1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2004 Embedded Edge, LLC 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/mtd/mtd.h> 10 #include <linux/mtd/rawnand.h> 11 #include <linux/mtd/partitions.h> 12 #include <linux/platform_device.h> 13 #include <asm/io.h> 14 #include <asm/mach-au1x00/au1000.h> 15 #include <asm/mach-au1x00/au1550nd.h> 16 17 18 struct au1550nd_ctx { 19 struct nand_chip chip; 20 21 int cs; 22 void __iomem *base; 23 void (*write_byte)(struct nand_chip *, u_char); 24 }; 25 26 /** 27 * au_read_byte - read one byte from the chip 28 * @this: NAND chip object 29 * 30 * read function for 8bit buswidth 31 */ 32 static u_char au_read_byte(struct nand_chip *this) 33 { 34 u_char ret = readb(this->legacy.IO_ADDR_R); 35 wmb(); /* drain writebuffer */ 36 return ret; 37 } 38 39 /** 40 * au_write_byte - write one byte to the chip 41 * @this: NAND chip object 42 * @byte: pointer to data byte to write 43 * 44 * write function for 8it buswidth 45 */ 46 static void au_write_byte(struct nand_chip *this, u_char byte) 47 { 48 writeb(byte, this->legacy.IO_ADDR_W); 49 wmb(); /* drain writebuffer */ 50 } 51 52 /** 53 * au_read_byte16 - read one byte endianness aware from the chip 54 * @this: NAND chip object 55 * 56 * read function for 16bit buswidth with endianness conversion 57 */ 58 static u_char au_read_byte16(struct nand_chip *this) 59 { 60 u_char ret = (u_char) cpu_to_le16(readw(this->legacy.IO_ADDR_R)); 61 wmb(); /* drain writebuffer */ 62 return ret; 63 } 64 65 /** 66 * au_write_byte16 - write one byte endianness aware to the chip 67 * @this: NAND chip object 68 * @byte: pointer to data byte to write 69 * 70 * write function for 16bit buswidth with endianness conversion 71 */ 72 static void au_write_byte16(struct nand_chip *this, u_char byte) 73 { 74 writew(le16_to_cpu((u16) byte), this->legacy.IO_ADDR_W); 75 wmb(); /* drain writebuffer */ 76 } 77 78 /** 79 * au_write_buf - write buffer to chip 80 * @this: NAND chip object 81 * @buf: data buffer 82 * @len: number of bytes to write 83 * 84 * write function for 8bit buswidth 85 */ 86 static void au_write_buf(struct nand_chip *this, const u_char *buf, int len) 87 { 88 int i; 89 90 for (i = 0; i < len; i++) { 91 writeb(buf[i], this->legacy.IO_ADDR_W); 92 wmb(); /* drain writebuffer */ 93 } 94 } 95 96 /** 97 * au_read_buf - read chip data into buffer 98 * @this: NAND chip object 99 * @buf: buffer to store date 100 * @len: number of bytes to read 101 * 102 * read function for 8bit buswidth 103 */ 104 static void au_read_buf(struct nand_chip *this, u_char *buf, int len) 105 { 106 int i; 107 108 for (i = 0; i < len; i++) { 109 buf[i] = readb(this->legacy.IO_ADDR_R); 110 wmb(); /* drain writebuffer */ 111 } 112 } 113 114 /** 115 * au_write_buf16 - write buffer to chip 116 * @this: NAND chip object 117 * @buf: data buffer 118 * @len: number of bytes to write 119 * 120 * write function for 16bit buswidth 121 */ 122 static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len) 123 { 124 int i; 125 u16 *p = (u16 *) buf; 126 len >>= 1; 127 128 for (i = 0; i < len; i++) { 129 writew(p[i], this->legacy.IO_ADDR_W); 130 wmb(); /* drain writebuffer */ 131 } 132 133 } 134 135 /** 136 * au_read_buf16 - read chip data into buffer 137 * @mtd: MTD device structure 138 * @buf: buffer to store date 139 * @len: number of bytes to read 140 * 141 * read function for 16bit buswidth 142 */ 143 static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) 144 { 145 int i; 146 struct nand_chip *this = mtd_to_nand(mtd); 147 u16 *p = (u16 *) buf; 148 len >>= 1; 149 150 for (i = 0; i < len; i++) { 151 p[i] = readw(this->legacy.IO_ADDR_R); 152 wmb(); /* drain writebuffer */ 153 } 154 } 155 156 /* Select the chip by setting nCE to low */ 157 #define NAND_CTL_SETNCE 1 158 /* Deselect the chip by setting nCE to high */ 159 #define NAND_CTL_CLRNCE 2 160 /* Select the command latch by setting CLE to high */ 161 #define NAND_CTL_SETCLE 3 162 /* Deselect the command latch by setting CLE to low */ 163 #define NAND_CTL_CLRCLE 4 164 /* Select the address latch by setting ALE to high */ 165 #define NAND_CTL_SETALE 5 166 /* Deselect the address latch by setting ALE to low */ 167 #define NAND_CTL_CLRALE 6 168 169 static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) 170 { 171 struct nand_chip *this = mtd_to_nand(mtd); 172 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, 173 chip); 174 175 switch (cmd) { 176 177 case NAND_CTL_SETCLE: 178 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_CMD; 179 break; 180 181 case NAND_CTL_CLRCLE: 182 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA; 183 break; 184 185 case NAND_CTL_SETALE: 186 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_ADDR; 187 break; 188 189 case NAND_CTL_CLRALE: 190 this->legacy.IO_ADDR_W = ctx->base + MEM_STNAND_DATA; 191 /* FIXME: Nobody knows why this is necessary, 192 * but it works only that way */ 193 udelay(1); 194 break; 195 196 case NAND_CTL_SETNCE: 197 /* assert (force assert) chip enable */ 198 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); 199 break; 200 201 case NAND_CTL_CLRNCE: 202 /* deassert chip enable */ 203 alchemy_wrsmem(0, AU1000_MEM_STNDCTL); 204 break; 205 } 206 207 this->legacy.IO_ADDR_R = this->legacy.IO_ADDR_W; 208 209 wmb(); /* Drain the writebuffer */ 210 } 211 212 int au1550_device_ready(struct nand_chip *this) 213 { 214 return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0; 215 } 216 217 /** 218 * au1550_select_chip - control -CE line 219 * Forbid driving -CE manually permitting the NAND controller to do this. 220 * Keeping -CE asserted during the whole sector reads interferes with the 221 * NOR flash and PCMCIA drivers as it causes contention on the static bus. 222 * We only have to hold -CE low for the NAND read commands since the flash 223 * chip needs it to be asserted during chip not ready time but the NAND 224 * controller keeps it released. 225 * 226 * @this: NAND chip object 227 * @chip: chipnumber to select, -1 for deselect 228 */ 229 static void au1550_select_chip(struct nand_chip *this, int chip) 230 { 231 } 232 233 /** 234 * au1550_command - Send command to NAND device 235 * @this: NAND chip object 236 * @command: the command to be sent 237 * @column: the column address for this command, -1 if none 238 * @page_addr: the page address for this command, -1 if none 239 */ 240 static void au1550_command(struct nand_chip *this, unsigned command, 241 int column, int page_addr) 242 { 243 struct mtd_info *mtd = nand_to_mtd(this); 244 struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, 245 chip); 246 int ce_override = 0, i; 247 unsigned long flags = 0; 248 249 /* Begin command latch cycle */ 250 au1550_hwcontrol(mtd, NAND_CTL_SETCLE); 251 /* 252 * Write out the command to the device. 253 */ 254 if (command == NAND_CMD_SEQIN) { 255 int readcmd; 256 257 if (column >= mtd->writesize) { 258 /* OOB area */ 259 column -= mtd->writesize; 260 readcmd = NAND_CMD_READOOB; 261 } else if (column < 256) { 262 /* First 256 bytes --> READ0 */ 263 readcmd = NAND_CMD_READ0; 264 } else { 265 column -= 256; 266 readcmd = NAND_CMD_READ1; 267 } 268 ctx->write_byte(this, readcmd); 269 } 270 ctx->write_byte(this, command); 271 272 /* Set ALE and clear CLE to start address cycle */ 273 au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); 274 275 if (column != -1 || page_addr != -1) { 276 au1550_hwcontrol(mtd, NAND_CTL_SETALE); 277 278 /* Serially input address */ 279 if (column != -1) { 280 /* Adjust columns for 16 bit buswidth */ 281 if (this->options & NAND_BUSWIDTH_16 && 282 !nand_opcode_8bits(command)) 283 column >>= 1; 284 ctx->write_byte(this, column); 285 } 286 if (page_addr != -1) { 287 ctx->write_byte(this, (u8)(page_addr & 0xff)); 288 289 if (command == NAND_CMD_READ0 || 290 command == NAND_CMD_READ1 || 291 command == NAND_CMD_READOOB) { 292 /* 293 * NAND controller will release -CE after 294 * the last address byte is written, so we'll 295 * have to forcibly assert it. No interrupts 296 * are allowed while we do this as we don't 297 * want the NOR flash or PCMCIA drivers to 298 * steal our precious bytes of data... 299 */ 300 ce_override = 1; 301 local_irq_save(flags); 302 au1550_hwcontrol(mtd, NAND_CTL_SETNCE); 303 } 304 305 ctx->write_byte(this, (u8)(page_addr >> 8)); 306 307 if (this->options & NAND_ROW_ADDR_3) 308 ctx->write_byte(this, 309 ((page_addr >> 16) & 0x0f)); 310 } 311 /* Latch in address */ 312 au1550_hwcontrol(mtd, NAND_CTL_CLRALE); 313 } 314 315 /* 316 * Program and erase have their own busy handlers. 317 * Status and sequential in need no delay. 318 */ 319 switch (command) { 320 321 case NAND_CMD_PAGEPROG: 322 case NAND_CMD_ERASE1: 323 case NAND_CMD_ERASE2: 324 case NAND_CMD_SEQIN: 325 case NAND_CMD_STATUS: 326 return; 327 328 case NAND_CMD_RESET: 329 break; 330 331 case NAND_CMD_READ0: 332 case NAND_CMD_READ1: 333 case NAND_CMD_READOOB: 334 /* Check if we're really driving -CE low (just in case) */ 335 if (unlikely(!ce_override)) 336 break; 337 338 /* Apply a short delay always to ensure that we do wait tWB. */ 339 ndelay(100); 340 /* Wait for a chip to become ready... */ 341 for (i = this->legacy.chip_delay; 342 !this->legacy.dev_ready(this) && i > 0; --i) 343 udelay(1); 344 345 /* Release -CE and re-enable interrupts. */ 346 au1550_hwcontrol(mtd, NAND_CTL_CLRNCE); 347 local_irq_restore(flags); 348 return; 349 } 350 /* Apply this short delay always to ensure that we do wait tWB. */ 351 ndelay(100); 352 353 while(!this->legacy.dev_ready(this)); 354 } 355 356 static int find_nand_cs(unsigned long nand_base) 357 { 358 void __iomem *base = 359 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); 360 unsigned long addr, staddr, start, mask, end; 361 int i; 362 363 for (i = 0; i < 4; i++) { 364 addr = 0x1000 + (i * 0x10); /* CSx */ 365 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ 366 /* figure out the decoded range of this CS */ 367 start = (staddr << 4) & 0xfffc0000; 368 mask = (staddr << 18) & 0xfffc0000; 369 end = (start | (start - 1)) & ~(start ^ mask); 370 if ((nand_base >= start) && (nand_base < end)) 371 return i; 372 } 373 374 return -ENODEV; 375 } 376 377 static int au1550nd_probe(struct platform_device *pdev) 378 { 379 struct au1550nd_platdata *pd; 380 struct au1550nd_ctx *ctx; 381 struct nand_chip *this; 382 struct mtd_info *mtd; 383 struct resource *r; 384 int ret, cs; 385 386 pd = dev_get_platdata(&pdev->dev); 387 if (!pd) { 388 dev_err(&pdev->dev, "missing platform data\n"); 389 return -ENODEV; 390 } 391 392 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 393 if (!ctx) 394 return -ENOMEM; 395 396 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 397 if (!r) { 398 dev_err(&pdev->dev, "no NAND memory resource\n"); 399 ret = -ENODEV; 400 goto out1; 401 } 402 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { 403 dev_err(&pdev->dev, "cannot claim NAND memory area\n"); 404 ret = -ENOMEM; 405 goto out1; 406 } 407 408 ctx->base = ioremap_nocache(r->start, 0x1000); 409 if (!ctx->base) { 410 dev_err(&pdev->dev, "cannot remap NAND memory area\n"); 411 ret = -ENODEV; 412 goto out2; 413 } 414 415 this = &ctx->chip; 416 mtd = nand_to_mtd(this); 417 mtd->dev.parent = &pdev->dev; 418 419 /* figure out which CS# r->start belongs to */ 420 cs = find_nand_cs(r->start); 421 if (cs < 0) { 422 dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); 423 ret = -ENODEV; 424 goto out3; 425 } 426 ctx->cs = cs; 427 428 this->legacy.dev_ready = au1550_device_ready; 429 this->legacy.select_chip = au1550_select_chip; 430 this->legacy.cmdfunc = au1550_command; 431 432 /* 30 us command delay time */ 433 this->legacy.chip_delay = 30; 434 this->ecc.mode = NAND_ECC_SOFT; 435 this->ecc.algo = NAND_ECC_HAMMING; 436 437 if (pd->devwidth) 438 this->options |= NAND_BUSWIDTH_16; 439 440 this->legacy.read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte; 441 ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte; 442 this->legacy.write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; 443 this->legacy.read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; 444 445 ret = nand_scan(this, 1); 446 if (ret) { 447 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); 448 goto out3; 449 } 450 451 mtd_device_register(mtd, pd->parts, pd->num_parts); 452 453 platform_set_drvdata(pdev, ctx); 454 455 return 0; 456 457 out3: 458 iounmap(ctx->base); 459 out2: 460 release_mem_region(r->start, resource_size(r)); 461 out1: 462 kfree(ctx); 463 return ret; 464 } 465 466 static int au1550nd_remove(struct platform_device *pdev) 467 { 468 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); 469 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 470 471 nand_release(&ctx->chip); 472 iounmap(ctx->base); 473 release_mem_region(r->start, 0x1000); 474 kfree(ctx); 475 return 0; 476 } 477 478 static struct platform_driver au1550nd_driver = { 479 .driver = { 480 .name = "au1550-nand", 481 }, 482 .probe = au1550nd_probe, 483 .remove = au1550nd_remove, 484 }; 485 486 module_platform_driver(au1550nd_driver); 487 488 MODULE_LICENSE("GPL"); 489 MODULE_AUTHOR("Embedded Edge, LLC"); 490 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); 491