1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2017 ATMEL 4 * Copyright 2017 Free Electrons 5 * 6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com> 7 * 8 * Derived from the atmel_nand.c driver which contained the following 9 * copyrights: 10 * 11 * Copyright 2003 Rick Bronson 12 * 13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) 14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) 15 * 16 * Derived from drivers/mtd/spia.c (removed in v3.8) 17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com) 18 * 19 * 20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 22 * 23 * Derived from Das U-Boot source code 24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) 25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas 26 * 27 * Add Programmable Multibit ECC support for various AT91 SoC 28 * Copyright 2012 ATMEL, Hong Xu 29 * 30 * Add Nand Flash Controller support for SAMA5 SoC 31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) 32 * 33 * A few words about the naming convention in this file. This convention 34 * applies to structure and function names. 35 * 36 * Prefixes: 37 * 38 * - atmel_nand_: all generic structures/functions 39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface 40 * (at91sam9 and avr32 SoCs) 41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface 42 * (sama5 SoCs and later) 43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block 44 * that is available in the HSMC block 45 * - <soc>_nand_: all SoC specific structures/functions 46 */ 47 48 #include <linux/clk.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/genalloc.h> 52 #include <linux/gpio/consumer.h> 53 #include <linux/interrupt.h> 54 #include <linux/mfd/syscon.h> 55 #include <linux/mfd/syscon/atmel-matrix.h> 56 #include <linux/mfd/syscon/atmel-smc.h> 57 #include <linux/module.h> 58 #include <linux/mtd/rawnand.h> 59 #include <linux/of_address.h> 60 #include <linux/of_irq.h> 61 #include <linux/of_platform.h> 62 #include <linux/iopoll.h> 63 #include <linux/platform_device.h> 64 #include <linux/regmap.h> 65 #include <soc/at91/atmel-sfr.h> 66 67 #include "pmecc.h" 68 69 #define ATMEL_HSMC_NFC_CFG 0x0 70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) 71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) 72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) 73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) 74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) 75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) 76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) 77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) 78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) 79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) 80 81 #define ATMEL_HSMC_NFC_CTRL 0x4 82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) 83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) 84 85 #define ATMEL_HSMC_NFC_SR 0x8 86 #define ATMEL_HSMC_NFC_IER 0xc 87 #define ATMEL_HSMC_NFC_IDR 0x10 88 #define ATMEL_HSMC_NFC_IMR 0x14 89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) 90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) 91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) 92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) 93 #define ATMEL_HSMC_NFC_SR_WR BIT(11) 94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) 95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) 96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) 97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) 98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) 99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22) 100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) 101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ 102 ATMEL_HSMC_NFC_SR_UNDEF | \ 103 ATMEL_HSMC_NFC_SR_AWB | \ 104 ATMEL_HSMC_NFC_SR_NFCASE) 105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) 106 107 #define ATMEL_HSMC_NFC_ADDR 0x18 108 #define ATMEL_HSMC_NFC_BANK 0x1c 109 110 #define ATMEL_NFC_MAX_RB_ID 7 111 112 #define ATMEL_NFC_SRAM_SIZE 0x2400 113 114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) 115 #define ATMEL_NFC_VCMD2 BIT(18) 116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) 117 #define ATMEL_NFC_CSID(cs) ((cs) << 22) 118 #define ATMEL_NFC_DATAEN BIT(25) 119 #define ATMEL_NFC_NFCWR BIT(26) 120 121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5 122 123 #define ATMEL_NAND_ALE_OFFSET BIT(21) 124 #define ATMEL_NAND_CLE_OFFSET BIT(22) 125 126 #define DEFAULT_TIMEOUT_MS 1000 127 #define MIN_DMA_LEN 128 128 129 static bool atmel_nand_avoid_dma __read_mostly; 130 131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); 132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); 133 134 enum atmel_nand_rb_type { 135 ATMEL_NAND_NO_RB, 136 ATMEL_NAND_NATIVE_RB, 137 ATMEL_NAND_GPIO_RB, 138 }; 139 140 struct atmel_nand_rb { 141 enum atmel_nand_rb_type type; 142 union { 143 struct gpio_desc *gpio; 144 int id; 145 }; 146 }; 147 148 struct atmel_nand_cs { 149 int id; 150 struct atmel_nand_rb rb; 151 struct gpio_desc *csgpio; 152 struct { 153 void __iomem *virt; 154 dma_addr_t dma; 155 } io; 156 157 struct atmel_smc_cs_conf smcconf; 158 }; 159 160 struct atmel_nand { 161 struct list_head node; 162 struct device *dev; 163 struct nand_chip base; 164 struct atmel_nand_cs *activecs; 165 struct atmel_pmecc_user *pmecc; 166 struct gpio_desc *cdgpio; 167 int numcs; 168 struct atmel_nand_cs cs[]; 169 }; 170 171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) 172 { 173 return container_of(chip, struct atmel_nand, base); 174 } 175 176 enum atmel_nfc_data_xfer { 177 ATMEL_NFC_NO_DATA, 178 ATMEL_NFC_READ_DATA, 179 ATMEL_NFC_WRITE_DATA, 180 }; 181 182 struct atmel_nfc_op { 183 u8 cs; 184 u8 ncmds; 185 u8 cmds[2]; 186 u8 naddrs; 187 u8 addrs[5]; 188 enum atmel_nfc_data_xfer data; 189 u32 wait; 190 u32 errors; 191 }; 192 193 struct atmel_nand_controller; 194 struct atmel_nand_controller_caps; 195 196 struct atmel_nand_controller_ops { 197 int (*probe)(struct platform_device *pdev, 198 const struct atmel_nand_controller_caps *caps); 199 int (*remove)(struct atmel_nand_controller *nc); 200 void (*nand_init)(struct atmel_nand_controller *nc, 201 struct atmel_nand *nand); 202 int (*ecc_init)(struct nand_chip *chip); 203 int (*setup_data_interface)(struct atmel_nand *nand, int csline, 204 const struct nand_data_interface *conf); 205 }; 206 207 struct atmel_nand_controller_caps { 208 bool has_dma; 209 bool legacy_of_bindings; 210 u32 ale_offs; 211 u32 cle_offs; 212 const char *ebi_csa_regmap_name; 213 const struct atmel_nand_controller_ops *ops; 214 }; 215 216 struct atmel_nand_controller { 217 struct nand_controller base; 218 const struct atmel_nand_controller_caps *caps; 219 struct device *dev; 220 struct regmap *smc; 221 struct dma_chan *dmac; 222 struct atmel_pmecc *pmecc; 223 struct list_head chips; 224 struct clk *mck; 225 }; 226 227 static inline struct atmel_nand_controller * 228 to_nand_controller(struct nand_controller *ctl) 229 { 230 return container_of(ctl, struct atmel_nand_controller, base); 231 } 232 233 struct atmel_smc_nand_ebi_csa_cfg { 234 u32 offs; 235 u32 nfd0_on_d16; 236 }; 237 238 struct atmel_smc_nand_controller { 239 struct atmel_nand_controller base; 240 struct regmap *ebi_csa_regmap; 241 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; 242 }; 243 244 static inline struct atmel_smc_nand_controller * 245 to_smc_nand_controller(struct nand_controller *ctl) 246 { 247 return container_of(to_nand_controller(ctl), 248 struct atmel_smc_nand_controller, base); 249 } 250 251 struct atmel_hsmc_nand_controller { 252 struct atmel_nand_controller base; 253 struct { 254 struct gen_pool *pool; 255 void __iomem *virt; 256 dma_addr_t dma; 257 } sram; 258 const struct atmel_hsmc_reg_layout *hsmc_layout; 259 struct regmap *io; 260 struct atmel_nfc_op op; 261 struct completion complete; 262 int irq; 263 264 /* Only used when instantiating from legacy DT bindings. */ 265 struct clk *clk; 266 }; 267 268 static inline struct atmel_hsmc_nand_controller * 269 to_hsmc_nand_controller(struct nand_controller *ctl) 270 { 271 return container_of(to_nand_controller(ctl), 272 struct atmel_hsmc_nand_controller, base); 273 } 274 275 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) 276 { 277 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; 278 op->wait ^= status & op->wait; 279 280 return !op->wait || op->errors; 281 } 282 283 static irqreturn_t atmel_nfc_interrupt(int irq, void *data) 284 { 285 struct atmel_hsmc_nand_controller *nc = data; 286 u32 sr, rcvd; 287 bool done; 288 289 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); 290 291 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 292 done = atmel_nfc_op_done(&nc->op, sr); 293 294 if (rcvd) 295 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); 296 297 if (done) 298 complete(&nc->complete); 299 300 return rcvd ? IRQ_HANDLED : IRQ_NONE; 301 } 302 303 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, 304 unsigned int timeout_ms) 305 { 306 int ret; 307 308 if (!timeout_ms) 309 timeout_ms = DEFAULT_TIMEOUT_MS; 310 311 if (poll) { 312 u32 status; 313 314 ret = regmap_read_poll_timeout(nc->base.smc, 315 ATMEL_HSMC_NFC_SR, status, 316 atmel_nfc_op_done(&nc->op, 317 status), 318 0, timeout_ms * 1000); 319 } else { 320 init_completion(&nc->complete); 321 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, 322 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 323 ret = wait_for_completion_timeout(&nc->complete, 324 msecs_to_jiffies(timeout_ms)); 325 if (!ret) 326 ret = -ETIMEDOUT; 327 else 328 ret = 0; 329 330 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 331 } 332 333 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { 334 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); 335 ret = -ETIMEDOUT; 336 } 337 338 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { 339 dev_err(nc->base.dev, "Access to an undefined area\n"); 340 ret = -EIO; 341 } 342 343 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { 344 dev_err(nc->base.dev, "Access while busy\n"); 345 ret = -EIO; 346 } 347 348 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { 349 dev_err(nc->base.dev, "Wrong access size\n"); 350 ret = -EIO; 351 } 352 353 return ret; 354 } 355 356 static void atmel_nand_dma_transfer_finished(void *data) 357 { 358 struct completion *finished = data; 359 360 complete(finished); 361 } 362 363 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, 364 void *buf, dma_addr_t dev_dma, size_t len, 365 enum dma_data_direction dir) 366 { 367 DECLARE_COMPLETION_ONSTACK(finished); 368 dma_addr_t src_dma, dst_dma, buf_dma; 369 struct dma_async_tx_descriptor *tx; 370 dma_cookie_t cookie; 371 372 buf_dma = dma_map_single(nc->dev, buf, len, dir); 373 if (dma_mapping_error(nc->dev, dev_dma)) { 374 dev_err(nc->dev, 375 "Failed to prepare a buffer for DMA access\n"); 376 goto err; 377 } 378 379 if (dir == DMA_FROM_DEVICE) { 380 src_dma = dev_dma; 381 dst_dma = buf_dma; 382 } else { 383 src_dma = buf_dma; 384 dst_dma = dev_dma; 385 } 386 387 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, 388 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 389 if (!tx) { 390 dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); 391 goto err_unmap; 392 } 393 394 tx->callback = atmel_nand_dma_transfer_finished; 395 tx->callback_param = &finished; 396 397 cookie = dmaengine_submit(tx); 398 if (dma_submit_error(cookie)) { 399 dev_err(nc->dev, "Failed to do DMA tx_submit\n"); 400 goto err_unmap; 401 } 402 403 dma_async_issue_pending(nc->dmac); 404 wait_for_completion(&finished); 405 406 return 0; 407 408 err_unmap: 409 dma_unmap_single(nc->dev, buf_dma, len, dir); 410 411 err: 412 dev_dbg(nc->dev, "Fall back to CPU I/O\n"); 413 414 return -EIO; 415 } 416 417 static u8 atmel_nand_read_byte(struct nand_chip *chip) 418 { 419 struct atmel_nand *nand = to_atmel_nand(chip); 420 421 return ioread8(nand->activecs->io.virt); 422 } 423 424 static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte) 425 { 426 struct atmel_nand *nand = to_atmel_nand(chip); 427 428 if (chip->options & NAND_BUSWIDTH_16) 429 iowrite16(byte | (byte << 8), nand->activecs->io.virt); 430 else 431 iowrite8(byte, nand->activecs->io.virt); 432 } 433 434 static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len) 435 { 436 struct atmel_nand *nand = to_atmel_nand(chip); 437 struct atmel_nand_controller *nc; 438 439 nc = to_nand_controller(chip->controller); 440 441 /* 442 * If the controller supports DMA, the buffer address is DMA-able and 443 * len is long enough to make DMA transfers profitable, let's trigger 444 * a DMA transfer. If it fails, fallback to PIO mode. 445 */ 446 if (nc->dmac && virt_addr_valid(buf) && 447 len >= MIN_DMA_LEN && 448 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, 449 DMA_FROM_DEVICE)) 450 return; 451 452 if (chip->options & NAND_BUSWIDTH_16) 453 ioread16_rep(nand->activecs->io.virt, buf, len / 2); 454 else 455 ioread8_rep(nand->activecs->io.virt, buf, len); 456 } 457 458 static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len) 459 { 460 struct atmel_nand *nand = to_atmel_nand(chip); 461 struct atmel_nand_controller *nc; 462 463 nc = to_nand_controller(chip->controller); 464 465 /* 466 * If the controller supports DMA, the buffer address is DMA-able and 467 * len is long enough to make DMA transfers profitable, let's trigger 468 * a DMA transfer. If it fails, fallback to PIO mode. 469 */ 470 if (nc->dmac && virt_addr_valid(buf) && 471 len >= MIN_DMA_LEN && 472 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, 473 len, DMA_TO_DEVICE)) 474 return; 475 476 if (chip->options & NAND_BUSWIDTH_16) 477 iowrite16_rep(nand->activecs->io.virt, buf, len / 2); 478 else 479 iowrite8_rep(nand->activecs->io.virt, buf, len); 480 } 481 482 static int atmel_nand_dev_ready(struct nand_chip *chip) 483 { 484 struct atmel_nand *nand = to_atmel_nand(chip); 485 486 return gpiod_get_value(nand->activecs->rb.gpio); 487 } 488 489 static void atmel_nand_select_chip(struct nand_chip *chip, int cs) 490 { 491 struct atmel_nand *nand = to_atmel_nand(chip); 492 493 if (cs < 0 || cs >= nand->numcs) { 494 nand->activecs = NULL; 495 chip->legacy.dev_ready = NULL; 496 return; 497 } 498 499 nand->activecs = &nand->cs[cs]; 500 501 if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) 502 chip->legacy.dev_ready = atmel_nand_dev_ready; 503 } 504 505 static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip) 506 { 507 struct atmel_nand *nand = to_atmel_nand(chip); 508 struct atmel_hsmc_nand_controller *nc; 509 u32 status; 510 511 nc = to_hsmc_nand_controller(chip->controller); 512 513 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); 514 515 return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); 516 } 517 518 static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs) 519 { 520 struct mtd_info *mtd = nand_to_mtd(chip); 521 struct atmel_nand *nand = to_atmel_nand(chip); 522 struct atmel_hsmc_nand_controller *nc; 523 524 nc = to_hsmc_nand_controller(chip->controller); 525 526 atmel_nand_select_chip(chip, cs); 527 528 if (!nand->activecs) { 529 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, 530 ATMEL_HSMC_NFC_CTRL_DIS); 531 return; 532 } 533 534 if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) 535 chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready; 536 537 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, 538 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | 539 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | 540 ATMEL_HSMC_NFC_CFG_RSPARE | 541 ATMEL_HSMC_NFC_CFG_WSPARE, 542 ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | 543 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | 544 ATMEL_HSMC_NFC_CFG_RSPARE); 545 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, 546 ATMEL_HSMC_NFC_CTRL_EN); 547 } 548 549 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) 550 { 551 u8 *addrs = nc->op.addrs; 552 unsigned int op = 0; 553 u32 addr, val; 554 int i, ret; 555 556 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; 557 558 for (i = 0; i < nc->op.ncmds; i++) 559 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); 560 561 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) 562 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); 563 564 op |= ATMEL_NFC_CSID(nc->op.cs) | 565 ATMEL_NFC_ACYCLE(nc->op.naddrs); 566 567 if (nc->op.ncmds > 1) 568 op |= ATMEL_NFC_VCMD2; 569 570 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | 571 (addrs[3] << 24); 572 573 if (nc->op.data != ATMEL_NFC_NO_DATA) { 574 op |= ATMEL_NFC_DATAEN; 575 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; 576 577 if (nc->op.data == ATMEL_NFC_WRITE_DATA) 578 op |= ATMEL_NFC_NFCWR; 579 } 580 581 /* Clear all flags. */ 582 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); 583 584 /* Send the command. */ 585 regmap_write(nc->io, op, addr); 586 587 ret = atmel_nfc_wait(nc, poll, 0); 588 if (ret) 589 dev_err(nc->base.dev, 590 "Failed to send NAND command (err = %d)!", 591 ret); 592 593 /* Reset the op state. */ 594 memset(&nc->op, 0, sizeof(nc->op)); 595 596 return ret; 597 } 598 599 static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat, 600 unsigned int ctrl) 601 { 602 struct atmel_nand *nand = to_atmel_nand(chip); 603 struct atmel_hsmc_nand_controller *nc; 604 605 nc = to_hsmc_nand_controller(chip->controller); 606 607 if (ctrl & NAND_ALE) { 608 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) 609 return; 610 611 nc->op.addrs[nc->op.naddrs++] = dat; 612 } else if (ctrl & NAND_CLE) { 613 if (nc->op.ncmds > 1) 614 return; 615 616 nc->op.cmds[nc->op.ncmds++] = dat; 617 } 618 619 if (dat == NAND_CMD_NONE) { 620 nc->op.cs = nand->activecs->id; 621 atmel_nfc_exec_op(nc, true); 622 } 623 } 624 625 static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd, 626 unsigned int ctrl) 627 { 628 struct atmel_nand *nand = to_atmel_nand(chip); 629 struct atmel_nand_controller *nc; 630 631 nc = to_nand_controller(chip->controller); 632 633 if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) { 634 if (ctrl & NAND_NCE) 635 gpiod_set_value(nand->activecs->csgpio, 0); 636 else 637 gpiod_set_value(nand->activecs->csgpio, 1); 638 } 639 640 if (ctrl & NAND_ALE) 641 writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); 642 else if (ctrl & NAND_CLE) 643 writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); 644 } 645 646 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, 647 bool oob_required) 648 { 649 struct mtd_info *mtd = nand_to_mtd(chip); 650 struct atmel_hsmc_nand_controller *nc; 651 int ret = -EIO; 652 653 nc = to_hsmc_nand_controller(chip->controller); 654 655 if (nc->base.dmac) 656 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, 657 nc->sram.dma, mtd->writesize, 658 DMA_TO_DEVICE); 659 660 /* Falling back to CPU copy. */ 661 if (ret) 662 memcpy_toio(nc->sram.virt, buf, mtd->writesize); 663 664 if (oob_required) 665 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, 666 mtd->oobsize); 667 } 668 669 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, 670 bool oob_required) 671 { 672 struct mtd_info *mtd = nand_to_mtd(chip); 673 struct atmel_hsmc_nand_controller *nc; 674 int ret = -EIO; 675 676 nc = to_hsmc_nand_controller(chip->controller); 677 678 if (nc->base.dmac) 679 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, 680 mtd->writesize, DMA_FROM_DEVICE); 681 682 /* Falling back to CPU copy. */ 683 if (ret) 684 memcpy_fromio(buf, nc->sram.virt, mtd->writesize); 685 686 if (oob_required) 687 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, 688 mtd->oobsize); 689 } 690 691 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) 692 { 693 struct mtd_info *mtd = nand_to_mtd(chip); 694 struct atmel_hsmc_nand_controller *nc; 695 696 nc = to_hsmc_nand_controller(chip->controller); 697 698 if (column >= 0) { 699 nc->op.addrs[nc->op.naddrs++] = column; 700 701 /* 702 * 2 address cycles for the column offset on large page NANDs. 703 */ 704 if (mtd->writesize > 512) 705 nc->op.addrs[nc->op.naddrs++] = column >> 8; 706 } 707 708 if (page >= 0) { 709 nc->op.addrs[nc->op.naddrs++] = page; 710 nc->op.addrs[nc->op.naddrs++] = page >> 8; 711 712 if (chip->options & NAND_ROW_ADDR_3) 713 nc->op.addrs[nc->op.naddrs++] = page >> 16; 714 } 715 } 716 717 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) 718 { 719 struct atmel_nand *nand = to_atmel_nand(chip); 720 struct atmel_nand_controller *nc; 721 int ret; 722 723 nc = to_nand_controller(chip->controller); 724 725 if (raw) 726 return 0; 727 728 ret = atmel_pmecc_enable(nand->pmecc, op); 729 if (ret) 730 dev_err(nc->dev, 731 "Failed to enable ECC engine (err = %d)\n", ret); 732 733 return ret; 734 } 735 736 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) 737 { 738 struct atmel_nand *nand = to_atmel_nand(chip); 739 740 if (!raw) 741 atmel_pmecc_disable(nand->pmecc); 742 } 743 744 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) 745 { 746 struct atmel_nand *nand = to_atmel_nand(chip); 747 struct mtd_info *mtd = nand_to_mtd(chip); 748 struct atmel_nand_controller *nc; 749 struct mtd_oob_region oobregion; 750 void *eccbuf; 751 int ret, i; 752 753 nc = to_nand_controller(chip->controller); 754 755 if (raw) 756 return 0; 757 758 ret = atmel_pmecc_wait_rdy(nand->pmecc); 759 if (ret) { 760 dev_err(nc->dev, 761 "Failed to transfer NAND page data (err = %d)\n", 762 ret); 763 return ret; 764 } 765 766 mtd_ooblayout_ecc(mtd, 0, &oobregion); 767 eccbuf = chip->oob_poi + oobregion.offset; 768 769 for (i = 0; i < chip->ecc.steps; i++) { 770 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, 771 eccbuf); 772 eccbuf += chip->ecc.bytes; 773 } 774 775 return 0; 776 } 777 778 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, 779 bool raw) 780 { 781 struct atmel_nand *nand = to_atmel_nand(chip); 782 struct mtd_info *mtd = nand_to_mtd(chip); 783 struct atmel_nand_controller *nc; 784 struct mtd_oob_region oobregion; 785 int ret, i, max_bitflips = 0; 786 void *databuf, *eccbuf; 787 788 nc = to_nand_controller(chip->controller); 789 790 if (raw) 791 return 0; 792 793 ret = atmel_pmecc_wait_rdy(nand->pmecc); 794 if (ret) { 795 dev_err(nc->dev, 796 "Failed to read NAND page data (err = %d)\n", 797 ret); 798 return ret; 799 } 800 801 mtd_ooblayout_ecc(mtd, 0, &oobregion); 802 eccbuf = chip->oob_poi + oobregion.offset; 803 databuf = buf; 804 805 for (i = 0; i < chip->ecc.steps; i++) { 806 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, 807 eccbuf); 808 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) 809 ret = nand_check_erased_ecc_chunk(databuf, 810 chip->ecc.size, 811 eccbuf, 812 chip->ecc.bytes, 813 NULL, 0, 814 chip->ecc.strength); 815 816 if (ret >= 0) 817 max_bitflips = max(ret, max_bitflips); 818 else 819 mtd->ecc_stats.failed++; 820 821 databuf += chip->ecc.size; 822 eccbuf += chip->ecc.bytes; 823 } 824 825 return max_bitflips; 826 } 827 828 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, 829 bool oob_required, int page, bool raw) 830 { 831 struct mtd_info *mtd = nand_to_mtd(chip); 832 struct atmel_nand *nand = to_atmel_nand(chip); 833 int ret; 834 835 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 836 837 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 838 if (ret) 839 return ret; 840 841 atmel_nand_write_buf(chip, buf, mtd->writesize); 842 843 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 844 if (ret) { 845 atmel_pmecc_disable(nand->pmecc); 846 return ret; 847 } 848 849 atmel_nand_pmecc_disable(chip, raw); 850 851 atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize); 852 853 return nand_prog_page_end_op(chip); 854 } 855 856 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, 857 int oob_required, int page) 858 { 859 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); 860 } 861 862 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, 863 const u8 *buf, int oob_required, 864 int page) 865 { 866 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); 867 } 868 869 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 870 bool oob_required, int page, bool raw) 871 { 872 struct mtd_info *mtd = nand_to_mtd(chip); 873 int ret; 874 875 nand_read_page_op(chip, page, 0, NULL, 0); 876 877 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 878 if (ret) 879 return ret; 880 881 atmel_nand_read_buf(chip, buf, mtd->writesize); 882 atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize); 883 884 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 885 886 atmel_nand_pmecc_disable(chip, raw); 887 888 return ret; 889 } 890 891 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 892 int oob_required, int page) 893 { 894 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); 895 } 896 897 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, 898 int oob_required, int page) 899 { 900 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); 901 } 902 903 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, 904 const u8 *buf, bool oob_required, 905 int page, bool raw) 906 { 907 struct mtd_info *mtd = nand_to_mtd(chip); 908 struct atmel_nand *nand = to_atmel_nand(chip); 909 struct atmel_hsmc_nand_controller *nc; 910 int ret, status; 911 912 nc = to_hsmc_nand_controller(chip->controller); 913 914 atmel_nfc_copy_to_sram(chip, buf, false); 915 916 nc->op.cmds[0] = NAND_CMD_SEQIN; 917 nc->op.ncmds = 1; 918 atmel_nfc_set_op_addr(chip, page, 0x0); 919 nc->op.cs = nand->activecs->id; 920 nc->op.data = ATMEL_NFC_WRITE_DATA; 921 922 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 923 if (ret) 924 return ret; 925 926 ret = atmel_nfc_exec_op(nc, false); 927 if (ret) { 928 atmel_nand_pmecc_disable(chip, raw); 929 dev_err(nc->base.dev, 930 "Failed to transfer NAND page data (err = %d)\n", 931 ret); 932 return ret; 933 } 934 935 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 936 937 atmel_nand_pmecc_disable(chip, raw); 938 939 if (ret) 940 return ret; 941 942 atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize); 943 944 nc->op.cmds[0] = NAND_CMD_PAGEPROG; 945 nc->op.ncmds = 1; 946 nc->op.cs = nand->activecs->id; 947 ret = atmel_nfc_exec_op(nc, false); 948 if (ret) 949 dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", 950 ret); 951 952 status = chip->legacy.waitfunc(chip); 953 if (status & NAND_STATUS_FAIL) 954 return -EIO; 955 956 return ret; 957 } 958 959 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, 960 const u8 *buf, int oob_required, 961 int page) 962 { 963 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 964 false); 965 } 966 967 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, 968 const u8 *buf, 969 int oob_required, int page) 970 { 971 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 972 true); 973 } 974 975 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 976 bool oob_required, int page, 977 bool raw) 978 { 979 struct mtd_info *mtd = nand_to_mtd(chip); 980 struct atmel_nand *nand = to_atmel_nand(chip); 981 struct atmel_hsmc_nand_controller *nc; 982 int ret; 983 984 nc = to_hsmc_nand_controller(chip->controller); 985 986 /* 987 * Optimized read page accessors only work when the NAND R/B pin is 988 * connected to a native SoC R/B pin. If that's not the case, fallback 989 * to the non-optimized one. 990 */ 991 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { 992 nand_read_page_op(chip, page, 0, NULL, 0); 993 994 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, 995 raw); 996 } 997 998 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; 999 1000 if (mtd->writesize > 512) 1001 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; 1002 1003 atmel_nfc_set_op_addr(chip, page, 0x0); 1004 nc->op.cs = nand->activecs->id; 1005 nc->op.data = ATMEL_NFC_READ_DATA; 1006 1007 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 1008 if (ret) 1009 return ret; 1010 1011 ret = atmel_nfc_exec_op(nc, false); 1012 if (ret) { 1013 atmel_nand_pmecc_disable(chip, raw); 1014 dev_err(nc->base.dev, 1015 "Failed to load NAND page data (err = %d)\n", 1016 ret); 1017 return ret; 1018 } 1019 1020 atmel_nfc_copy_from_sram(chip, buf, true); 1021 1022 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 1023 1024 atmel_nand_pmecc_disable(chip, raw); 1025 1026 return ret; 1027 } 1028 1029 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 1030 int oob_required, int page) 1031 { 1032 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1033 false); 1034 } 1035 1036 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, 1037 u8 *buf, int oob_required, 1038 int page) 1039 { 1040 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1041 true); 1042 } 1043 1044 static int atmel_nand_pmecc_init(struct nand_chip *chip) 1045 { 1046 struct mtd_info *mtd = nand_to_mtd(chip); 1047 struct atmel_nand *nand = to_atmel_nand(chip); 1048 struct atmel_nand_controller *nc; 1049 struct atmel_pmecc_user_req req; 1050 1051 nc = to_nand_controller(chip->controller); 1052 1053 if (!nc->pmecc) { 1054 dev_err(nc->dev, "HW ECC not supported\n"); 1055 return -ENOTSUPP; 1056 } 1057 1058 if (nc->caps->legacy_of_bindings) { 1059 u32 val; 1060 1061 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", 1062 &val)) 1063 chip->ecc.strength = val; 1064 1065 if (!of_property_read_u32(nc->dev->of_node, 1066 "atmel,pmecc-sector-size", 1067 &val)) 1068 chip->ecc.size = val; 1069 } 1070 1071 if (chip->ecc.options & NAND_ECC_MAXIMIZE) 1072 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1073 else if (chip->ecc.strength) 1074 req.ecc.strength = chip->ecc.strength; 1075 else if (chip->base.eccreq.strength) 1076 req.ecc.strength = chip->base.eccreq.strength; 1077 else 1078 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1079 1080 if (chip->ecc.size) 1081 req.ecc.sectorsize = chip->ecc.size; 1082 else if (chip->base.eccreq.step_size) 1083 req.ecc.sectorsize = chip->base.eccreq.step_size; 1084 else 1085 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; 1086 1087 req.pagesize = mtd->writesize; 1088 req.oobsize = mtd->oobsize; 1089 1090 if (mtd->writesize <= 512) { 1091 req.ecc.bytes = 4; 1092 req.ecc.ooboffset = 0; 1093 } else { 1094 req.ecc.bytes = mtd->oobsize - 2; 1095 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; 1096 } 1097 1098 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); 1099 if (IS_ERR(nand->pmecc)) 1100 return PTR_ERR(nand->pmecc); 1101 1102 chip->ecc.algo = NAND_ECC_BCH; 1103 chip->ecc.size = req.ecc.sectorsize; 1104 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; 1105 chip->ecc.strength = req.ecc.strength; 1106 1107 chip->options |= NAND_NO_SUBPAGE_WRITE; 1108 1109 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 1110 1111 return 0; 1112 } 1113 1114 static int atmel_nand_ecc_init(struct nand_chip *chip) 1115 { 1116 struct atmel_nand_controller *nc; 1117 int ret; 1118 1119 nc = to_nand_controller(chip->controller); 1120 1121 switch (chip->ecc.mode) { 1122 case NAND_ECC_NONE: 1123 case NAND_ECC_SOFT: 1124 /* 1125 * Nothing to do, the core will initialize everything for us. 1126 */ 1127 break; 1128 1129 case NAND_ECC_HW: 1130 ret = atmel_nand_pmecc_init(chip); 1131 if (ret) 1132 return ret; 1133 1134 chip->ecc.read_page = atmel_nand_pmecc_read_page; 1135 chip->ecc.write_page = atmel_nand_pmecc_write_page; 1136 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; 1137 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; 1138 break; 1139 1140 default: 1141 /* Other modes are not supported. */ 1142 dev_err(nc->dev, "Unsupported ECC mode: %d\n", 1143 chip->ecc.mode); 1144 return -ENOTSUPP; 1145 } 1146 1147 return 0; 1148 } 1149 1150 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) 1151 { 1152 int ret; 1153 1154 ret = atmel_nand_ecc_init(chip); 1155 if (ret) 1156 return ret; 1157 1158 if (chip->ecc.mode != NAND_ECC_HW) 1159 return 0; 1160 1161 /* Adjust the ECC operations for the HSMC IP. */ 1162 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; 1163 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; 1164 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; 1165 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; 1166 1167 return 0; 1168 } 1169 1170 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, 1171 const struct nand_data_interface *conf, 1172 struct atmel_smc_cs_conf *smcconf) 1173 { 1174 u32 ncycles, totalcycles, timeps, mckperiodps; 1175 struct atmel_nand_controller *nc; 1176 int ret; 1177 1178 nc = to_nand_controller(nand->base.controller); 1179 1180 /* DDR interface not supported. */ 1181 if (conf->type != NAND_SDR_IFACE) 1182 return -ENOTSUPP; 1183 1184 /* 1185 * tRC < 30ns implies EDO mode. This controller does not support this 1186 * mode. 1187 */ 1188 if (conf->timings.sdr.tRC_min < 30000) 1189 return -ENOTSUPP; 1190 1191 atmel_smc_cs_conf_init(smcconf); 1192 1193 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); 1194 mckperiodps *= 1000; 1195 1196 /* 1197 * Set write pulse timing. This one is easy to extract: 1198 * 1199 * NWE_PULSE = tWP 1200 */ 1201 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); 1202 totalcycles = ncycles; 1203 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, 1204 ncycles); 1205 if (ret) 1206 return ret; 1207 1208 /* 1209 * The write setup timing depends on the operation done on the NAND. 1210 * All operations goes through the same data bus, but the operation 1211 * type depends on the address we are writing to (ALE/CLE address 1212 * lines). 1213 * Since we have no way to differentiate the different operations at 1214 * the SMC level, we must consider the worst case (the biggest setup 1215 * time among all operation types): 1216 * 1217 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE 1218 */ 1219 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, 1220 conf->timings.sdr.tALS_min); 1221 timeps = max(timeps, conf->timings.sdr.tDS_min); 1222 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1223 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; 1224 totalcycles += ncycles; 1225 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, 1226 ncycles); 1227 if (ret) 1228 return ret; 1229 1230 /* 1231 * As for the write setup timing, the write hold timing depends on the 1232 * operation done on the NAND: 1233 * 1234 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) 1235 */ 1236 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, 1237 conf->timings.sdr.tALH_min); 1238 timeps = max3(timeps, conf->timings.sdr.tDH_min, 1239 conf->timings.sdr.tWH_min); 1240 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1241 totalcycles += ncycles; 1242 1243 /* 1244 * The write cycle timing is directly matching tWC, but is also 1245 * dependent on the other timings on the setup and hold timings we 1246 * calculated earlier, which gives: 1247 * 1248 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) 1249 */ 1250 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); 1251 ncycles = max(totalcycles, ncycles); 1252 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, 1253 ncycles); 1254 if (ret) 1255 return ret; 1256 1257 /* 1258 * We don't want the CS line to be toggled between each byte/word 1259 * transfer to the NAND. The only way to guarantee that is to have the 1260 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1261 * 1262 * NCS_WR_PULSE = NWE_CYCLE 1263 */ 1264 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, 1265 ncycles); 1266 if (ret) 1267 return ret; 1268 1269 /* 1270 * As for the write setup timing, the read hold timing depends on the 1271 * operation done on the NAND: 1272 * 1273 * NRD_HOLD = max(tREH, tRHOH) 1274 */ 1275 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); 1276 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1277 totalcycles = ncycles; 1278 1279 /* 1280 * TDF = tRHZ - NRD_HOLD 1281 */ 1282 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); 1283 ncycles -= totalcycles; 1284 1285 /* 1286 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and 1287 * we might end up with a config that does not fit in the TDF field. 1288 * Just take the max value in this case and hope that the NAND is more 1289 * tolerant than advertised. 1290 */ 1291 if (ncycles > ATMEL_SMC_MODE_TDF_MAX) 1292 ncycles = ATMEL_SMC_MODE_TDF_MAX; 1293 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) 1294 ncycles = ATMEL_SMC_MODE_TDF_MIN; 1295 1296 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | 1297 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; 1298 1299 /* 1300 * Read pulse timing directly matches tRP: 1301 * 1302 * NRD_PULSE = tRP 1303 */ 1304 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); 1305 totalcycles += ncycles; 1306 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, 1307 ncycles); 1308 if (ret) 1309 return ret; 1310 1311 /* 1312 * The write cycle timing is directly matching tWC, but is also 1313 * dependent on the setup and hold timings we calculated earlier, 1314 * which gives: 1315 * 1316 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) 1317 * 1318 * NRD_SETUP is always 0. 1319 */ 1320 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); 1321 ncycles = max(totalcycles, ncycles); 1322 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, 1323 ncycles); 1324 if (ret) 1325 return ret; 1326 1327 /* 1328 * We don't want the CS line to be toggled between each byte/word 1329 * transfer from the NAND. The only way to guarantee that is to have 1330 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1331 * 1332 * NCS_RD_PULSE = NRD_CYCLE 1333 */ 1334 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, 1335 ncycles); 1336 if (ret) 1337 return ret; 1338 1339 /* Txxx timings are directly matching tXXX ones. */ 1340 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); 1341 ret = atmel_smc_cs_conf_set_timing(smcconf, 1342 ATMEL_HSMC_TIMINGS_TCLR_SHIFT, 1343 ncycles); 1344 if (ret) 1345 return ret; 1346 1347 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); 1348 ret = atmel_smc_cs_conf_set_timing(smcconf, 1349 ATMEL_HSMC_TIMINGS_TADL_SHIFT, 1350 ncycles); 1351 /* 1352 * Version 4 of the ONFI spec mandates that tADL be at least 400 1353 * nanoseconds, but, depending on the master clock rate, 400 ns may not 1354 * fit in the tADL field of the SMC reg. We need to relax the check and 1355 * accept the -ERANGE return code. 1356 * 1357 * Note that previous versions of the ONFI spec had a lower tADL_min 1358 * (100 or 200 ns). It's not clear why this timing constraint got 1359 * increased but it seems most NANDs are fine with values lower than 1360 * 400ns, so we should be safe. 1361 */ 1362 if (ret && ret != -ERANGE) 1363 return ret; 1364 1365 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); 1366 ret = atmel_smc_cs_conf_set_timing(smcconf, 1367 ATMEL_HSMC_TIMINGS_TAR_SHIFT, 1368 ncycles); 1369 if (ret) 1370 return ret; 1371 1372 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); 1373 ret = atmel_smc_cs_conf_set_timing(smcconf, 1374 ATMEL_HSMC_TIMINGS_TRR_SHIFT, 1375 ncycles); 1376 if (ret) 1377 return ret; 1378 1379 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); 1380 ret = atmel_smc_cs_conf_set_timing(smcconf, 1381 ATMEL_HSMC_TIMINGS_TWB_SHIFT, 1382 ncycles); 1383 if (ret) 1384 return ret; 1385 1386 /* Attach the CS line to the NFC logic. */ 1387 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; 1388 1389 /* Set the appropriate data bus width. */ 1390 if (nand->base.options & NAND_BUSWIDTH_16) 1391 smcconf->mode |= ATMEL_SMC_MODE_DBW_16; 1392 1393 /* Operate in NRD/NWE READ/WRITEMODE. */ 1394 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | 1395 ATMEL_SMC_MODE_WRITEMODE_NWE; 1396 1397 return 0; 1398 } 1399 1400 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, 1401 int csline, 1402 const struct nand_data_interface *conf) 1403 { 1404 struct atmel_nand_controller *nc; 1405 struct atmel_smc_cs_conf smcconf; 1406 struct atmel_nand_cs *cs; 1407 int ret; 1408 1409 nc = to_nand_controller(nand->base.controller); 1410 1411 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1412 if (ret) 1413 return ret; 1414 1415 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1416 return 0; 1417 1418 cs = &nand->cs[csline]; 1419 cs->smcconf = smcconf; 1420 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); 1421 1422 return 0; 1423 } 1424 1425 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, 1426 int csline, 1427 const struct nand_data_interface *conf) 1428 { 1429 struct atmel_hsmc_nand_controller *nc; 1430 struct atmel_smc_cs_conf smcconf; 1431 struct atmel_nand_cs *cs; 1432 int ret; 1433 1434 nc = to_hsmc_nand_controller(nand->base.controller); 1435 1436 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1437 if (ret) 1438 return ret; 1439 1440 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1441 return 0; 1442 1443 cs = &nand->cs[csline]; 1444 cs->smcconf = smcconf; 1445 1446 if (cs->rb.type == ATMEL_NAND_NATIVE_RB) 1447 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); 1448 1449 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, 1450 &cs->smcconf); 1451 1452 return 0; 1453 } 1454 1455 static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline, 1456 const struct nand_data_interface *conf) 1457 { 1458 struct atmel_nand *nand = to_atmel_nand(chip); 1459 struct atmel_nand_controller *nc; 1460 1461 nc = to_nand_controller(nand->base.controller); 1462 1463 if (csline >= nand->numcs || 1464 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) 1465 return -EINVAL; 1466 1467 return nc->caps->ops->setup_data_interface(nand, csline, conf); 1468 } 1469 1470 static void atmel_nand_init(struct atmel_nand_controller *nc, 1471 struct atmel_nand *nand) 1472 { 1473 struct nand_chip *chip = &nand->base; 1474 struct mtd_info *mtd = nand_to_mtd(chip); 1475 1476 mtd->dev.parent = nc->dev; 1477 nand->base.controller = &nc->base; 1478 1479 chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl; 1480 chip->legacy.read_byte = atmel_nand_read_byte; 1481 chip->legacy.write_byte = atmel_nand_write_byte; 1482 chip->legacy.read_buf = atmel_nand_read_buf; 1483 chip->legacy.write_buf = atmel_nand_write_buf; 1484 chip->legacy.select_chip = atmel_nand_select_chip; 1485 1486 if (!nc->mck || !nc->caps->ops->setup_data_interface) 1487 chip->options |= NAND_KEEP_TIMINGS; 1488 1489 /* Some NANDs require a longer delay than the default one (20us). */ 1490 chip->legacy.chip_delay = 40; 1491 1492 /* 1493 * Use a bounce buffer when the buffer passed by the MTD user is not 1494 * suitable for DMA. 1495 */ 1496 if (nc->dmac) 1497 chip->options |= NAND_USE_BOUNCE_BUFFER; 1498 1499 /* Default to HW ECC if pmecc is available. */ 1500 if (nc->pmecc) 1501 chip->ecc.mode = NAND_ECC_HW; 1502 } 1503 1504 static void atmel_smc_nand_init(struct atmel_nand_controller *nc, 1505 struct atmel_nand *nand) 1506 { 1507 struct nand_chip *chip = &nand->base; 1508 struct atmel_smc_nand_controller *smc_nc; 1509 int i; 1510 1511 atmel_nand_init(nc, nand); 1512 1513 smc_nc = to_smc_nand_controller(chip->controller); 1514 if (!smc_nc->ebi_csa_regmap) 1515 return; 1516 1517 /* Attach the CS to the NAND Flash logic. */ 1518 for (i = 0; i < nand->numcs; i++) 1519 regmap_update_bits(smc_nc->ebi_csa_regmap, 1520 smc_nc->ebi_csa->offs, 1521 BIT(nand->cs[i].id), BIT(nand->cs[i].id)); 1522 1523 if (smc_nc->ebi_csa->nfd0_on_d16) 1524 regmap_update_bits(smc_nc->ebi_csa_regmap, 1525 smc_nc->ebi_csa->offs, 1526 smc_nc->ebi_csa->nfd0_on_d16, 1527 smc_nc->ebi_csa->nfd0_on_d16); 1528 } 1529 1530 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, 1531 struct atmel_nand *nand) 1532 { 1533 struct nand_chip *chip = &nand->base; 1534 1535 atmel_nand_init(nc, nand); 1536 1537 /* Overload some methods for the HSMC controller. */ 1538 chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; 1539 chip->legacy.select_chip = atmel_hsmc_nand_select_chip; 1540 } 1541 1542 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) 1543 { 1544 struct nand_chip *chip = &nand->base; 1545 struct mtd_info *mtd = nand_to_mtd(chip); 1546 int ret; 1547 1548 ret = mtd_device_unregister(mtd); 1549 if (ret) 1550 return ret; 1551 1552 nand_cleanup(chip); 1553 list_del(&nand->node); 1554 1555 return 0; 1556 } 1557 1558 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, 1559 struct device_node *np, 1560 int reg_cells) 1561 { 1562 struct atmel_nand *nand; 1563 struct gpio_desc *gpio; 1564 int numcs, ret, i; 1565 1566 numcs = of_property_count_elems_of_size(np, "reg", 1567 reg_cells * sizeof(u32)); 1568 if (numcs < 1) { 1569 dev_err(nc->dev, "Missing or invalid reg property\n"); 1570 return ERR_PTR(-EINVAL); 1571 } 1572 1573 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); 1574 if (!nand) { 1575 dev_err(nc->dev, "Failed to allocate NAND object\n"); 1576 return ERR_PTR(-ENOMEM); 1577 } 1578 1579 nand->numcs = numcs; 1580 1581 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np), 1582 "det", GPIOD_IN, "nand-det"); 1583 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1584 dev_err(nc->dev, 1585 "Failed to get detect gpio (err = %ld)\n", 1586 PTR_ERR(gpio)); 1587 return ERR_CAST(gpio); 1588 } 1589 1590 if (!IS_ERR(gpio)) 1591 nand->cdgpio = gpio; 1592 1593 for (i = 0; i < numcs; i++) { 1594 struct resource res; 1595 u32 val; 1596 1597 ret = of_address_to_resource(np, 0, &res); 1598 if (ret) { 1599 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1600 ret); 1601 return ERR_PTR(ret); 1602 } 1603 1604 ret = of_property_read_u32_index(np, "reg", i * reg_cells, 1605 &val); 1606 if (ret) { 1607 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1608 ret); 1609 return ERR_PTR(ret); 1610 } 1611 1612 nand->cs[i].id = val; 1613 1614 nand->cs[i].io.dma = res.start; 1615 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); 1616 if (IS_ERR(nand->cs[i].io.virt)) 1617 return ERR_CAST(nand->cs[i].io.virt); 1618 1619 if (!of_property_read_u32(np, "atmel,rb", &val)) { 1620 if (val > ATMEL_NFC_MAX_RB_ID) 1621 return ERR_PTR(-EINVAL); 1622 1623 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; 1624 nand->cs[i].rb.id = val; 1625 } else { 1626 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1627 of_fwnode_handle(np), 1628 "rb", i, GPIOD_IN, 1629 "nand-rb"); 1630 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1631 dev_err(nc->dev, 1632 "Failed to get R/B gpio (err = %ld)\n", 1633 PTR_ERR(gpio)); 1634 return ERR_CAST(gpio); 1635 } 1636 1637 if (!IS_ERR(gpio)) { 1638 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; 1639 nand->cs[i].rb.gpio = gpio; 1640 } 1641 } 1642 1643 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1644 of_fwnode_handle(np), 1645 "cs", i, GPIOD_OUT_HIGH, 1646 "nand-cs"); 1647 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1648 dev_err(nc->dev, 1649 "Failed to get CS gpio (err = %ld)\n", 1650 PTR_ERR(gpio)); 1651 return ERR_CAST(gpio); 1652 } 1653 1654 if (!IS_ERR(gpio)) 1655 nand->cs[i].csgpio = gpio; 1656 } 1657 1658 nand_set_flash_node(&nand->base, np); 1659 1660 return nand; 1661 } 1662 1663 static int 1664 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, 1665 struct atmel_nand *nand) 1666 { 1667 struct nand_chip *chip = &nand->base; 1668 struct mtd_info *mtd = nand_to_mtd(chip); 1669 int ret; 1670 1671 /* No card inserted, skip this NAND. */ 1672 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { 1673 dev_info(nc->dev, "No SmartMedia card inserted.\n"); 1674 return 0; 1675 } 1676 1677 nc->caps->ops->nand_init(nc, nand); 1678 1679 ret = nand_scan(chip, nand->numcs); 1680 if (ret) { 1681 dev_err(nc->dev, "NAND scan failed: %d\n", ret); 1682 return ret; 1683 } 1684 1685 ret = mtd_device_register(mtd, NULL, 0); 1686 if (ret) { 1687 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); 1688 nand_cleanup(chip); 1689 return ret; 1690 } 1691 1692 list_add_tail(&nand->node, &nc->chips); 1693 1694 return 0; 1695 } 1696 1697 static int 1698 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) 1699 { 1700 struct atmel_nand *nand, *tmp; 1701 int ret; 1702 1703 list_for_each_entry_safe(nand, tmp, &nc->chips, node) { 1704 ret = atmel_nand_controller_remove_nand(nand); 1705 if (ret) 1706 return ret; 1707 } 1708 1709 return 0; 1710 } 1711 1712 static int 1713 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) 1714 { 1715 struct device *dev = nc->dev; 1716 struct platform_device *pdev = to_platform_device(dev); 1717 struct atmel_nand *nand; 1718 struct gpio_desc *gpio; 1719 struct resource *res; 1720 1721 /* 1722 * Legacy bindings only allow connecting a single NAND with a unique CS 1723 * line to the controller. 1724 */ 1725 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), 1726 GFP_KERNEL); 1727 if (!nand) 1728 return -ENOMEM; 1729 1730 nand->numcs = 1; 1731 1732 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1733 nand->cs[0].io.virt = devm_ioremap_resource(dev, res); 1734 if (IS_ERR(nand->cs[0].io.virt)) 1735 return PTR_ERR(nand->cs[0].io.virt); 1736 1737 nand->cs[0].io.dma = res->start; 1738 1739 /* 1740 * The old driver was hardcoding the CS id to 3 for all sama5 1741 * controllers. Since this id is only meaningful for the sama5 1742 * controller we can safely assign this id to 3 no matter the 1743 * controller. 1744 * If one wants to connect a NAND to a different CS line, he will 1745 * have to use the new bindings. 1746 */ 1747 nand->cs[0].id = 3; 1748 1749 /* R/B GPIO. */ 1750 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); 1751 if (IS_ERR(gpio)) { 1752 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", 1753 PTR_ERR(gpio)); 1754 return PTR_ERR(gpio); 1755 } 1756 1757 if (gpio) { 1758 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; 1759 nand->cs[0].rb.gpio = gpio; 1760 } 1761 1762 /* CS GPIO. */ 1763 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); 1764 if (IS_ERR(gpio)) { 1765 dev_err(dev, "Failed to get CS gpio (err = %ld)\n", 1766 PTR_ERR(gpio)); 1767 return PTR_ERR(gpio); 1768 } 1769 1770 nand->cs[0].csgpio = gpio; 1771 1772 /* Card detect GPIO. */ 1773 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); 1774 if (IS_ERR(gpio)) { 1775 dev_err(dev, 1776 "Failed to get detect gpio (err = %ld)\n", 1777 PTR_ERR(gpio)); 1778 return PTR_ERR(gpio); 1779 } 1780 1781 nand->cdgpio = gpio; 1782 1783 nand_set_flash_node(&nand->base, nc->dev->of_node); 1784 1785 return atmel_nand_controller_add_nand(nc, nand); 1786 } 1787 1788 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) 1789 { 1790 struct device_node *np, *nand_np; 1791 struct device *dev = nc->dev; 1792 int ret, reg_cells; 1793 u32 val; 1794 1795 /* We do not retrieve the SMC syscon when parsing old DTs. */ 1796 if (nc->caps->legacy_of_bindings) 1797 return atmel_nand_controller_legacy_add_nands(nc); 1798 1799 np = dev->of_node; 1800 1801 ret = of_property_read_u32(np, "#address-cells", &val); 1802 if (ret) { 1803 dev_err(dev, "missing #address-cells property\n"); 1804 return ret; 1805 } 1806 1807 reg_cells = val; 1808 1809 ret = of_property_read_u32(np, "#size-cells", &val); 1810 if (ret) { 1811 dev_err(dev, "missing #size-cells property\n"); 1812 return ret; 1813 } 1814 1815 reg_cells += val; 1816 1817 for_each_child_of_node(np, nand_np) { 1818 struct atmel_nand *nand; 1819 1820 nand = atmel_nand_create(nc, nand_np, reg_cells); 1821 if (IS_ERR(nand)) { 1822 ret = PTR_ERR(nand); 1823 goto err; 1824 } 1825 1826 ret = atmel_nand_controller_add_nand(nc, nand); 1827 if (ret) 1828 goto err; 1829 } 1830 1831 return 0; 1832 1833 err: 1834 atmel_nand_controller_remove_nands(nc); 1835 1836 return ret; 1837 } 1838 1839 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) 1840 { 1841 if (nc->dmac) 1842 dma_release_channel(nc->dmac); 1843 1844 clk_put(nc->mck); 1845 } 1846 1847 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { 1848 .offs = AT91SAM9260_MATRIX_EBICSA, 1849 }; 1850 1851 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { 1852 .offs = AT91SAM9261_MATRIX_EBICSA, 1853 }; 1854 1855 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { 1856 .offs = AT91SAM9263_MATRIX_EBI0CSA, 1857 }; 1858 1859 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { 1860 .offs = AT91SAM9RL_MATRIX_EBICSA, 1861 }; 1862 1863 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { 1864 .offs = AT91SAM9G45_MATRIX_EBICSA, 1865 }; 1866 1867 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { 1868 .offs = AT91SAM9N12_MATRIX_EBICSA, 1869 }; 1870 1871 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { 1872 .offs = AT91SAM9X5_MATRIX_EBICSA, 1873 }; 1874 1875 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { 1876 .offs = AT91_SFR_CCFG_EBICSA, 1877 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, 1878 }; 1879 1880 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = { 1881 { 1882 .compatible = "atmel,at91sam9260-matrix", 1883 .data = &at91sam9260_ebi_csa, 1884 }, 1885 { 1886 .compatible = "atmel,at91sam9261-matrix", 1887 .data = &at91sam9261_ebi_csa, 1888 }, 1889 { 1890 .compatible = "atmel,at91sam9263-matrix", 1891 .data = &at91sam9263_ebi_csa, 1892 }, 1893 { 1894 .compatible = "atmel,at91sam9rl-matrix", 1895 .data = &at91sam9rl_ebi_csa, 1896 }, 1897 { 1898 .compatible = "atmel,at91sam9g45-matrix", 1899 .data = &at91sam9g45_ebi_csa, 1900 }, 1901 { 1902 .compatible = "atmel,at91sam9n12-matrix", 1903 .data = &at91sam9n12_ebi_csa, 1904 }, 1905 { 1906 .compatible = "atmel,at91sam9x5-matrix", 1907 .data = &at91sam9x5_ebi_csa, 1908 }, 1909 { 1910 .compatible = "microchip,sam9x60-sfr", 1911 .data = &sam9x60_ebi_csa, 1912 }, 1913 { /* sentinel */ }, 1914 }; 1915 1916 static int atmel_nand_attach_chip(struct nand_chip *chip) 1917 { 1918 struct atmel_nand_controller *nc = to_nand_controller(chip->controller); 1919 struct atmel_nand *nand = to_atmel_nand(chip); 1920 struct mtd_info *mtd = nand_to_mtd(chip); 1921 int ret; 1922 1923 ret = nc->caps->ops->ecc_init(chip); 1924 if (ret) 1925 return ret; 1926 1927 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { 1928 /* 1929 * We keep the MTD name unchanged to avoid breaking platforms 1930 * where the MTD cmdline parser is used and the bootloader 1931 * has not been updated to use the new naming scheme. 1932 */ 1933 mtd->name = "atmel_nand"; 1934 } else if (!mtd->name) { 1935 /* 1936 * If the new bindings are used and the bootloader has not been 1937 * updated to pass a new mtdparts parameter on the cmdline, you 1938 * should define the following property in your nand node: 1939 * 1940 * label = "atmel_nand"; 1941 * 1942 * This way, mtd->name will be set by the core when 1943 * nand_set_flash_node() is called. 1944 */ 1945 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, 1946 "%s:nand.%d", dev_name(nc->dev), 1947 nand->cs[0].id); 1948 if (!mtd->name) { 1949 dev_err(nc->dev, "Failed to allocate mtd->name\n"); 1950 return -ENOMEM; 1951 } 1952 } 1953 1954 return 0; 1955 } 1956 1957 static const struct nand_controller_ops atmel_nand_controller_ops = { 1958 .attach_chip = atmel_nand_attach_chip, 1959 .setup_data_interface = atmel_nand_setup_data_interface, 1960 }; 1961 1962 static int atmel_nand_controller_init(struct atmel_nand_controller *nc, 1963 struct platform_device *pdev, 1964 const struct atmel_nand_controller_caps *caps) 1965 { 1966 struct device *dev = &pdev->dev; 1967 struct device_node *np = dev->of_node; 1968 int ret; 1969 1970 nand_controller_init(&nc->base); 1971 nc->base.ops = &atmel_nand_controller_ops; 1972 INIT_LIST_HEAD(&nc->chips); 1973 nc->dev = dev; 1974 nc->caps = caps; 1975 1976 platform_set_drvdata(pdev, nc); 1977 1978 nc->pmecc = devm_atmel_pmecc_get(dev); 1979 if (IS_ERR(nc->pmecc)) { 1980 ret = PTR_ERR(nc->pmecc); 1981 if (ret != -EPROBE_DEFER) 1982 dev_err(dev, "Could not get PMECC object (err = %d)\n", 1983 ret); 1984 return ret; 1985 } 1986 1987 if (nc->caps->has_dma && !atmel_nand_avoid_dma) { 1988 dma_cap_mask_t mask; 1989 1990 dma_cap_zero(mask); 1991 dma_cap_set(DMA_MEMCPY, mask); 1992 1993 nc->dmac = dma_request_channel(mask, NULL, NULL); 1994 if (!nc->dmac) 1995 dev_err(nc->dev, "Failed to request DMA channel\n"); 1996 } 1997 1998 /* We do not retrieve the SMC syscon when parsing old DTs. */ 1999 if (nc->caps->legacy_of_bindings) 2000 return 0; 2001 2002 nc->mck = of_clk_get(dev->parent->of_node, 0); 2003 if (IS_ERR(nc->mck)) { 2004 dev_err(dev, "Failed to retrieve MCK clk\n"); 2005 return PTR_ERR(nc->mck); 2006 } 2007 2008 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2009 if (!np) { 2010 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2011 return -EINVAL; 2012 } 2013 2014 nc->smc = syscon_node_to_regmap(np); 2015 of_node_put(np); 2016 if (IS_ERR(nc->smc)) { 2017 ret = PTR_ERR(nc->smc); 2018 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); 2019 return ret; 2020 } 2021 2022 return 0; 2023 } 2024 2025 static int 2026 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) 2027 { 2028 struct device *dev = nc->base.dev; 2029 const struct of_device_id *match; 2030 struct device_node *np; 2031 int ret; 2032 2033 /* We do not retrieve the EBICSA regmap when parsing old DTs. */ 2034 if (nc->base.caps->legacy_of_bindings) 2035 return 0; 2036 2037 np = of_parse_phandle(dev->parent->of_node, 2038 nc->base.caps->ebi_csa_regmap_name, 0); 2039 if (!np) 2040 return 0; 2041 2042 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); 2043 if (!match) { 2044 of_node_put(np); 2045 return 0; 2046 } 2047 2048 nc->ebi_csa_regmap = syscon_node_to_regmap(np); 2049 of_node_put(np); 2050 if (IS_ERR(nc->ebi_csa_regmap)) { 2051 ret = PTR_ERR(nc->ebi_csa_regmap); 2052 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); 2053 return ret; 2054 } 2055 2056 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; 2057 2058 /* 2059 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 2060 * add 4 to ->ebi_csa->offs. 2061 */ 2062 if (of_device_is_compatible(dev->parent->of_node, 2063 "atmel,at91sam9263-ebi1")) 2064 nc->ebi_csa->offs += 4; 2065 2066 return 0; 2067 } 2068 2069 static int 2070 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) 2071 { 2072 struct regmap_config regmap_conf = { 2073 .reg_bits = 32, 2074 .val_bits = 32, 2075 .reg_stride = 4, 2076 }; 2077 2078 struct device *dev = nc->base.dev; 2079 struct device_node *nand_np, *nfc_np; 2080 void __iomem *iomem; 2081 struct resource res; 2082 int ret; 2083 2084 nand_np = dev->of_node; 2085 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); 2086 if (!nfc_np) { 2087 dev_err(dev, "Could not find device node for sama5d3-nfc\n"); 2088 return -ENODEV; 2089 } 2090 2091 nc->clk = of_clk_get(nfc_np, 0); 2092 if (IS_ERR(nc->clk)) { 2093 ret = PTR_ERR(nc->clk); 2094 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", 2095 ret); 2096 goto out; 2097 } 2098 2099 ret = clk_prepare_enable(nc->clk); 2100 if (ret) { 2101 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", 2102 ret); 2103 goto out; 2104 } 2105 2106 nc->irq = of_irq_get(nand_np, 0); 2107 if (nc->irq <= 0) { 2108 ret = nc->irq ?: -ENXIO; 2109 if (ret != -EPROBE_DEFER) 2110 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2111 ret); 2112 goto out; 2113 } 2114 2115 ret = of_address_to_resource(nfc_np, 0, &res); 2116 if (ret) { 2117 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", 2118 ret); 2119 goto out; 2120 } 2121 2122 iomem = devm_ioremap_resource(dev, &res); 2123 if (IS_ERR(iomem)) { 2124 ret = PTR_ERR(iomem); 2125 goto out; 2126 } 2127 2128 regmap_conf.name = "nfc-io"; 2129 regmap_conf.max_register = resource_size(&res) - 4; 2130 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2131 if (IS_ERR(nc->io)) { 2132 ret = PTR_ERR(nc->io); 2133 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2134 ret); 2135 goto out; 2136 } 2137 2138 ret = of_address_to_resource(nfc_np, 1, &res); 2139 if (ret) { 2140 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", 2141 ret); 2142 goto out; 2143 } 2144 2145 iomem = devm_ioremap_resource(dev, &res); 2146 if (IS_ERR(iomem)) { 2147 ret = PTR_ERR(iomem); 2148 goto out; 2149 } 2150 2151 regmap_conf.name = "smc"; 2152 regmap_conf.max_register = resource_size(&res) - 4; 2153 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2154 if (IS_ERR(nc->base.smc)) { 2155 ret = PTR_ERR(nc->base.smc); 2156 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2157 ret); 2158 goto out; 2159 } 2160 2161 ret = of_address_to_resource(nfc_np, 2, &res); 2162 if (ret) { 2163 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", 2164 ret); 2165 goto out; 2166 } 2167 2168 nc->sram.virt = devm_ioremap_resource(dev, &res); 2169 if (IS_ERR(nc->sram.virt)) { 2170 ret = PTR_ERR(nc->sram.virt); 2171 goto out; 2172 } 2173 2174 nc->sram.dma = res.start; 2175 2176 out: 2177 of_node_put(nfc_np); 2178 2179 return ret; 2180 } 2181 2182 static int 2183 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) 2184 { 2185 struct device *dev = nc->base.dev; 2186 struct device_node *np; 2187 int ret; 2188 2189 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2190 if (!np) { 2191 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2192 return -EINVAL; 2193 } 2194 2195 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); 2196 2197 nc->irq = of_irq_get(np, 0); 2198 of_node_put(np); 2199 if (nc->irq <= 0) { 2200 ret = nc->irq ?: -ENXIO; 2201 if (ret != -EPROBE_DEFER) 2202 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2203 ret); 2204 return ret; 2205 } 2206 2207 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); 2208 if (!np) { 2209 dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); 2210 return -EINVAL; 2211 } 2212 2213 nc->io = syscon_node_to_regmap(np); 2214 of_node_put(np); 2215 if (IS_ERR(nc->io)) { 2216 ret = PTR_ERR(nc->io); 2217 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); 2218 return ret; 2219 } 2220 2221 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, 2222 "atmel,nfc-sram", 0); 2223 if (!nc->sram.pool) { 2224 dev_err(nc->base.dev, "Missing SRAM\n"); 2225 return -ENOMEM; 2226 } 2227 2228 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, 2229 ATMEL_NFC_SRAM_SIZE, 2230 &nc->sram.dma); 2231 if (!nc->sram.virt) { 2232 dev_err(nc->base.dev, 2233 "Could not allocate memory from the NFC SRAM pool\n"); 2234 return -ENOMEM; 2235 } 2236 2237 return 0; 2238 } 2239 2240 static int 2241 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) 2242 { 2243 struct atmel_hsmc_nand_controller *hsmc_nc; 2244 int ret; 2245 2246 ret = atmel_nand_controller_remove_nands(nc); 2247 if (ret) 2248 return ret; 2249 2250 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); 2251 if (hsmc_nc->sram.pool) 2252 gen_pool_free(hsmc_nc->sram.pool, 2253 (unsigned long)hsmc_nc->sram.virt, 2254 ATMEL_NFC_SRAM_SIZE); 2255 2256 if (hsmc_nc->clk) { 2257 clk_disable_unprepare(hsmc_nc->clk); 2258 clk_put(hsmc_nc->clk); 2259 } 2260 2261 atmel_nand_controller_cleanup(nc); 2262 2263 return 0; 2264 } 2265 2266 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, 2267 const struct atmel_nand_controller_caps *caps) 2268 { 2269 struct device *dev = &pdev->dev; 2270 struct atmel_hsmc_nand_controller *nc; 2271 int ret; 2272 2273 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2274 if (!nc) 2275 return -ENOMEM; 2276 2277 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2278 if (ret) 2279 return ret; 2280 2281 if (caps->legacy_of_bindings) 2282 ret = atmel_hsmc_nand_controller_legacy_init(nc); 2283 else 2284 ret = atmel_hsmc_nand_controller_init(nc); 2285 2286 if (ret) 2287 return ret; 2288 2289 /* Make sure all irqs are masked before registering our IRQ handler. */ 2290 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 2291 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, 2292 IRQF_SHARED, "nfc", nc); 2293 if (ret) { 2294 dev_err(dev, 2295 "Could not get register NFC interrupt handler (err = %d)\n", 2296 ret); 2297 goto err; 2298 } 2299 2300 /* Initial NFC configuration. */ 2301 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, 2302 ATMEL_HSMC_NFC_CFG_DTO_MAX); 2303 2304 ret = atmel_nand_controller_add_nands(&nc->base); 2305 if (ret) 2306 goto err; 2307 2308 return 0; 2309 2310 err: 2311 atmel_hsmc_nand_controller_remove(&nc->base); 2312 2313 return ret; 2314 } 2315 2316 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { 2317 .probe = atmel_hsmc_nand_controller_probe, 2318 .remove = atmel_hsmc_nand_controller_remove, 2319 .ecc_init = atmel_hsmc_nand_ecc_init, 2320 .nand_init = atmel_hsmc_nand_init, 2321 .setup_data_interface = atmel_hsmc_nand_setup_data_interface, 2322 }; 2323 2324 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { 2325 .has_dma = true, 2326 .ale_offs = BIT(21), 2327 .cle_offs = BIT(22), 2328 .ops = &atmel_hsmc_nc_ops, 2329 }; 2330 2331 /* Only used to parse old bindings. */ 2332 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { 2333 .has_dma = true, 2334 .ale_offs = BIT(21), 2335 .cle_offs = BIT(22), 2336 .ops = &atmel_hsmc_nc_ops, 2337 .legacy_of_bindings = true, 2338 }; 2339 2340 static int atmel_smc_nand_controller_probe(struct platform_device *pdev, 2341 const struct atmel_nand_controller_caps *caps) 2342 { 2343 struct device *dev = &pdev->dev; 2344 struct atmel_smc_nand_controller *nc; 2345 int ret; 2346 2347 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2348 if (!nc) 2349 return -ENOMEM; 2350 2351 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2352 if (ret) 2353 return ret; 2354 2355 ret = atmel_smc_nand_controller_init(nc); 2356 if (ret) 2357 return ret; 2358 2359 return atmel_nand_controller_add_nands(&nc->base); 2360 } 2361 2362 static int 2363 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) 2364 { 2365 int ret; 2366 2367 ret = atmel_nand_controller_remove_nands(nc); 2368 if (ret) 2369 return ret; 2370 2371 atmel_nand_controller_cleanup(nc); 2372 2373 return 0; 2374 } 2375 2376 /* 2377 * The SMC reg layout of at91rm9200 is completely different which prevents us 2378 * from re-using atmel_smc_nand_setup_data_interface() for the 2379 * ->setup_data_interface() hook. 2380 * At this point, there's no support for the at91rm9200 SMC IP, so we leave 2381 * ->setup_data_interface() unassigned. 2382 */ 2383 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { 2384 .probe = atmel_smc_nand_controller_probe, 2385 .remove = atmel_smc_nand_controller_remove, 2386 .ecc_init = atmel_nand_ecc_init, 2387 .nand_init = atmel_smc_nand_init, 2388 }; 2389 2390 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { 2391 .ale_offs = BIT(21), 2392 .cle_offs = BIT(22), 2393 .ebi_csa_regmap_name = "atmel,matrix", 2394 .ops = &at91rm9200_nc_ops, 2395 }; 2396 2397 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { 2398 .probe = atmel_smc_nand_controller_probe, 2399 .remove = atmel_smc_nand_controller_remove, 2400 .ecc_init = atmel_nand_ecc_init, 2401 .nand_init = atmel_smc_nand_init, 2402 .setup_data_interface = atmel_smc_nand_setup_data_interface, 2403 }; 2404 2405 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { 2406 .ale_offs = BIT(21), 2407 .cle_offs = BIT(22), 2408 .ebi_csa_regmap_name = "atmel,matrix", 2409 .ops = &atmel_smc_nc_ops, 2410 }; 2411 2412 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { 2413 .ale_offs = BIT(22), 2414 .cle_offs = BIT(21), 2415 .ebi_csa_regmap_name = "atmel,matrix", 2416 .ops = &atmel_smc_nc_ops, 2417 }; 2418 2419 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { 2420 .has_dma = true, 2421 .ale_offs = BIT(21), 2422 .cle_offs = BIT(22), 2423 .ebi_csa_regmap_name = "atmel,matrix", 2424 .ops = &atmel_smc_nc_ops, 2425 }; 2426 2427 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { 2428 .has_dma = true, 2429 .ale_offs = BIT(21), 2430 .cle_offs = BIT(22), 2431 .ebi_csa_regmap_name = "microchip,sfr", 2432 .ops = &atmel_smc_nc_ops, 2433 }; 2434 2435 /* Only used to parse old bindings. */ 2436 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { 2437 .ale_offs = BIT(21), 2438 .cle_offs = BIT(22), 2439 .ops = &atmel_smc_nc_ops, 2440 .legacy_of_bindings = true, 2441 }; 2442 2443 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { 2444 .ale_offs = BIT(22), 2445 .cle_offs = BIT(21), 2446 .ops = &atmel_smc_nc_ops, 2447 .legacy_of_bindings = true, 2448 }; 2449 2450 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { 2451 .has_dma = true, 2452 .ale_offs = BIT(21), 2453 .cle_offs = BIT(22), 2454 .ops = &atmel_smc_nc_ops, 2455 .legacy_of_bindings = true, 2456 }; 2457 2458 static const struct of_device_id atmel_nand_controller_of_ids[] = { 2459 { 2460 .compatible = "atmel,at91rm9200-nand-controller", 2461 .data = &atmel_rm9200_nc_caps, 2462 }, 2463 { 2464 .compatible = "atmel,at91sam9260-nand-controller", 2465 .data = &atmel_sam9260_nc_caps, 2466 }, 2467 { 2468 .compatible = "atmel,at91sam9261-nand-controller", 2469 .data = &atmel_sam9261_nc_caps, 2470 }, 2471 { 2472 .compatible = "atmel,at91sam9g45-nand-controller", 2473 .data = &atmel_sam9g45_nc_caps, 2474 }, 2475 { 2476 .compatible = "atmel,sama5d3-nand-controller", 2477 .data = &atmel_sama5_nc_caps, 2478 }, 2479 { 2480 .compatible = "microchip,sam9x60-nand-controller", 2481 .data = µchip_sam9x60_nc_caps, 2482 }, 2483 /* Support for old/deprecated bindings: */ 2484 { 2485 .compatible = "atmel,at91rm9200-nand", 2486 .data = &atmel_rm9200_nand_caps, 2487 }, 2488 { 2489 .compatible = "atmel,sama5d4-nand", 2490 .data = &atmel_rm9200_nand_caps, 2491 }, 2492 { 2493 .compatible = "atmel,sama5d2-nand", 2494 .data = &atmel_rm9200_nand_caps, 2495 }, 2496 { /* sentinel */ }, 2497 }; 2498 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); 2499 2500 static int atmel_nand_controller_probe(struct platform_device *pdev) 2501 { 2502 const struct atmel_nand_controller_caps *caps; 2503 2504 if (pdev->id_entry) 2505 caps = (void *)pdev->id_entry->driver_data; 2506 else 2507 caps = of_device_get_match_data(&pdev->dev); 2508 2509 if (!caps) { 2510 dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); 2511 return -EINVAL; 2512 } 2513 2514 if (caps->legacy_of_bindings) { 2515 struct device_node *nfc_node; 2516 u32 ale_offs = 21; 2517 2518 /* 2519 * If we are parsing legacy DT props and the DT contains a 2520 * valid NFC node, forward the request to the sama5 logic. 2521 */ 2522 nfc_node = of_get_compatible_child(pdev->dev.of_node, 2523 "atmel,sama5d3-nfc"); 2524 if (nfc_node) { 2525 caps = &atmel_sama5_nand_caps; 2526 of_node_put(nfc_node); 2527 } 2528 2529 /* 2530 * Even if the compatible says we are dealing with an 2531 * at91rm9200 controller, the atmel,nand-has-dma specify that 2532 * this controller supports DMA, which means we are in fact 2533 * dealing with an at91sam9g45+ controller. 2534 */ 2535 if (!caps->has_dma && 2536 of_property_read_bool(pdev->dev.of_node, 2537 "atmel,nand-has-dma")) 2538 caps = &atmel_sam9g45_nand_caps; 2539 2540 /* 2541 * All SoCs except the at91sam9261 are assigning ALE to A21 and 2542 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're 2543 * actually dealing with an at91sam9261 controller. 2544 */ 2545 of_property_read_u32(pdev->dev.of_node, 2546 "atmel,nand-addr-offset", &ale_offs); 2547 if (ale_offs != 21) 2548 caps = &atmel_sam9261_nand_caps; 2549 } 2550 2551 return caps->ops->probe(pdev, caps); 2552 } 2553 2554 static int atmel_nand_controller_remove(struct platform_device *pdev) 2555 { 2556 struct atmel_nand_controller *nc = platform_get_drvdata(pdev); 2557 2558 return nc->caps->ops->remove(nc); 2559 } 2560 2561 static __maybe_unused int atmel_nand_controller_resume(struct device *dev) 2562 { 2563 struct atmel_nand_controller *nc = dev_get_drvdata(dev); 2564 struct atmel_nand *nand; 2565 2566 if (nc->pmecc) 2567 atmel_pmecc_reset(nc->pmecc); 2568 2569 list_for_each_entry(nand, &nc->chips, node) { 2570 int i; 2571 2572 for (i = 0; i < nand->numcs; i++) 2573 nand_reset(&nand->base, i); 2574 } 2575 2576 return 0; 2577 } 2578 2579 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, 2580 atmel_nand_controller_resume); 2581 2582 static struct platform_driver atmel_nand_controller_driver = { 2583 .driver = { 2584 .name = "atmel-nand-controller", 2585 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), 2586 .pm = &atmel_nand_controller_pm_ops, 2587 }, 2588 .probe = atmel_nand_controller_probe, 2589 .remove = atmel_nand_controller_remove, 2590 }; 2591 module_platform_driver(atmel_nand_controller_driver); 2592 2593 MODULE_LICENSE("GPL"); 2594 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); 2595 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); 2596 MODULE_ALIAS("platform:atmel-nand-controller"); 2597