869 { .compatible = "brcm,brcmnand-v7.1" }, 2870 { .compatible = "brcm,brcmnand-v7.2" }, 2871 { .compatible = "brcm,brcmnand-v7.3" }, 2872 {}, 2873 }; 2874 MODULE_DEVICE_TABLE(of, brcmnand_of_match); 2875 2876 /*********************************************************************** 2877 * Platform driver setup (per controller) 2878 ***********************************************************************/ 2879 static int brcmnand_edu_setup(struct platform_device *pdev) 2880 { 2881 struct device *dev = &pdev->dev; 2882 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); 2883 struct resource *res; 2884 int ret; 2885 2886 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu"); 2887 if (res) { 2888 ctrl->edu_base = devm_ioremap_resource(dev, res); 2889 if (IS_ERR(ctrl->edu_base)) 2890 return PTR_ERR(ctrl->edu_base); 2891 2892 ctrl->edu_offsets = edu_regs; 2893 2894 edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND | 2895 EDU_CONFIG_SWAP_CFG); 2896 edu_readl(ctrl, EDU_CONFIG); 2897 2898 /* initialize edu */ 2899 brcmnand_edu_init(ctrl); 2900 2901 ctrl->edu_irq = platform_get_irq_optional(pdev, 1); 2902 if (ctrl->edu_irq < 0) { 2903 dev_warn(dev, 2904 "FLASH EDU enabled, using ctlrdy irq\n"); 2905 } else { 2906 ret = devm_request_irq(dev, ctrl->edu_irq, 2907 brcmnand_edu_irq, 0, 2908 "brcmnand-edu", ctrl); 2909 if (ret < 0) { 2910 dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n", 2911 ctrl->edu_irq, ret); 2912 return ret; 2913 } 2914 2915 dev_info(dev, "FLASH EDU enabled using irq %u\n", 2916 ctrl->edu_irq); 2917 } 2918 } 2919 2920 return 0; 2921 } 2922 2923 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) 2924 { 2925 struct device *dev = &pdev->dev; 2926 struct device_node *dn = dev->of_node, *child; 2927 struct brcmnand_controller *ctrl; 2928 struct resource *res; 2929 int ret; 2930 2931 /* We only support device-tree instantiation */ 2932 if (!dn) 2933 return -ENODEV; 2934 2935 if (!of_match_node(brcmnand_of_match, dn)) 2936 return -ENODEV; 2937 2938 ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); 2939 if (!ctrl) 2940 return -ENOMEM; 2941 2942 dev_set_drvdata(dev, ctrl); 2943 ctrl->dev = dev; 2944 2945 init_completion(&ctrl->done); 2946 init_completion(&ctrl->dma_done); 2947 init_completion(&ctrl->edu_done); 2948 nand_controller_init(&ctrl->controller); 2949 ctrl->controller.ops = &brcmnand_controller_ops; 2950 INIT_LIST_HEAD(&ctrl->host_list); 2951 2952 /* NAND register range */ 2953 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2954 ctrl->nand_base = devm_ioremap_resource(dev, res); 2955 if (IS_ERR(ctrl->nand_base)) 2956 return PTR_ERR(ctrl->nand_base); 2957 2958 /* Enable clock before using NAND registers */ 2959 ctrl->clk = devm_clk_get(dev, "nand"); 2960 if (!IS_ERR(ctrl->clk)) { 2961 ret = clk_prepare_enable(ctrl->clk); 2962 if (ret) 2963 return ret; 2964 } else { 2965 ret = PTR_ERR(ctrl->clk); 2966 if (ret == -EPROBE_DEFER) 2967 return ret; 2968 2969 ctrl->clk = NULL; 2970 } 2971 2972 /* Initialize NAND revision */ 2973 ret = brcmnand_revision_init(ctrl); 2974 if (ret) 2975 goto err; 2976 2977 /* 2978 * Most chips have this cache at a fixed offset within 'nand' block. 2979 * Some must specify this region separately. 2980 */ 2981 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); 2982 if (res) { 2983 ctrl->nand_fc = devm_ioremap_resource(dev, res); 2984 if (IS_ERR(ctrl->nand_fc)) { 2985 ret = PTR_ERR(ctrl->nand_fc); 2986 goto err; 2987 } 2988 } else { 2989 ctrl->nand_fc = ctrl->nand_base + 2990 ctrl->reg_offsets[BRCMNAND_FC_BASE]; 2991 } 2992 2993 /* FLASH_DMA */ 2994 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); 2995 if (res) { 2996 ctrl->flash_dma_base = devm_ioremap_resource(dev, res); 2997 if (IS_ERR(ctrl->flash_dma_base)) { 2998 ret = PTR_ERR(ctrl->flash_dma_base); 2999 goto err; 3000 } 3001 3002 /* initialize the dma version */ 3003 brcmnand_flash_dma_revision_init(ctrl); 3004 3005 ret = -EIO; 3006 if (ctrl->nand_version >= 0x0700) 3007 ret = dma_set_mask_and_coherent(&pdev->dev, 3008 DMA_BIT_MASK(40)); 3009 if (ret) 3010 ret = dma_set_mask_and_coherent(&pdev->dev, 3011 DMA_BIT_MASK(32)); 3012 if (ret) 3013 goto err; 3014 3015 /* linked-list and stop on error */ 3016 flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK); 3017 flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); 3018 3019 /* Allocate descriptor(s) */ 3020 ctrl->dma_desc = dmam_alloc_coherent(dev, 3021 sizeof(*ctrl->dma_desc), 3022 &ctrl->dma_pa, GFP_KERNEL); 3023 if (!ctrl->dma_desc) { 3024 ret = -ENOMEM; 3025 goto err; 3026 } 3027 3028 ctrl->dma_irq = platform_get_irq(pdev, 1); 3029 if ((int)ctrl->dma_irq < 0) { 3030 dev_err(dev, "missing FLASH_DMA IRQ\n"); 3031 ret = -ENODEV; 3032 goto err; 3033 } 3034 3035 ret = devm_request_irq(dev, ctrl->dma_irq, 3036 brcmnand_dma_irq, 0, DRV_NAME, 3037 ctrl); 3038 if (ret < 0) { 3039 dev_err(dev, "can't allocate IRQ %d: error %d\n", 3040 ctrl->dma_irq, ret); 3041 goto err; 3042 } 3043 3044 dev_info(dev, "enabling FLASH_DMA\n"); 3045 /* set flash dma transfer function to call */ 3046 ctrl->dma_trans = brcmnand_dma_trans; 3047 } else { 3048 ret = brcmnand_edu_setup(pdev); 3049 if (ret < 0) 3050 goto err; 3051 3052 if (has_edu(ctrl)) 3053 /* set edu transfer function to call */ 3054 ctrl->dma_trans = brcmnand_edu_trans; 3055 } 3056 3057 /* Disable automatic device ID config, direct addressing */ 3058 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, 3059 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); 3060 /* Disable XOR addressing */ 3061 brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); 3062 3063 if (ctrl->features & BRCMNAND_HAS_WP) { 3064 /* Permanently disable write protection */ 3065 if (wp_on == 2) 3066 brcmnand_set_wp(ctrl, false); 3067 } else { 3068 wp_on = 0; 3069 } 3070 3071 /* IRQ */ 3072 ctrl->irq = platform_get_irq(pdev, 0); 3073 if ((int)ctrl->irq < 0) { 3074 dev_err(dev, "no IRQ defined\n"); 3075 ret = -ENODEV; 3076 goto err; 3077 } 3078 3079 /* 3080 * Some SoCs integrate this controller (e.g., its interrupt bits) in 3081 * interesting ways 3082 */ 3083 if (soc) { 3084 ctrl->soc = soc; 3085 3086 ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, 3087 DRV_NAME, ctrl); 3088 3089 /* Enable interrupt */ 3090 ctrl->soc->ctlrdy_ack(ctrl->soc); 3091 ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); 3092 } else { 3093 /* Use standard interrupt infrastructure */ 3094 ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, 3095 DRV_NAME, ctrl); 3096 } 3097 if (ret < 0) { 3098 dev_err(dev, "can't allocate IRQ %d: error %d\n", 3099 ctrl->irq, ret); 3100 goto err; 3101 } 3102 3103 for_each_available_child_of_node(dn, child) { 3104 if (of_device_is_compatible(child, "brcm,nandcs")) { 3105 struct brcmnand_host *host; 3106 3107 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); 3108 if (!host) { 3109 of_node_put(child); 3110 ret = -ENOMEM; 3111 goto err; 3112 } 3113 host->pdev = pdev; 3114 host->ctrl = ctrl; 3115 3116 ret = brcmnand_init_cs(host, child); 3117 if (ret) { 3118 devm_kfree(dev, host); 3119 continue; /* Try all chip-selects */ 3120 } 3121 3122 list_add_tail(&host->node, &ctrl->host_list); 3123 } 3124 } 3125 3126 /* No chip-selects could initialize properly */ 3127 if (list_empty(&ctrl->host_list)) { 3128 ret = -ENODEV; 3129 goto err; 3130 } 3131 3132 return 0; 3133 3134 err: 3135 clk_disable_unprepare(ctrl->clk); 3136 return ret; 3137 3138 } 3139 EXPORT_SYMBOL_GPL(brcmnand_probe); 3140 3141 int brcmnand_remove(struct platform_device *pdev) 3142 { 3143 struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); 3144 struct brcmnand_host *host; 3145 struct nand_chip *chip; 3146 int ret; 3147 3148 list_for_each_entry(host, &ctrl->host_list, node) { 3149 chip = &host->chip; 3150 ret = mtd_device_unregister(nand_to_mtd(chip)); 3151 WARN_ON(ret); 3152 nand_cleanup(chip); 3153 } 3154 3155 clk_disable_unprepare(ctrl->clk); 3156 3157 dev_set_drvdata(&pdev->dev, NULL); 3158 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(brcmnand_remove); 3162 3163 MODULE_LICENSE("GPL v2"); 3164 MODULE_AUTHOR("Kevin Cernekee"); 3165 MODULE_AUTHOR("Brian Norris"); 3166 MODULE_DESCRIPTION("NAND driver for Broadcom chips"); 3167 MODULE_ALIAS("platform:brcmnand"); 3168