1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *	Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *		      (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *		       (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *		 that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47 
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66 
67 #include "pmecc.h"
68 
69 #define ATMEL_HSMC_NFC_CFG			0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
80 
81 #define ATMEL_HSMC_NFC_CTRL			0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
84 
85 #define ATMEL_HSMC_NFC_SR			0x8
86 #define ATMEL_HSMC_NFC_IER			0xc
87 #define ATMEL_HSMC_NFC_IDR			0x10
88 #define ATMEL_HSMC_NFC_IMR			0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
102 						 ATMEL_HSMC_NFC_SR_UNDEF | \
103 						 ATMEL_HSMC_NFC_SR_AWB | \
104 						 ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
106 
107 #define ATMEL_HSMC_NFC_ADDR			0x18
108 #define ATMEL_HSMC_NFC_BANK			0x1c
109 
110 #define ATMEL_NFC_MAX_RB_ID			7
111 
112 #define ATMEL_NFC_SRAM_SIZE			0x2400
113 
114 #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2				BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)			((cs) << 22)
118 #define ATMEL_NFC_DATAEN			BIT(25)
119 #define ATMEL_NFC_NFCWR				BIT(26)
120 
121 #define ATMEL_NFC_MAX_ADDR_CYCLES		5
122 
123 #define ATMEL_NAND_ALE_OFFSET			BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET			BIT(22)
125 
126 #define DEFAULT_TIMEOUT_MS			1000
127 #define MIN_DMA_LEN				128
128 
129 static bool atmel_nand_avoid_dma __read_mostly;
130 
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133 
134 enum atmel_nand_rb_type {
135 	ATMEL_NAND_NO_RB,
136 	ATMEL_NAND_NATIVE_RB,
137 	ATMEL_NAND_GPIO_RB,
138 };
139 
140 struct atmel_nand_rb {
141 	enum atmel_nand_rb_type type;
142 	union {
143 		struct gpio_desc *gpio;
144 		int id;
145 	};
146 };
147 
148 struct atmel_nand_cs {
149 	int id;
150 	struct atmel_nand_rb rb;
151 	struct gpio_desc *csgpio;
152 	struct {
153 		void __iomem *virt;
154 		dma_addr_t dma;
155 	} io;
156 
157 	struct atmel_smc_cs_conf smcconf;
158 };
159 
160 struct atmel_nand {
161 	struct list_head node;
162 	struct device *dev;
163 	struct nand_chip base;
164 	struct atmel_nand_cs *activecs;
165 	struct atmel_pmecc_user *pmecc;
166 	struct gpio_desc *cdgpio;
167 	int numcs;
168 	struct atmel_nand_cs cs[];
169 };
170 
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173 	return container_of(chip, struct atmel_nand, base);
174 }
175 
176 enum atmel_nfc_data_xfer {
177 	ATMEL_NFC_NO_DATA,
178 	ATMEL_NFC_READ_DATA,
179 	ATMEL_NFC_WRITE_DATA,
180 };
181 
182 struct atmel_nfc_op {
183 	u8 cs;
184 	u8 ncmds;
185 	u8 cmds[2];
186 	u8 naddrs;
187 	u8 addrs[5];
188 	enum atmel_nfc_data_xfer data;
189 	u32 wait;
190 	u32 errors;
191 };
192 
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195 
196 struct atmel_nand_controller_ops {
197 	int (*probe)(struct platform_device *pdev,
198 		     const struct atmel_nand_controller_caps *caps);
199 	int (*remove)(struct atmel_nand_controller *nc);
200 	void (*nand_init)(struct atmel_nand_controller *nc,
201 			  struct atmel_nand *nand);
202 	int (*ecc_init)(struct nand_chip *chip);
203 	int (*setup_data_interface)(struct atmel_nand *nand, int csline,
204 				    const struct nand_data_interface *conf);
205 };
206 
207 struct atmel_nand_controller_caps {
208 	bool has_dma;
209 	bool legacy_of_bindings;
210 	u32 ale_offs;
211 	u32 cle_offs;
212 	const char *ebi_csa_regmap_name;
213 	const struct atmel_nand_controller_ops *ops;
214 };
215 
216 struct atmel_nand_controller {
217 	struct nand_controller base;
218 	const struct atmel_nand_controller_caps *caps;
219 	struct device *dev;
220 	struct regmap *smc;
221 	struct dma_chan *dmac;
222 	struct atmel_pmecc *pmecc;
223 	struct list_head chips;
224 	struct clk *mck;
225 };
226 
227 static inline struct atmel_nand_controller *
228 to_nand_controller(struct nand_controller *ctl)
229 {
230 	return container_of(ctl, struct atmel_nand_controller, base);
231 }
232 
233 struct atmel_smc_nand_ebi_csa_cfg {
234 	u32 offs;
235 	u32 nfd0_on_d16;
236 };
237 
238 struct atmel_smc_nand_controller {
239 	struct atmel_nand_controller base;
240 	struct regmap *ebi_csa_regmap;
241 	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
242 };
243 
244 static inline struct atmel_smc_nand_controller *
245 to_smc_nand_controller(struct nand_controller *ctl)
246 {
247 	return container_of(to_nand_controller(ctl),
248 			    struct atmel_smc_nand_controller, base);
249 }
250 
251 struct atmel_hsmc_nand_controller {
252 	struct atmel_nand_controller base;
253 	struct {
254 		struct gen_pool *pool;
255 		void __iomem *virt;
256 		dma_addr_t dma;
257 	} sram;
258 	const struct atmel_hsmc_reg_layout *hsmc_layout;
259 	struct regmap *io;
260 	struct atmel_nfc_op op;
261 	struct completion complete;
262 	int irq;
263 
264 	/* Only used when instantiating from legacy DT bindings. */
265 	struct clk *clk;
266 };
267 
268 static inline struct atmel_hsmc_nand_controller *
269 to_hsmc_nand_controller(struct nand_controller *ctl)
270 {
271 	return container_of(to_nand_controller(ctl),
272 			    struct atmel_hsmc_nand_controller, base);
273 }
274 
275 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
276 {
277 	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
278 	op->wait ^= status & op->wait;
279 
280 	return !op->wait || op->errors;
281 }
282 
283 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
284 {
285 	struct atmel_hsmc_nand_controller *nc = data;
286 	u32 sr, rcvd;
287 	bool done;
288 
289 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
290 
291 	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
292 	done = atmel_nfc_op_done(&nc->op, sr);
293 
294 	if (rcvd)
295 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
296 
297 	if (done)
298 		complete(&nc->complete);
299 
300 	return rcvd ? IRQ_HANDLED : IRQ_NONE;
301 }
302 
303 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
304 			  unsigned int timeout_ms)
305 {
306 	int ret;
307 
308 	if (!timeout_ms)
309 		timeout_ms = DEFAULT_TIMEOUT_MS;
310 
311 	if (poll) {
312 		u32 status;
313 
314 		ret = regmap_read_poll_timeout(nc->base.smc,
315 					       ATMEL_HSMC_NFC_SR, status,
316 					       atmel_nfc_op_done(&nc->op,
317 								 status),
318 					       0, timeout_ms * 1000);
319 	} else {
320 		init_completion(&nc->complete);
321 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
322 			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
323 		ret = wait_for_completion_timeout(&nc->complete,
324 						msecs_to_jiffies(timeout_ms));
325 		if (!ret)
326 			ret = -ETIMEDOUT;
327 		else
328 			ret = 0;
329 
330 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
331 	}
332 
333 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
334 		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
335 		ret = -ETIMEDOUT;
336 	}
337 
338 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
339 		dev_err(nc->base.dev, "Access to an undefined area\n");
340 		ret = -EIO;
341 	}
342 
343 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
344 		dev_err(nc->base.dev, "Access while busy\n");
345 		ret = -EIO;
346 	}
347 
348 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
349 		dev_err(nc->base.dev, "Wrong access size\n");
350 		ret = -EIO;
351 	}
352 
353 	return ret;
354 }
355 
356 static void atmel_nand_dma_transfer_finished(void *data)
357 {
358 	struct completion *finished = data;
359 
360 	complete(finished);
361 }
362 
363 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
364 				   void *buf, dma_addr_t dev_dma, size_t len,
365 				   enum dma_data_direction dir)
366 {
367 	DECLARE_COMPLETION_ONSTACK(finished);
368 	dma_addr_t src_dma, dst_dma, buf_dma;
369 	struct dma_async_tx_descriptor *tx;
370 	dma_cookie_t cookie;
371 
372 	buf_dma = dma_map_single(nc->dev, buf, len, dir);
373 	if (dma_mapping_error(nc->dev, dev_dma)) {
374 		dev_err(nc->dev,
375 			"Failed to prepare a buffer for DMA access\n");
376 		goto err;
377 	}
378 
379 	if (dir == DMA_FROM_DEVICE) {
380 		src_dma = dev_dma;
381 		dst_dma = buf_dma;
382 	} else {
383 		src_dma = buf_dma;
384 		dst_dma = dev_dma;
385 	}
386 
387 	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
388 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
389 	if (!tx) {
390 		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
391 		goto err_unmap;
392 	}
393 
394 	tx->callback = atmel_nand_dma_transfer_finished;
395 	tx->callback_param = &finished;
396 
397 	cookie = dmaengine_submit(tx);
398 	if (dma_submit_error(cookie)) {
399 		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
400 		goto err_unmap;
401 	}
402 
403 	dma_async_issue_pending(nc->dmac);
404 	wait_for_completion(&finished);
405 
406 	return 0;
407 
408 err_unmap:
409 	dma_unmap_single(nc->dev, buf_dma, len, dir);
410 
411 err:
412 	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
413 
414 	return -EIO;
415 }
416 
417 static u8 atmel_nand_read_byte(struct nand_chip *chip)
418 {
419 	struct atmel_nand *nand = to_atmel_nand(chip);
420 
421 	return ioread8(nand->activecs->io.virt);
422 }
423 
424 static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
425 {
426 	struct atmel_nand *nand = to_atmel_nand(chip);
427 
428 	if (chip->options & NAND_BUSWIDTH_16)
429 		iowrite16(byte | (byte << 8), nand->activecs->io.virt);
430 	else
431 		iowrite8(byte, nand->activecs->io.virt);
432 }
433 
434 static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
435 {
436 	struct atmel_nand *nand = to_atmel_nand(chip);
437 	struct atmel_nand_controller *nc;
438 
439 	nc = to_nand_controller(chip->controller);
440 
441 	/*
442 	 * If the controller supports DMA, the buffer address is DMA-able and
443 	 * len is long enough to make DMA transfers profitable, let's trigger
444 	 * a DMA transfer. If it fails, fallback to PIO mode.
445 	 */
446 	if (nc->dmac && virt_addr_valid(buf) &&
447 	    len >= MIN_DMA_LEN &&
448 	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
449 				     DMA_FROM_DEVICE))
450 		return;
451 
452 	if (chip->options & NAND_BUSWIDTH_16)
453 		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
454 	else
455 		ioread8_rep(nand->activecs->io.virt, buf, len);
456 }
457 
458 static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
459 {
460 	struct atmel_nand *nand = to_atmel_nand(chip);
461 	struct atmel_nand_controller *nc;
462 
463 	nc = to_nand_controller(chip->controller);
464 
465 	/*
466 	 * If the controller supports DMA, the buffer address is DMA-able and
467 	 * len is long enough to make DMA transfers profitable, let's trigger
468 	 * a DMA transfer. If it fails, fallback to PIO mode.
469 	 */
470 	if (nc->dmac && virt_addr_valid(buf) &&
471 	    len >= MIN_DMA_LEN &&
472 	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
473 				     len, DMA_TO_DEVICE))
474 		return;
475 
476 	if (chip->options & NAND_BUSWIDTH_16)
477 		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
478 	else
479 		iowrite8_rep(nand->activecs->io.virt, buf, len);
480 }
481 
482 static int atmel_nand_dev_ready(struct nand_chip *chip)
483 {
484 	struct atmel_nand *nand = to_atmel_nand(chip);
485 
486 	return gpiod_get_value(nand->activecs->rb.gpio);
487 }
488 
489 static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
490 {
491 	struct atmel_nand *nand = to_atmel_nand(chip);
492 
493 	if (cs < 0 || cs >= nand->numcs) {
494 		nand->activecs = NULL;
495 		chip->legacy.dev_ready = NULL;
496 		return;
497 	}
498 
499 	nand->activecs = &nand->cs[cs];
500 
501 	if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
502 		chip->legacy.dev_ready = atmel_nand_dev_ready;
503 }
504 
505 static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
506 {
507 	struct atmel_nand *nand = to_atmel_nand(chip);
508 	struct atmel_hsmc_nand_controller *nc;
509 	u32 status;
510 
511 	nc = to_hsmc_nand_controller(chip->controller);
512 
513 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
514 
515 	return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
516 }
517 
518 static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
519 {
520 	struct mtd_info *mtd = nand_to_mtd(chip);
521 	struct atmel_nand *nand = to_atmel_nand(chip);
522 	struct atmel_hsmc_nand_controller *nc;
523 
524 	nc = to_hsmc_nand_controller(chip->controller);
525 
526 	atmel_nand_select_chip(chip, cs);
527 
528 	if (!nand->activecs) {
529 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
530 			     ATMEL_HSMC_NFC_CTRL_DIS);
531 		return;
532 	}
533 
534 	if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
535 		chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
536 
537 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
538 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
539 			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
540 			   ATMEL_HSMC_NFC_CFG_RSPARE |
541 			   ATMEL_HSMC_NFC_CFG_WSPARE,
542 			   ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
543 			   ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
544 			   ATMEL_HSMC_NFC_CFG_RSPARE);
545 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
546 		     ATMEL_HSMC_NFC_CTRL_EN);
547 }
548 
549 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
550 {
551 	u8 *addrs = nc->op.addrs;
552 	unsigned int op = 0;
553 	u32 addr, val;
554 	int i, ret;
555 
556 	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
557 
558 	for (i = 0; i < nc->op.ncmds; i++)
559 		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
560 
561 	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
562 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
563 
564 	op |= ATMEL_NFC_CSID(nc->op.cs) |
565 	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
566 
567 	if (nc->op.ncmds > 1)
568 		op |= ATMEL_NFC_VCMD2;
569 
570 	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
571 	       (addrs[3] << 24);
572 
573 	if (nc->op.data != ATMEL_NFC_NO_DATA) {
574 		op |= ATMEL_NFC_DATAEN;
575 		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
576 
577 		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
578 			op |= ATMEL_NFC_NFCWR;
579 	}
580 
581 	/* Clear all flags. */
582 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
583 
584 	/* Send the command. */
585 	regmap_write(nc->io, op, addr);
586 
587 	ret = atmel_nfc_wait(nc, poll, 0);
588 	if (ret)
589 		dev_err(nc->base.dev,
590 			"Failed to send NAND command (err = %d)!",
591 			ret);
592 
593 	/* Reset the op state. */
594 	memset(&nc->op, 0, sizeof(nc->op));
595 
596 	return ret;
597 }
598 
599 static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
600 				     unsigned int ctrl)
601 {
602 	struct atmel_nand *nand = to_atmel_nand(chip);
603 	struct atmel_hsmc_nand_controller *nc;
604 
605 	nc = to_hsmc_nand_controller(chip->controller);
606 
607 	if (ctrl & NAND_ALE) {
608 		if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
609 			return;
610 
611 		nc->op.addrs[nc->op.naddrs++] = dat;
612 	} else if (ctrl & NAND_CLE) {
613 		if (nc->op.ncmds > 1)
614 			return;
615 
616 		nc->op.cmds[nc->op.ncmds++] = dat;
617 	}
618 
619 	if (dat == NAND_CMD_NONE) {
620 		nc->op.cs = nand->activecs->id;
621 		atmel_nfc_exec_op(nc, true);
622 	}
623 }
624 
625 static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
626 				unsigned int ctrl)
627 {
628 	struct atmel_nand *nand = to_atmel_nand(chip);
629 	struct atmel_nand_controller *nc;
630 
631 	nc = to_nand_controller(chip->controller);
632 
633 	if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
634 		if (ctrl & NAND_NCE)
635 			gpiod_set_value(nand->activecs->csgpio, 0);
636 		else
637 			gpiod_set_value(nand->activecs->csgpio, 1);
638 	}
639 
640 	if (ctrl & NAND_ALE)
641 		writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
642 	else if (ctrl & NAND_CLE)
643 		writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
644 }
645 
646 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
647 				   bool oob_required)
648 {
649 	struct mtd_info *mtd = nand_to_mtd(chip);
650 	struct atmel_hsmc_nand_controller *nc;
651 	int ret = -EIO;
652 
653 	nc = to_hsmc_nand_controller(chip->controller);
654 
655 	if (nc->base.dmac)
656 		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
657 					      nc->sram.dma, mtd->writesize,
658 					      DMA_TO_DEVICE);
659 
660 	/* Falling back to CPU copy. */
661 	if (ret)
662 		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
663 
664 	if (oob_required)
665 		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
666 			    mtd->oobsize);
667 }
668 
669 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
670 				     bool oob_required)
671 {
672 	struct mtd_info *mtd = nand_to_mtd(chip);
673 	struct atmel_hsmc_nand_controller *nc;
674 	int ret = -EIO;
675 
676 	nc = to_hsmc_nand_controller(chip->controller);
677 
678 	if (nc->base.dmac)
679 		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
680 					      mtd->writesize, DMA_FROM_DEVICE);
681 
682 	/* Falling back to CPU copy. */
683 	if (ret)
684 		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
685 
686 	if (oob_required)
687 		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
688 			      mtd->oobsize);
689 }
690 
691 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
692 {
693 	struct mtd_info *mtd = nand_to_mtd(chip);
694 	struct atmel_hsmc_nand_controller *nc;
695 
696 	nc = to_hsmc_nand_controller(chip->controller);
697 
698 	if (column >= 0) {
699 		nc->op.addrs[nc->op.naddrs++] = column;
700 
701 		/*
702 		 * 2 address cycles for the column offset on large page NANDs.
703 		 */
704 		if (mtd->writesize > 512)
705 			nc->op.addrs[nc->op.naddrs++] = column >> 8;
706 	}
707 
708 	if (page >= 0) {
709 		nc->op.addrs[nc->op.naddrs++] = page;
710 		nc->op.addrs[nc->op.naddrs++] = page >> 8;
711 
712 		if (chip->options & NAND_ROW_ADDR_3)
713 			nc->op.addrs[nc->op.naddrs++] = page >> 16;
714 	}
715 }
716 
717 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
718 {
719 	struct atmel_nand *nand = to_atmel_nand(chip);
720 	struct atmel_nand_controller *nc;
721 	int ret;
722 
723 	nc = to_nand_controller(chip->controller);
724 
725 	if (raw)
726 		return 0;
727 
728 	ret = atmel_pmecc_enable(nand->pmecc, op);
729 	if (ret)
730 		dev_err(nc->dev,
731 			"Failed to enable ECC engine (err = %d)\n", ret);
732 
733 	return ret;
734 }
735 
736 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
737 {
738 	struct atmel_nand *nand = to_atmel_nand(chip);
739 
740 	if (!raw)
741 		atmel_pmecc_disable(nand->pmecc);
742 }
743 
744 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
745 {
746 	struct atmel_nand *nand = to_atmel_nand(chip);
747 	struct mtd_info *mtd = nand_to_mtd(chip);
748 	struct atmel_nand_controller *nc;
749 	struct mtd_oob_region oobregion;
750 	void *eccbuf;
751 	int ret, i;
752 
753 	nc = to_nand_controller(chip->controller);
754 
755 	if (raw)
756 		return 0;
757 
758 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
759 	if (ret) {
760 		dev_err(nc->dev,
761 			"Failed to transfer NAND page data (err = %d)\n",
762 			ret);
763 		return ret;
764 	}
765 
766 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
767 	eccbuf = chip->oob_poi + oobregion.offset;
768 
769 	for (i = 0; i < chip->ecc.steps; i++) {
770 		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
771 						   eccbuf);
772 		eccbuf += chip->ecc.bytes;
773 	}
774 
775 	return 0;
776 }
777 
778 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
779 					 bool raw)
780 {
781 	struct atmel_nand *nand = to_atmel_nand(chip);
782 	struct mtd_info *mtd = nand_to_mtd(chip);
783 	struct atmel_nand_controller *nc;
784 	struct mtd_oob_region oobregion;
785 	int ret, i, max_bitflips = 0;
786 	void *databuf, *eccbuf;
787 
788 	nc = to_nand_controller(chip->controller);
789 
790 	if (raw)
791 		return 0;
792 
793 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
794 	if (ret) {
795 		dev_err(nc->dev,
796 			"Failed to read NAND page data (err = %d)\n",
797 			ret);
798 		return ret;
799 	}
800 
801 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
802 	eccbuf = chip->oob_poi + oobregion.offset;
803 	databuf = buf;
804 
805 	for (i = 0; i < chip->ecc.steps; i++) {
806 		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
807 						 eccbuf);
808 		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
809 			ret = nand_check_erased_ecc_chunk(databuf,
810 							  chip->ecc.size,
811 							  eccbuf,
812 							  chip->ecc.bytes,
813 							  NULL, 0,
814 							  chip->ecc.strength);
815 
816 		if (ret >= 0)
817 			max_bitflips = max(ret, max_bitflips);
818 		else
819 			mtd->ecc_stats.failed++;
820 
821 		databuf += chip->ecc.size;
822 		eccbuf += chip->ecc.bytes;
823 	}
824 
825 	return max_bitflips;
826 }
827 
828 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
829 				     bool oob_required, int page, bool raw)
830 {
831 	struct mtd_info *mtd = nand_to_mtd(chip);
832 	struct atmel_nand *nand = to_atmel_nand(chip);
833 	int ret;
834 
835 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
836 
837 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
838 	if (ret)
839 		return ret;
840 
841 	atmel_nand_write_buf(chip, buf, mtd->writesize);
842 
843 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
844 	if (ret) {
845 		atmel_pmecc_disable(nand->pmecc);
846 		return ret;
847 	}
848 
849 	atmel_nand_pmecc_disable(chip, raw);
850 
851 	atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
852 
853 	return nand_prog_page_end_op(chip);
854 }
855 
856 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
857 				       int oob_required, int page)
858 {
859 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
860 }
861 
862 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
863 					   const u8 *buf, int oob_required,
864 					   int page)
865 {
866 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
867 }
868 
869 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
870 				    bool oob_required, int page, bool raw)
871 {
872 	struct mtd_info *mtd = nand_to_mtd(chip);
873 	int ret;
874 
875 	nand_read_page_op(chip, page, 0, NULL, 0);
876 
877 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
878 	if (ret)
879 		return ret;
880 
881 	atmel_nand_read_buf(chip, buf, mtd->writesize);
882 	atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
883 
884 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
885 
886 	atmel_nand_pmecc_disable(chip, raw);
887 
888 	return ret;
889 }
890 
891 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
892 				      int oob_required, int page)
893 {
894 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
895 }
896 
897 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
898 					  int oob_required, int page)
899 {
900 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
901 }
902 
903 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
904 					  const u8 *buf, bool oob_required,
905 					  int page, bool raw)
906 {
907 	struct mtd_info *mtd = nand_to_mtd(chip);
908 	struct atmel_nand *nand = to_atmel_nand(chip);
909 	struct atmel_hsmc_nand_controller *nc;
910 	int ret, status;
911 
912 	nc = to_hsmc_nand_controller(chip->controller);
913 
914 	atmel_nfc_copy_to_sram(chip, buf, false);
915 
916 	nc->op.cmds[0] = NAND_CMD_SEQIN;
917 	nc->op.ncmds = 1;
918 	atmel_nfc_set_op_addr(chip, page, 0x0);
919 	nc->op.cs = nand->activecs->id;
920 	nc->op.data = ATMEL_NFC_WRITE_DATA;
921 
922 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
923 	if (ret)
924 		return ret;
925 
926 	ret = atmel_nfc_exec_op(nc, false);
927 	if (ret) {
928 		atmel_nand_pmecc_disable(chip, raw);
929 		dev_err(nc->base.dev,
930 			"Failed to transfer NAND page data (err = %d)\n",
931 			ret);
932 		return ret;
933 	}
934 
935 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
936 
937 	atmel_nand_pmecc_disable(chip, raw);
938 
939 	if (ret)
940 		return ret;
941 
942 	atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
943 
944 	nc->op.cmds[0] = NAND_CMD_PAGEPROG;
945 	nc->op.ncmds = 1;
946 	nc->op.cs = nand->activecs->id;
947 	ret = atmel_nfc_exec_op(nc, false);
948 	if (ret)
949 		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
950 			ret);
951 
952 	status = chip->legacy.waitfunc(chip);
953 	if (status & NAND_STATUS_FAIL)
954 		return -EIO;
955 
956 	return ret;
957 }
958 
959 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
960 					    const u8 *buf, int oob_required,
961 					    int page)
962 {
963 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
964 					      false);
965 }
966 
967 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
968 						const u8 *buf,
969 						int oob_required, int page)
970 {
971 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
972 					      true);
973 }
974 
975 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
976 					 bool oob_required, int page,
977 					 bool raw)
978 {
979 	struct mtd_info *mtd = nand_to_mtd(chip);
980 	struct atmel_nand *nand = to_atmel_nand(chip);
981 	struct atmel_hsmc_nand_controller *nc;
982 	int ret;
983 
984 	nc = to_hsmc_nand_controller(chip->controller);
985 
986 	/*
987 	 * Optimized read page accessors only work when the NAND R/B pin is
988 	 * connected to a native SoC R/B pin. If that's not the case, fallback
989 	 * to the non-optimized one.
990 	 */
991 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
992 		nand_read_page_op(chip, page, 0, NULL, 0);
993 
994 		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
995 						raw);
996 	}
997 
998 	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
999 
1000 	if (mtd->writesize > 512)
1001 		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1002 
1003 	atmel_nfc_set_op_addr(chip, page, 0x0);
1004 	nc->op.cs = nand->activecs->id;
1005 	nc->op.data = ATMEL_NFC_READ_DATA;
1006 
1007 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1008 	if (ret)
1009 		return ret;
1010 
1011 	ret = atmel_nfc_exec_op(nc, false);
1012 	if (ret) {
1013 		atmel_nand_pmecc_disable(chip, raw);
1014 		dev_err(nc->base.dev,
1015 			"Failed to load NAND page data (err = %d)\n",
1016 			ret);
1017 		return ret;
1018 	}
1019 
1020 	atmel_nfc_copy_from_sram(chip, buf, true);
1021 
1022 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1023 
1024 	atmel_nand_pmecc_disable(chip, raw);
1025 
1026 	return ret;
1027 }
1028 
1029 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1030 					   int oob_required, int page)
1031 {
1032 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1033 					     false);
1034 }
1035 
1036 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1037 					       u8 *buf, int oob_required,
1038 					       int page)
1039 {
1040 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1041 					     true);
1042 }
1043 
1044 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1045 {
1046 	struct mtd_info *mtd = nand_to_mtd(chip);
1047 	struct atmel_nand *nand = to_atmel_nand(chip);
1048 	struct atmel_nand_controller *nc;
1049 	struct atmel_pmecc_user_req req;
1050 
1051 	nc = to_nand_controller(chip->controller);
1052 
1053 	if (!nc->pmecc) {
1054 		dev_err(nc->dev, "HW ECC not supported\n");
1055 		return -ENOTSUPP;
1056 	}
1057 
1058 	if (nc->caps->legacy_of_bindings) {
1059 		u32 val;
1060 
1061 		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1062 					  &val))
1063 			chip->ecc.strength = val;
1064 
1065 		if (!of_property_read_u32(nc->dev->of_node,
1066 					  "atmel,pmecc-sector-size",
1067 					  &val))
1068 			chip->ecc.size = val;
1069 	}
1070 
1071 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1072 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1073 	else if (chip->ecc.strength)
1074 		req.ecc.strength = chip->ecc.strength;
1075 	else if (chip->base.eccreq.strength)
1076 		req.ecc.strength = chip->base.eccreq.strength;
1077 	else
1078 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1079 
1080 	if (chip->ecc.size)
1081 		req.ecc.sectorsize = chip->ecc.size;
1082 	else if (chip->base.eccreq.step_size)
1083 		req.ecc.sectorsize = chip->base.eccreq.step_size;
1084 	else
1085 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1086 
1087 	req.pagesize = mtd->writesize;
1088 	req.oobsize = mtd->oobsize;
1089 
1090 	if (mtd->writesize <= 512) {
1091 		req.ecc.bytes = 4;
1092 		req.ecc.ooboffset = 0;
1093 	} else {
1094 		req.ecc.bytes = mtd->oobsize - 2;
1095 		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1096 	}
1097 
1098 	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1099 	if (IS_ERR(nand->pmecc))
1100 		return PTR_ERR(nand->pmecc);
1101 
1102 	chip->ecc.algo = NAND_ECC_BCH;
1103 	chip->ecc.size = req.ecc.sectorsize;
1104 	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1105 	chip->ecc.strength = req.ecc.strength;
1106 
1107 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1108 
1109 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1110 
1111 	return 0;
1112 }
1113 
1114 static int atmel_nand_ecc_init(struct nand_chip *chip)
1115 {
1116 	struct atmel_nand_controller *nc;
1117 	int ret;
1118 
1119 	nc = to_nand_controller(chip->controller);
1120 
1121 	switch (chip->ecc.mode) {
1122 	case NAND_ECC_NONE:
1123 	case NAND_ECC_SOFT:
1124 		/*
1125 		 * Nothing to do, the core will initialize everything for us.
1126 		 */
1127 		break;
1128 
1129 	case NAND_ECC_HW:
1130 		ret = atmel_nand_pmecc_init(chip);
1131 		if (ret)
1132 			return ret;
1133 
1134 		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1135 		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1136 		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1137 		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1138 		break;
1139 
1140 	default:
1141 		/* Other modes are not supported. */
1142 		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1143 			chip->ecc.mode);
1144 		return -ENOTSUPP;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1151 {
1152 	int ret;
1153 
1154 	ret = atmel_nand_ecc_init(chip);
1155 	if (ret)
1156 		return ret;
1157 
1158 	if (chip->ecc.mode != NAND_ECC_HW)
1159 		return 0;
1160 
1161 	/* Adjust the ECC operations for the HSMC IP. */
1162 	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1163 	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1164 	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1165 	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1166 
1167 	return 0;
1168 }
1169 
1170 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1171 					const struct nand_data_interface *conf,
1172 					struct atmel_smc_cs_conf *smcconf)
1173 {
1174 	u32 ncycles, totalcycles, timeps, mckperiodps;
1175 	struct atmel_nand_controller *nc;
1176 	int ret;
1177 
1178 	nc = to_nand_controller(nand->base.controller);
1179 
1180 	/* DDR interface not supported. */
1181 	if (conf->type != NAND_SDR_IFACE)
1182 		return -ENOTSUPP;
1183 
1184 	/*
1185 	 * tRC < 30ns implies EDO mode. This controller does not support this
1186 	 * mode.
1187 	 */
1188 	if (conf->timings.sdr.tRC_min < 30000)
1189 		return -ENOTSUPP;
1190 
1191 	atmel_smc_cs_conf_init(smcconf);
1192 
1193 	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1194 	mckperiodps *= 1000;
1195 
1196 	/*
1197 	 * Set write pulse timing. This one is easy to extract:
1198 	 *
1199 	 * NWE_PULSE = tWP
1200 	 */
1201 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1202 	totalcycles = ncycles;
1203 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1204 					  ncycles);
1205 	if (ret)
1206 		return ret;
1207 
1208 	/*
1209 	 * The write setup timing depends on the operation done on the NAND.
1210 	 * All operations goes through the same data bus, but the operation
1211 	 * type depends on the address we are writing to (ALE/CLE address
1212 	 * lines).
1213 	 * Since we have no way to differentiate the different operations at
1214 	 * the SMC level, we must consider the worst case (the biggest setup
1215 	 * time among all operation types):
1216 	 *
1217 	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1218 	 */
1219 	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1220 		      conf->timings.sdr.tALS_min);
1221 	timeps = max(timeps, conf->timings.sdr.tDS_min);
1222 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1223 	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1224 	totalcycles += ncycles;
1225 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1226 					  ncycles);
1227 	if (ret)
1228 		return ret;
1229 
1230 	/*
1231 	 * As for the write setup timing, the write hold timing depends on the
1232 	 * operation done on the NAND:
1233 	 *
1234 	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1235 	 */
1236 	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1237 		      conf->timings.sdr.tALH_min);
1238 	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1239 		      conf->timings.sdr.tWH_min);
1240 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1241 	totalcycles += ncycles;
1242 
1243 	/*
1244 	 * The write cycle timing is directly matching tWC, but is also
1245 	 * dependent on the other timings on the setup and hold timings we
1246 	 * calculated earlier, which gives:
1247 	 *
1248 	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1249 	 */
1250 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1251 	ncycles = max(totalcycles, ncycles);
1252 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1253 					  ncycles);
1254 	if (ret)
1255 		return ret;
1256 
1257 	/*
1258 	 * We don't want the CS line to be toggled between each byte/word
1259 	 * transfer to the NAND. The only way to guarantee that is to have the
1260 	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1261 	 *
1262 	 * NCS_WR_PULSE = NWE_CYCLE
1263 	 */
1264 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1265 					  ncycles);
1266 	if (ret)
1267 		return ret;
1268 
1269 	/*
1270 	 * As for the write setup timing, the read hold timing depends on the
1271 	 * operation done on the NAND:
1272 	 *
1273 	 * NRD_HOLD = max(tREH, tRHOH)
1274 	 */
1275 	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1276 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1277 	totalcycles = ncycles;
1278 
1279 	/*
1280 	 * TDF = tRHZ - NRD_HOLD
1281 	 */
1282 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1283 	ncycles -= totalcycles;
1284 
1285 	/*
1286 	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1287 	 * we might end up with a config that does not fit in the TDF field.
1288 	 * Just take the max value in this case and hope that the NAND is more
1289 	 * tolerant than advertised.
1290 	 */
1291 	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1292 		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1293 	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1294 		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1295 
1296 	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1297 			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1298 
1299 	/*
1300 	 * Read pulse timing directly matches tRP:
1301 	 *
1302 	 * NRD_PULSE = tRP
1303 	 */
1304 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1305 	totalcycles += ncycles;
1306 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1307 					  ncycles);
1308 	if (ret)
1309 		return ret;
1310 
1311 	/*
1312 	 * The write cycle timing is directly matching tWC, but is also
1313 	 * dependent on the setup and hold timings we calculated earlier,
1314 	 * which gives:
1315 	 *
1316 	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1317 	 *
1318 	 * NRD_SETUP is always 0.
1319 	 */
1320 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1321 	ncycles = max(totalcycles, ncycles);
1322 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1323 					  ncycles);
1324 	if (ret)
1325 		return ret;
1326 
1327 	/*
1328 	 * We don't want the CS line to be toggled between each byte/word
1329 	 * transfer from the NAND. The only way to guarantee that is to have
1330 	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1331 	 *
1332 	 * NCS_RD_PULSE = NRD_CYCLE
1333 	 */
1334 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1335 					  ncycles);
1336 	if (ret)
1337 		return ret;
1338 
1339 	/* Txxx timings are directly matching tXXX ones. */
1340 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1341 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1342 					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1343 					   ncycles);
1344 	if (ret)
1345 		return ret;
1346 
1347 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1348 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1349 					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1350 					   ncycles);
1351 	/*
1352 	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1353 	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1354 	 * fit in the tADL field of the SMC reg. We need to relax the check and
1355 	 * accept the -ERANGE return code.
1356 	 *
1357 	 * Note that previous versions of the ONFI spec had a lower tADL_min
1358 	 * (100 or 200 ns). It's not clear why this timing constraint got
1359 	 * increased but it seems most NANDs are fine with values lower than
1360 	 * 400ns, so we should be safe.
1361 	 */
1362 	if (ret && ret != -ERANGE)
1363 		return ret;
1364 
1365 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1366 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1367 					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1368 					   ncycles);
1369 	if (ret)
1370 		return ret;
1371 
1372 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1373 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1374 					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1375 					   ncycles);
1376 	if (ret)
1377 		return ret;
1378 
1379 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1380 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1381 					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1382 					   ncycles);
1383 	if (ret)
1384 		return ret;
1385 
1386 	/* Attach the CS line to the NFC logic. */
1387 	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1388 
1389 	/* Set the appropriate data bus width. */
1390 	if (nand->base.options & NAND_BUSWIDTH_16)
1391 		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1392 
1393 	/* Operate in NRD/NWE READ/WRITEMODE. */
1394 	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1395 			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1396 
1397 	return 0;
1398 }
1399 
1400 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1401 					int csline,
1402 					const struct nand_data_interface *conf)
1403 {
1404 	struct atmel_nand_controller *nc;
1405 	struct atmel_smc_cs_conf smcconf;
1406 	struct atmel_nand_cs *cs;
1407 	int ret;
1408 
1409 	nc = to_nand_controller(nand->base.controller);
1410 
1411 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1412 	if (ret)
1413 		return ret;
1414 
1415 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1416 		return 0;
1417 
1418 	cs = &nand->cs[csline];
1419 	cs->smcconf = smcconf;
1420 	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1421 
1422 	return 0;
1423 }
1424 
1425 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1426 					int csline,
1427 					const struct nand_data_interface *conf)
1428 {
1429 	struct atmel_hsmc_nand_controller *nc;
1430 	struct atmel_smc_cs_conf smcconf;
1431 	struct atmel_nand_cs *cs;
1432 	int ret;
1433 
1434 	nc = to_hsmc_nand_controller(nand->base.controller);
1435 
1436 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1437 	if (ret)
1438 		return ret;
1439 
1440 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1441 		return 0;
1442 
1443 	cs = &nand->cs[csline];
1444 	cs->smcconf = smcconf;
1445 
1446 	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1447 		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1448 
1449 	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1450 				 &cs->smcconf);
1451 
1452 	return 0;
1453 }
1454 
1455 static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
1456 					const struct nand_data_interface *conf)
1457 {
1458 	struct atmel_nand *nand = to_atmel_nand(chip);
1459 	struct atmel_nand_controller *nc;
1460 
1461 	nc = to_nand_controller(nand->base.controller);
1462 
1463 	if (csline >= nand->numcs ||
1464 	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1465 		return -EINVAL;
1466 
1467 	return nc->caps->ops->setup_data_interface(nand, csline, conf);
1468 }
1469 
1470 static void atmel_nand_init(struct atmel_nand_controller *nc,
1471 			    struct atmel_nand *nand)
1472 {
1473 	struct nand_chip *chip = &nand->base;
1474 	struct mtd_info *mtd = nand_to_mtd(chip);
1475 
1476 	mtd->dev.parent = nc->dev;
1477 	nand->base.controller = &nc->base;
1478 
1479 	chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
1480 	chip->legacy.read_byte = atmel_nand_read_byte;
1481 	chip->legacy.write_byte = atmel_nand_write_byte;
1482 	chip->legacy.read_buf = atmel_nand_read_buf;
1483 	chip->legacy.write_buf = atmel_nand_write_buf;
1484 	chip->legacy.select_chip = atmel_nand_select_chip;
1485 
1486 	if (!nc->mck || !nc->caps->ops->setup_data_interface)
1487 		chip->options |= NAND_KEEP_TIMINGS;
1488 
1489 	/* Some NANDs require a longer delay than the default one (20us). */
1490 	chip->legacy.chip_delay = 40;
1491 
1492 	/*
1493 	 * Use a bounce buffer when the buffer passed by the MTD user is not
1494 	 * suitable for DMA.
1495 	 */
1496 	if (nc->dmac)
1497 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1498 
1499 	/* Default to HW ECC if pmecc is available. */
1500 	if (nc->pmecc)
1501 		chip->ecc.mode = NAND_ECC_HW;
1502 }
1503 
1504 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1505 				struct atmel_nand *nand)
1506 {
1507 	struct nand_chip *chip = &nand->base;
1508 	struct atmel_smc_nand_controller *smc_nc;
1509 	int i;
1510 
1511 	atmel_nand_init(nc, nand);
1512 
1513 	smc_nc = to_smc_nand_controller(chip->controller);
1514 	if (!smc_nc->ebi_csa_regmap)
1515 		return;
1516 
1517 	/* Attach the CS to the NAND Flash logic. */
1518 	for (i = 0; i < nand->numcs; i++)
1519 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1520 				   smc_nc->ebi_csa->offs,
1521 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1522 
1523 	if (smc_nc->ebi_csa->nfd0_on_d16)
1524 		regmap_update_bits(smc_nc->ebi_csa_regmap,
1525 				   smc_nc->ebi_csa->offs,
1526 				   smc_nc->ebi_csa->nfd0_on_d16,
1527 				   smc_nc->ebi_csa->nfd0_on_d16);
1528 }
1529 
1530 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1531 				 struct atmel_nand *nand)
1532 {
1533 	struct nand_chip *chip = &nand->base;
1534 
1535 	atmel_nand_init(nc, nand);
1536 
1537 	/* Overload some methods for the HSMC controller. */
1538 	chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1539 	chip->legacy.select_chip = atmel_hsmc_nand_select_chip;
1540 }
1541 
1542 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1543 {
1544 	struct nand_chip *chip = &nand->base;
1545 	struct mtd_info *mtd = nand_to_mtd(chip);
1546 	int ret;
1547 
1548 	ret = mtd_device_unregister(mtd);
1549 	if (ret)
1550 		return ret;
1551 
1552 	nand_cleanup(chip);
1553 	list_del(&nand->node);
1554 
1555 	return 0;
1556 }
1557 
1558 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1559 					    struct device_node *np,
1560 					    int reg_cells)
1561 {
1562 	struct atmel_nand *nand;
1563 	struct gpio_desc *gpio;
1564 	int numcs, ret, i;
1565 
1566 	numcs = of_property_count_elems_of_size(np, "reg",
1567 						reg_cells * sizeof(u32));
1568 	if (numcs < 1) {
1569 		dev_err(nc->dev, "Missing or invalid reg property\n");
1570 		return ERR_PTR(-EINVAL);
1571 	}
1572 
1573 	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1574 	if (!nand) {
1575 		dev_err(nc->dev, "Failed to allocate NAND object\n");
1576 		return ERR_PTR(-ENOMEM);
1577 	}
1578 
1579 	nand->numcs = numcs;
1580 
1581 	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1582 				     "det", GPIOD_IN, "nand-det");
1583 	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1584 		dev_err(nc->dev,
1585 			"Failed to get detect gpio (err = %ld)\n",
1586 			PTR_ERR(gpio));
1587 		return ERR_CAST(gpio);
1588 	}
1589 
1590 	if (!IS_ERR(gpio))
1591 		nand->cdgpio = gpio;
1592 
1593 	for (i = 0; i < numcs; i++) {
1594 		struct resource res;
1595 		u32 val;
1596 
1597 		ret = of_address_to_resource(np, 0, &res);
1598 		if (ret) {
1599 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1600 				ret);
1601 			return ERR_PTR(ret);
1602 		}
1603 
1604 		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1605 						 &val);
1606 		if (ret) {
1607 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1608 				ret);
1609 			return ERR_PTR(ret);
1610 		}
1611 
1612 		nand->cs[i].id = val;
1613 
1614 		nand->cs[i].io.dma = res.start;
1615 		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1616 		if (IS_ERR(nand->cs[i].io.virt))
1617 			return ERR_CAST(nand->cs[i].io.virt);
1618 
1619 		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1620 			if (val > ATMEL_NFC_MAX_RB_ID)
1621 				return ERR_PTR(-EINVAL);
1622 
1623 			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1624 			nand->cs[i].rb.id = val;
1625 		} else {
1626 			gpio = devm_fwnode_gpiod_get_index(nc->dev,
1627 							   of_fwnode_handle(np),
1628 							   "rb", i, GPIOD_IN,
1629 							   "nand-rb");
1630 			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1631 				dev_err(nc->dev,
1632 					"Failed to get R/B gpio (err = %ld)\n",
1633 					PTR_ERR(gpio));
1634 				return ERR_CAST(gpio);
1635 			}
1636 
1637 			if (!IS_ERR(gpio)) {
1638 				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1639 				nand->cs[i].rb.gpio = gpio;
1640 			}
1641 		}
1642 
1643 		gpio = devm_fwnode_gpiod_get_index(nc->dev,
1644 						   of_fwnode_handle(np),
1645 						   "cs", i, GPIOD_OUT_HIGH,
1646 						   "nand-cs");
1647 		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1648 			dev_err(nc->dev,
1649 				"Failed to get CS gpio (err = %ld)\n",
1650 				PTR_ERR(gpio));
1651 			return ERR_CAST(gpio);
1652 		}
1653 
1654 		if (!IS_ERR(gpio))
1655 			nand->cs[i].csgpio = gpio;
1656 	}
1657 
1658 	nand_set_flash_node(&nand->base, np);
1659 
1660 	return nand;
1661 }
1662 
1663 static int
1664 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1665 			       struct atmel_nand *nand)
1666 {
1667 	struct nand_chip *chip = &nand->base;
1668 	struct mtd_info *mtd = nand_to_mtd(chip);
1669 	int ret;
1670 
1671 	/* No card inserted, skip this NAND. */
1672 	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1673 		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1674 		return 0;
1675 	}
1676 
1677 	nc->caps->ops->nand_init(nc, nand);
1678 
1679 	ret = nand_scan(chip, nand->numcs);
1680 	if (ret) {
1681 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1682 		return ret;
1683 	}
1684 
1685 	ret = mtd_device_register(mtd, NULL, 0);
1686 	if (ret) {
1687 		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1688 		nand_cleanup(chip);
1689 		return ret;
1690 	}
1691 
1692 	list_add_tail(&nand->node, &nc->chips);
1693 
1694 	return 0;
1695 }
1696 
1697 static int
1698 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1699 {
1700 	struct atmel_nand *nand, *tmp;
1701 	int ret;
1702 
1703 	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1704 		ret = atmel_nand_controller_remove_nand(nand);
1705 		if (ret)
1706 			return ret;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 static int
1713 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1714 {
1715 	struct device *dev = nc->dev;
1716 	struct platform_device *pdev = to_platform_device(dev);
1717 	struct atmel_nand *nand;
1718 	struct gpio_desc *gpio;
1719 	struct resource *res;
1720 
1721 	/*
1722 	 * Legacy bindings only allow connecting a single NAND with a unique CS
1723 	 * line to the controller.
1724 	 */
1725 	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1726 			    GFP_KERNEL);
1727 	if (!nand)
1728 		return -ENOMEM;
1729 
1730 	nand->numcs = 1;
1731 
1732 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1733 	nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1734 	if (IS_ERR(nand->cs[0].io.virt))
1735 		return PTR_ERR(nand->cs[0].io.virt);
1736 
1737 	nand->cs[0].io.dma = res->start;
1738 
1739 	/*
1740 	 * The old driver was hardcoding the CS id to 3 for all sama5
1741 	 * controllers. Since this id is only meaningful for the sama5
1742 	 * controller we can safely assign this id to 3 no matter the
1743 	 * controller.
1744 	 * If one wants to connect a NAND to a different CS line, he will
1745 	 * have to use the new bindings.
1746 	 */
1747 	nand->cs[0].id = 3;
1748 
1749 	/* R/B GPIO. */
1750 	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1751 	if (IS_ERR(gpio)) {
1752 		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1753 			PTR_ERR(gpio));
1754 		return PTR_ERR(gpio);
1755 	}
1756 
1757 	if (gpio) {
1758 		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1759 		nand->cs[0].rb.gpio = gpio;
1760 	}
1761 
1762 	/* CS GPIO. */
1763 	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1764 	if (IS_ERR(gpio)) {
1765 		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1766 			PTR_ERR(gpio));
1767 		return PTR_ERR(gpio);
1768 	}
1769 
1770 	nand->cs[0].csgpio = gpio;
1771 
1772 	/* Card detect GPIO. */
1773 	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1774 	if (IS_ERR(gpio)) {
1775 		dev_err(dev,
1776 			"Failed to get detect gpio (err = %ld)\n",
1777 			PTR_ERR(gpio));
1778 		return PTR_ERR(gpio);
1779 	}
1780 
1781 	nand->cdgpio = gpio;
1782 
1783 	nand_set_flash_node(&nand->base, nc->dev->of_node);
1784 
1785 	return atmel_nand_controller_add_nand(nc, nand);
1786 }
1787 
1788 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1789 {
1790 	struct device_node *np, *nand_np;
1791 	struct device *dev = nc->dev;
1792 	int ret, reg_cells;
1793 	u32 val;
1794 
1795 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1796 	if (nc->caps->legacy_of_bindings)
1797 		return atmel_nand_controller_legacy_add_nands(nc);
1798 
1799 	np = dev->of_node;
1800 
1801 	ret = of_property_read_u32(np, "#address-cells", &val);
1802 	if (ret) {
1803 		dev_err(dev, "missing #address-cells property\n");
1804 		return ret;
1805 	}
1806 
1807 	reg_cells = val;
1808 
1809 	ret = of_property_read_u32(np, "#size-cells", &val);
1810 	if (ret) {
1811 		dev_err(dev, "missing #size-cells property\n");
1812 		return ret;
1813 	}
1814 
1815 	reg_cells += val;
1816 
1817 	for_each_child_of_node(np, nand_np) {
1818 		struct atmel_nand *nand;
1819 
1820 		nand = atmel_nand_create(nc, nand_np, reg_cells);
1821 		if (IS_ERR(nand)) {
1822 			ret = PTR_ERR(nand);
1823 			goto err;
1824 		}
1825 
1826 		ret = atmel_nand_controller_add_nand(nc, nand);
1827 		if (ret)
1828 			goto err;
1829 	}
1830 
1831 	return 0;
1832 
1833 err:
1834 	atmel_nand_controller_remove_nands(nc);
1835 
1836 	return ret;
1837 }
1838 
1839 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1840 {
1841 	if (nc->dmac)
1842 		dma_release_channel(nc->dmac);
1843 
1844 	clk_put(nc->mck);
1845 }
1846 
1847 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1848 	.offs = AT91SAM9260_MATRIX_EBICSA,
1849 };
1850 
1851 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1852 	.offs = AT91SAM9261_MATRIX_EBICSA,
1853 };
1854 
1855 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1856 	.offs = AT91SAM9263_MATRIX_EBI0CSA,
1857 };
1858 
1859 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1860 	.offs = AT91SAM9RL_MATRIX_EBICSA,
1861 };
1862 
1863 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1864 	.offs = AT91SAM9G45_MATRIX_EBICSA,
1865 };
1866 
1867 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1868 	.offs = AT91SAM9N12_MATRIX_EBICSA,
1869 };
1870 
1871 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1872 	.offs = AT91SAM9X5_MATRIX_EBICSA,
1873 };
1874 
1875 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1876 	.offs = AT91_SFR_CCFG_EBICSA,
1877 	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1878 };
1879 
1880 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = {
1881 	{
1882 		.compatible = "atmel,at91sam9260-matrix",
1883 		.data = &at91sam9260_ebi_csa,
1884 	},
1885 	{
1886 		.compatible = "atmel,at91sam9261-matrix",
1887 		.data = &at91sam9261_ebi_csa,
1888 	},
1889 	{
1890 		.compatible = "atmel,at91sam9263-matrix",
1891 		.data = &at91sam9263_ebi_csa,
1892 	},
1893 	{
1894 		.compatible = "atmel,at91sam9rl-matrix",
1895 		.data = &at91sam9rl_ebi_csa,
1896 	},
1897 	{
1898 		.compatible = "atmel,at91sam9g45-matrix",
1899 		.data = &at91sam9g45_ebi_csa,
1900 	},
1901 	{
1902 		.compatible = "atmel,at91sam9n12-matrix",
1903 		.data = &at91sam9n12_ebi_csa,
1904 	},
1905 	{
1906 		.compatible = "atmel,at91sam9x5-matrix",
1907 		.data = &at91sam9x5_ebi_csa,
1908 	},
1909 	{
1910 		.compatible = "microchip,sam9x60-sfr",
1911 		.data = &sam9x60_ebi_csa,
1912 	},
1913 	{ /* sentinel */ },
1914 };
1915 
1916 static int atmel_nand_attach_chip(struct nand_chip *chip)
1917 {
1918 	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1919 	struct atmel_nand *nand = to_atmel_nand(chip);
1920 	struct mtd_info *mtd = nand_to_mtd(chip);
1921 	int ret;
1922 
1923 	ret = nc->caps->ops->ecc_init(chip);
1924 	if (ret)
1925 		return ret;
1926 
1927 	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1928 		/*
1929 		 * We keep the MTD name unchanged to avoid breaking platforms
1930 		 * where the MTD cmdline parser is used and the bootloader
1931 		 * has not been updated to use the new naming scheme.
1932 		 */
1933 		mtd->name = "atmel_nand";
1934 	} else if (!mtd->name) {
1935 		/*
1936 		 * If the new bindings are used and the bootloader has not been
1937 		 * updated to pass a new mtdparts parameter on the cmdline, you
1938 		 * should define the following property in your nand node:
1939 		 *
1940 		 *	label = "atmel_nand";
1941 		 *
1942 		 * This way, mtd->name will be set by the core when
1943 		 * nand_set_flash_node() is called.
1944 		 */
1945 		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1946 					   "%s:nand.%d", dev_name(nc->dev),
1947 					   nand->cs[0].id);
1948 		if (!mtd->name) {
1949 			dev_err(nc->dev, "Failed to allocate mtd->name\n");
1950 			return -ENOMEM;
1951 		}
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 static const struct nand_controller_ops atmel_nand_controller_ops = {
1958 	.attach_chip = atmel_nand_attach_chip,
1959 	.setup_data_interface = atmel_nand_setup_data_interface,
1960 };
1961 
1962 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1963 				struct platform_device *pdev,
1964 				const struct atmel_nand_controller_caps *caps)
1965 {
1966 	struct device *dev = &pdev->dev;
1967 	struct device_node *np = dev->of_node;
1968 	int ret;
1969 
1970 	nand_controller_init(&nc->base);
1971 	nc->base.ops = &atmel_nand_controller_ops;
1972 	INIT_LIST_HEAD(&nc->chips);
1973 	nc->dev = dev;
1974 	nc->caps = caps;
1975 
1976 	platform_set_drvdata(pdev, nc);
1977 
1978 	nc->pmecc = devm_atmel_pmecc_get(dev);
1979 	if (IS_ERR(nc->pmecc)) {
1980 		ret = PTR_ERR(nc->pmecc);
1981 		if (ret != -EPROBE_DEFER)
1982 			dev_err(dev, "Could not get PMECC object (err = %d)\n",
1983 				ret);
1984 		return ret;
1985 	}
1986 
1987 	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
1988 		dma_cap_mask_t mask;
1989 
1990 		dma_cap_zero(mask);
1991 		dma_cap_set(DMA_MEMCPY, mask);
1992 
1993 		nc->dmac = dma_request_channel(mask, NULL, NULL);
1994 		if (!nc->dmac)
1995 			dev_err(nc->dev, "Failed to request DMA channel\n");
1996 	}
1997 
1998 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1999 	if (nc->caps->legacy_of_bindings)
2000 		return 0;
2001 
2002 	nc->mck = of_clk_get(dev->parent->of_node, 0);
2003 	if (IS_ERR(nc->mck)) {
2004 		dev_err(dev, "Failed to retrieve MCK clk\n");
2005 		return PTR_ERR(nc->mck);
2006 	}
2007 
2008 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2009 	if (!np) {
2010 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2011 		return -EINVAL;
2012 	}
2013 
2014 	nc->smc = syscon_node_to_regmap(np);
2015 	of_node_put(np);
2016 	if (IS_ERR(nc->smc)) {
2017 		ret = PTR_ERR(nc->smc);
2018 		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2019 		return ret;
2020 	}
2021 
2022 	return 0;
2023 }
2024 
2025 static int
2026 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2027 {
2028 	struct device *dev = nc->base.dev;
2029 	const struct of_device_id *match;
2030 	struct device_node *np;
2031 	int ret;
2032 
2033 	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
2034 	if (nc->base.caps->legacy_of_bindings)
2035 		return 0;
2036 
2037 	np = of_parse_phandle(dev->parent->of_node,
2038 			      nc->base.caps->ebi_csa_regmap_name, 0);
2039 	if (!np)
2040 		return 0;
2041 
2042 	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2043 	if (!match) {
2044 		of_node_put(np);
2045 		return 0;
2046 	}
2047 
2048 	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2049 	of_node_put(np);
2050 	if (IS_ERR(nc->ebi_csa_regmap)) {
2051 		ret = PTR_ERR(nc->ebi_csa_regmap);
2052 		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2053 		return ret;
2054 	}
2055 
2056 	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2057 
2058 	/*
2059 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2060 	 * add 4 to ->ebi_csa->offs.
2061 	 */
2062 	if (of_device_is_compatible(dev->parent->of_node,
2063 				    "atmel,at91sam9263-ebi1"))
2064 		nc->ebi_csa->offs += 4;
2065 
2066 	return 0;
2067 }
2068 
2069 static int
2070 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2071 {
2072 	struct regmap_config regmap_conf = {
2073 		.reg_bits = 32,
2074 		.val_bits = 32,
2075 		.reg_stride = 4,
2076 	};
2077 
2078 	struct device *dev = nc->base.dev;
2079 	struct device_node *nand_np, *nfc_np;
2080 	void __iomem *iomem;
2081 	struct resource res;
2082 	int ret;
2083 
2084 	nand_np = dev->of_node;
2085 	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2086 	if (!nfc_np) {
2087 		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2088 		return -ENODEV;
2089 	}
2090 
2091 	nc->clk = of_clk_get(nfc_np, 0);
2092 	if (IS_ERR(nc->clk)) {
2093 		ret = PTR_ERR(nc->clk);
2094 		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2095 			ret);
2096 		goto out;
2097 	}
2098 
2099 	ret = clk_prepare_enable(nc->clk);
2100 	if (ret) {
2101 		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2102 			ret);
2103 		goto out;
2104 	}
2105 
2106 	nc->irq = of_irq_get(nand_np, 0);
2107 	if (nc->irq <= 0) {
2108 		ret = nc->irq ?: -ENXIO;
2109 		if (ret != -EPROBE_DEFER)
2110 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2111 				ret);
2112 		goto out;
2113 	}
2114 
2115 	ret = of_address_to_resource(nfc_np, 0, &res);
2116 	if (ret) {
2117 		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2118 			ret);
2119 		goto out;
2120 	}
2121 
2122 	iomem = devm_ioremap_resource(dev, &res);
2123 	if (IS_ERR(iomem)) {
2124 		ret = PTR_ERR(iomem);
2125 		goto out;
2126 	}
2127 
2128 	regmap_conf.name = "nfc-io";
2129 	regmap_conf.max_register = resource_size(&res) - 4;
2130 	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2131 	if (IS_ERR(nc->io)) {
2132 		ret = PTR_ERR(nc->io);
2133 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2134 			ret);
2135 		goto out;
2136 	}
2137 
2138 	ret = of_address_to_resource(nfc_np, 1, &res);
2139 	if (ret) {
2140 		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2141 			ret);
2142 		goto out;
2143 	}
2144 
2145 	iomem = devm_ioremap_resource(dev, &res);
2146 	if (IS_ERR(iomem)) {
2147 		ret = PTR_ERR(iomem);
2148 		goto out;
2149 	}
2150 
2151 	regmap_conf.name = "smc";
2152 	regmap_conf.max_register = resource_size(&res) - 4;
2153 	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2154 	if (IS_ERR(nc->base.smc)) {
2155 		ret = PTR_ERR(nc->base.smc);
2156 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2157 			ret);
2158 		goto out;
2159 	}
2160 
2161 	ret = of_address_to_resource(nfc_np, 2, &res);
2162 	if (ret) {
2163 		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2164 			ret);
2165 		goto out;
2166 	}
2167 
2168 	nc->sram.virt = devm_ioremap_resource(dev, &res);
2169 	if (IS_ERR(nc->sram.virt)) {
2170 		ret = PTR_ERR(nc->sram.virt);
2171 		goto out;
2172 	}
2173 
2174 	nc->sram.dma = res.start;
2175 
2176 out:
2177 	of_node_put(nfc_np);
2178 
2179 	return ret;
2180 }
2181 
2182 static int
2183 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2184 {
2185 	struct device *dev = nc->base.dev;
2186 	struct device_node *np;
2187 	int ret;
2188 
2189 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2190 	if (!np) {
2191 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2192 		return -EINVAL;
2193 	}
2194 
2195 	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2196 
2197 	nc->irq = of_irq_get(np, 0);
2198 	of_node_put(np);
2199 	if (nc->irq <= 0) {
2200 		ret = nc->irq ?: -ENXIO;
2201 		if (ret != -EPROBE_DEFER)
2202 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2203 				ret);
2204 		return ret;
2205 	}
2206 
2207 	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2208 	if (!np) {
2209 		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2210 		return -EINVAL;
2211 	}
2212 
2213 	nc->io = syscon_node_to_regmap(np);
2214 	of_node_put(np);
2215 	if (IS_ERR(nc->io)) {
2216 		ret = PTR_ERR(nc->io);
2217 		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2218 		return ret;
2219 	}
2220 
2221 	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2222 					 "atmel,nfc-sram", 0);
2223 	if (!nc->sram.pool) {
2224 		dev_err(nc->base.dev, "Missing SRAM\n");
2225 		return -ENOMEM;
2226 	}
2227 
2228 	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2229 							   ATMEL_NFC_SRAM_SIZE,
2230 							   &nc->sram.dma);
2231 	if (!nc->sram.virt) {
2232 		dev_err(nc->base.dev,
2233 			"Could not allocate memory from the NFC SRAM pool\n");
2234 		return -ENOMEM;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static int
2241 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2242 {
2243 	struct atmel_hsmc_nand_controller *hsmc_nc;
2244 	int ret;
2245 
2246 	ret = atmel_nand_controller_remove_nands(nc);
2247 	if (ret)
2248 		return ret;
2249 
2250 	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2251 	if (hsmc_nc->sram.pool)
2252 		gen_pool_free(hsmc_nc->sram.pool,
2253 			      (unsigned long)hsmc_nc->sram.virt,
2254 			      ATMEL_NFC_SRAM_SIZE);
2255 
2256 	if (hsmc_nc->clk) {
2257 		clk_disable_unprepare(hsmc_nc->clk);
2258 		clk_put(hsmc_nc->clk);
2259 	}
2260 
2261 	atmel_nand_controller_cleanup(nc);
2262 
2263 	return 0;
2264 }
2265 
2266 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2267 				const struct atmel_nand_controller_caps *caps)
2268 {
2269 	struct device *dev = &pdev->dev;
2270 	struct atmel_hsmc_nand_controller *nc;
2271 	int ret;
2272 
2273 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2274 	if (!nc)
2275 		return -ENOMEM;
2276 
2277 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2278 	if (ret)
2279 		return ret;
2280 
2281 	if (caps->legacy_of_bindings)
2282 		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2283 	else
2284 		ret = atmel_hsmc_nand_controller_init(nc);
2285 
2286 	if (ret)
2287 		return ret;
2288 
2289 	/* Make sure all irqs are masked before registering our IRQ handler. */
2290 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2291 	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2292 			       IRQF_SHARED, "nfc", nc);
2293 	if (ret) {
2294 		dev_err(dev,
2295 			"Could not get register NFC interrupt handler (err = %d)\n",
2296 			ret);
2297 		goto err;
2298 	}
2299 
2300 	/* Initial NFC configuration. */
2301 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2302 		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2303 
2304 	ret = atmel_nand_controller_add_nands(&nc->base);
2305 	if (ret)
2306 		goto err;
2307 
2308 	return 0;
2309 
2310 err:
2311 	atmel_hsmc_nand_controller_remove(&nc->base);
2312 
2313 	return ret;
2314 }
2315 
2316 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2317 	.probe = atmel_hsmc_nand_controller_probe,
2318 	.remove = atmel_hsmc_nand_controller_remove,
2319 	.ecc_init = atmel_hsmc_nand_ecc_init,
2320 	.nand_init = atmel_hsmc_nand_init,
2321 	.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2322 };
2323 
2324 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2325 	.has_dma = true,
2326 	.ale_offs = BIT(21),
2327 	.cle_offs = BIT(22),
2328 	.ops = &atmel_hsmc_nc_ops,
2329 };
2330 
2331 /* Only used to parse old bindings. */
2332 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2333 	.has_dma = true,
2334 	.ale_offs = BIT(21),
2335 	.cle_offs = BIT(22),
2336 	.ops = &atmel_hsmc_nc_ops,
2337 	.legacy_of_bindings = true,
2338 };
2339 
2340 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2341 				const struct atmel_nand_controller_caps *caps)
2342 {
2343 	struct device *dev = &pdev->dev;
2344 	struct atmel_smc_nand_controller *nc;
2345 	int ret;
2346 
2347 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2348 	if (!nc)
2349 		return -ENOMEM;
2350 
2351 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2352 	if (ret)
2353 		return ret;
2354 
2355 	ret = atmel_smc_nand_controller_init(nc);
2356 	if (ret)
2357 		return ret;
2358 
2359 	return atmel_nand_controller_add_nands(&nc->base);
2360 }
2361 
2362 static int
2363 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2364 {
2365 	int ret;
2366 
2367 	ret = atmel_nand_controller_remove_nands(nc);
2368 	if (ret)
2369 		return ret;
2370 
2371 	atmel_nand_controller_cleanup(nc);
2372 
2373 	return 0;
2374 }
2375 
2376 /*
2377  * The SMC reg layout of at91rm9200 is completely different which prevents us
2378  * from re-using atmel_smc_nand_setup_data_interface() for the
2379  * ->setup_data_interface() hook.
2380  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2381  * ->setup_data_interface() unassigned.
2382  */
2383 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2384 	.probe = atmel_smc_nand_controller_probe,
2385 	.remove = atmel_smc_nand_controller_remove,
2386 	.ecc_init = atmel_nand_ecc_init,
2387 	.nand_init = atmel_smc_nand_init,
2388 };
2389 
2390 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2391 	.ale_offs = BIT(21),
2392 	.cle_offs = BIT(22),
2393 	.ebi_csa_regmap_name = "atmel,matrix",
2394 	.ops = &at91rm9200_nc_ops,
2395 };
2396 
2397 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2398 	.probe = atmel_smc_nand_controller_probe,
2399 	.remove = atmel_smc_nand_controller_remove,
2400 	.ecc_init = atmel_nand_ecc_init,
2401 	.nand_init = atmel_smc_nand_init,
2402 	.setup_data_interface = atmel_smc_nand_setup_data_interface,
2403 };
2404 
2405 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2406 	.ale_offs = BIT(21),
2407 	.cle_offs = BIT(22),
2408 	.ebi_csa_regmap_name = "atmel,matrix",
2409 	.ops = &atmel_smc_nc_ops,
2410 };
2411 
2412 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2413 	.ale_offs = BIT(22),
2414 	.cle_offs = BIT(21),
2415 	.ebi_csa_regmap_name = "atmel,matrix",
2416 	.ops = &atmel_smc_nc_ops,
2417 };
2418 
2419 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2420 	.has_dma = true,
2421 	.ale_offs = BIT(21),
2422 	.cle_offs = BIT(22),
2423 	.ebi_csa_regmap_name = "atmel,matrix",
2424 	.ops = &atmel_smc_nc_ops,
2425 };
2426 
2427 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2428 	.has_dma = true,
2429 	.ale_offs = BIT(21),
2430 	.cle_offs = BIT(22),
2431 	.ebi_csa_regmap_name = "microchip,sfr",
2432 	.ops = &atmel_smc_nc_ops,
2433 };
2434 
2435 /* Only used to parse old bindings. */
2436 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2437 	.ale_offs = BIT(21),
2438 	.cle_offs = BIT(22),
2439 	.ops = &atmel_smc_nc_ops,
2440 	.legacy_of_bindings = true,
2441 };
2442 
2443 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2444 	.ale_offs = BIT(22),
2445 	.cle_offs = BIT(21),
2446 	.ops = &atmel_smc_nc_ops,
2447 	.legacy_of_bindings = true,
2448 };
2449 
2450 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2451 	.has_dma = true,
2452 	.ale_offs = BIT(21),
2453 	.cle_offs = BIT(22),
2454 	.ops = &atmel_smc_nc_ops,
2455 	.legacy_of_bindings = true,
2456 };
2457 
2458 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2459 	{
2460 		.compatible = "atmel,at91rm9200-nand-controller",
2461 		.data = &atmel_rm9200_nc_caps,
2462 	},
2463 	{
2464 		.compatible = "atmel,at91sam9260-nand-controller",
2465 		.data = &atmel_sam9260_nc_caps,
2466 	},
2467 	{
2468 		.compatible = "atmel,at91sam9261-nand-controller",
2469 		.data = &atmel_sam9261_nc_caps,
2470 	},
2471 	{
2472 		.compatible = "atmel,at91sam9g45-nand-controller",
2473 		.data = &atmel_sam9g45_nc_caps,
2474 	},
2475 	{
2476 		.compatible = "atmel,sama5d3-nand-controller",
2477 		.data = &atmel_sama5_nc_caps,
2478 	},
2479 	{
2480 		.compatible = "microchip,sam9x60-nand-controller",
2481 		.data = &microchip_sam9x60_nc_caps,
2482 	},
2483 	/* Support for old/deprecated bindings: */
2484 	{
2485 		.compatible = "atmel,at91rm9200-nand",
2486 		.data = &atmel_rm9200_nand_caps,
2487 	},
2488 	{
2489 		.compatible = "atmel,sama5d4-nand",
2490 		.data = &atmel_rm9200_nand_caps,
2491 	},
2492 	{
2493 		.compatible = "atmel,sama5d2-nand",
2494 		.data = &atmel_rm9200_nand_caps,
2495 	},
2496 	{ /* sentinel */ },
2497 };
2498 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2499 
2500 static int atmel_nand_controller_probe(struct platform_device *pdev)
2501 {
2502 	const struct atmel_nand_controller_caps *caps;
2503 
2504 	if (pdev->id_entry)
2505 		caps = (void *)pdev->id_entry->driver_data;
2506 	else
2507 		caps = of_device_get_match_data(&pdev->dev);
2508 
2509 	if (!caps) {
2510 		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2511 		return -EINVAL;
2512 	}
2513 
2514 	if (caps->legacy_of_bindings) {
2515 		struct device_node *nfc_node;
2516 		u32 ale_offs = 21;
2517 
2518 		/*
2519 		 * If we are parsing legacy DT props and the DT contains a
2520 		 * valid NFC node, forward the request to the sama5 logic.
2521 		 */
2522 		nfc_node = of_get_compatible_child(pdev->dev.of_node,
2523 						   "atmel,sama5d3-nfc");
2524 		if (nfc_node) {
2525 			caps = &atmel_sama5_nand_caps;
2526 			of_node_put(nfc_node);
2527 		}
2528 
2529 		/*
2530 		 * Even if the compatible says we are dealing with an
2531 		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2532 		 * this controller supports DMA, which means we are in fact
2533 		 * dealing with an at91sam9g45+ controller.
2534 		 */
2535 		if (!caps->has_dma &&
2536 		    of_property_read_bool(pdev->dev.of_node,
2537 					  "atmel,nand-has-dma"))
2538 			caps = &atmel_sam9g45_nand_caps;
2539 
2540 		/*
2541 		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2542 		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2543 		 * actually dealing with an at91sam9261 controller.
2544 		 */
2545 		of_property_read_u32(pdev->dev.of_node,
2546 				     "atmel,nand-addr-offset", &ale_offs);
2547 		if (ale_offs != 21)
2548 			caps = &atmel_sam9261_nand_caps;
2549 	}
2550 
2551 	return caps->ops->probe(pdev, caps);
2552 }
2553 
2554 static int atmel_nand_controller_remove(struct platform_device *pdev)
2555 {
2556 	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2557 
2558 	return nc->caps->ops->remove(nc);
2559 }
2560 
2561 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2562 {
2563 	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2564 	struct atmel_nand *nand;
2565 
2566 	if (nc->pmecc)
2567 		atmel_pmecc_reset(nc->pmecc);
2568 
2569 	list_for_each_entry(nand, &nc->chips, node) {
2570 		int i;
2571 
2572 		for (i = 0; i < nand->numcs; i++)
2573 			nand_reset(&nand->base, i);
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2580 			 atmel_nand_controller_resume);
2581 
2582 static struct platform_driver atmel_nand_controller_driver = {
2583 	.driver = {
2584 		.name = "atmel-nand-controller",
2585 		.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2586 		.pm = &atmel_nand_controller_pm_ops,
2587 	},
2588 	.probe = atmel_nand_controller_probe,
2589 	.remove = atmel_nand_controller_remove,
2590 };
2591 module_platform_driver(atmel_nand_controller_driver);
2592 
2593 MODULE_LICENSE("GPL");
2594 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2595 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2596 MODULE_ALIAS("platform:atmel-nand-controller");
2597