xref: /openbmc/linux/drivers/mtd/nand/raw/au1550nd.c (revision da2ef666)
1 /*
2  *  Copyright (C) 2004 Embedded Edge, LLC
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/partitions.h>
16 #include <linux/platform_device.h>
17 #include <asm/io.h>
18 #include <asm/mach-au1x00/au1000.h>
19 #include <asm/mach-au1x00/au1550nd.h>
20 
21 
22 struct au1550nd_ctx {
23 	struct nand_chip chip;
24 
25 	int cs;
26 	void __iomem *base;
27 	void (*write_byte)(struct mtd_info *, u_char);
28 };
29 
30 /**
31  * au_read_byte -  read one byte from the chip
32  * @mtd:	MTD device structure
33  *
34  * read function for 8bit buswidth
35  */
36 static u_char au_read_byte(struct mtd_info *mtd)
37 {
38 	struct nand_chip *this = mtd_to_nand(mtd);
39 	u_char ret = readb(this->IO_ADDR_R);
40 	wmb(); /* drain writebuffer */
41 	return ret;
42 }
43 
44 /**
45  * au_write_byte -  write one byte to the chip
46  * @mtd:	MTD device structure
47  * @byte:	pointer to data byte to write
48  *
49  * write function for 8it buswidth
50  */
51 static void au_write_byte(struct mtd_info *mtd, u_char byte)
52 {
53 	struct nand_chip *this = mtd_to_nand(mtd);
54 	writeb(byte, this->IO_ADDR_W);
55 	wmb(); /* drain writebuffer */
56 }
57 
58 /**
59  * au_read_byte16 -  read one byte endianness aware from the chip
60  * @mtd:	MTD device structure
61  *
62  * read function for 16bit buswidth with endianness conversion
63  */
64 static u_char au_read_byte16(struct mtd_info *mtd)
65 {
66 	struct nand_chip *this = mtd_to_nand(mtd);
67 	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
68 	wmb(); /* drain writebuffer */
69 	return ret;
70 }
71 
72 /**
73  * au_write_byte16 -  write one byte endianness aware to the chip
74  * @mtd:	MTD device structure
75  * @byte:	pointer to data byte to write
76  *
77  * write function for 16bit buswidth with endianness conversion
78  */
79 static void au_write_byte16(struct mtd_info *mtd, u_char byte)
80 {
81 	struct nand_chip *this = mtd_to_nand(mtd);
82 	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
83 	wmb(); /* drain writebuffer */
84 }
85 
86 /**
87  * au_read_word -  read one word from the chip
88  * @mtd:	MTD device structure
89  *
90  * read function for 16bit buswidth without endianness conversion
91  */
92 static u16 au_read_word(struct mtd_info *mtd)
93 {
94 	struct nand_chip *this = mtd_to_nand(mtd);
95 	u16 ret = readw(this->IO_ADDR_R);
96 	wmb(); /* drain writebuffer */
97 	return ret;
98 }
99 
100 /**
101  * au_write_buf -  write buffer to chip
102  * @mtd:	MTD device structure
103  * @buf:	data buffer
104  * @len:	number of bytes to write
105  *
106  * write function for 8bit buswidth
107  */
108 static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
109 {
110 	int i;
111 	struct nand_chip *this = mtd_to_nand(mtd);
112 
113 	for (i = 0; i < len; i++) {
114 		writeb(buf[i], this->IO_ADDR_W);
115 		wmb(); /* drain writebuffer */
116 	}
117 }
118 
119 /**
120  * au_read_buf -  read chip data into buffer
121  * @mtd:	MTD device structure
122  * @buf:	buffer to store date
123  * @len:	number of bytes to read
124  *
125  * read function for 8bit buswidth
126  */
127 static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
128 {
129 	int i;
130 	struct nand_chip *this = mtd_to_nand(mtd);
131 
132 	for (i = 0; i < len; i++) {
133 		buf[i] = readb(this->IO_ADDR_R);
134 		wmb(); /* drain writebuffer */
135 	}
136 }
137 
138 /**
139  * au_write_buf16 -  write buffer to chip
140  * @mtd:	MTD device structure
141  * @buf:	data buffer
142  * @len:	number of bytes to write
143  *
144  * write function for 16bit buswidth
145  */
146 static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
147 {
148 	int i;
149 	struct nand_chip *this = mtd_to_nand(mtd);
150 	u16 *p = (u16 *) buf;
151 	len >>= 1;
152 
153 	for (i = 0; i < len; i++) {
154 		writew(p[i], this->IO_ADDR_W);
155 		wmb(); /* drain writebuffer */
156 	}
157 
158 }
159 
160 /**
161  * au_read_buf16 -  read chip data into buffer
162  * @mtd:	MTD device structure
163  * @buf:	buffer to store date
164  * @len:	number of bytes to read
165  *
166  * read function for 16bit buswidth
167  */
168 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
169 {
170 	int i;
171 	struct nand_chip *this = mtd_to_nand(mtd);
172 	u16 *p = (u16 *) buf;
173 	len >>= 1;
174 
175 	for (i = 0; i < len; i++) {
176 		p[i] = readw(this->IO_ADDR_R);
177 		wmb(); /* drain writebuffer */
178 	}
179 }
180 
181 /* Select the chip by setting nCE to low */
182 #define NAND_CTL_SETNCE		1
183 /* Deselect the chip by setting nCE to high */
184 #define NAND_CTL_CLRNCE		2
185 /* Select the command latch by setting CLE to high */
186 #define NAND_CTL_SETCLE		3
187 /* Deselect the command latch by setting CLE to low */
188 #define NAND_CTL_CLRCLE		4
189 /* Select the address latch by setting ALE to high */
190 #define NAND_CTL_SETALE		5
191 /* Deselect the address latch by setting ALE to low */
192 #define NAND_CTL_CLRALE		6
193 
194 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
195 {
196 	struct nand_chip *this = mtd_to_nand(mtd);
197 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
198 						chip);
199 
200 	switch (cmd) {
201 
202 	case NAND_CTL_SETCLE:
203 		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
204 		break;
205 
206 	case NAND_CTL_CLRCLE:
207 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
208 		break;
209 
210 	case NAND_CTL_SETALE:
211 		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
212 		break;
213 
214 	case NAND_CTL_CLRALE:
215 		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
216 		/* FIXME: Nobody knows why this is necessary,
217 		 * but it works only that way */
218 		udelay(1);
219 		break;
220 
221 	case NAND_CTL_SETNCE:
222 		/* assert (force assert) chip enable */
223 		alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
224 		break;
225 
226 	case NAND_CTL_CLRNCE:
227 		/* deassert chip enable */
228 		alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
229 		break;
230 	}
231 
232 	this->IO_ADDR_R = this->IO_ADDR_W;
233 
234 	wmb(); /* Drain the writebuffer */
235 }
236 
237 int au1550_device_ready(struct mtd_info *mtd)
238 {
239 	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
240 }
241 
242 /**
243  * au1550_select_chip - control -CE line
244  *	Forbid driving -CE manually permitting the NAND controller to do this.
245  *	Keeping -CE asserted during the whole sector reads interferes with the
246  *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
247  *	We only have to hold -CE low for the NAND read commands since the flash
248  *	chip needs it to be asserted during chip not ready time but the NAND
249  *	controller keeps it released.
250  *
251  * @mtd:	MTD device structure
252  * @chip:	chipnumber to select, -1 for deselect
253  */
254 static void au1550_select_chip(struct mtd_info *mtd, int chip)
255 {
256 }
257 
258 /**
259  * au1550_command - Send command to NAND device
260  * @mtd:	MTD device structure
261  * @command:	the command to be sent
262  * @column:	the column address for this command, -1 if none
263  * @page_addr:	the page address for this command, -1 if none
264  */
265 static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
266 {
267 	struct nand_chip *this = mtd_to_nand(mtd);
268 	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
269 						chip);
270 	int ce_override = 0, i;
271 	unsigned long flags = 0;
272 
273 	/* Begin command latch cycle */
274 	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
275 	/*
276 	 * Write out the command to the device.
277 	 */
278 	if (command == NAND_CMD_SEQIN) {
279 		int readcmd;
280 
281 		if (column >= mtd->writesize) {
282 			/* OOB area */
283 			column -= mtd->writesize;
284 			readcmd = NAND_CMD_READOOB;
285 		} else if (column < 256) {
286 			/* First 256 bytes --> READ0 */
287 			readcmd = NAND_CMD_READ0;
288 		} else {
289 			column -= 256;
290 			readcmd = NAND_CMD_READ1;
291 		}
292 		ctx->write_byte(mtd, readcmd);
293 	}
294 	ctx->write_byte(mtd, command);
295 
296 	/* Set ALE and clear CLE to start address cycle */
297 	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
298 
299 	if (column != -1 || page_addr != -1) {
300 		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
301 
302 		/* Serially input address */
303 		if (column != -1) {
304 			/* Adjust columns for 16 bit buswidth */
305 			if (this->options & NAND_BUSWIDTH_16 &&
306 					!nand_opcode_8bits(command))
307 				column >>= 1;
308 			ctx->write_byte(mtd, column);
309 		}
310 		if (page_addr != -1) {
311 			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
312 
313 			if (command == NAND_CMD_READ0 ||
314 			    command == NAND_CMD_READ1 ||
315 			    command == NAND_CMD_READOOB) {
316 				/*
317 				 * NAND controller will release -CE after
318 				 * the last address byte is written, so we'll
319 				 * have to forcibly assert it. No interrupts
320 				 * are allowed while we do this as we don't
321 				 * want the NOR flash or PCMCIA drivers to
322 				 * steal our precious bytes of data...
323 				 */
324 				ce_override = 1;
325 				local_irq_save(flags);
326 				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
327 			}
328 
329 			ctx->write_byte(mtd, (u8)(page_addr >> 8));
330 
331 			if (this->options & NAND_ROW_ADDR_3)
332 				ctx->write_byte(mtd,
333 						((page_addr >> 16) & 0x0f));
334 		}
335 		/* Latch in address */
336 		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
337 	}
338 
339 	/*
340 	 * Program and erase have their own busy handlers.
341 	 * Status and sequential in need no delay.
342 	 */
343 	switch (command) {
344 
345 	case NAND_CMD_PAGEPROG:
346 	case NAND_CMD_ERASE1:
347 	case NAND_CMD_ERASE2:
348 	case NAND_CMD_SEQIN:
349 	case NAND_CMD_STATUS:
350 		return;
351 
352 	case NAND_CMD_RESET:
353 		break;
354 
355 	case NAND_CMD_READ0:
356 	case NAND_CMD_READ1:
357 	case NAND_CMD_READOOB:
358 		/* Check if we're really driving -CE low (just in case) */
359 		if (unlikely(!ce_override))
360 			break;
361 
362 		/* Apply a short delay always to ensure that we do wait tWB. */
363 		ndelay(100);
364 		/* Wait for a chip to become ready... */
365 		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
366 			udelay(1);
367 
368 		/* Release -CE and re-enable interrupts. */
369 		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
370 		local_irq_restore(flags);
371 		return;
372 	}
373 	/* Apply this short delay always to ensure that we do wait tWB. */
374 	ndelay(100);
375 
376 	while(!this->dev_ready(mtd));
377 }
378 
379 static int find_nand_cs(unsigned long nand_base)
380 {
381 	void __iomem *base =
382 			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
383 	unsigned long addr, staddr, start, mask, end;
384 	int i;
385 
386 	for (i = 0; i < 4; i++) {
387 		addr = 0x1000 + (i * 0x10);			/* CSx */
388 		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
389 		/* figure out the decoded range of this CS */
390 		start = (staddr << 4) & 0xfffc0000;
391 		mask = (staddr << 18) & 0xfffc0000;
392 		end = (start | (start - 1)) & ~(start ^ mask);
393 		if ((nand_base >= start) && (nand_base < end))
394 			return i;
395 	}
396 
397 	return -ENODEV;
398 }
399 
400 static int au1550nd_probe(struct platform_device *pdev)
401 {
402 	struct au1550nd_platdata *pd;
403 	struct au1550nd_ctx *ctx;
404 	struct nand_chip *this;
405 	struct mtd_info *mtd;
406 	struct resource *r;
407 	int ret, cs;
408 
409 	pd = dev_get_platdata(&pdev->dev);
410 	if (!pd) {
411 		dev_err(&pdev->dev, "missing platform data\n");
412 		return -ENODEV;
413 	}
414 
415 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
416 	if (!ctx)
417 		return -ENOMEM;
418 
419 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
420 	if (!r) {
421 		dev_err(&pdev->dev, "no NAND memory resource\n");
422 		ret = -ENODEV;
423 		goto out1;
424 	}
425 	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
426 		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
427 		ret = -ENOMEM;
428 		goto out1;
429 	}
430 
431 	ctx->base = ioremap_nocache(r->start, 0x1000);
432 	if (!ctx->base) {
433 		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
434 		ret = -ENODEV;
435 		goto out2;
436 	}
437 
438 	this = &ctx->chip;
439 	mtd = nand_to_mtd(this);
440 	mtd->dev.parent = &pdev->dev;
441 
442 	/* figure out which CS# r->start belongs to */
443 	cs = find_nand_cs(r->start);
444 	if (cs < 0) {
445 		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
446 		ret = -ENODEV;
447 		goto out3;
448 	}
449 	ctx->cs = cs;
450 
451 	this->dev_ready = au1550_device_ready;
452 	this->select_chip = au1550_select_chip;
453 	this->cmdfunc = au1550_command;
454 
455 	/* 30 us command delay time */
456 	this->chip_delay = 30;
457 	this->ecc.mode = NAND_ECC_SOFT;
458 	this->ecc.algo = NAND_ECC_HAMMING;
459 
460 	if (pd->devwidth)
461 		this->options |= NAND_BUSWIDTH_16;
462 
463 	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
464 	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
465 	this->read_word = au_read_word;
466 	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
467 	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
468 
469 	ret = nand_scan(mtd, 1);
470 	if (ret) {
471 		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
472 		goto out3;
473 	}
474 
475 	mtd_device_register(mtd, pd->parts, pd->num_parts);
476 
477 	platform_set_drvdata(pdev, ctx);
478 
479 	return 0;
480 
481 out3:
482 	iounmap(ctx->base);
483 out2:
484 	release_mem_region(r->start, resource_size(r));
485 out1:
486 	kfree(ctx);
487 	return ret;
488 }
489 
490 static int au1550nd_remove(struct platform_device *pdev)
491 {
492 	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
493 	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
494 
495 	nand_release(nand_to_mtd(&ctx->chip));
496 	iounmap(ctx->base);
497 	release_mem_region(r->start, 0x1000);
498 	kfree(ctx);
499 	return 0;
500 }
501 
502 static struct platform_driver au1550nd_driver = {
503 	.driver = {
504 		.name	= "au1550-nand",
505 	},
506 	.probe		= au1550nd_probe,
507 	.remove		= au1550nd_remove,
508 };
509 
510 module_platform_driver(au1550nd_driver);
511 
512 MODULE_LICENSE("GPL");
513 MODULE_AUTHOR("Embedded Edge, LLC");
514 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
515