1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2017 ATMEL 4 * Copyright 2017 Free Electrons 5 * 6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com> 7 * 8 * Derived from the atmel_nand.c driver which contained the following 9 * copyrights: 10 * 11 * Copyright 2003 Rick Bronson 12 * 13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) 14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) 15 * 16 * Derived from drivers/mtd/spia.c (removed in v3.8) 17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com) 18 * 19 * 20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 22 * 23 * Derived from Das U-Boot source code 24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) 25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas 26 * 27 * Add Programmable Multibit ECC support for various AT91 SoC 28 * Copyright 2012 ATMEL, Hong Xu 29 * 30 * Add Nand Flash Controller support for SAMA5 SoC 31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) 32 * 33 * A few words about the naming convention in this file. This convention 34 * applies to structure and function names. 35 * 36 * Prefixes: 37 * 38 * - atmel_nand_: all generic structures/functions 39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface 40 * (at91sam9 and avr32 SoCs) 41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface 42 * (sama5 SoCs and later) 43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block 44 * that is available in the HSMC block 45 * - <soc>_nand_: all SoC specific structures/functions 46 */ 47 48 #include <linux/clk.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/genalloc.h> 52 #include <linux/gpio/consumer.h> 53 #include <linux/interrupt.h> 54 #include <linux/mfd/syscon.h> 55 #include <linux/mfd/syscon/atmel-matrix.h> 56 #include <linux/mfd/syscon/atmel-smc.h> 57 #include <linux/module.h> 58 #include <linux/mtd/rawnand.h> 59 #include <linux/of_address.h> 60 #include <linux/of_irq.h> 61 #include <linux/of_platform.h> 62 #include <linux/iopoll.h> 63 #include <linux/platform_device.h> 64 #include <linux/regmap.h> 65 #include <soc/at91/atmel-sfr.h> 66 67 #include "pmecc.h" 68 69 #define ATMEL_HSMC_NFC_CFG 0x0 70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) 71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) 72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) 73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) 74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) 75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) 76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) 77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) 78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) 79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) 80 81 #define ATMEL_HSMC_NFC_CTRL 0x4 82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) 83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) 84 85 #define ATMEL_HSMC_NFC_SR 0x8 86 #define ATMEL_HSMC_NFC_IER 0xc 87 #define ATMEL_HSMC_NFC_IDR 0x10 88 #define ATMEL_HSMC_NFC_IMR 0x14 89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) 90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) 91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) 92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) 93 #define ATMEL_HSMC_NFC_SR_WR BIT(11) 94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) 95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) 96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) 97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) 98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) 99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22) 100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) 101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ 102 ATMEL_HSMC_NFC_SR_UNDEF | \ 103 ATMEL_HSMC_NFC_SR_AWB | \ 104 ATMEL_HSMC_NFC_SR_NFCASE) 105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) 106 107 #define ATMEL_HSMC_NFC_ADDR 0x18 108 #define ATMEL_HSMC_NFC_BANK 0x1c 109 110 #define ATMEL_NFC_MAX_RB_ID 7 111 112 #define ATMEL_NFC_SRAM_SIZE 0x2400 113 114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) 115 #define ATMEL_NFC_VCMD2 BIT(18) 116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) 117 #define ATMEL_NFC_CSID(cs) ((cs) << 22) 118 #define ATMEL_NFC_DATAEN BIT(25) 119 #define ATMEL_NFC_NFCWR BIT(26) 120 121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5 122 123 #define ATMEL_NAND_ALE_OFFSET BIT(21) 124 #define ATMEL_NAND_CLE_OFFSET BIT(22) 125 126 #define DEFAULT_TIMEOUT_MS 1000 127 #define MIN_DMA_LEN 128 128 129 static bool atmel_nand_avoid_dma __read_mostly; 130 131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); 132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); 133 134 enum atmel_nand_rb_type { 135 ATMEL_NAND_NO_RB, 136 ATMEL_NAND_NATIVE_RB, 137 ATMEL_NAND_GPIO_RB, 138 }; 139 140 struct atmel_nand_rb { 141 enum atmel_nand_rb_type type; 142 union { 143 struct gpio_desc *gpio; 144 int id; 145 }; 146 }; 147 148 struct atmel_nand_cs { 149 int id; 150 struct atmel_nand_rb rb; 151 struct gpio_desc *csgpio; 152 struct { 153 void __iomem *virt; 154 dma_addr_t dma; 155 } io; 156 157 struct atmel_smc_cs_conf smcconf; 158 }; 159 160 struct atmel_nand { 161 struct list_head node; 162 struct device *dev; 163 struct nand_chip base; 164 struct atmel_nand_cs *activecs; 165 struct atmel_pmecc_user *pmecc; 166 struct gpio_desc *cdgpio; 167 int numcs; 168 struct atmel_nand_cs cs[]; 169 }; 170 171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) 172 { 173 return container_of(chip, struct atmel_nand, base); 174 } 175 176 enum atmel_nfc_data_xfer { 177 ATMEL_NFC_NO_DATA, 178 ATMEL_NFC_READ_DATA, 179 ATMEL_NFC_WRITE_DATA, 180 }; 181 182 struct atmel_nfc_op { 183 u8 cs; 184 u8 ncmds; 185 u8 cmds[2]; 186 u8 naddrs; 187 u8 addrs[5]; 188 enum atmel_nfc_data_xfer data; 189 u32 wait; 190 u32 errors; 191 }; 192 193 struct atmel_nand_controller; 194 struct atmel_nand_controller_caps; 195 196 struct atmel_nand_controller_ops { 197 int (*probe)(struct platform_device *pdev, 198 const struct atmel_nand_controller_caps *caps); 199 int (*remove)(struct atmel_nand_controller *nc); 200 void (*nand_init)(struct atmel_nand_controller *nc, 201 struct atmel_nand *nand); 202 int (*ecc_init)(struct nand_chip *chip); 203 int (*setup_interface)(struct atmel_nand *nand, int csline, 204 const struct nand_interface_config *conf); 205 int (*exec_op)(struct atmel_nand *nand, 206 const struct nand_operation *op, bool check_only); 207 }; 208 209 struct atmel_nand_controller_caps { 210 bool has_dma; 211 bool legacy_of_bindings; 212 u32 ale_offs; 213 u32 cle_offs; 214 const char *ebi_csa_regmap_name; 215 const struct atmel_nand_controller_ops *ops; 216 }; 217 218 struct atmel_nand_controller { 219 struct nand_controller base; 220 const struct atmel_nand_controller_caps *caps; 221 struct device *dev; 222 struct regmap *smc; 223 struct dma_chan *dmac; 224 struct atmel_pmecc *pmecc; 225 struct list_head chips; 226 struct clk *mck; 227 }; 228 229 static inline struct atmel_nand_controller * 230 to_nand_controller(struct nand_controller *ctl) 231 { 232 return container_of(ctl, struct atmel_nand_controller, base); 233 } 234 235 struct atmel_smc_nand_ebi_csa_cfg { 236 u32 offs; 237 u32 nfd0_on_d16; 238 }; 239 240 struct atmel_smc_nand_controller { 241 struct atmel_nand_controller base; 242 struct regmap *ebi_csa_regmap; 243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; 244 }; 245 246 static inline struct atmel_smc_nand_controller * 247 to_smc_nand_controller(struct nand_controller *ctl) 248 { 249 return container_of(to_nand_controller(ctl), 250 struct atmel_smc_nand_controller, base); 251 } 252 253 struct atmel_hsmc_nand_controller { 254 struct atmel_nand_controller base; 255 struct { 256 struct gen_pool *pool; 257 void __iomem *virt; 258 dma_addr_t dma; 259 } sram; 260 const struct atmel_hsmc_reg_layout *hsmc_layout; 261 struct regmap *io; 262 struct atmel_nfc_op op; 263 struct completion complete; 264 u32 cfg; 265 int irq; 266 267 /* Only used when instantiating from legacy DT bindings. */ 268 struct clk *clk; 269 }; 270 271 static inline struct atmel_hsmc_nand_controller * 272 to_hsmc_nand_controller(struct nand_controller *ctl) 273 { 274 return container_of(to_nand_controller(ctl), 275 struct atmel_hsmc_nand_controller, base); 276 } 277 278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) 279 { 280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; 281 op->wait ^= status & op->wait; 282 283 return !op->wait || op->errors; 284 } 285 286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data) 287 { 288 struct atmel_hsmc_nand_controller *nc = data; 289 u32 sr, rcvd; 290 bool done; 291 292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); 293 294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 295 done = atmel_nfc_op_done(&nc->op, sr); 296 297 if (rcvd) 298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); 299 300 if (done) 301 complete(&nc->complete); 302 303 return rcvd ? IRQ_HANDLED : IRQ_NONE; 304 } 305 306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, 307 unsigned int timeout_ms) 308 { 309 int ret; 310 311 if (!timeout_ms) 312 timeout_ms = DEFAULT_TIMEOUT_MS; 313 314 if (poll) { 315 u32 status; 316 317 ret = regmap_read_poll_timeout(nc->base.smc, 318 ATMEL_HSMC_NFC_SR, status, 319 atmel_nfc_op_done(&nc->op, 320 status), 321 0, timeout_ms * 1000); 322 } else { 323 init_completion(&nc->complete); 324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, 325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 326 ret = wait_for_completion_timeout(&nc->complete, 327 msecs_to_jiffies(timeout_ms)); 328 if (!ret) 329 ret = -ETIMEDOUT; 330 else 331 ret = 0; 332 333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 334 } 335 336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { 337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); 338 ret = -ETIMEDOUT; 339 } 340 341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { 342 dev_err(nc->base.dev, "Access to an undefined area\n"); 343 ret = -EIO; 344 } 345 346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { 347 dev_err(nc->base.dev, "Access while busy\n"); 348 ret = -EIO; 349 } 350 351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { 352 dev_err(nc->base.dev, "Wrong access size\n"); 353 ret = -EIO; 354 } 355 356 return ret; 357 } 358 359 static void atmel_nand_dma_transfer_finished(void *data) 360 { 361 struct completion *finished = data; 362 363 complete(finished); 364 } 365 366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, 367 void *buf, dma_addr_t dev_dma, size_t len, 368 enum dma_data_direction dir) 369 { 370 DECLARE_COMPLETION_ONSTACK(finished); 371 dma_addr_t src_dma, dst_dma, buf_dma; 372 struct dma_async_tx_descriptor *tx; 373 dma_cookie_t cookie; 374 375 buf_dma = dma_map_single(nc->dev, buf, len, dir); 376 if (dma_mapping_error(nc->dev, dev_dma)) { 377 dev_err(nc->dev, 378 "Failed to prepare a buffer for DMA access\n"); 379 goto err; 380 } 381 382 if (dir == DMA_FROM_DEVICE) { 383 src_dma = dev_dma; 384 dst_dma = buf_dma; 385 } else { 386 src_dma = buf_dma; 387 dst_dma = dev_dma; 388 } 389 390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, 391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 392 if (!tx) { 393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); 394 goto err_unmap; 395 } 396 397 tx->callback = atmel_nand_dma_transfer_finished; 398 tx->callback_param = &finished; 399 400 cookie = dmaengine_submit(tx); 401 if (dma_submit_error(cookie)) { 402 dev_err(nc->dev, "Failed to do DMA tx_submit\n"); 403 goto err_unmap; 404 } 405 406 dma_async_issue_pending(nc->dmac); 407 wait_for_completion(&finished); 408 dma_unmap_single(nc->dev, buf_dma, len, dir); 409 410 return 0; 411 412 err_unmap: 413 dma_unmap_single(nc->dev, buf_dma, len, dir); 414 415 err: 416 dev_dbg(nc->dev, "Fall back to CPU I/O\n"); 417 418 return -EIO; 419 } 420 421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) 422 { 423 u8 *addrs = nc->op.addrs; 424 unsigned int op = 0; 425 u32 addr, val; 426 int i, ret; 427 428 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; 429 430 for (i = 0; i < nc->op.ncmds; i++) 431 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); 432 433 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) 434 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); 435 436 op |= ATMEL_NFC_CSID(nc->op.cs) | 437 ATMEL_NFC_ACYCLE(nc->op.naddrs); 438 439 if (nc->op.ncmds > 1) 440 op |= ATMEL_NFC_VCMD2; 441 442 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | 443 (addrs[3] << 24); 444 445 if (nc->op.data != ATMEL_NFC_NO_DATA) { 446 op |= ATMEL_NFC_DATAEN; 447 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; 448 449 if (nc->op.data == ATMEL_NFC_WRITE_DATA) 450 op |= ATMEL_NFC_NFCWR; 451 } 452 453 /* Clear all flags. */ 454 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); 455 456 /* Send the command. */ 457 regmap_write(nc->io, op, addr); 458 459 ret = atmel_nfc_wait(nc, poll, 0); 460 if (ret) 461 dev_err(nc->base.dev, 462 "Failed to send NAND command (err = %d)!", 463 ret); 464 465 /* Reset the op state. */ 466 memset(&nc->op, 0, sizeof(nc->op)); 467 468 return ret; 469 } 470 471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf, 472 unsigned int len, bool force_8bit) 473 { 474 struct atmel_nand_controller *nc; 475 476 nc = to_nand_controller(nand->base.controller); 477 478 /* 479 * If the controller supports DMA, the buffer address is DMA-able and 480 * len is long enough to make DMA transfers profitable, let's trigger 481 * a DMA transfer. If it fails, fallback to PIO mode. 482 */ 483 if (nc->dmac && virt_addr_valid(buf) && 484 len >= MIN_DMA_LEN && !force_8bit && 485 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, 486 DMA_FROM_DEVICE)) 487 return; 488 489 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) 490 ioread16_rep(nand->activecs->io.virt, buf, len / 2); 491 else 492 ioread8_rep(nand->activecs->io.virt, buf, len); 493 } 494 495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf, 496 unsigned int len, bool force_8bit) 497 { 498 struct atmel_nand_controller *nc; 499 500 nc = to_nand_controller(nand->base.controller); 501 502 /* 503 * If the controller supports DMA, the buffer address is DMA-able and 504 * len is long enough to make DMA transfers profitable, let's trigger 505 * a DMA transfer. If it fails, fallback to PIO mode. 506 */ 507 if (nc->dmac && virt_addr_valid(buf) && 508 len >= MIN_DMA_LEN && !force_8bit && 509 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, 510 len, DMA_TO_DEVICE)) 511 return; 512 513 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) 514 iowrite16_rep(nand->activecs->io.virt, buf, len / 2); 515 else 516 iowrite8_rep(nand->activecs->io.virt, buf, len); 517 } 518 519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms) 520 { 521 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB) 522 return nand_soft_waitrdy(&nand->base, timeout_ms); 523 524 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio, 525 timeout_ms); 526 } 527 528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand, 529 unsigned int timeout_ms) 530 { 531 struct atmel_hsmc_nand_controller *nc; 532 u32 status, mask; 533 534 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) 535 return atmel_nand_waitrdy(nand, timeout_ms); 536 537 nc = to_hsmc_nand_controller(nand->base.controller); 538 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); 539 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR, 540 status, status & mask, 541 10, timeout_ms * 1000); 542 } 543 544 static void atmel_nand_select_target(struct atmel_nand *nand, 545 unsigned int cs) 546 { 547 nand->activecs = &nand->cs[cs]; 548 } 549 550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand, 551 unsigned int cs) 552 { 553 struct mtd_info *mtd = nand_to_mtd(&nand->base); 554 struct atmel_hsmc_nand_controller *nc; 555 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | 556 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | 557 ATMEL_HSMC_NFC_CFG_RSPARE; 558 559 nand->activecs = &nand->cs[cs]; 560 nc = to_hsmc_nand_controller(nand->base.controller); 561 if (nc->cfg == cfg) 562 return; 563 564 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, 565 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | 566 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | 567 ATMEL_HSMC_NFC_CFG_RSPARE | 568 ATMEL_HSMC_NFC_CFG_WSPARE, 569 cfg); 570 nc->cfg = cfg; 571 } 572 573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand, 574 const struct nand_op_instr *instr) 575 { 576 struct atmel_nand_controller *nc; 577 unsigned int i; 578 579 nc = to_nand_controller(nand->base.controller); 580 switch (instr->type) { 581 case NAND_OP_CMD_INSTR: 582 writeb(instr->ctx.cmd.opcode, 583 nand->activecs->io.virt + nc->caps->cle_offs); 584 return 0; 585 case NAND_OP_ADDR_INSTR: 586 for (i = 0; i < instr->ctx.addr.naddrs; i++) 587 writeb(instr->ctx.addr.addrs[i], 588 nand->activecs->io.virt + nc->caps->ale_offs); 589 return 0; 590 case NAND_OP_DATA_IN_INSTR: 591 atmel_nand_data_in(nand, instr->ctx.data.buf.in, 592 instr->ctx.data.len, 593 instr->ctx.data.force_8bit); 594 return 0; 595 case NAND_OP_DATA_OUT_INSTR: 596 atmel_nand_data_out(nand, instr->ctx.data.buf.out, 597 instr->ctx.data.len, 598 instr->ctx.data.force_8bit); 599 return 0; 600 case NAND_OP_WAITRDY_INSTR: 601 return atmel_nand_waitrdy(nand, 602 instr->ctx.waitrdy.timeout_ms); 603 default: 604 break; 605 } 606 607 return -EINVAL; 608 } 609 610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand, 611 const struct nand_operation *op, 612 bool check_only) 613 { 614 unsigned int i; 615 int ret = 0; 616 617 if (check_only) 618 return 0; 619 620 atmel_nand_select_target(nand, op->cs); 621 gpiod_set_value(nand->activecs->csgpio, 0); 622 for (i = 0; i < op->ninstrs; i++) { 623 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]); 624 if (ret) 625 break; 626 } 627 gpiod_set_value(nand->activecs->csgpio, 1); 628 629 return ret; 630 } 631 632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip, 633 const struct nand_subop *subop) 634 { 635 struct atmel_nand *nand = to_atmel_nand(chip); 636 struct atmel_hsmc_nand_controller *nc; 637 unsigned int i, j; 638 639 nc = to_hsmc_nand_controller(chip->controller); 640 641 nc->op.cs = nand->activecs->id; 642 for (i = 0; i < subop->ninstrs; i++) { 643 const struct nand_op_instr *instr = &subop->instrs[i]; 644 645 if (instr->type == NAND_OP_CMD_INSTR) { 646 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode; 647 continue; 648 } 649 650 for (j = nand_subop_get_addr_start_off(subop, i); 651 j < nand_subop_get_num_addr_cyc(subop, i); j++) { 652 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j]; 653 nc->op.naddrs++; 654 } 655 } 656 657 return atmel_nfc_exec_op(nc, true); 658 } 659 660 static int atmel_hsmc_exec_rw(struct nand_chip *chip, 661 const struct nand_subop *subop) 662 { 663 const struct nand_op_instr *instr = subop->instrs; 664 struct atmel_nand *nand = to_atmel_nand(chip); 665 666 if (instr->type == NAND_OP_DATA_IN_INSTR) 667 atmel_nand_data_in(nand, instr->ctx.data.buf.in, 668 instr->ctx.data.len, 669 instr->ctx.data.force_8bit); 670 else 671 atmel_nand_data_out(nand, instr->ctx.data.buf.out, 672 instr->ctx.data.len, 673 instr->ctx.data.force_8bit); 674 675 return 0; 676 } 677 678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip, 679 const struct nand_subop *subop) 680 { 681 const struct nand_op_instr *instr = subop->instrs; 682 struct atmel_nand *nand = to_atmel_nand(chip); 683 684 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms); 685 } 686 687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER( 688 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr, 689 NAND_OP_PARSER_PAT_CMD_ELEM(true), 690 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 691 NAND_OP_PARSER_PAT_CMD_ELEM(true)), 692 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, 693 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), 694 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, 695 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)), 696 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy, 697 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 698 ); 699 700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand, 701 const struct nand_operation *op, 702 bool check_only) 703 { 704 int ret; 705 706 if (check_only) 707 return nand_op_parser_exec_op(&nand->base, 708 &atmel_hsmc_op_parser, op, true); 709 710 atmel_hsmc_nand_select_target(nand, op->cs); 711 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op, 712 false); 713 714 return ret; 715 } 716 717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, 718 bool oob_required) 719 { 720 struct mtd_info *mtd = nand_to_mtd(chip); 721 struct atmel_hsmc_nand_controller *nc; 722 int ret = -EIO; 723 724 nc = to_hsmc_nand_controller(chip->controller); 725 726 if (nc->base.dmac) 727 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, 728 nc->sram.dma, mtd->writesize, 729 DMA_TO_DEVICE); 730 731 /* Falling back to CPU copy. */ 732 if (ret) 733 memcpy_toio(nc->sram.virt, buf, mtd->writesize); 734 735 if (oob_required) 736 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, 737 mtd->oobsize); 738 } 739 740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, 741 bool oob_required) 742 { 743 struct mtd_info *mtd = nand_to_mtd(chip); 744 struct atmel_hsmc_nand_controller *nc; 745 int ret = -EIO; 746 747 nc = to_hsmc_nand_controller(chip->controller); 748 749 if (nc->base.dmac) 750 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, 751 mtd->writesize, DMA_FROM_DEVICE); 752 753 /* Falling back to CPU copy. */ 754 if (ret) 755 memcpy_fromio(buf, nc->sram.virt, mtd->writesize); 756 757 if (oob_required) 758 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, 759 mtd->oobsize); 760 } 761 762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) 763 { 764 struct mtd_info *mtd = nand_to_mtd(chip); 765 struct atmel_hsmc_nand_controller *nc; 766 767 nc = to_hsmc_nand_controller(chip->controller); 768 769 if (column >= 0) { 770 nc->op.addrs[nc->op.naddrs++] = column; 771 772 /* 773 * 2 address cycles for the column offset on large page NANDs. 774 */ 775 if (mtd->writesize > 512) 776 nc->op.addrs[nc->op.naddrs++] = column >> 8; 777 } 778 779 if (page >= 0) { 780 nc->op.addrs[nc->op.naddrs++] = page; 781 nc->op.addrs[nc->op.naddrs++] = page >> 8; 782 783 if (chip->options & NAND_ROW_ADDR_3) 784 nc->op.addrs[nc->op.naddrs++] = page >> 16; 785 } 786 } 787 788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) 789 { 790 struct atmel_nand *nand = to_atmel_nand(chip); 791 struct atmel_nand_controller *nc; 792 int ret; 793 794 nc = to_nand_controller(chip->controller); 795 796 if (raw) 797 return 0; 798 799 ret = atmel_pmecc_enable(nand->pmecc, op); 800 if (ret) 801 dev_err(nc->dev, 802 "Failed to enable ECC engine (err = %d)\n", ret); 803 804 return ret; 805 } 806 807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) 808 { 809 struct atmel_nand *nand = to_atmel_nand(chip); 810 811 if (!raw) 812 atmel_pmecc_disable(nand->pmecc); 813 } 814 815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) 816 { 817 struct atmel_nand *nand = to_atmel_nand(chip); 818 struct mtd_info *mtd = nand_to_mtd(chip); 819 struct atmel_nand_controller *nc; 820 struct mtd_oob_region oobregion; 821 void *eccbuf; 822 int ret, i; 823 824 nc = to_nand_controller(chip->controller); 825 826 if (raw) 827 return 0; 828 829 ret = atmel_pmecc_wait_rdy(nand->pmecc); 830 if (ret) { 831 dev_err(nc->dev, 832 "Failed to transfer NAND page data (err = %d)\n", 833 ret); 834 return ret; 835 } 836 837 mtd_ooblayout_ecc(mtd, 0, &oobregion); 838 eccbuf = chip->oob_poi + oobregion.offset; 839 840 for (i = 0; i < chip->ecc.steps; i++) { 841 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, 842 eccbuf); 843 eccbuf += chip->ecc.bytes; 844 } 845 846 return 0; 847 } 848 849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, 850 bool raw) 851 { 852 struct atmel_nand *nand = to_atmel_nand(chip); 853 struct mtd_info *mtd = nand_to_mtd(chip); 854 struct atmel_nand_controller *nc; 855 struct mtd_oob_region oobregion; 856 int ret, i, max_bitflips = 0; 857 void *databuf, *eccbuf; 858 859 nc = to_nand_controller(chip->controller); 860 861 if (raw) 862 return 0; 863 864 ret = atmel_pmecc_wait_rdy(nand->pmecc); 865 if (ret) { 866 dev_err(nc->dev, 867 "Failed to read NAND page data (err = %d)\n", 868 ret); 869 return ret; 870 } 871 872 mtd_ooblayout_ecc(mtd, 0, &oobregion); 873 eccbuf = chip->oob_poi + oobregion.offset; 874 databuf = buf; 875 876 for (i = 0; i < chip->ecc.steps; i++) { 877 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, 878 eccbuf); 879 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) 880 ret = nand_check_erased_ecc_chunk(databuf, 881 chip->ecc.size, 882 eccbuf, 883 chip->ecc.bytes, 884 NULL, 0, 885 chip->ecc.strength); 886 887 if (ret >= 0) { 888 mtd->ecc_stats.corrected += ret; 889 max_bitflips = max(ret, max_bitflips); 890 } else { 891 mtd->ecc_stats.failed++; 892 } 893 894 databuf += chip->ecc.size; 895 eccbuf += chip->ecc.bytes; 896 } 897 898 return max_bitflips; 899 } 900 901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, 902 bool oob_required, int page, bool raw) 903 { 904 struct mtd_info *mtd = nand_to_mtd(chip); 905 struct atmel_nand *nand = to_atmel_nand(chip); 906 int ret; 907 908 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 909 910 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 911 if (ret) 912 return ret; 913 914 nand_write_data_op(chip, buf, mtd->writesize, false); 915 916 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 917 if (ret) { 918 atmel_pmecc_disable(nand->pmecc); 919 return ret; 920 } 921 922 atmel_nand_pmecc_disable(chip, raw); 923 924 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 925 926 return nand_prog_page_end_op(chip); 927 } 928 929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, 930 int oob_required, int page) 931 { 932 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); 933 } 934 935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, 936 const u8 *buf, int oob_required, 937 int page) 938 { 939 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); 940 } 941 942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 943 bool oob_required, int page, bool raw) 944 { 945 struct mtd_info *mtd = nand_to_mtd(chip); 946 int ret; 947 948 nand_read_page_op(chip, page, 0, NULL, 0); 949 950 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 951 if (ret) 952 return ret; 953 954 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false); 955 if (ret) 956 goto out_disable; 957 958 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); 959 if (ret) 960 goto out_disable; 961 962 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 963 964 out_disable: 965 atmel_nand_pmecc_disable(chip, raw); 966 967 return ret; 968 } 969 970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 971 int oob_required, int page) 972 { 973 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); 974 } 975 976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, 977 int oob_required, int page) 978 { 979 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); 980 } 981 982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, 983 const u8 *buf, bool oob_required, 984 int page, bool raw) 985 { 986 struct mtd_info *mtd = nand_to_mtd(chip); 987 struct atmel_nand *nand = to_atmel_nand(chip); 988 struct atmel_hsmc_nand_controller *nc; 989 int ret; 990 991 atmel_hsmc_nand_select_target(nand, chip->cur_cs); 992 nc = to_hsmc_nand_controller(chip->controller); 993 994 atmel_nfc_copy_to_sram(chip, buf, false); 995 996 nc->op.cmds[0] = NAND_CMD_SEQIN; 997 nc->op.ncmds = 1; 998 atmel_nfc_set_op_addr(chip, page, 0x0); 999 nc->op.cs = nand->activecs->id; 1000 nc->op.data = ATMEL_NFC_WRITE_DATA; 1001 1002 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 1003 if (ret) 1004 return ret; 1005 1006 ret = atmel_nfc_exec_op(nc, false); 1007 if (ret) { 1008 atmel_nand_pmecc_disable(chip, raw); 1009 dev_err(nc->base.dev, 1010 "Failed to transfer NAND page data (err = %d)\n", 1011 ret); 1012 return ret; 1013 } 1014 1015 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 1016 1017 atmel_nand_pmecc_disable(chip, raw); 1018 1019 if (ret) 1020 return ret; 1021 1022 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 1023 1024 return nand_prog_page_end_op(chip); 1025 } 1026 1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, 1028 const u8 *buf, int oob_required, 1029 int page) 1030 { 1031 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 1032 false); 1033 } 1034 1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, 1036 const u8 *buf, 1037 int oob_required, int page) 1038 { 1039 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 1040 true); 1041 } 1042 1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 1044 bool oob_required, int page, 1045 bool raw) 1046 { 1047 struct mtd_info *mtd = nand_to_mtd(chip); 1048 struct atmel_nand *nand = to_atmel_nand(chip); 1049 struct atmel_hsmc_nand_controller *nc; 1050 int ret; 1051 1052 atmel_hsmc_nand_select_target(nand, chip->cur_cs); 1053 nc = to_hsmc_nand_controller(chip->controller); 1054 1055 /* 1056 * Optimized read page accessors only work when the NAND R/B pin is 1057 * connected to a native SoC R/B pin. If that's not the case, fallback 1058 * to the non-optimized one. 1059 */ 1060 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) 1061 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, 1062 raw); 1063 1064 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; 1065 1066 if (mtd->writesize > 512) 1067 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; 1068 1069 atmel_nfc_set_op_addr(chip, page, 0x0); 1070 nc->op.cs = nand->activecs->id; 1071 nc->op.data = ATMEL_NFC_READ_DATA; 1072 1073 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 1074 if (ret) 1075 return ret; 1076 1077 ret = atmel_nfc_exec_op(nc, false); 1078 if (ret) { 1079 atmel_nand_pmecc_disable(chip, raw); 1080 dev_err(nc->base.dev, 1081 "Failed to load NAND page data (err = %d)\n", 1082 ret); 1083 return ret; 1084 } 1085 1086 atmel_nfc_copy_from_sram(chip, buf, true); 1087 1088 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 1089 1090 atmel_nand_pmecc_disable(chip, raw); 1091 1092 return ret; 1093 } 1094 1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 1096 int oob_required, int page) 1097 { 1098 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1099 false); 1100 } 1101 1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, 1103 u8 *buf, int oob_required, 1104 int page) 1105 { 1106 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1107 true); 1108 } 1109 1110 static int atmel_nand_pmecc_init(struct nand_chip *chip) 1111 { 1112 const struct nand_ecc_props *requirements = 1113 nanddev_get_ecc_requirements(&chip->base); 1114 struct mtd_info *mtd = nand_to_mtd(chip); 1115 struct nand_device *nanddev = mtd_to_nanddev(mtd); 1116 struct atmel_nand *nand = to_atmel_nand(chip); 1117 struct atmel_nand_controller *nc; 1118 struct atmel_pmecc_user_req req; 1119 1120 nc = to_nand_controller(chip->controller); 1121 1122 if (!nc->pmecc) { 1123 dev_err(nc->dev, "HW ECC not supported\n"); 1124 return -ENOTSUPP; 1125 } 1126 1127 if (nc->caps->legacy_of_bindings) { 1128 u32 val; 1129 1130 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", 1131 &val)) 1132 chip->ecc.strength = val; 1133 1134 if (!of_property_read_u32(nc->dev->of_node, 1135 "atmel,pmecc-sector-size", 1136 &val)) 1137 chip->ecc.size = val; 1138 } 1139 1140 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 1141 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1142 else if (chip->ecc.strength) 1143 req.ecc.strength = chip->ecc.strength; 1144 else if (requirements->strength) 1145 req.ecc.strength = requirements->strength; 1146 else 1147 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1148 1149 if (chip->ecc.size) 1150 req.ecc.sectorsize = chip->ecc.size; 1151 else if (requirements->step_size) 1152 req.ecc.sectorsize = requirements->step_size; 1153 else 1154 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; 1155 1156 req.pagesize = mtd->writesize; 1157 req.oobsize = mtd->oobsize; 1158 1159 if (mtd->writesize <= 512) { 1160 req.ecc.bytes = 4; 1161 req.ecc.ooboffset = 0; 1162 } else { 1163 req.ecc.bytes = mtd->oobsize - 2; 1164 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; 1165 } 1166 1167 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); 1168 if (IS_ERR(nand->pmecc)) 1169 return PTR_ERR(nand->pmecc); 1170 1171 chip->ecc.algo = NAND_ECC_ALGO_BCH; 1172 chip->ecc.size = req.ecc.sectorsize; 1173 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; 1174 chip->ecc.strength = req.ecc.strength; 1175 1176 chip->options |= NAND_NO_SUBPAGE_WRITE; 1177 1178 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); 1179 1180 return 0; 1181 } 1182 1183 static int atmel_nand_ecc_init(struct nand_chip *chip) 1184 { 1185 struct atmel_nand_controller *nc; 1186 int ret; 1187 1188 nc = to_nand_controller(chip->controller); 1189 1190 switch (chip->ecc.engine_type) { 1191 case NAND_ECC_ENGINE_TYPE_NONE: 1192 case NAND_ECC_ENGINE_TYPE_SOFT: 1193 /* 1194 * Nothing to do, the core will initialize everything for us. 1195 */ 1196 break; 1197 1198 case NAND_ECC_ENGINE_TYPE_ON_HOST: 1199 ret = atmel_nand_pmecc_init(chip); 1200 if (ret) 1201 return ret; 1202 1203 chip->ecc.read_page = atmel_nand_pmecc_read_page; 1204 chip->ecc.write_page = atmel_nand_pmecc_write_page; 1205 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; 1206 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; 1207 break; 1208 1209 default: 1210 /* Other modes are not supported. */ 1211 dev_err(nc->dev, "Unsupported ECC mode: %d\n", 1212 chip->ecc.engine_type); 1213 return -ENOTSUPP; 1214 } 1215 1216 return 0; 1217 } 1218 1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) 1220 { 1221 int ret; 1222 1223 ret = atmel_nand_ecc_init(chip); 1224 if (ret) 1225 return ret; 1226 1227 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 1228 return 0; 1229 1230 /* Adjust the ECC operations for the HSMC IP. */ 1231 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; 1232 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; 1233 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; 1234 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; 1235 1236 return 0; 1237 } 1238 1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, 1240 const struct nand_interface_config *conf, 1241 struct atmel_smc_cs_conf *smcconf) 1242 { 1243 u32 ncycles, totalcycles, timeps, mckperiodps; 1244 struct atmel_nand_controller *nc; 1245 int ret; 1246 1247 nc = to_nand_controller(nand->base.controller); 1248 1249 /* DDR interface not supported. */ 1250 if (!nand_interface_is_sdr(conf)) 1251 return -ENOTSUPP; 1252 1253 /* 1254 * tRC < 30ns implies EDO mode. This controller does not support this 1255 * mode. 1256 */ 1257 if (conf->timings.sdr.tRC_min < 30000) 1258 return -ENOTSUPP; 1259 1260 atmel_smc_cs_conf_init(smcconf); 1261 1262 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); 1263 mckperiodps *= 1000; 1264 1265 /* 1266 * Set write pulse timing. This one is easy to extract: 1267 * 1268 * NWE_PULSE = tWP 1269 */ 1270 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); 1271 totalcycles = ncycles; 1272 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, 1273 ncycles); 1274 if (ret) 1275 return ret; 1276 1277 /* 1278 * The write setup timing depends on the operation done on the NAND. 1279 * All operations goes through the same data bus, but the operation 1280 * type depends on the address we are writing to (ALE/CLE address 1281 * lines). 1282 * Since we have no way to differentiate the different operations at 1283 * the SMC level, we must consider the worst case (the biggest setup 1284 * time among all operation types): 1285 * 1286 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE 1287 */ 1288 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, 1289 conf->timings.sdr.tALS_min); 1290 timeps = max(timeps, conf->timings.sdr.tDS_min); 1291 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1292 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; 1293 totalcycles += ncycles; 1294 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, 1295 ncycles); 1296 if (ret) 1297 return ret; 1298 1299 /* 1300 * As for the write setup timing, the write hold timing depends on the 1301 * operation done on the NAND: 1302 * 1303 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) 1304 */ 1305 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, 1306 conf->timings.sdr.tALH_min); 1307 timeps = max3(timeps, conf->timings.sdr.tDH_min, 1308 conf->timings.sdr.tWH_min); 1309 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1310 totalcycles += ncycles; 1311 1312 /* 1313 * The write cycle timing is directly matching tWC, but is also 1314 * dependent on the other timings on the setup and hold timings we 1315 * calculated earlier, which gives: 1316 * 1317 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) 1318 */ 1319 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); 1320 ncycles = max(totalcycles, ncycles); 1321 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, 1322 ncycles); 1323 if (ret) 1324 return ret; 1325 1326 /* 1327 * We don't want the CS line to be toggled between each byte/word 1328 * transfer to the NAND. The only way to guarantee that is to have the 1329 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1330 * 1331 * NCS_WR_PULSE = NWE_CYCLE 1332 */ 1333 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, 1334 ncycles); 1335 if (ret) 1336 return ret; 1337 1338 /* 1339 * As for the write setup timing, the read hold timing depends on the 1340 * operation done on the NAND: 1341 * 1342 * NRD_HOLD = max(tREH, tRHOH) 1343 */ 1344 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); 1345 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1346 totalcycles = ncycles; 1347 1348 /* 1349 * TDF = tRHZ - NRD_HOLD 1350 */ 1351 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); 1352 ncycles -= totalcycles; 1353 1354 /* 1355 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and 1356 * we might end up with a config that does not fit in the TDF field. 1357 * Just take the max value in this case and hope that the NAND is more 1358 * tolerant than advertised. 1359 */ 1360 if (ncycles > ATMEL_SMC_MODE_TDF_MAX) 1361 ncycles = ATMEL_SMC_MODE_TDF_MAX; 1362 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) 1363 ncycles = ATMEL_SMC_MODE_TDF_MIN; 1364 1365 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | 1366 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; 1367 1368 /* 1369 * Read pulse timing directly matches tRP: 1370 * 1371 * NRD_PULSE = tRP 1372 */ 1373 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); 1374 totalcycles += ncycles; 1375 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, 1376 ncycles); 1377 if (ret) 1378 return ret; 1379 1380 /* 1381 * The write cycle timing is directly matching tWC, but is also 1382 * dependent on the setup and hold timings we calculated earlier, 1383 * which gives: 1384 * 1385 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) 1386 * 1387 * NRD_SETUP is always 0. 1388 */ 1389 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); 1390 ncycles = max(totalcycles, ncycles); 1391 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, 1392 ncycles); 1393 if (ret) 1394 return ret; 1395 1396 /* 1397 * We don't want the CS line to be toggled between each byte/word 1398 * transfer from the NAND. The only way to guarantee that is to have 1399 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1400 * 1401 * NCS_RD_PULSE = NRD_CYCLE 1402 */ 1403 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, 1404 ncycles); 1405 if (ret) 1406 return ret; 1407 1408 /* Txxx timings are directly matching tXXX ones. */ 1409 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); 1410 ret = atmel_smc_cs_conf_set_timing(smcconf, 1411 ATMEL_HSMC_TIMINGS_TCLR_SHIFT, 1412 ncycles); 1413 if (ret) 1414 return ret; 1415 1416 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); 1417 ret = atmel_smc_cs_conf_set_timing(smcconf, 1418 ATMEL_HSMC_TIMINGS_TADL_SHIFT, 1419 ncycles); 1420 /* 1421 * Version 4 of the ONFI spec mandates that tADL be at least 400 1422 * nanoseconds, but, depending on the master clock rate, 400 ns may not 1423 * fit in the tADL field of the SMC reg. We need to relax the check and 1424 * accept the -ERANGE return code. 1425 * 1426 * Note that previous versions of the ONFI spec had a lower tADL_min 1427 * (100 or 200 ns). It's not clear why this timing constraint got 1428 * increased but it seems most NANDs are fine with values lower than 1429 * 400ns, so we should be safe. 1430 */ 1431 if (ret && ret != -ERANGE) 1432 return ret; 1433 1434 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); 1435 ret = atmel_smc_cs_conf_set_timing(smcconf, 1436 ATMEL_HSMC_TIMINGS_TAR_SHIFT, 1437 ncycles); 1438 if (ret) 1439 return ret; 1440 1441 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); 1442 ret = atmel_smc_cs_conf_set_timing(smcconf, 1443 ATMEL_HSMC_TIMINGS_TRR_SHIFT, 1444 ncycles); 1445 if (ret) 1446 return ret; 1447 1448 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); 1449 ret = atmel_smc_cs_conf_set_timing(smcconf, 1450 ATMEL_HSMC_TIMINGS_TWB_SHIFT, 1451 ncycles); 1452 if (ret) 1453 return ret; 1454 1455 /* Attach the CS line to the NFC logic. */ 1456 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; 1457 1458 /* Set the appropriate data bus width. */ 1459 if (nand->base.options & NAND_BUSWIDTH_16) 1460 smcconf->mode |= ATMEL_SMC_MODE_DBW_16; 1461 1462 /* Operate in NRD/NWE READ/WRITEMODE. */ 1463 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | 1464 ATMEL_SMC_MODE_WRITEMODE_NWE; 1465 1466 return 0; 1467 } 1468 1469 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand, 1470 int csline, 1471 const struct nand_interface_config *conf) 1472 { 1473 struct atmel_nand_controller *nc; 1474 struct atmel_smc_cs_conf smcconf; 1475 struct atmel_nand_cs *cs; 1476 int ret; 1477 1478 nc = to_nand_controller(nand->base.controller); 1479 1480 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1481 if (ret) 1482 return ret; 1483 1484 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1485 return 0; 1486 1487 cs = &nand->cs[csline]; 1488 cs->smcconf = smcconf; 1489 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); 1490 1491 return 0; 1492 } 1493 1494 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand, 1495 int csline, 1496 const struct nand_interface_config *conf) 1497 { 1498 struct atmel_hsmc_nand_controller *nc; 1499 struct atmel_smc_cs_conf smcconf; 1500 struct atmel_nand_cs *cs; 1501 int ret; 1502 1503 nc = to_hsmc_nand_controller(nand->base.controller); 1504 1505 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1506 if (ret) 1507 return ret; 1508 1509 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1510 return 0; 1511 1512 cs = &nand->cs[csline]; 1513 cs->smcconf = smcconf; 1514 1515 if (cs->rb.type == ATMEL_NAND_NATIVE_RB) 1516 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); 1517 1518 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, 1519 &cs->smcconf); 1520 1521 return 0; 1522 } 1523 1524 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline, 1525 const struct nand_interface_config *conf) 1526 { 1527 struct atmel_nand *nand = to_atmel_nand(chip); 1528 const struct nand_sdr_timings *sdr; 1529 struct atmel_nand_controller *nc; 1530 1531 sdr = nand_get_sdr_timings(conf); 1532 if (IS_ERR(sdr)) 1533 return PTR_ERR(sdr); 1534 1535 nc = to_nand_controller(nand->base.controller); 1536 1537 if (csline >= nand->numcs || 1538 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) 1539 return -EINVAL; 1540 1541 return nc->caps->ops->setup_interface(nand, csline, conf); 1542 } 1543 1544 static int atmel_nand_exec_op(struct nand_chip *chip, 1545 const struct nand_operation *op, 1546 bool check_only) 1547 { 1548 struct atmel_nand *nand = to_atmel_nand(chip); 1549 struct atmel_nand_controller *nc; 1550 1551 nc = to_nand_controller(nand->base.controller); 1552 1553 return nc->caps->ops->exec_op(nand, op, check_only); 1554 } 1555 1556 static void atmel_nand_init(struct atmel_nand_controller *nc, 1557 struct atmel_nand *nand) 1558 { 1559 struct nand_chip *chip = &nand->base; 1560 struct mtd_info *mtd = nand_to_mtd(chip); 1561 1562 mtd->dev.parent = nc->dev; 1563 nand->base.controller = &nc->base; 1564 1565 if (!nc->mck || !nc->caps->ops->setup_interface) 1566 chip->options |= NAND_KEEP_TIMINGS; 1567 1568 /* 1569 * Use a bounce buffer when the buffer passed by the MTD user is not 1570 * suitable for DMA. 1571 */ 1572 if (nc->dmac) 1573 chip->options |= NAND_USES_DMA; 1574 1575 /* Default to HW ECC if pmecc is available. */ 1576 if (nc->pmecc) 1577 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1578 } 1579 1580 static void atmel_smc_nand_init(struct atmel_nand_controller *nc, 1581 struct atmel_nand *nand) 1582 { 1583 struct nand_chip *chip = &nand->base; 1584 struct atmel_smc_nand_controller *smc_nc; 1585 int i; 1586 1587 atmel_nand_init(nc, nand); 1588 1589 smc_nc = to_smc_nand_controller(chip->controller); 1590 if (!smc_nc->ebi_csa_regmap) 1591 return; 1592 1593 /* Attach the CS to the NAND Flash logic. */ 1594 for (i = 0; i < nand->numcs; i++) 1595 regmap_update_bits(smc_nc->ebi_csa_regmap, 1596 smc_nc->ebi_csa->offs, 1597 BIT(nand->cs[i].id), BIT(nand->cs[i].id)); 1598 1599 if (smc_nc->ebi_csa->nfd0_on_d16) 1600 regmap_update_bits(smc_nc->ebi_csa_regmap, 1601 smc_nc->ebi_csa->offs, 1602 smc_nc->ebi_csa->nfd0_on_d16, 1603 smc_nc->ebi_csa->nfd0_on_d16); 1604 } 1605 1606 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) 1607 { 1608 struct nand_chip *chip = &nand->base; 1609 struct mtd_info *mtd = nand_to_mtd(chip); 1610 int ret; 1611 1612 ret = mtd_device_unregister(mtd); 1613 if (ret) 1614 return ret; 1615 1616 nand_cleanup(chip); 1617 list_del(&nand->node); 1618 1619 return 0; 1620 } 1621 1622 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, 1623 struct device_node *np, 1624 int reg_cells) 1625 { 1626 struct atmel_nand *nand; 1627 struct gpio_desc *gpio; 1628 int numcs, ret, i; 1629 1630 numcs = of_property_count_elems_of_size(np, "reg", 1631 reg_cells * sizeof(u32)); 1632 if (numcs < 1) { 1633 dev_err(nc->dev, "Missing or invalid reg property\n"); 1634 return ERR_PTR(-EINVAL); 1635 } 1636 1637 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); 1638 if (!nand) 1639 return ERR_PTR(-ENOMEM); 1640 1641 nand->numcs = numcs; 1642 1643 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np), 1644 "det", GPIOD_IN, "nand-det"); 1645 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1646 dev_err(nc->dev, 1647 "Failed to get detect gpio (err = %ld)\n", 1648 PTR_ERR(gpio)); 1649 return ERR_CAST(gpio); 1650 } 1651 1652 if (!IS_ERR(gpio)) 1653 nand->cdgpio = gpio; 1654 1655 for (i = 0; i < numcs; i++) { 1656 struct resource res; 1657 u32 val; 1658 1659 ret = of_address_to_resource(np, 0, &res); 1660 if (ret) { 1661 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1662 ret); 1663 return ERR_PTR(ret); 1664 } 1665 1666 ret = of_property_read_u32_index(np, "reg", i * reg_cells, 1667 &val); 1668 if (ret) { 1669 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1670 ret); 1671 return ERR_PTR(ret); 1672 } 1673 1674 nand->cs[i].id = val; 1675 1676 nand->cs[i].io.dma = res.start; 1677 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); 1678 if (IS_ERR(nand->cs[i].io.virt)) 1679 return ERR_CAST(nand->cs[i].io.virt); 1680 1681 if (!of_property_read_u32(np, "atmel,rb", &val)) { 1682 if (val > ATMEL_NFC_MAX_RB_ID) 1683 return ERR_PTR(-EINVAL); 1684 1685 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; 1686 nand->cs[i].rb.id = val; 1687 } else { 1688 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1689 of_fwnode_handle(np), 1690 "rb", i, GPIOD_IN, 1691 "nand-rb"); 1692 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1693 dev_err(nc->dev, 1694 "Failed to get R/B gpio (err = %ld)\n", 1695 PTR_ERR(gpio)); 1696 return ERR_CAST(gpio); 1697 } 1698 1699 if (!IS_ERR(gpio)) { 1700 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; 1701 nand->cs[i].rb.gpio = gpio; 1702 } 1703 } 1704 1705 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1706 of_fwnode_handle(np), 1707 "cs", i, GPIOD_OUT_HIGH, 1708 "nand-cs"); 1709 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1710 dev_err(nc->dev, 1711 "Failed to get CS gpio (err = %ld)\n", 1712 PTR_ERR(gpio)); 1713 return ERR_CAST(gpio); 1714 } 1715 1716 if (!IS_ERR(gpio)) 1717 nand->cs[i].csgpio = gpio; 1718 } 1719 1720 nand_set_flash_node(&nand->base, np); 1721 1722 return nand; 1723 } 1724 1725 static int 1726 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, 1727 struct atmel_nand *nand) 1728 { 1729 struct nand_chip *chip = &nand->base; 1730 struct mtd_info *mtd = nand_to_mtd(chip); 1731 int ret; 1732 1733 /* No card inserted, skip this NAND. */ 1734 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { 1735 dev_info(nc->dev, "No SmartMedia card inserted.\n"); 1736 return 0; 1737 } 1738 1739 nc->caps->ops->nand_init(nc, nand); 1740 1741 ret = nand_scan(chip, nand->numcs); 1742 if (ret) { 1743 dev_err(nc->dev, "NAND scan failed: %d\n", ret); 1744 return ret; 1745 } 1746 1747 ret = mtd_device_register(mtd, NULL, 0); 1748 if (ret) { 1749 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); 1750 nand_cleanup(chip); 1751 return ret; 1752 } 1753 1754 list_add_tail(&nand->node, &nc->chips); 1755 1756 return 0; 1757 } 1758 1759 static int 1760 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) 1761 { 1762 struct atmel_nand *nand, *tmp; 1763 int ret; 1764 1765 list_for_each_entry_safe(nand, tmp, &nc->chips, node) { 1766 ret = atmel_nand_controller_remove_nand(nand); 1767 if (ret) 1768 return ret; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int 1775 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) 1776 { 1777 struct device *dev = nc->dev; 1778 struct platform_device *pdev = to_platform_device(dev); 1779 struct atmel_nand *nand; 1780 struct gpio_desc *gpio; 1781 struct resource *res; 1782 1783 /* 1784 * Legacy bindings only allow connecting a single NAND with a unique CS 1785 * line to the controller. 1786 */ 1787 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), 1788 GFP_KERNEL); 1789 if (!nand) 1790 return -ENOMEM; 1791 1792 nand->numcs = 1; 1793 1794 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1795 nand->cs[0].io.virt = devm_ioremap_resource(dev, res); 1796 if (IS_ERR(nand->cs[0].io.virt)) 1797 return PTR_ERR(nand->cs[0].io.virt); 1798 1799 nand->cs[0].io.dma = res->start; 1800 1801 /* 1802 * The old driver was hardcoding the CS id to 3 for all sama5 1803 * controllers. Since this id is only meaningful for the sama5 1804 * controller we can safely assign this id to 3 no matter the 1805 * controller. 1806 * If one wants to connect a NAND to a different CS line, he will 1807 * have to use the new bindings. 1808 */ 1809 nand->cs[0].id = 3; 1810 1811 /* R/B GPIO. */ 1812 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); 1813 if (IS_ERR(gpio)) { 1814 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", 1815 PTR_ERR(gpio)); 1816 return PTR_ERR(gpio); 1817 } 1818 1819 if (gpio) { 1820 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; 1821 nand->cs[0].rb.gpio = gpio; 1822 } 1823 1824 /* CS GPIO. */ 1825 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); 1826 if (IS_ERR(gpio)) { 1827 dev_err(dev, "Failed to get CS gpio (err = %ld)\n", 1828 PTR_ERR(gpio)); 1829 return PTR_ERR(gpio); 1830 } 1831 1832 nand->cs[0].csgpio = gpio; 1833 1834 /* Card detect GPIO. */ 1835 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); 1836 if (IS_ERR(gpio)) { 1837 dev_err(dev, 1838 "Failed to get detect gpio (err = %ld)\n", 1839 PTR_ERR(gpio)); 1840 return PTR_ERR(gpio); 1841 } 1842 1843 nand->cdgpio = gpio; 1844 1845 nand_set_flash_node(&nand->base, nc->dev->of_node); 1846 1847 return atmel_nand_controller_add_nand(nc, nand); 1848 } 1849 1850 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) 1851 { 1852 struct device_node *np, *nand_np; 1853 struct device *dev = nc->dev; 1854 int ret, reg_cells; 1855 u32 val; 1856 1857 /* We do not retrieve the SMC syscon when parsing old DTs. */ 1858 if (nc->caps->legacy_of_bindings) 1859 return atmel_nand_controller_legacy_add_nands(nc); 1860 1861 np = dev->of_node; 1862 1863 ret = of_property_read_u32(np, "#address-cells", &val); 1864 if (ret) { 1865 dev_err(dev, "missing #address-cells property\n"); 1866 return ret; 1867 } 1868 1869 reg_cells = val; 1870 1871 ret = of_property_read_u32(np, "#size-cells", &val); 1872 if (ret) { 1873 dev_err(dev, "missing #size-cells property\n"); 1874 return ret; 1875 } 1876 1877 reg_cells += val; 1878 1879 for_each_child_of_node(np, nand_np) { 1880 struct atmel_nand *nand; 1881 1882 nand = atmel_nand_create(nc, nand_np, reg_cells); 1883 if (IS_ERR(nand)) { 1884 ret = PTR_ERR(nand); 1885 goto err; 1886 } 1887 1888 ret = atmel_nand_controller_add_nand(nc, nand); 1889 if (ret) 1890 goto err; 1891 } 1892 1893 return 0; 1894 1895 err: 1896 atmel_nand_controller_remove_nands(nc); 1897 1898 return ret; 1899 } 1900 1901 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) 1902 { 1903 if (nc->dmac) 1904 dma_release_channel(nc->dmac); 1905 1906 clk_put(nc->mck); 1907 } 1908 1909 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { 1910 .offs = AT91SAM9260_MATRIX_EBICSA, 1911 }; 1912 1913 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { 1914 .offs = AT91SAM9261_MATRIX_EBICSA, 1915 }; 1916 1917 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { 1918 .offs = AT91SAM9263_MATRIX_EBI0CSA, 1919 }; 1920 1921 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { 1922 .offs = AT91SAM9RL_MATRIX_EBICSA, 1923 }; 1924 1925 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { 1926 .offs = AT91SAM9G45_MATRIX_EBICSA, 1927 }; 1928 1929 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { 1930 .offs = AT91SAM9N12_MATRIX_EBICSA, 1931 }; 1932 1933 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { 1934 .offs = AT91SAM9X5_MATRIX_EBICSA, 1935 }; 1936 1937 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { 1938 .offs = AT91_SFR_CCFG_EBICSA, 1939 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, 1940 }; 1941 1942 static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = { 1943 { 1944 .compatible = "atmel,at91sam9260-matrix", 1945 .data = &at91sam9260_ebi_csa, 1946 }, 1947 { 1948 .compatible = "atmel,at91sam9261-matrix", 1949 .data = &at91sam9261_ebi_csa, 1950 }, 1951 { 1952 .compatible = "atmel,at91sam9263-matrix", 1953 .data = &at91sam9263_ebi_csa, 1954 }, 1955 { 1956 .compatible = "atmel,at91sam9rl-matrix", 1957 .data = &at91sam9rl_ebi_csa, 1958 }, 1959 { 1960 .compatible = "atmel,at91sam9g45-matrix", 1961 .data = &at91sam9g45_ebi_csa, 1962 }, 1963 { 1964 .compatible = "atmel,at91sam9n12-matrix", 1965 .data = &at91sam9n12_ebi_csa, 1966 }, 1967 { 1968 .compatible = "atmel,at91sam9x5-matrix", 1969 .data = &at91sam9x5_ebi_csa, 1970 }, 1971 { 1972 .compatible = "microchip,sam9x60-sfr", 1973 .data = &sam9x60_ebi_csa, 1974 }, 1975 { /* sentinel */ }, 1976 }; 1977 1978 static int atmel_nand_attach_chip(struct nand_chip *chip) 1979 { 1980 struct atmel_nand_controller *nc = to_nand_controller(chip->controller); 1981 struct atmel_nand *nand = to_atmel_nand(chip); 1982 struct mtd_info *mtd = nand_to_mtd(chip); 1983 int ret; 1984 1985 ret = nc->caps->ops->ecc_init(chip); 1986 if (ret) 1987 return ret; 1988 1989 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { 1990 /* 1991 * We keep the MTD name unchanged to avoid breaking platforms 1992 * where the MTD cmdline parser is used and the bootloader 1993 * has not been updated to use the new naming scheme. 1994 */ 1995 mtd->name = "atmel_nand"; 1996 } else if (!mtd->name) { 1997 /* 1998 * If the new bindings are used and the bootloader has not been 1999 * updated to pass a new mtdparts parameter on the cmdline, you 2000 * should define the following property in your nand node: 2001 * 2002 * label = "atmel_nand"; 2003 * 2004 * This way, mtd->name will be set by the core when 2005 * nand_set_flash_node() is called. 2006 */ 2007 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, 2008 "%s:nand.%d", dev_name(nc->dev), 2009 nand->cs[0].id); 2010 if (!mtd->name) { 2011 dev_err(nc->dev, "Failed to allocate mtd->name\n"); 2012 return -ENOMEM; 2013 } 2014 } 2015 2016 return 0; 2017 } 2018 2019 static const struct nand_controller_ops atmel_nand_controller_ops = { 2020 .attach_chip = atmel_nand_attach_chip, 2021 .setup_interface = atmel_nand_setup_interface, 2022 .exec_op = atmel_nand_exec_op, 2023 }; 2024 2025 static int atmel_nand_controller_init(struct atmel_nand_controller *nc, 2026 struct platform_device *pdev, 2027 const struct atmel_nand_controller_caps *caps) 2028 { 2029 struct device *dev = &pdev->dev; 2030 struct device_node *np = dev->of_node; 2031 int ret; 2032 2033 nand_controller_init(&nc->base); 2034 nc->base.ops = &atmel_nand_controller_ops; 2035 INIT_LIST_HEAD(&nc->chips); 2036 nc->dev = dev; 2037 nc->caps = caps; 2038 2039 platform_set_drvdata(pdev, nc); 2040 2041 nc->pmecc = devm_atmel_pmecc_get(dev); 2042 if (IS_ERR(nc->pmecc)) 2043 return dev_err_probe(dev, PTR_ERR(nc->pmecc), 2044 "Could not get PMECC object\n"); 2045 2046 if (nc->caps->has_dma && !atmel_nand_avoid_dma) { 2047 dma_cap_mask_t mask; 2048 2049 dma_cap_zero(mask); 2050 dma_cap_set(DMA_MEMCPY, mask); 2051 2052 nc->dmac = dma_request_channel(mask, NULL, NULL); 2053 if (!nc->dmac) 2054 dev_err(nc->dev, "Failed to request DMA channel\n"); 2055 } 2056 2057 /* We do not retrieve the SMC syscon when parsing old DTs. */ 2058 if (nc->caps->legacy_of_bindings) 2059 return 0; 2060 2061 nc->mck = of_clk_get(dev->parent->of_node, 0); 2062 if (IS_ERR(nc->mck)) { 2063 dev_err(dev, "Failed to retrieve MCK clk\n"); 2064 ret = PTR_ERR(nc->mck); 2065 goto out_release_dma; 2066 } 2067 2068 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2069 if (!np) { 2070 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2071 ret = -EINVAL; 2072 goto out_release_dma; 2073 } 2074 2075 nc->smc = syscon_node_to_regmap(np); 2076 of_node_put(np); 2077 if (IS_ERR(nc->smc)) { 2078 ret = PTR_ERR(nc->smc); 2079 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); 2080 goto out_release_dma; 2081 } 2082 2083 return 0; 2084 2085 out_release_dma: 2086 if (nc->dmac) 2087 dma_release_channel(nc->dmac); 2088 2089 return ret; 2090 } 2091 2092 static int 2093 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) 2094 { 2095 struct device *dev = nc->base.dev; 2096 const struct of_device_id *match; 2097 struct device_node *np; 2098 int ret; 2099 2100 /* We do not retrieve the EBICSA regmap when parsing old DTs. */ 2101 if (nc->base.caps->legacy_of_bindings) 2102 return 0; 2103 2104 np = of_parse_phandle(dev->parent->of_node, 2105 nc->base.caps->ebi_csa_regmap_name, 0); 2106 if (!np) 2107 return 0; 2108 2109 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); 2110 if (!match) { 2111 of_node_put(np); 2112 return 0; 2113 } 2114 2115 nc->ebi_csa_regmap = syscon_node_to_regmap(np); 2116 of_node_put(np); 2117 if (IS_ERR(nc->ebi_csa_regmap)) { 2118 ret = PTR_ERR(nc->ebi_csa_regmap); 2119 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); 2120 return ret; 2121 } 2122 2123 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; 2124 2125 /* 2126 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 2127 * add 4 to ->ebi_csa->offs. 2128 */ 2129 if (of_device_is_compatible(dev->parent->of_node, 2130 "atmel,at91sam9263-ebi1")) 2131 nc->ebi_csa->offs += 4; 2132 2133 return 0; 2134 } 2135 2136 static int 2137 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) 2138 { 2139 struct regmap_config regmap_conf = { 2140 .reg_bits = 32, 2141 .val_bits = 32, 2142 .reg_stride = 4, 2143 }; 2144 2145 struct device *dev = nc->base.dev; 2146 struct device_node *nand_np, *nfc_np; 2147 void __iomem *iomem; 2148 struct resource res; 2149 int ret; 2150 2151 nand_np = dev->of_node; 2152 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); 2153 if (!nfc_np) { 2154 dev_err(dev, "Could not find device node for sama5d3-nfc\n"); 2155 return -ENODEV; 2156 } 2157 2158 nc->clk = of_clk_get(nfc_np, 0); 2159 if (IS_ERR(nc->clk)) { 2160 ret = PTR_ERR(nc->clk); 2161 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", 2162 ret); 2163 goto out; 2164 } 2165 2166 ret = clk_prepare_enable(nc->clk); 2167 if (ret) { 2168 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", 2169 ret); 2170 goto out; 2171 } 2172 2173 nc->irq = of_irq_get(nand_np, 0); 2174 if (nc->irq <= 0) { 2175 ret = nc->irq ?: -ENXIO; 2176 if (ret != -EPROBE_DEFER) 2177 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2178 ret); 2179 goto out; 2180 } 2181 2182 ret = of_address_to_resource(nfc_np, 0, &res); 2183 if (ret) { 2184 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", 2185 ret); 2186 goto out; 2187 } 2188 2189 iomem = devm_ioremap_resource(dev, &res); 2190 if (IS_ERR(iomem)) { 2191 ret = PTR_ERR(iomem); 2192 goto out; 2193 } 2194 2195 regmap_conf.name = "nfc-io"; 2196 regmap_conf.max_register = resource_size(&res) - 4; 2197 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2198 if (IS_ERR(nc->io)) { 2199 ret = PTR_ERR(nc->io); 2200 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2201 ret); 2202 goto out; 2203 } 2204 2205 ret = of_address_to_resource(nfc_np, 1, &res); 2206 if (ret) { 2207 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", 2208 ret); 2209 goto out; 2210 } 2211 2212 iomem = devm_ioremap_resource(dev, &res); 2213 if (IS_ERR(iomem)) { 2214 ret = PTR_ERR(iomem); 2215 goto out; 2216 } 2217 2218 regmap_conf.name = "smc"; 2219 regmap_conf.max_register = resource_size(&res) - 4; 2220 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2221 if (IS_ERR(nc->base.smc)) { 2222 ret = PTR_ERR(nc->base.smc); 2223 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2224 ret); 2225 goto out; 2226 } 2227 2228 ret = of_address_to_resource(nfc_np, 2, &res); 2229 if (ret) { 2230 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", 2231 ret); 2232 goto out; 2233 } 2234 2235 nc->sram.virt = devm_ioremap_resource(dev, &res); 2236 if (IS_ERR(nc->sram.virt)) { 2237 ret = PTR_ERR(nc->sram.virt); 2238 goto out; 2239 } 2240 2241 nc->sram.dma = res.start; 2242 2243 out: 2244 of_node_put(nfc_np); 2245 2246 return ret; 2247 } 2248 2249 static int 2250 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) 2251 { 2252 struct device *dev = nc->base.dev; 2253 struct device_node *np; 2254 int ret; 2255 2256 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2257 if (!np) { 2258 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2259 return -EINVAL; 2260 } 2261 2262 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); 2263 2264 nc->irq = of_irq_get(np, 0); 2265 of_node_put(np); 2266 if (nc->irq <= 0) { 2267 ret = nc->irq ?: -ENXIO; 2268 if (ret != -EPROBE_DEFER) 2269 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2270 ret); 2271 return ret; 2272 } 2273 2274 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); 2275 if (!np) { 2276 dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); 2277 return -EINVAL; 2278 } 2279 2280 nc->io = syscon_node_to_regmap(np); 2281 of_node_put(np); 2282 if (IS_ERR(nc->io)) { 2283 ret = PTR_ERR(nc->io); 2284 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); 2285 return ret; 2286 } 2287 2288 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, 2289 "atmel,nfc-sram", 0); 2290 if (!nc->sram.pool) { 2291 dev_err(nc->base.dev, "Missing SRAM\n"); 2292 return -ENOMEM; 2293 } 2294 2295 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, 2296 ATMEL_NFC_SRAM_SIZE, 2297 &nc->sram.dma); 2298 if (!nc->sram.virt) { 2299 dev_err(nc->base.dev, 2300 "Could not allocate memory from the NFC SRAM pool\n"); 2301 return -ENOMEM; 2302 } 2303 2304 return 0; 2305 } 2306 2307 static int 2308 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) 2309 { 2310 struct atmel_hsmc_nand_controller *hsmc_nc; 2311 int ret; 2312 2313 ret = atmel_nand_controller_remove_nands(nc); 2314 if (ret) 2315 return ret; 2316 2317 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); 2318 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL, 2319 ATMEL_HSMC_NFC_CTRL_DIS); 2320 2321 if (hsmc_nc->sram.pool) 2322 gen_pool_free(hsmc_nc->sram.pool, 2323 (unsigned long)hsmc_nc->sram.virt, 2324 ATMEL_NFC_SRAM_SIZE); 2325 2326 if (hsmc_nc->clk) { 2327 clk_disable_unprepare(hsmc_nc->clk); 2328 clk_put(hsmc_nc->clk); 2329 } 2330 2331 atmel_nand_controller_cleanup(nc); 2332 2333 return 0; 2334 } 2335 2336 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, 2337 const struct atmel_nand_controller_caps *caps) 2338 { 2339 struct device *dev = &pdev->dev; 2340 struct atmel_hsmc_nand_controller *nc; 2341 int ret; 2342 2343 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2344 if (!nc) 2345 return -ENOMEM; 2346 2347 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2348 if (ret) 2349 return ret; 2350 2351 if (caps->legacy_of_bindings) 2352 ret = atmel_hsmc_nand_controller_legacy_init(nc); 2353 else 2354 ret = atmel_hsmc_nand_controller_init(nc); 2355 2356 if (ret) 2357 return ret; 2358 2359 /* Make sure all irqs are masked before registering our IRQ handler. */ 2360 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 2361 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, 2362 IRQF_SHARED, "nfc", nc); 2363 if (ret) { 2364 dev_err(dev, 2365 "Could not get register NFC interrupt handler (err = %d)\n", 2366 ret); 2367 goto err; 2368 } 2369 2370 /* Initial NFC configuration. */ 2371 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, 2372 ATMEL_HSMC_NFC_CFG_DTO_MAX); 2373 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, 2374 ATMEL_HSMC_NFC_CTRL_EN); 2375 2376 ret = atmel_nand_controller_add_nands(&nc->base); 2377 if (ret) 2378 goto err; 2379 2380 return 0; 2381 2382 err: 2383 atmel_hsmc_nand_controller_remove(&nc->base); 2384 2385 return ret; 2386 } 2387 2388 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { 2389 .probe = atmel_hsmc_nand_controller_probe, 2390 .remove = atmel_hsmc_nand_controller_remove, 2391 .ecc_init = atmel_hsmc_nand_ecc_init, 2392 .nand_init = atmel_nand_init, 2393 .setup_interface = atmel_hsmc_nand_setup_interface, 2394 .exec_op = atmel_hsmc_nand_exec_op, 2395 }; 2396 2397 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { 2398 .has_dma = true, 2399 .ale_offs = BIT(21), 2400 .cle_offs = BIT(22), 2401 .ops = &atmel_hsmc_nc_ops, 2402 }; 2403 2404 /* Only used to parse old bindings. */ 2405 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { 2406 .has_dma = true, 2407 .ale_offs = BIT(21), 2408 .cle_offs = BIT(22), 2409 .ops = &atmel_hsmc_nc_ops, 2410 .legacy_of_bindings = true, 2411 }; 2412 2413 static int atmel_smc_nand_controller_probe(struct platform_device *pdev, 2414 const struct atmel_nand_controller_caps *caps) 2415 { 2416 struct device *dev = &pdev->dev; 2417 struct atmel_smc_nand_controller *nc; 2418 int ret; 2419 2420 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2421 if (!nc) 2422 return -ENOMEM; 2423 2424 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2425 if (ret) 2426 return ret; 2427 2428 ret = atmel_smc_nand_controller_init(nc); 2429 if (ret) 2430 return ret; 2431 2432 return atmel_nand_controller_add_nands(&nc->base); 2433 } 2434 2435 static int 2436 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) 2437 { 2438 int ret; 2439 2440 ret = atmel_nand_controller_remove_nands(nc); 2441 if (ret) 2442 return ret; 2443 2444 atmel_nand_controller_cleanup(nc); 2445 2446 return 0; 2447 } 2448 2449 /* 2450 * The SMC reg layout of at91rm9200 is completely different which prevents us 2451 * from re-using atmel_smc_nand_setup_interface() for the 2452 * ->setup_interface() hook. 2453 * At this point, there's no support for the at91rm9200 SMC IP, so we leave 2454 * ->setup_interface() unassigned. 2455 */ 2456 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { 2457 .probe = atmel_smc_nand_controller_probe, 2458 .remove = atmel_smc_nand_controller_remove, 2459 .ecc_init = atmel_nand_ecc_init, 2460 .nand_init = atmel_smc_nand_init, 2461 .exec_op = atmel_smc_nand_exec_op, 2462 }; 2463 2464 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { 2465 .ale_offs = BIT(21), 2466 .cle_offs = BIT(22), 2467 .ebi_csa_regmap_name = "atmel,matrix", 2468 .ops = &at91rm9200_nc_ops, 2469 }; 2470 2471 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { 2472 .probe = atmel_smc_nand_controller_probe, 2473 .remove = atmel_smc_nand_controller_remove, 2474 .ecc_init = atmel_nand_ecc_init, 2475 .nand_init = atmel_smc_nand_init, 2476 .setup_interface = atmel_smc_nand_setup_interface, 2477 .exec_op = atmel_smc_nand_exec_op, 2478 }; 2479 2480 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { 2481 .ale_offs = BIT(21), 2482 .cle_offs = BIT(22), 2483 .ebi_csa_regmap_name = "atmel,matrix", 2484 .ops = &atmel_smc_nc_ops, 2485 }; 2486 2487 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { 2488 .ale_offs = BIT(22), 2489 .cle_offs = BIT(21), 2490 .ebi_csa_regmap_name = "atmel,matrix", 2491 .ops = &atmel_smc_nc_ops, 2492 }; 2493 2494 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { 2495 .has_dma = true, 2496 .ale_offs = BIT(21), 2497 .cle_offs = BIT(22), 2498 .ebi_csa_regmap_name = "atmel,matrix", 2499 .ops = &atmel_smc_nc_ops, 2500 }; 2501 2502 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { 2503 .has_dma = true, 2504 .ale_offs = BIT(21), 2505 .cle_offs = BIT(22), 2506 .ebi_csa_regmap_name = "microchip,sfr", 2507 .ops = &atmel_smc_nc_ops, 2508 }; 2509 2510 /* Only used to parse old bindings. */ 2511 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { 2512 .ale_offs = BIT(21), 2513 .cle_offs = BIT(22), 2514 .ops = &atmel_smc_nc_ops, 2515 .legacy_of_bindings = true, 2516 }; 2517 2518 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { 2519 .ale_offs = BIT(22), 2520 .cle_offs = BIT(21), 2521 .ops = &atmel_smc_nc_ops, 2522 .legacy_of_bindings = true, 2523 }; 2524 2525 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { 2526 .has_dma = true, 2527 .ale_offs = BIT(21), 2528 .cle_offs = BIT(22), 2529 .ops = &atmel_smc_nc_ops, 2530 .legacy_of_bindings = true, 2531 }; 2532 2533 static const struct of_device_id atmel_nand_controller_of_ids[] = { 2534 { 2535 .compatible = "atmel,at91rm9200-nand-controller", 2536 .data = &atmel_rm9200_nc_caps, 2537 }, 2538 { 2539 .compatible = "atmel,at91sam9260-nand-controller", 2540 .data = &atmel_sam9260_nc_caps, 2541 }, 2542 { 2543 .compatible = "atmel,at91sam9261-nand-controller", 2544 .data = &atmel_sam9261_nc_caps, 2545 }, 2546 { 2547 .compatible = "atmel,at91sam9g45-nand-controller", 2548 .data = &atmel_sam9g45_nc_caps, 2549 }, 2550 { 2551 .compatible = "atmel,sama5d3-nand-controller", 2552 .data = &atmel_sama5_nc_caps, 2553 }, 2554 { 2555 .compatible = "microchip,sam9x60-nand-controller", 2556 .data = µchip_sam9x60_nc_caps, 2557 }, 2558 /* Support for old/deprecated bindings: */ 2559 { 2560 .compatible = "atmel,at91rm9200-nand", 2561 .data = &atmel_rm9200_nand_caps, 2562 }, 2563 { 2564 .compatible = "atmel,sama5d4-nand", 2565 .data = &atmel_rm9200_nand_caps, 2566 }, 2567 { 2568 .compatible = "atmel,sama5d2-nand", 2569 .data = &atmel_rm9200_nand_caps, 2570 }, 2571 { /* sentinel */ }, 2572 }; 2573 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); 2574 2575 static int atmel_nand_controller_probe(struct platform_device *pdev) 2576 { 2577 const struct atmel_nand_controller_caps *caps; 2578 2579 if (pdev->id_entry) 2580 caps = (void *)pdev->id_entry->driver_data; 2581 else 2582 caps = of_device_get_match_data(&pdev->dev); 2583 2584 if (!caps) { 2585 dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); 2586 return -EINVAL; 2587 } 2588 2589 if (caps->legacy_of_bindings) { 2590 struct device_node *nfc_node; 2591 u32 ale_offs = 21; 2592 2593 /* 2594 * If we are parsing legacy DT props and the DT contains a 2595 * valid NFC node, forward the request to the sama5 logic. 2596 */ 2597 nfc_node = of_get_compatible_child(pdev->dev.of_node, 2598 "atmel,sama5d3-nfc"); 2599 if (nfc_node) { 2600 caps = &atmel_sama5_nand_caps; 2601 of_node_put(nfc_node); 2602 } 2603 2604 /* 2605 * Even if the compatible says we are dealing with an 2606 * at91rm9200 controller, the atmel,nand-has-dma specify that 2607 * this controller supports DMA, which means we are in fact 2608 * dealing with an at91sam9g45+ controller. 2609 */ 2610 if (!caps->has_dma && 2611 of_property_read_bool(pdev->dev.of_node, 2612 "atmel,nand-has-dma")) 2613 caps = &atmel_sam9g45_nand_caps; 2614 2615 /* 2616 * All SoCs except the at91sam9261 are assigning ALE to A21 and 2617 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're 2618 * actually dealing with an at91sam9261 controller. 2619 */ 2620 of_property_read_u32(pdev->dev.of_node, 2621 "atmel,nand-addr-offset", &ale_offs); 2622 if (ale_offs != 21) 2623 caps = &atmel_sam9261_nand_caps; 2624 } 2625 2626 return caps->ops->probe(pdev, caps); 2627 } 2628 2629 static int atmel_nand_controller_remove(struct platform_device *pdev) 2630 { 2631 struct atmel_nand_controller *nc = platform_get_drvdata(pdev); 2632 2633 WARN_ON(nc->caps->ops->remove(nc)); 2634 2635 return 0; 2636 } 2637 2638 static __maybe_unused int atmel_nand_controller_resume(struct device *dev) 2639 { 2640 struct atmel_nand_controller *nc = dev_get_drvdata(dev); 2641 struct atmel_nand *nand; 2642 2643 if (nc->pmecc) 2644 atmel_pmecc_reset(nc->pmecc); 2645 2646 list_for_each_entry(nand, &nc->chips, node) { 2647 int i; 2648 2649 for (i = 0; i < nand->numcs; i++) 2650 nand_reset(&nand->base, i); 2651 } 2652 2653 return 0; 2654 } 2655 2656 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, 2657 atmel_nand_controller_resume); 2658 2659 static struct platform_driver atmel_nand_controller_driver = { 2660 .driver = { 2661 .name = "atmel-nand-controller", 2662 .of_match_table = atmel_nand_controller_of_ids, 2663 .pm = &atmel_nand_controller_pm_ops, 2664 }, 2665 .probe = atmel_nand_controller_probe, 2666 .remove = atmel_nand_controller_remove, 2667 }; 2668 module_platform_driver(atmel_nand_controller_driver); 2669 2670 MODULE_LICENSE("GPL"); 2671 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); 2672 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); 2673 MODULE_ALIAS("platform:atmel-nand-controller"); 2674