xref: /openbmc/linux/drivers/mtd/nand/raw/atmel/pmecc.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 /*
2  * Copyright 2017 ATMEL
3  * Copyright 2017 Free Electrons
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * Derived from the atmel_nand.c driver which contained the following
8  * copyrights:
9  *
10  *   Copyright 2003 Rick Bronson
11  *
12  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
13  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
14  *
15  *   Derived from drivers/mtd/spia.c (removed in v3.8)
16  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
17  *
18  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
19  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
20  *
21  *   Derived from Das U-Boot source code
22  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
23  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
24  *
25  *   Add Programmable Multibit ECC support for various AT91 SoC
26  *	Copyright 2012 ATMEL, Hong Xu
27  *
28  *   Add Nand Flash Controller support for SAMA5 SoC
29  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
30  *
31  * This program is free software; you can redistribute it and/or modify
32  * it under the terms of the GNU General Public License version 2 as
33  * published by the Free Software Foundation.
34  *
35  * The PMECC is an hardware assisted BCH engine, which means part of the
36  * ECC algorithm is left to the software. The hardware/software repartition
37  * is explained in the "PMECC Controller Functional Description" chapter in
38  * Atmel datasheets, and some of the functions in this file are directly
39  * implementing the algorithms described in the "Software Implementation"
40  * sub-section.
41  *
42  * TODO: it seems that the software BCH implementation in lib/bch.c is already
43  * providing some of the logic we are implementing here. It would be smart
44  * to expose the needed lib/bch.c helpers/functions and re-use them here.
45  */
46 
47 #include <linux/genalloc.h>
48 #include <linux/iopoll.h>
49 #include <linux/module.h>
50 #include <linux/mtd/rawnand.h>
51 #include <linux/of_irq.h>
52 #include <linux/of_platform.h>
53 #include <linux/platform_device.h>
54 #include <linux/slab.h>
55 
56 #include "pmecc.h"
57 
58 /* Galois field dimension */
59 #define PMECC_GF_DIMENSION_13			13
60 #define PMECC_GF_DIMENSION_14			14
61 
62 /* Primitive Polynomial used by PMECC */
63 #define PMECC_GF_13_PRIMITIVE_POLY		0x201b
64 #define PMECC_GF_14_PRIMITIVE_POLY		0x4443
65 
66 #define PMECC_LOOKUP_TABLE_SIZE_512		0x2000
67 #define PMECC_LOOKUP_TABLE_SIZE_1024		0x4000
68 
69 /* Time out value for reading PMECC status register */
70 #define PMECC_MAX_TIMEOUT_MS			100
71 
72 /* PMECC Register Definitions */
73 #define ATMEL_PMECC_CFG				0x0
74 #define PMECC_CFG_BCH_STRENGTH(x)		(x)
75 #define PMECC_CFG_BCH_STRENGTH_MASK		GENMASK(2, 0)
76 #define PMECC_CFG_SECTOR512			(0 << 4)
77 #define PMECC_CFG_SECTOR1024			(1 << 4)
78 #define PMECC_CFG_NSECTORS(x)			((fls(x) - 1) << 8)
79 #define PMECC_CFG_READ_OP			(0 << 12)
80 #define PMECC_CFG_WRITE_OP			(1 << 12)
81 #define PMECC_CFG_SPARE_ENABLE			BIT(16)
82 #define PMECC_CFG_AUTO_ENABLE			BIT(20)
83 
84 #define ATMEL_PMECC_SAREA			0x4
85 #define ATMEL_PMECC_SADDR			0x8
86 #define ATMEL_PMECC_EADDR			0xc
87 
88 #define ATMEL_PMECC_CLK				0x10
89 #define PMECC_CLK_133MHZ			(2 << 0)
90 
91 #define ATMEL_PMECC_CTRL			0x14
92 #define PMECC_CTRL_RST				BIT(0)
93 #define PMECC_CTRL_DATA				BIT(1)
94 #define PMECC_CTRL_USER				BIT(2)
95 #define PMECC_CTRL_ENABLE			BIT(4)
96 #define PMECC_CTRL_DISABLE			BIT(5)
97 
98 #define ATMEL_PMECC_SR				0x18
99 #define PMECC_SR_BUSY				BIT(0)
100 #define PMECC_SR_ENABLE				BIT(4)
101 
102 #define ATMEL_PMECC_IER				0x1c
103 #define ATMEL_PMECC_IDR				0x20
104 #define ATMEL_PMECC_IMR				0x24
105 #define ATMEL_PMECC_ISR				0x28
106 #define PMECC_ERROR_INT				BIT(0)
107 
108 #define ATMEL_PMECC_ECC(sector, n)		\
109 	((((sector) + 1) * 0x40) + (n))
110 
111 #define ATMEL_PMECC_REM(sector, n)		\
112 	((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
113 
114 /* PMERRLOC Register Definitions */
115 #define ATMEL_PMERRLOC_ELCFG			0x0
116 #define PMERRLOC_ELCFG_SECTOR_512		(0 << 0)
117 #define PMERRLOC_ELCFG_SECTOR_1024		(1 << 0)
118 #define PMERRLOC_ELCFG_NUM_ERRORS(n)		((n) << 16)
119 
120 #define ATMEL_PMERRLOC_ELPRIM			0x4
121 #define ATMEL_PMERRLOC_ELEN			0x8
122 #define ATMEL_PMERRLOC_ELDIS			0xc
123 #define PMERRLOC_DISABLE			BIT(0)
124 
125 #define ATMEL_PMERRLOC_ELSR			0x10
126 #define PMERRLOC_ELSR_BUSY			BIT(0)
127 
128 #define ATMEL_PMERRLOC_ELIER			0x14
129 #define ATMEL_PMERRLOC_ELIDR			0x18
130 #define ATMEL_PMERRLOC_ELIMR			0x1c
131 #define ATMEL_PMERRLOC_ELISR			0x20
132 #define PMERRLOC_ERR_NUM_MASK			GENMASK(12, 8)
133 #define PMERRLOC_CALC_DONE			BIT(0)
134 
135 #define ATMEL_PMERRLOC_SIGMA(x)			(((x) * 0x4) + 0x28)
136 
137 #define ATMEL_PMERRLOC_EL(offs, x)		(((x) * 0x4) + (offs))
138 
139 struct atmel_pmecc_gf_tables {
140 	u16 *alpha_to;
141 	u16 *index_of;
142 };
143 
144 struct atmel_pmecc_caps {
145 	const int *strengths;
146 	int nstrengths;
147 	int el_offset;
148 	bool correct_erased_chunks;
149 };
150 
151 struct atmel_pmecc {
152 	struct device *dev;
153 	const struct atmel_pmecc_caps *caps;
154 
155 	struct {
156 		void __iomem *base;
157 		void __iomem *errloc;
158 	} regs;
159 
160 	struct mutex lock;
161 };
162 
163 struct atmel_pmecc_user_conf_cache {
164 	u32 cfg;
165 	u32 sarea;
166 	u32 saddr;
167 	u32 eaddr;
168 };
169 
170 struct atmel_pmecc_user {
171 	struct atmel_pmecc_user_conf_cache cache;
172 	struct atmel_pmecc *pmecc;
173 	const struct atmel_pmecc_gf_tables *gf_tables;
174 	int eccbytes;
175 	s16 *partial_syn;
176 	s16 *si;
177 	s16 *lmu;
178 	s16 *smu;
179 	s32 *mu;
180 	s32 *dmu;
181 	s32 *delta;
182 	u32 isr;
183 };
184 
185 static DEFINE_MUTEX(pmecc_gf_tables_lock);
186 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
187 static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
188 
189 static inline int deg(unsigned int poly)
190 {
191 	/* polynomial degree is the most-significant bit index */
192 	return fls(poly) - 1;
193 }
194 
195 static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
196 				       struct atmel_pmecc_gf_tables *gf_tables)
197 {
198 	unsigned int i, x = 1;
199 	const unsigned int k = BIT(deg(poly));
200 	unsigned int nn = BIT(mm) - 1;
201 
202 	/* primitive polynomial must be of degree m */
203 	if (k != (1u << mm))
204 		return -EINVAL;
205 
206 	for (i = 0; i < nn; i++) {
207 		gf_tables->alpha_to[i] = x;
208 		gf_tables->index_of[x] = i;
209 		if (i && (x == 1))
210 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
211 			return -EINVAL;
212 		x <<= 1;
213 		if (x & k)
214 			x ^= poly;
215 	}
216 	gf_tables->alpha_to[nn] = 1;
217 	gf_tables->index_of[0] = 0;
218 
219 	return 0;
220 }
221 
222 static const struct atmel_pmecc_gf_tables *
223 atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
224 {
225 	struct atmel_pmecc_gf_tables *gf_tables;
226 	unsigned int poly, degree, table_size;
227 	int ret;
228 
229 	if (req->ecc.sectorsize == 512) {
230 		degree = PMECC_GF_DIMENSION_13;
231 		poly = PMECC_GF_13_PRIMITIVE_POLY;
232 		table_size = PMECC_LOOKUP_TABLE_SIZE_512;
233 	} else {
234 		degree = PMECC_GF_DIMENSION_14;
235 		poly = PMECC_GF_14_PRIMITIVE_POLY;
236 		table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
237 	}
238 
239 	gf_tables = kzalloc(sizeof(*gf_tables) +
240 			    (2 * table_size * sizeof(u16)),
241 			    GFP_KERNEL);
242 	if (!gf_tables)
243 		return ERR_PTR(-ENOMEM);
244 
245 	gf_tables->alpha_to = (void *)(gf_tables + 1);
246 	gf_tables->index_of = gf_tables->alpha_to + table_size;
247 
248 	ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
249 	if (ret) {
250 		kfree(gf_tables);
251 		return ERR_PTR(ret);
252 	}
253 
254 	return gf_tables;
255 }
256 
257 static const struct atmel_pmecc_gf_tables *
258 atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
259 {
260 	const struct atmel_pmecc_gf_tables **gf_tables, *ret;
261 
262 	mutex_lock(&pmecc_gf_tables_lock);
263 	if (req->ecc.sectorsize == 512)
264 		gf_tables = &pmecc_gf_tables_512;
265 	else
266 		gf_tables = &pmecc_gf_tables_1024;
267 
268 	ret = *gf_tables;
269 
270 	if (!ret) {
271 		ret = atmel_pmecc_create_gf_tables(req);
272 		if (!IS_ERR(ret))
273 			*gf_tables = ret;
274 	}
275 	mutex_unlock(&pmecc_gf_tables_lock);
276 
277 	return ret;
278 }
279 
280 static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
281 					struct atmel_pmecc_user_req *req)
282 {
283 	int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
284 
285 	if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
286 		return -EINVAL;
287 
288 	if (req->ecc.ooboffset >= 0 &&
289 	    req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
290 		return -EINVAL;
291 
292 	if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
293 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
294 			return -EINVAL;
295 
296 		if (req->pagesize > 512)
297 			req->ecc.sectorsize = 1024;
298 		else
299 			req->ecc.sectorsize = 512;
300 	}
301 
302 	if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
303 		return -EINVAL;
304 
305 	if (req->pagesize % req->ecc.sectorsize)
306 		return -EINVAL;
307 
308 	req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
309 
310 	max_eccbytes = req->ecc.bytes;
311 
312 	for (i = 0; i < pmecc->caps->nstrengths; i++) {
313 		int nbytes, strength = pmecc->caps->strengths[i];
314 
315 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
316 		    strength < req->ecc.strength)
317 			continue;
318 
319 		nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
320 				      8);
321 		nbytes *= req->ecc.nsectors;
322 
323 		if (nbytes > max_eccbytes)
324 			break;
325 
326 		eccstrength = strength;
327 		eccbytes = nbytes;
328 
329 		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
330 			break;
331 	}
332 
333 	if (!eccstrength)
334 		return -EINVAL;
335 
336 	req->ecc.bytes = eccbytes;
337 	req->ecc.strength = eccstrength;
338 
339 	if (req->ecc.ooboffset < 0)
340 		req->ecc.ooboffset = req->oobsize - eccbytes;
341 
342 	return 0;
343 }
344 
345 struct atmel_pmecc_user *
346 atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
347 			struct atmel_pmecc_user_req *req)
348 {
349 	struct atmel_pmecc_user *user;
350 	const struct atmel_pmecc_gf_tables *gf_tables;
351 	int strength, size, ret;
352 
353 	ret = atmel_pmecc_prepare_user_req(pmecc, req);
354 	if (ret)
355 		return ERR_PTR(ret);
356 
357 	size = sizeof(*user);
358 	size = ALIGN(size, sizeof(u16));
359 	/* Reserve space for partial_syn, si and smu */
360 	size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
361 		(2 + req->ecc.strength + 2);
362 	/* Reserve space for lmu. */
363 	size += (req->ecc.strength + 1) * sizeof(u16);
364 	/* Reserve space for mu, dmu and delta. */
365 	size = ALIGN(size, sizeof(s32));
366 	size += (req->ecc.strength + 1) * sizeof(s32) * 3;
367 
368 	user = kzalloc(size, GFP_KERNEL);
369 	if (!user)
370 		return ERR_PTR(-ENOMEM);
371 
372 	user->pmecc = pmecc;
373 
374 	user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
375 	user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
376 	user->lmu = user->si + ((2 * req->ecc.strength) + 1);
377 	user->smu = user->lmu + (req->ecc.strength + 1);
378 	user->mu = (s32 *)PTR_ALIGN(user->smu +
379 				    (((2 * req->ecc.strength) + 1) *
380 				     (req->ecc.strength + 2)),
381 				    sizeof(s32));
382 	user->dmu = user->mu + req->ecc.strength + 1;
383 	user->delta = user->dmu + req->ecc.strength + 1;
384 
385 	gf_tables = atmel_pmecc_get_gf_tables(req);
386 	if (IS_ERR(gf_tables)) {
387 		kfree(user);
388 		return ERR_CAST(gf_tables);
389 	}
390 
391 	user->gf_tables = gf_tables;
392 
393 	user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
394 
395 	for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
396 		if (pmecc->caps->strengths[strength] == req->ecc.strength)
397 			break;
398 	}
399 
400 	user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
401 			  PMECC_CFG_NSECTORS(req->ecc.nsectors);
402 
403 	if (req->ecc.sectorsize == 1024)
404 		user->cache.cfg |= PMECC_CFG_SECTOR1024;
405 
406 	user->cache.sarea = req->oobsize - 1;
407 	user->cache.saddr = req->ecc.ooboffset;
408 	user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
409 
410 	return user;
411 }
412 EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
413 
414 void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
415 {
416 	kfree(user);
417 }
418 EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
419 
420 static int get_strength(struct atmel_pmecc_user *user)
421 {
422 	const int *strengths = user->pmecc->caps->strengths;
423 
424 	return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
425 }
426 
427 static int get_sectorsize(struct atmel_pmecc_user *user)
428 {
429 	return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
430 }
431 
432 static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
433 {
434 	int strength = get_strength(user);
435 	u32 value;
436 	int i;
437 
438 	/* Fill odd syndromes */
439 	for (i = 0; i < strength; i++) {
440 		value = readl_relaxed(user->pmecc->regs.base +
441 				      ATMEL_PMECC_REM(sector, i / 2));
442 		if (i & 1)
443 			value >>= 16;
444 
445 		user->partial_syn[(2 * i) + 1] = value;
446 	}
447 }
448 
449 static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
450 {
451 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
452 	int cw_len = BIT(degree) - 1;
453 	int strength = get_strength(user);
454 	s16 *alpha_to = user->gf_tables->alpha_to;
455 	s16 *index_of = user->gf_tables->index_of;
456 	s16 *partial_syn = user->partial_syn;
457 	s16 *si;
458 	int i, j;
459 
460 	/*
461 	 * si[] is a table that holds the current syndrome value,
462 	 * an element of that table belongs to the field
463 	 */
464 	si = user->si;
465 
466 	memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
467 
468 	/* Computation 2t syndromes based on S(x) */
469 	/* Odd syndromes */
470 	for (i = 1; i < 2 * strength; i += 2) {
471 		for (j = 0; j < degree; j++) {
472 			if (partial_syn[i] & BIT(j))
473 				si[i] = alpha_to[i * j] ^ si[i];
474 		}
475 	}
476 	/* Even syndrome = (Odd syndrome) ** 2 */
477 	for (i = 2, j = 1; j <= strength; i = ++j << 1) {
478 		if (si[j] == 0) {
479 			si[i] = 0;
480 		} else {
481 			s16 tmp;
482 
483 			tmp = index_of[si[j]];
484 			tmp = (tmp * 2) % cw_len;
485 			si[i] = alpha_to[tmp];
486 		}
487 	}
488 }
489 
490 static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
491 {
492 	s16 *lmu = user->lmu;
493 	s16 *si = user->si;
494 	s32 *mu = user->mu;
495 	s32 *dmu = user->dmu;
496 	s32 *delta = user->delta;
497 	int degree = get_sectorsize(user) == 512 ? 13 : 14;
498 	int cw_len = BIT(degree) - 1;
499 	int strength = get_strength(user);
500 	int num = 2 * strength + 1;
501 	s16 *index_of = user->gf_tables->index_of;
502 	s16 *alpha_to = user->gf_tables->alpha_to;
503 	int i, j, k;
504 	u32 dmu_0_count, tmp;
505 	s16 *smu = user->smu;
506 
507 	/* index of largest delta */
508 	int ro;
509 	int largest;
510 	int diff;
511 
512 	dmu_0_count = 0;
513 
514 	/* First Row */
515 
516 	/* Mu */
517 	mu[0] = -1;
518 
519 	memset(smu, 0, sizeof(s16) * num);
520 	smu[0] = 1;
521 
522 	/* discrepancy set to 1 */
523 	dmu[0] = 1;
524 	/* polynom order set to 0 */
525 	lmu[0] = 0;
526 	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
527 
528 	/* Second Row */
529 
530 	/* Mu */
531 	mu[1] = 0;
532 	/* Sigma(x) set to 1 */
533 	memset(&smu[num], 0, sizeof(s16) * num);
534 	smu[num] = 1;
535 
536 	/* discrepancy set to S1 */
537 	dmu[1] = si[1];
538 
539 	/* polynom order set to 0 */
540 	lmu[1] = 0;
541 
542 	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
543 
544 	/* Init the Sigma(x) last row */
545 	memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
546 
547 	for (i = 1; i <= strength; i++) {
548 		mu[i + 1] = i << 1;
549 		/* Begin Computing Sigma (Mu+1) and L(mu) */
550 		/* check if discrepancy is set to 0 */
551 		if (dmu[i] == 0) {
552 			dmu_0_count++;
553 
554 			tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
555 			if ((strength - (lmu[i] >> 1) - 1) & 0x1)
556 				tmp += 2;
557 			else
558 				tmp += 1;
559 
560 			if (dmu_0_count == tmp) {
561 				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
562 					smu[(strength + 1) * num + j] =
563 							smu[i * num + j];
564 
565 				lmu[strength + 1] = lmu[i];
566 				return;
567 			}
568 
569 			/* copy polynom */
570 			for (j = 0; j <= lmu[i] >> 1; j++)
571 				smu[(i + 1) * num + j] = smu[i * num + j];
572 
573 			/* copy previous polynom order to the next */
574 			lmu[i + 1] = lmu[i];
575 		} else {
576 			ro = 0;
577 			largest = -1;
578 			/* find largest delta with dmu != 0 */
579 			for (j = 0; j < i; j++) {
580 				if ((dmu[j]) && (delta[j] > largest)) {
581 					largest = delta[j];
582 					ro = j;
583 				}
584 			}
585 
586 			/* compute difference */
587 			diff = (mu[i] - mu[ro]);
588 
589 			/* Compute degree of the new smu polynomial */
590 			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
591 				lmu[i + 1] = lmu[i];
592 			else
593 				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
594 
595 			/* Init smu[i+1] with 0 */
596 			for (k = 0; k < num; k++)
597 				smu[(i + 1) * num + k] = 0;
598 
599 			/* Compute smu[i+1] */
600 			for (k = 0; k <= lmu[ro] >> 1; k++) {
601 				s16 a, b, c;
602 
603 				if (!(smu[ro * num + k] && dmu[i]))
604 					continue;
605 
606 				a = index_of[dmu[i]];
607 				b = index_of[dmu[ro]];
608 				c = index_of[smu[ro * num + k]];
609 				tmp = a + (cw_len - b) + c;
610 				a = alpha_to[tmp % cw_len];
611 				smu[(i + 1) * num + (k + diff)] = a;
612 			}
613 
614 			for (k = 0; k <= lmu[i] >> 1; k++)
615 				smu[(i + 1) * num + k] ^= smu[i * num + k];
616 		}
617 
618 		/* End Computing Sigma (Mu+1) and L(mu) */
619 		/* In either case compute delta */
620 		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
621 
622 		/* Do not compute discrepancy for the last iteration */
623 		if (i >= strength)
624 			continue;
625 
626 		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
627 			tmp = 2 * (i - 1);
628 			if (k == 0) {
629 				dmu[i + 1] = si[tmp + 3];
630 			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
631 				s16 a, b, c;
632 
633 				a = index_of[smu[(i + 1) * num + k]];
634 				b = si[2 * (i - 1) + 3 - k];
635 				c = index_of[b];
636 				tmp = a + c;
637 				tmp %= cw_len;
638 				dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
639 			}
640 		}
641 	}
642 }
643 
644 static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
645 {
646 	int sector_size = get_sectorsize(user);
647 	int degree = sector_size == 512 ? 13 : 14;
648 	struct atmel_pmecc *pmecc = user->pmecc;
649 	int strength = get_strength(user);
650 	int ret, roots_nbr, i, err_nbr = 0;
651 	int num = (2 * strength) + 1;
652 	s16 *smu = user->smu;
653 	u32 val;
654 
655 	writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
656 
657 	for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
658 		writel_relaxed(smu[(strength + 1) * num + i],
659 			       pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
660 		err_nbr++;
661 	}
662 
663 	val = (err_nbr - 1) << 16;
664 	if (sector_size == 1024)
665 		val |= 1;
666 
667 	writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
668 	writel((sector_size * 8) + (degree * strength),
669 	       pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
670 
671 	ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
672 					 ATMEL_PMERRLOC_ELISR,
673 					 val, val & PMERRLOC_CALC_DONE, 0,
674 					 PMECC_MAX_TIMEOUT_MS * 1000);
675 	if (ret) {
676 		dev_err(pmecc->dev,
677 			"PMECC: Timeout to calculate error location.\n");
678 		return ret;
679 	}
680 
681 	roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
682 	/* Number of roots == degree of smu hence <= cap */
683 	if (roots_nbr == user->lmu[strength + 1] >> 1)
684 		return err_nbr - 1;
685 
686 	/*
687 	 * Number of roots does not match the degree of smu
688 	 * unable to correct error.
689 	 */
690 	return -EBADMSG;
691 }
692 
693 int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
694 			       void *data, void *ecc)
695 {
696 	struct atmel_pmecc *pmecc = user->pmecc;
697 	int sectorsize = get_sectorsize(user);
698 	int eccbytes = user->eccbytes;
699 	int i, nerrors;
700 
701 	if (!(user->isr & BIT(sector)))
702 		return 0;
703 
704 	atmel_pmecc_gen_syndrome(user, sector);
705 	atmel_pmecc_substitute(user);
706 	atmel_pmecc_get_sigma(user);
707 
708 	nerrors = atmel_pmecc_err_location(user);
709 	if (nerrors < 0)
710 		return nerrors;
711 
712 	for (i = 0; i < nerrors; i++) {
713 		const char *area;
714 		int byte, bit;
715 		u32 errpos;
716 		u8 *ptr;
717 
718 		errpos = readl_relaxed(pmecc->regs.errloc +
719 				ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
720 		errpos--;
721 
722 		byte = errpos / 8;
723 		bit = errpos % 8;
724 
725 		if (byte < sectorsize) {
726 			ptr = data + byte;
727 			area = "data";
728 		} else if (byte < sectorsize + eccbytes) {
729 			ptr = ecc + byte - sectorsize;
730 			area = "ECC";
731 		} else {
732 			dev_dbg(pmecc->dev,
733 				"Invalid errpos value (%d, max is %d)\n",
734 				errpos, (sectorsize + eccbytes) * 8);
735 			return -EINVAL;
736 		}
737 
738 		dev_dbg(pmecc->dev,
739 			"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
740 			area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
741 
742 		*ptr ^= BIT(bit);
743 	}
744 
745 	return nerrors;
746 }
747 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
748 
749 bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
750 {
751 	return user->pmecc->caps->correct_erased_chunks;
752 }
753 EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
754 
755 void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
756 					int sector, void *ecc)
757 {
758 	struct atmel_pmecc *pmecc = user->pmecc;
759 	u8 *ptr = ecc;
760 	int i;
761 
762 	for (i = 0; i < user->eccbytes; i++)
763 		ptr[i] = readb_relaxed(pmecc->regs.base +
764 				       ATMEL_PMECC_ECC(sector, i));
765 }
766 EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
767 
768 void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
769 {
770 	writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
771 	writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
772 }
773 EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
774 
775 int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
776 {
777 	struct atmel_pmecc *pmecc = user->pmecc;
778 	u32 cfg;
779 
780 	if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
781 		dev_err(pmecc->dev, "Bad ECC operation!");
782 		return -EINVAL;
783 	}
784 
785 	mutex_lock(&user->pmecc->lock);
786 
787 	cfg = user->cache.cfg;
788 	if (op == NAND_ECC_WRITE)
789 		cfg |= PMECC_CFG_WRITE_OP;
790 	else
791 		cfg |= PMECC_CFG_AUTO_ENABLE;
792 
793 	writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
794 	writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
795 	writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
796 	writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
797 
798 	writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
799 	writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
800 
801 	return 0;
802 }
803 EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
804 
805 void atmel_pmecc_disable(struct atmel_pmecc_user *user)
806 {
807 	atmel_pmecc_reset(user->pmecc);
808 	mutex_unlock(&user->pmecc->lock);
809 }
810 EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
811 
812 int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
813 {
814 	struct atmel_pmecc *pmecc = user->pmecc;
815 	u32 status;
816 	int ret;
817 
818 	ret = readl_relaxed_poll_timeout(pmecc->regs.base +
819 					 ATMEL_PMECC_SR,
820 					 status, !(status & PMECC_SR_BUSY), 0,
821 					 PMECC_MAX_TIMEOUT_MS * 1000);
822 	if (ret) {
823 		dev_err(pmecc->dev,
824 			"Timeout while waiting for PMECC ready.\n");
825 		return ret;
826 	}
827 
828 	user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
833 
834 static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
835 					const struct atmel_pmecc_caps *caps,
836 					int pmecc_res_idx, int errloc_res_idx)
837 {
838 	struct device *dev = &pdev->dev;
839 	struct atmel_pmecc *pmecc;
840 	struct resource *res;
841 
842 	pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
843 	if (!pmecc)
844 		return ERR_PTR(-ENOMEM);
845 
846 	pmecc->caps = caps;
847 	pmecc->dev = dev;
848 	mutex_init(&pmecc->lock);
849 
850 	res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx);
851 	pmecc->regs.base = devm_ioremap_resource(dev, res);
852 	if (IS_ERR(pmecc->regs.base))
853 		return ERR_CAST(pmecc->regs.base);
854 
855 	res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx);
856 	pmecc->regs.errloc = devm_ioremap_resource(dev, res);
857 	if (IS_ERR(pmecc->regs.errloc))
858 		return ERR_CAST(pmecc->regs.errloc);
859 
860 	/* Disable all interrupts before registering the PMECC handler. */
861 	writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
862 	atmel_pmecc_reset(pmecc);
863 
864 	return pmecc;
865 }
866 
867 static void devm_atmel_pmecc_put(struct device *dev, void *res)
868 {
869 	struct atmel_pmecc **pmecc = res;
870 
871 	put_device((*pmecc)->dev);
872 }
873 
874 static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
875 						   struct device_node *np)
876 {
877 	struct platform_device *pdev;
878 	struct atmel_pmecc *pmecc, **ptr;
879 
880 	pdev = of_find_device_by_node(np);
881 	if (!pdev || !platform_get_drvdata(pdev))
882 		return ERR_PTR(-EPROBE_DEFER);
883 
884 	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
885 	if (!ptr)
886 		return ERR_PTR(-ENOMEM);
887 
888 	get_device(&pdev->dev);
889 	pmecc = platform_get_drvdata(pdev);
890 
891 	*ptr = pmecc;
892 
893 	devres_add(userdev, ptr);
894 
895 	return pmecc;
896 }
897 
898 static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
899 
900 static struct atmel_pmecc_caps at91sam9g45_caps = {
901 	.strengths = atmel_pmecc_strengths,
902 	.nstrengths = 5,
903 	.el_offset = 0x8c,
904 };
905 
906 static struct atmel_pmecc_caps sama5d4_caps = {
907 	.strengths = atmel_pmecc_strengths,
908 	.nstrengths = 5,
909 	.el_offset = 0x8c,
910 	.correct_erased_chunks = true,
911 };
912 
913 static struct atmel_pmecc_caps sama5d2_caps = {
914 	.strengths = atmel_pmecc_strengths,
915 	.nstrengths = 6,
916 	.el_offset = 0xac,
917 	.correct_erased_chunks = true,
918 };
919 
920 static const struct of_device_id atmel_pmecc_legacy_match[] = {
921 	{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
922 	{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
923 	{ /* sentinel */ }
924 };
925 
926 struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
927 {
928 	struct atmel_pmecc *pmecc;
929 	struct device_node *np;
930 
931 	if (!userdev)
932 		return ERR_PTR(-EINVAL);
933 
934 	if (!userdev->of_node)
935 		return NULL;
936 
937 	np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
938 	if (np) {
939 		pmecc = atmel_pmecc_get_by_node(userdev, np);
940 		of_node_put(np);
941 	} else {
942 		/*
943 		 * Support old DT bindings: in this case the PMECC iomem
944 		 * resources are directly defined in the user pdev at position
945 		 * 1 and 2. Extract all relevant information from there.
946 		 */
947 		struct platform_device *pdev = to_platform_device(userdev);
948 		const struct atmel_pmecc_caps *caps;
949 		const struct of_device_id *match;
950 
951 		/* No PMECC engine available. */
952 		if (!of_property_read_bool(userdev->of_node,
953 					   "atmel,has-pmecc"))
954 			return NULL;
955 
956 		caps = &at91sam9g45_caps;
957 
958 		/* Find the caps associated to the NAND dev node. */
959 		match = of_match_node(atmel_pmecc_legacy_match,
960 				      userdev->of_node);
961 		if (match && match->data)
962 			caps = match->data;
963 
964 		pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
965 	}
966 
967 	return pmecc;
968 }
969 EXPORT_SYMBOL(devm_atmel_pmecc_get);
970 
971 static const struct of_device_id atmel_pmecc_match[] = {
972 	{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
973 	{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
974 	{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
975 	{ /* sentinel */ }
976 };
977 MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
978 
979 static int atmel_pmecc_probe(struct platform_device *pdev)
980 {
981 	struct device *dev = &pdev->dev;
982 	const struct atmel_pmecc_caps *caps;
983 	struct atmel_pmecc *pmecc;
984 
985 	caps = of_device_get_match_data(&pdev->dev);
986 	if (!caps) {
987 		dev_err(dev, "Invalid caps\n");
988 		return -EINVAL;
989 	}
990 
991 	pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
992 	if (IS_ERR(pmecc))
993 		return PTR_ERR(pmecc);
994 
995 	platform_set_drvdata(pdev, pmecc);
996 
997 	return 0;
998 }
999 
1000 static struct platform_driver atmel_pmecc_driver = {
1001 	.driver = {
1002 		.name = "atmel-pmecc",
1003 		.of_match_table = of_match_ptr(atmel_pmecc_match),
1004 	},
1005 	.probe = atmel_pmecc_probe,
1006 };
1007 module_platform_driver(atmel_pmecc_driver);
1008 
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
1011 MODULE_DESCRIPTION("PMECC engine driver");
1012 MODULE_ALIAS("platform:atmel_pmecc");
1013