1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2017 ATMEL 4 * Copyright 2017 Free Electrons 5 * 6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com> 7 * 8 * Derived from the atmel_nand.c driver which contained the following 9 * copyrights: 10 * 11 * Copyright 2003 Rick Bronson 12 * 13 * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) 14 * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) 15 * 16 * Derived from drivers/mtd/spia.c (removed in v3.8) 17 * Copyright 2000 Steven J. Hill (sjhill@cotw.com) 18 * 19 * 20 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 21 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 22 * 23 * Derived from Das U-Boot source code 24 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) 25 * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas 26 * 27 * Add Programmable Multibit ECC support for various AT91 SoC 28 * Copyright 2012 ATMEL, Hong Xu 29 * 30 * Add Nand Flash Controller support for SAMA5 SoC 31 * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) 32 * 33 * A few words about the naming convention in this file. This convention 34 * applies to structure and function names. 35 * 36 * Prefixes: 37 * 38 * - atmel_nand_: all generic structures/functions 39 * - atmel_smc_nand_: all structures/functions specific to the SMC interface 40 * (at91sam9 and avr32 SoCs) 41 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface 42 * (sama5 SoCs and later) 43 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block 44 * that is available in the HSMC block 45 * - <soc>_nand_: all SoC specific structures/functions 46 */ 47 48 #include <linux/clk.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/dmaengine.h> 51 #include <linux/genalloc.h> 52 #include <linux/gpio/consumer.h> 53 #include <linux/interrupt.h> 54 #include <linux/mfd/syscon.h> 55 #include <linux/mfd/syscon/atmel-matrix.h> 56 #include <linux/mfd/syscon/atmel-smc.h> 57 #include <linux/module.h> 58 #include <linux/mtd/rawnand.h> 59 #include <linux/of_address.h> 60 #include <linux/of_irq.h> 61 #include <linux/of_platform.h> 62 #include <linux/iopoll.h> 63 #include <linux/platform_device.h> 64 #include <linux/regmap.h> 65 #include <soc/at91/atmel-sfr.h> 66 67 #include "pmecc.h" 68 69 #define ATMEL_HSMC_NFC_CFG 0x0 70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) 71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) 72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) 73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) 74 #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) 75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) 76 #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) 77 #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) 78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) 79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) 80 81 #define ATMEL_HSMC_NFC_CTRL 0x4 82 #define ATMEL_HSMC_NFC_CTRL_EN BIT(0) 83 #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) 84 85 #define ATMEL_HSMC_NFC_SR 0x8 86 #define ATMEL_HSMC_NFC_IER 0xc 87 #define ATMEL_HSMC_NFC_IDR 0x10 88 #define ATMEL_HSMC_NFC_IMR 0x14 89 #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) 90 #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) 91 #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) 92 #define ATMEL_HSMC_NFC_SR_BUSY BIT(8) 93 #define ATMEL_HSMC_NFC_SR_WR BIT(11) 94 #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) 95 #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) 96 #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) 97 #define ATMEL_HSMC_NFC_SR_DTOE BIT(20) 98 #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) 99 #define ATMEL_HSMC_NFC_SR_AWB BIT(22) 100 #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) 101 #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ 102 ATMEL_HSMC_NFC_SR_UNDEF | \ 103 ATMEL_HSMC_NFC_SR_AWB | \ 104 ATMEL_HSMC_NFC_SR_NFCASE) 105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) 106 107 #define ATMEL_HSMC_NFC_ADDR 0x18 108 #define ATMEL_HSMC_NFC_BANK 0x1c 109 110 #define ATMEL_NFC_MAX_RB_ID 7 111 112 #define ATMEL_NFC_SRAM_SIZE 0x2400 113 114 #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) 115 #define ATMEL_NFC_VCMD2 BIT(18) 116 #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) 117 #define ATMEL_NFC_CSID(cs) ((cs) << 22) 118 #define ATMEL_NFC_DATAEN BIT(25) 119 #define ATMEL_NFC_NFCWR BIT(26) 120 121 #define ATMEL_NFC_MAX_ADDR_CYCLES 5 122 123 #define ATMEL_NAND_ALE_OFFSET BIT(21) 124 #define ATMEL_NAND_CLE_OFFSET BIT(22) 125 126 #define DEFAULT_TIMEOUT_MS 1000 127 #define MIN_DMA_LEN 128 128 129 static bool atmel_nand_avoid_dma __read_mostly; 130 131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA"); 132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400); 133 134 enum atmel_nand_rb_type { 135 ATMEL_NAND_NO_RB, 136 ATMEL_NAND_NATIVE_RB, 137 ATMEL_NAND_GPIO_RB, 138 }; 139 140 struct atmel_nand_rb { 141 enum atmel_nand_rb_type type; 142 union { 143 struct gpio_desc *gpio; 144 int id; 145 }; 146 }; 147 148 struct atmel_nand_cs { 149 int id; 150 struct atmel_nand_rb rb; 151 struct gpio_desc *csgpio; 152 struct { 153 void __iomem *virt; 154 dma_addr_t dma; 155 } io; 156 157 struct atmel_smc_cs_conf smcconf; 158 }; 159 160 struct atmel_nand { 161 struct list_head node; 162 struct device *dev; 163 struct nand_chip base; 164 struct atmel_nand_cs *activecs; 165 struct atmel_pmecc_user *pmecc; 166 struct gpio_desc *cdgpio; 167 int numcs; 168 struct atmel_nand_cs cs[]; 169 }; 170 171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) 172 { 173 return container_of(chip, struct atmel_nand, base); 174 } 175 176 enum atmel_nfc_data_xfer { 177 ATMEL_NFC_NO_DATA, 178 ATMEL_NFC_READ_DATA, 179 ATMEL_NFC_WRITE_DATA, 180 }; 181 182 struct atmel_nfc_op { 183 u8 cs; 184 u8 ncmds; 185 u8 cmds[2]; 186 u8 naddrs; 187 u8 addrs[5]; 188 enum atmel_nfc_data_xfer data; 189 u32 wait; 190 u32 errors; 191 }; 192 193 struct atmel_nand_controller; 194 struct atmel_nand_controller_caps; 195 196 struct atmel_nand_controller_ops { 197 int (*probe)(struct platform_device *pdev, 198 const struct atmel_nand_controller_caps *caps); 199 int (*remove)(struct atmel_nand_controller *nc); 200 void (*nand_init)(struct atmel_nand_controller *nc, 201 struct atmel_nand *nand); 202 int (*ecc_init)(struct nand_chip *chip); 203 int (*setup_interface)(struct atmel_nand *nand, int csline, 204 const struct nand_interface_config *conf); 205 int (*exec_op)(struct atmel_nand *nand, 206 const struct nand_operation *op, bool check_only); 207 }; 208 209 struct atmel_nand_controller_caps { 210 bool has_dma; 211 bool legacy_of_bindings; 212 u32 ale_offs; 213 u32 cle_offs; 214 const char *ebi_csa_regmap_name; 215 const struct atmel_nand_controller_ops *ops; 216 }; 217 218 struct atmel_nand_controller { 219 struct nand_controller base; 220 const struct atmel_nand_controller_caps *caps; 221 struct device *dev; 222 struct regmap *smc; 223 struct dma_chan *dmac; 224 struct atmel_pmecc *pmecc; 225 struct list_head chips; 226 struct clk *mck; 227 }; 228 229 static inline struct atmel_nand_controller * 230 to_nand_controller(struct nand_controller *ctl) 231 { 232 return container_of(ctl, struct atmel_nand_controller, base); 233 } 234 235 struct atmel_smc_nand_ebi_csa_cfg { 236 u32 offs; 237 u32 nfd0_on_d16; 238 }; 239 240 struct atmel_smc_nand_controller { 241 struct atmel_nand_controller base; 242 struct regmap *ebi_csa_regmap; 243 struct atmel_smc_nand_ebi_csa_cfg *ebi_csa; 244 }; 245 246 static inline struct atmel_smc_nand_controller * 247 to_smc_nand_controller(struct nand_controller *ctl) 248 { 249 return container_of(to_nand_controller(ctl), 250 struct atmel_smc_nand_controller, base); 251 } 252 253 struct atmel_hsmc_nand_controller { 254 struct atmel_nand_controller base; 255 struct { 256 struct gen_pool *pool; 257 void __iomem *virt; 258 dma_addr_t dma; 259 } sram; 260 const struct atmel_hsmc_reg_layout *hsmc_layout; 261 struct regmap *io; 262 struct atmel_nfc_op op; 263 struct completion complete; 264 u32 cfg; 265 int irq; 266 267 /* Only used when instantiating from legacy DT bindings. */ 268 struct clk *clk; 269 }; 270 271 static inline struct atmel_hsmc_nand_controller * 272 to_hsmc_nand_controller(struct nand_controller *ctl) 273 { 274 return container_of(to_nand_controller(ctl), 275 struct atmel_hsmc_nand_controller, base); 276 } 277 278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) 279 { 280 op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; 281 op->wait ^= status & op->wait; 282 283 return !op->wait || op->errors; 284 } 285 286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data) 287 { 288 struct atmel_hsmc_nand_controller *nc = data; 289 u32 sr, rcvd; 290 bool done; 291 292 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); 293 294 rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 295 done = atmel_nfc_op_done(&nc->op, sr); 296 297 if (rcvd) 298 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); 299 300 if (done) 301 complete(&nc->complete); 302 303 return rcvd ? IRQ_HANDLED : IRQ_NONE; 304 } 305 306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, 307 unsigned int timeout_ms) 308 { 309 int ret; 310 311 if (!timeout_ms) 312 timeout_ms = DEFAULT_TIMEOUT_MS; 313 314 if (poll) { 315 u32 status; 316 317 ret = regmap_read_poll_timeout(nc->base.smc, 318 ATMEL_HSMC_NFC_SR, status, 319 atmel_nfc_op_done(&nc->op, 320 status), 321 0, timeout_ms * 1000); 322 } else { 323 init_completion(&nc->complete); 324 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, 325 nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); 326 ret = wait_for_completion_timeout(&nc->complete, 327 msecs_to_jiffies(timeout_ms)); 328 if (!ret) 329 ret = -ETIMEDOUT; 330 else 331 ret = 0; 332 333 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 334 } 335 336 if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { 337 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); 338 ret = -ETIMEDOUT; 339 } 340 341 if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { 342 dev_err(nc->base.dev, "Access to an undefined area\n"); 343 ret = -EIO; 344 } 345 346 if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { 347 dev_err(nc->base.dev, "Access while busy\n"); 348 ret = -EIO; 349 } 350 351 if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { 352 dev_err(nc->base.dev, "Wrong access size\n"); 353 ret = -EIO; 354 } 355 356 return ret; 357 } 358 359 static void atmel_nand_dma_transfer_finished(void *data) 360 { 361 struct completion *finished = data; 362 363 complete(finished); 364 } 365 366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, 367 void *buf, dma_addr_t dev_dma, size_t len, 368 enum dma_data_direction dir) 369 { 370 DECLARE_COMPLETION_ONSTACK(finished); 371 dma_addr_t src_dma, dst_dma, buf_dma; 372 struct dma_async_tx_descriptor *tx; 373 dma_cookie_t cookie; 374 375 buf_dma = dma_map_single(nc->dev, buf, len, dir); 376 if (dma_mapping_error(nc->dev, dev_dma)) { 377 dev_err(nc->dev, 378 "Failed to prepare a buffer for DMA access\n"); 379 goto err; 380 } 381 382 if (dir == DMA_FROM_DEVICE) { 383 src_dma = dev_dma; 384 dst_dma = buf_dma; 385 } else { 386 src_dma = buf_dma; 387 dst_dma = dev_dma; 388 } 389 390 tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, 391 DMA_CTRL_ACK | DMA_PREP_INTERRUPT); 392 if (!tx) { 393 dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); 394 goto err_unmap; 395 } 396 397 tx->callback = atmel_nand_dma_transfer_finished; 398 tx->callback_param = &finished; 399 400 cookie = dmaengine_submit(tx); 401 if (dma_submit_error(cookie)) { 402 dev_err(nc->dev, "Failed to do DMA tx_submit\n"); 403 goto err_unmap; 404 } 405 406 dma_async_issue_pending(nc->dmac); 407 wait_for_completion(&finished); 408 409 return 0; 410 411 err_unmap: 412 dma_unmap_single(nc->dev, buf_dma, len, dir); 413 414 err: 415 dev_dbg(nc->dev, "Fall back to CPU I/O\n"); 416 417 return -EIO; 418 } 419 420 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) 421 { 422 u8 *addrs = nc->op.addrs; 423 unsigned int op = 0; 424 u32 addr, val; 425 int i, ret; 426 427 nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; 428 429 for (i = 0; i < nc->op.ncmds; i++) 430 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); 431 432 if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) 433 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); 434 435 op |= ATMEL_NFC_CSID(nc->op.cs) | 436 ATMEL_NFC_ACYCLE(nc->op.naddrs); 437 438 if (nc->op.ncmds > 1) 439 op |= ATMEL_NFC_VCMD2; 440 441 addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | 442 (addrs[3] << 24); 443 444 if (nc->op.data != ATMEL_NFC_NO_DATA) { 445 op |= ATMEL_NFC_DATAEN; 446 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; 447 448 if (nc->op.data == ATMEL_NFC_WRITE_DATA) 449 op |= ATMEL_NFC_NFCWR; 450 } 451 452 /* Clear all flags. */ 453 regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); 454 455 /* Send the command. */ 456 regmap_write(nc->io, op, addr); 457 458 ret = atmel_nfc_wait(nc, poll, 0); 459 if (ret) 460 dev_err(nc->base.dev, 461 "Failed to send NAND command (err = %d)!", 462 ret); 463 464 /* Reset the op state. */ 465 memset(&nc->op, 0, sizeof(nc->op)); 466 467 return ret; 468 } 469 470 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf, 471 unsigned int len, bool force_8bit) 472 { 473 struct atmel_nand_controller *nc; 474 475 nc = to_nand_controller(nand->base.controller); 476 477 /* 478 * If the controller supports DMA, the buffer address is DMA-able and 479 * len is long enough to make DMA transfers profitable, let's trigger 480 * a DMA transfer. If it fails, fallback to PIO mode. 481 */ 482 if (nc->dmac && virt_addr_valid(buf) && 483 len >= MIN_DMA_LEN && !force_8bit && 484 !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, 485 DMA_FROM_DEVICE)) 486 return; 487 488 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) 489 ioread16_rep(nand->activecs->io.virt, buf, len / 2); 490 else 491 ioread8_rep(nand->activecs->io.virt, buf, len); 492 } 493 494 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf, 495 unsigned int len, bool force_8bit) 496 { 497 struct atmel_nand_controller *nc; 498 499 nc = to_nand_controller(nand->base.controller); 500 501 /* 502 * If the controller supports DMA, the buffer address is DMA-able and 503 * len is long enough to make DMA transfers profitable, let's trigger 504 * a DMA transfer. If it fails, fallback to PIO mode. 505 */ 506 if (nc->dmac && virt_addr_valid(buf) && 507 len >= MIN_DMA_LEN && !force_8bit && 508 !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, 509 len, DMA_TO_DEVICE)) 510 return; 511 512 if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit) 513 iowrite16_rep(nand->activecs->io.virt, buf, len / 2); 514 else 515 iowrite8_rep(nand->activecs->io.virt, buf, len); 516 } 517 518 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms) 519 { 520 if (nand->activecs->rb.type == ATMEL_NAND_NO_RB) 521 return nand_soft_waitrdy(&nand->base, timeout_ms); 522 523 return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio, 524 timeout_ms); 525 } 526 527 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand, 528 unsigned int timeout_ms) 529 { 530 struct atmel_hsmc_nand_controller *nc; 531 u32 status, mask; 532 533 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) 534 return atmel_nand_waitrdy(nand, timeout_ms); 535 536 nc = to_hsmc_nand_controller(nand->base.controller); 537 mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); 538 return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR, 539 status, status & mask, 540 10, timeout_ms * 1000); 541 } 542 543 static void atmel_nand_select_target(struct atmel_nand *nand, 544 unsigned int cs) 545 { 546 nand->activecs = &nand->cs[cs]; 547 } 548 549 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand, 550 unsigned int cs) 551 { 552 struct mtd_info *mtd = nand_to_mtd(&nand->base); 553 struct atmel_hsmc_nand_controller *nc; 554 u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | 555 ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | 556 ATMEL_HSMC_NFC_CFG_RSPARE; 557 558 nand->activecs = &nand->cs[cs]; 559 nc = to_hsmc_nand_controller(nand->base.controller); 560 if (nc->cfg == cfg) 561 return; 562 563 regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, 564 ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | 565 ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | 566 ATMEL_HSMC_NFC_CFG_RSPARE | 567 ATMEL_HSMC_NFC_CFG_WSPARE, 568 cfg); 569 nc->cfg = cfg; 570 } 571 572 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand, 573 const struct nand_op_instr *instr) 574 { 575 struct atmel_nand_controller *nc; 576 unsigned int i; 577 578 nc = to_nand_controller(nand->base.controller); 579 switch (instr->type) { 580 case NAND_OP_CMD_INSTR: 581 writeb(instr->ctx.cmd.opcode, 582 nand->activecs->io.virt + nc->caps->cle_offs); 583 return 0; 584 case NAND_OP_ADDR_INSTR: 585 for (i = 0; i < instr->ctx.addr.naddrs; i++) 586 writeb(instr->ctx.addr.addrs[i], 587 nand->activecs->io.virt + nc->caps->ale_offs); 588 return 0; 589 case NAND_OP_DATA_IN_INSTR: 590 atmel_nand_data_in(nand, instr->ctx.data.buf.in, 591 instr->ctx.data.len, 592 instr->ctx.data.force_8bit); 593 return 0; 594 case NAND_OP_DATA_OUT_INSTR: 595 atmel_nand_data_out(nand, instr->ctx.data.buf.out, 596 instr->ctx.data.len, 597 instr->ctx.data.force_8bit); 598 return 0; 599 case NAND_OP_WAITRDY_INSTR: 600 return atmel_nand_waitrdy(nand, 601 instr->ctx.waitrdy.timeout_ms); 602 default: 603 break; 604 } 605 606 return -EINVAL; 607 } 608 609 static int atmel_smc_nand_exec_op(struct atmel_nand *nand, 610 const struct nand_operation *op, 611 bool check_only) 612 { 613 unsigned int i; 614 int ret = 0; 615 616 if (check_only) 617 return 0; 618 619 atmel_nand_select_target(nand, op->cs); 620 gpiod_set_value(nand->activecs->csgpio, 0); 621 for (i = 0; i < op->ninstrs; i++) { 622 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]); 623 if (ret) 624 break; 625 } 626 gpiod_set_value(nand->activecs->csgpio, 1); 627 628 return ret; 629 } 630 631 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip, 632 const struct nand_subop *subop) 633 { 634 struct atmel_nand *nand = to_atmel_nand(chip); 635 struct atmel_hsmc_nand_controller *nc; 636 unsigned int i, j; 637 638 nc = to_hsmc_nand_controller(chip->controller); 639 640 nc->op.cs = nand->activecs->id; 641 for (i = 0; i < subop->ninstrs; i++) { 642 const struct nand_op_instr *instr = &subop->instrs[i]; 643 644 if (instr->type == NAND_OP_CMD_INSTR) { 645 nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode; 646 continue; 647 } 648 649 for (j = nand_subop_get_addr_start_off(subop, i); 650 j < nand_subop_get_num_addr_cyc(subop, i); j++) { 651 nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j]; 652 nc->op.naddrs++; 653 } 654 } 655 656 return atmel_nfc_exec_op(nc, true); 657 } 658 659 static int atmel_hsmc_exec_rw(struct nand_chip *chip, 660 const struct nand_subop *subop) 661 { 662 const struct nand_op_instr *instr = subop->instrs; 663 struct atmel_nand *nand = to_atmel_nand(chip); 664 665 if (instr->type == NAND_OP_DATA_IN_INSTR) 666 atmel_nand_data_in(nand, instr->ctx.data.buf.in, 667 instr->ctx.data.len, 668 instr->ctx.data.force_8bit); 669 else 670 atmel_nand_data_out(nand, instr->ctx.data.buf.out, 671 instr->ctx.data.len, 672 instr->ctx.data.force_8bit); 673 674 return 0; 675 } 676 677 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip, 678 const struct nand_subop *subop) 679 { 680 const struct nand_op_instr *instr = subop->instrs; 681 struct atmel_nand *nand = to_atmel_nand(chip); 682 683 return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms); 684 } 685 686 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER( 687 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr, 688 NAND_OP_PARSER_PAT_CMD_ELEM(true), 689 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), 690 NAND_OP_PARSER_PAT_CMD_ELEM(true)), 691 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, 692 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)), 693 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw, 694 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)), 695 NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy, 696 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 697 ); 698 699 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand, 700 const struct nand_operation *op, 701 bool check_only) 702 { 703 int ret; 704 705 if (check_only) 706 return nand_op_parser_exec_op(&nand->base, 707 &atmel_hsmc_op_parser, op, true); 708 709 atmel_hsmc_nand_select_target(nand, op->cs); 710 ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op, 711 false); 712 713 return ret; 714 } 715 716 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, 717 bool oob_required) 718 { 719 struct mtd_info *mtd = nand_to_mtd(chip); 720 struct atmel_hsmc_nand_controller *nc; 721 int ret = -EIO; 722 723 nc = to_hsmc_nand_controller(chip->controller); 724 725 if (nc->base.dmac) 726 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, 727 nc->sram.dma, mtd->writesize, 728 DMA_TO_DEVICE); 729 730 /* Falling back to CPU copy. */ 731 if (ret) 732 memcpy_toio(nc->sram.virt, buf, mtd->writesize); 733 734 if (oob_required) 735 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, 736 mtd->oobsize); 737 } 738 739 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, 740 bool oob_required) 741 { 742 struct mtd_info *mtd = nand_to_mtd(chip); 743 struct atmel_hsmc_nand_controller *nc; 744 int ret = -EIO; 745 746 nc = to_hsmc_nand_controller(chip->controller); 747 748 if (nc->base.dmac) 749 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, 750 mtd->writesize, DMA_FROM_DEVICE); 751 752 /* Falling back to CPU copy. */ 753 if (ret) 754 memcpy_fromio(buf, nc->sram.virt, mtd->writesize); 755 756 if (oob_required) 757 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, 758 mtd->oobsize); 759 } 760 761 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) 762 { 763 struct mtd_info *mtd = nand_to_mtd(chip); 764 struct atmel_hsmc_nand_controller *nc; 765 766 nc = to_hsmc_nand_controller(chip->controller); 767 768 if (column >= 0) { 769 nc->op.addrs[nc->op.naddrs++] = column; 770 771 /* 772 * 2 address cycles for the column offset on large page NANDs. 773 */ 774 if (mtd->writesize > 512) 775 nc->op.addrs[nc->op.naddrs++] = column >> 8; 776 } 777 778 if (page >= 0) { 779 nc->op.addrs[nc->op.naddrs++] = page; 780 nc->op.addrs[nc->op.naddrs++] = page >> 8; 781 782 if (chip->options & NAND_ROW_ADDR_3) 783 nc->op.addrs[nc->op.naddrs++] = page >> 16; 784 } 785 } 786 787 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) 788 { 789 struct atmel_nand *nand = to_atmel_nand(chip); 790 struct atmel_nand_controller *nc; 791 int ret; 792 793 nc = to_nand_controller(chip->controller); 794 795 if (raw) 796 return 0; 797 798 ret = atmel_pmecc_enable(nand->pmecc, op); 799 if (ret) 800 dev_err(nc->dev, 801 "Failed to enable ECC engine (err = %d)\n", ret); 802 803 return ret; 804 } 805 806 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) 807 { 808 struct atmel_nand *nand = to_atmel_nand(chip); 809 810 if (!raw) 811 atmel_pmecc_disable(nand->pmecc); 812 } 813 814 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) 815 { 816 struct atmel_nand *nand = to_atmel_nand(chip); 817 struct mtd_info *mtd = nand_to_mtd(chip); 818 struct atmel_nand_controller *nc; 819 struct mtd_oob_region oobregion; 820 void *eccbuf; 821 int ret, i; 822 823 nc = to_nand_controller(chip->controller); 824 825 if (raw) 826 return 0; 827 828 ret = atmel_pmecc_wait_rdy(nand->pmecc); 829 if (ret) { 830 dev_err(nc->dev, 831 "Failed to transfer NAND page data (err = %d)\n", 832 ret); 833 return ret; 834 } 835 836 mtd_ooblayout_ecc(mtd, 0, &oobregion); 837 eccbuf = chip->oob_poi + oobregion.offset; 838 839 for (i = 0; i < chip->ecc.steps; i++) { 840 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, 841 eccbuf); 842 eccbuf += chip->ecc.bytes; 843 } 844 845 return 0; 846 } 847 848 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, 849 bool raw) 850 { 851 struct atmel_nand *nand = to_atmel_nand(chip); 852 struct mtd_info *mtd = nand_to_mtd(chip); 853 struct atmel_nand_controller *nc; 854 struct mtd_oob_region oobregion; 855 int ret, i, max_bitflips = 0; 856 void *databuf, *eccbuf; 857 858 nc = to_nand_controller(chip->controller); 859 860 if (raw) 861 return 0; 862 863 ret = atmel_pmecc_wait_rdy(nand->pmecc); 864 if (ret) { 865 dev_err(nc->dev, 866 "Failed to read NAND page data (err = %d)\n", 867 ret); 868 return ret; 869 } 870 871 mtd_ooblayout_ecc(mtd, 0, &oobregion); 872 eccbuf = chip->oob_poi + oobregion.offset; 873 databuf = buf; 874 875 for (i = 0; i < chip->ecc.steps; i++) { 876 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, 877 eccbuf); 878 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) 879 ret = nand_check_erased_ecc_chunk(databuf, 880 chip->ecc.size, 881 eccbuf, 882 chip->ecc.bytes, 883 NULL, 0, 884 chip->ecc.strength); 885 886 if (ret >= 0) 887 max_bitflips = max(ret, max_bitflips); 888 else 889 mtd->ecc_stats.failed++; 890 891 databuf += chip->ecc.size; 892 eccbuf += chip->ecc.bytes; 893 } 894 895 return max_bitflips; 896 } 897 898 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, 899 bool oob_required, int page, bool raw) 900 { 901 struct mtd_info *mtd = nand_to_mtd(chip); 902 struct atmel_nand *nand = to_atmel_nand(chip); 903 int ret; 904 905 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 906 907 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 908 if (ret) 909 return ret; 910 911 nand_write_data_op(chip, buf, mtd->writesize, false); 912 913 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 914 if (ret) { 915 atmel_pmecc_disable(nand->pmecc); 916 return ret; 917 } 918 919 atmel_nand_pmecc_disable(chip, raw); 920 921 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 922 923 return nand_prog_page_end_op(chip); 924 } 925 926 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf, 927 int oob_required, int page) 928 { 929 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); 930 } 931 932 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip, 933 const u8 *buf, int oob_required, 934 int page) 935 { 936 return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); 937 } 938 939 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 940 bool oob_required, int page, bool raw) 941 { 942 struct mtd_info *mtd = nand_to_mtd(chip); 943 int ret; 944 945 nand_read_page_op(chip, page, 0, NULL, 0); 946 947 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 948 if (ret) 949 return ret; 950 951 ret = nand_read_data_op(chip, buf, mtd->writesize, false, false); 952 if (ret) 953 goto out_disable; 954 955 ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); 956 if (ret) 957 goto out_disable; 958 959 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 960 961 out_disable: 962 atmel_nand_pmecc_disable(chip, raw); 963 964 return ret; 965 } 966 967 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 968 int oob_required, int page) 969 { 970 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); 971 } 972 973 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf, 974 int oob_required, int page) 975 { 976 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); 977 } 978 979 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, 980 const u8 *buf, bool oob_required, 981 int page, bool raw) 982 { 983 struct mtd_info *mtd = nand_to_mtd(chip); 984 struct atmel_nand *nand = to_atmel_nand(chip); 985 struct atmel_hsmc_nand_controller *nc; 986 int ret; 987 988 atmel_hsmc_nand_select_target(nand, chip->cur_cs); 989 nc = to_hsmc_nand_controller(chip->controller); 990 991 atmel_nfc_copy_to_sram(chip, buf, false); 992 993 nc->op.cmds[0] = NAND_CMD_SEQIN; 994 nc->op.ncmds = 1; 995 atmel_nfc_set_op_addr(chip, page, 0x0); 996 nc->op.cs = nand->activecs->id; 997 nc->op.data = ATMEL_NFC_WRITE_DATA; 998 999 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); 1000 if (ret) 1001 return ret; 1002 1003 ret = atmel_nfc_exec_op(nc, false); 1004 if (ret) { 1005 atmel_nand_pmecc_disable(chip, raw); 1006 dev_err(nc->base.dev, 1007 "Failed to transfer NAND page data (err = %d)\n", 1008 ret); 1009 return ret; 1010 } 1011 1012 ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); 1013 1014 atmel_nand_pmecc_disable(chip, raw); 1015 1016 if (ret) 1017 return ret; 1018 1019 nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); 1020 1021 return nand_prog_page_end_op(chip); 1022 } 1023 1024 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip, 1025 const u8 *buf, int oob_required, 1026 int page) 1027 { 1028 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 1029 false); 1030 } 1031 1032 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip, 1033 const u8 *buf, 1034 int oob_required, int page) 1035 { 1036 return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, 1037 true); 1038 } 1039 1040 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, 1041 bool oob_required, int page, 1042 bool raw) 1043 { 1044 struct mtd_info *mtd = nand_to_mtd(chip); 1045 struct atmel_nand *nand = to_atmel_nand(chip); 1046 struct atmel_hsmc_nand_controller *nc; 1047 int ret; 1048 1049 atmel_hsmc_nand_select_target(nand, chip->cur_cs); 1050 nc = to_hsmc_nand_controller(chip->controller); 1051 1052 /* 1053 * Optimized read page accessors only work when the NAND R/B pin is 1054 * connected to a native SoC R/B pin. If that's not the case, fallback 1055 * to the non-optimized one. 1056 */ 1057 if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) 1058 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, 1059 raw); 1060 1061 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; 1062 1063 if (mtd->writesize > 512) 1064 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; 1065 1066 atmel_nfc_set_op_addr(chip, page, 0x0); 1067 nc->op.cs = nand->activecs->id; 1068 nc->op.data = ATMEL_NFC_READ_DATA; 1069 1070 ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); 1071 if (ret) 1072 return ret; 1073 1074 ret = atmel_nfc_exec_op(nc, false); 1075 if (ret) { 1076 atmel_nand_pmecc_disable(chip, raw); 1077 dev_err(nc->base.dev, 1078 "Failed to load NAND page data (err = %d)\n", 1079 ret); 1080 return ret; 1081 } 1082 1083 atmel_nfc_copy_from_sram(chip, buf, true); 1084 1085 ret = atmel_nand_pmecc_correct_data(chip, buf, raw); 1086 1087 atmel_nand_pmecc_disable(chip, raw); 1088 1089 return ret; 1090 } 1091 1092 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf, 1093 int oob_required, int page) 1094 { 1095 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1096 false); 1097 } 1098 1099 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip, 1100 u8 *buf, int oob_required, 1101 int page) 1102 { 1103 return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, 1104 true); 1105 } 1106 1107 static int atmel_nand_pmecc_init(struct nand_chip *chip) 1108 { 1109 const struct nand_ecc_props *requirements = 1110 nanddev_get_ecc_requirements(&chip->base); 1111 struct mtd_info *mtd = nand_to_mtd(chip); 1112 struct nand_device *nanddev = mtd_to_nanddev(mtd); 1113 struct atmel_nand *nand = to_atmel_nand(chip); 1114 struct atmel_nand_controller *nc; 1115 struct atmel_pmecc_user_req req; 1116 1117 nc = to_nand_controller(chip->controller); 1118 1119 if (!nc->pmecc) { 1120 dev_err(nc->dev, "HW ECC not supported\n"); 1121 return -ENOTSUPP; 1122 } 1123 1124 if (nc->caps->legacy_of_bindings) { 1125 u32 val; 1126 1127 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", 1128 &val)) 1129 chip->ecc.strength = val; 1130 1131 if (!of_property_read_u32(nc->dev->of_node, 1132 "atmel,pmecc-sector-size", 1133 &val)) 1134 chip->ecc.size = val; 1135 } 1136 1137 if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) 1138 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1139 else if (chip->ecc.strength) 1140 req.ecc.strength = chip->ecc.strength; 1141 else if (requirements->strength) 1142 req.ecc.strength = requirements->strength; 1143 else 1144 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; 1145 1146 if (chip->ecc.size) 1147 req.ecc.sectorsize = chip->ecc.size; 1148 else if (requirements->step_size) 1149 req.ecc.sectorsize = requirements->step_size; 1150 else 1151 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; 1152 1153 req.pagesize = mtd->writesize; 1154 req.oobsize = mtd->oobsize; 1155 1156 if (mtd->writesize <= 512) { 1157 req.ecc.bytes = 4; 1158 req.ecc.ooboffset = 0; 1159 } else { 1160 req.ecc.bytes = mtd->oobsize - 2; 1161 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; 1162 } 1163 1164 nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); 1165 if (IS_ERR(nand->pmecc)) 1166 return PTR_ERR(nand->pmecc); 1167 1168 chip->ecc.algo = NAND_ECC_ALGO_BCH; 1169 chip->ecc.size = req.ecc.sectorsize; 1170 chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; 1171 chip->ecc.strength = req.ecc.strength; 1172 1173 chip->options |= NAND_NO_SUBPAGE_WRITE; 1174 1175 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); 1176 1177 return 0; 1178 } 1179 1180 static int atmel_nand_ecc_init(struct nand_chip *chip) 1181 { 1182 struct atmel_nand_controller *nc; 1183 int ret; 1184 1185 nc = to_nand_controller(chip->controller); 1186 1187 switch (chip->ecc.engine_type) { 1188 case NAND_ECC_ENGINE_TYPE_NONE: 1189 case NAND_ECC_ENGINE_TYPE_SOFT: 1190 /* 1191 * Nothing to do, the core will initialize everything for us. 1192 */ 1193 break; 1194 1195 case NAND_ECC_ENGINE_TYPE_ON_HOST: 1196 ret = atmel_nand_pmecc_init(chip); 1197 if (ret) 1198 return ret; 1199 1200 chip->ecc.read_page = atmel_nand_pmecc_read_page; 1201 chip->ecc.write_page = atmel_nand_pmecc_write_page; 1202 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; 1203 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; 1204 break; 1205 1206 default: 1207 /* Other modes are not supported. */ 1208 dev_err(nc->dev, "Unsupported ECC mode: %d\n", 1209 chip->ecc.engine_type); 1210 return -ENOTSUPP; 1211 } 1212 1213 return 0; 1214 } 1215 1216 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip) 1217 { 1218 int ret; 1219 1220 ret = atmel_nand_ecc_init(chip); 1221 if (ret) 1222 return ret; 1223 1224 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) 1225 return 0; 1226 1227 /* Adjust the ECC operations for the HSMC IP. */ 1228 chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; 1229 chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; 1230 chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; 1231 chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; 1232 1233 return 0; 1234 } 1235 1236 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, 1237 const struct nand_interface_config *conf, 1238 struct atmel_smc_cs_conf *smcconf) 1239 { 1240 u32 ncycles, totalcycles, timeps, mckperiodps; 1241 struct atmel_nand_controller *nc; 1242 int ret; 1243 1244 nc = to_nand_controller(nand->base.controller); 1245 1246 /* DDR interface not supported. */ 1247 if (conf->type != NAND_SDR_IFACE) 1248 return -ENOTSUPP; 1249 1250 /* 1251 * tRC < 30ns implies EDO mode. This controller does not support this 1252 * mode. 1253 */ 1254 if (conf->timings.sdr.tRC_min < 30000) 1255 return -ENOTSUPP; 1256 1257 atmel_smc_cs_conf_init(smcconf); 1258 1259 mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); 1260 mckperiodps *= 1000; 1261 1262 /* 1263 * Set write pulse timing. This one is easy to extract: 1264 * 1265 * NWE_PULSE = tWP 1266 */ 1267 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); 1268 totalcycles = ncycles; 1269 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, 1270 ncycles); 1271 if (ret) 1272 return ret; 1273 1274 /* 1275 * The write setup timing depends on the operation done on the NAND. 1276 * All operations goes through the same data bus, but the operation 1277 * type depends on the address we are writing to (ALE/CLE address 1278 * lines). 1279 * Since we have no way to differentiate the different operations at 1280 * the SMC level, we must consider the worst case (the biggest setup 1281 * time among all operation types): 1282 * 1283 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE 1284 */ 1285 timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, 1286 conf->timings.sdr.tALS_min); 1287 timeps = max(timeps, conf->timings.sdr.tDS_min); 1288 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1289 ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; 1290 totalcycles += ncycles; 1291 ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, 1292 ncycles); 1293 if (ret) 1294 return ret; 1295 1296 /* 1297 * As for the write setup timing, the write hold timing depends on the 1298 * operation done on the NAND: 1299 * 1300 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) 1301 */ 1302 timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, 1303 conf->timings.sdr.tALH_min); 1304 timeps = max3(timeps, conf->timings.sdr.tDH_min, 1305 conf->timings.sdr.tWH_min); 1306 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1307 totalcycles += ncycles; 1308 1309 /* 1310 * The write cycle timing is directly matching tWC, but is also 1311 * dependent on the other timings on the setup and hold timings we 1312 * calculated earlier, which gives: 1313 * 1314 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) 1315 */ 1316 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); 1317 ncycles = max(totalcycles, ncycles); 1318 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, 1319 ncycles); 1320 if (ret) 1321 return ret; 1322 1323 /* 1324 * We don't want the CS line to be toggled between each byte/word 1325 * transfer to the NAND. The only way to guarantee that is to have the 1326 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1327 * 1328 * NCS_WR_PULSE = NWE_CYCLE 1329 */ 1330 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, 1331 ncycles); 1332 if (ret) 1333 return ret; 1334 1335 /* 1336 * As for the write setup timing, the read hold timing depends on the 1337 * operation done on the NAND: 1338 * 1339 * NRD_HOLD = max(tREH, tRHOH) 1340 */ 1341 timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); 1342 ncycles = DIV_ROUND_UP(timeps, mckperiodps); 1343 totalcycles = ncycles; 1344 1345 /* 1346 * TDF = tRHZ - NRD_HOLD 1347 */ 1348 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); 1349 ncycles -= totalcycles; 1350 1351 /* 1352 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and 1353 * we might end up with a config that does not fit in the TDF field. 1354 * Just take the max value in this case and hope that the NAND is more 1355 * tolerant than advertised. 1356 */ 1357 if (ncycles > ATMEL_SMC_MODE_TDF_MAX) 1358 ncycles = ATMEL_SMC_MODE_TDF_MAX; 1359 else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) 1360 ncycles = ATMEL_SMC_MODE_TDF_MIN; 1361 1362 smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | 1363 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; 1364 1365 /* 1366 * Read pulse timing directly matches tRP: 1367 * 1368 * NRD_PULSE = tRP 1369 */ 1370 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); 1371 totalcycles += ncycles; 1372 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, 1373 ncycles); 1374 if (ret) 1375 return ret; 1376 1377 /* 1378 * The write cycle timing is directly matching tWC, but is also 1379 * dependent on the setup and hold timings we calculated earlier, 1380 * which gives: 1381 * 1382 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) 1383 * 1384 * NRD_SETUP is always 0. 1385 */ 1386 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); 1387 ncycles = max(totalcycles, ncycles); 1388 ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, 1389 ncycles); 1390 if (ret) 1391 return ret; 1392 1393 /* 1394 * We don't want the CS line to be toggled between each byte/word 1395 * transfer from the NAND. The only way to guarantee that is to have 1396 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: 1397 * 1398 * NCS_RD_PULSE = NRD_CYCLE 1399 */ 1400 ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, 1401 ncycles); 1402 if (ret) 1403 return ret; 1404 1405 /* Txxx timings are directly matching tXXX ones. */ 1406 ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); 1407 ret = atmel_smc_cs_conf_set_timing(smcconf, 1408 ATMEL_HSMC_TIMINGS_TCLR_SHIFT, 1409 ncycles); 1410 if (ret) 1411 return ret; 1412 1413 ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); 1414 ret = atmel_smc_cs_conf_set_timing(smcconf, 1415 ATMEL_HSMC_TIMINGS_TADL_SHIFT, 1416 ncycles); 1417 /* 1418 * Version 4 of the ONFI spec mandates that tADL be at least 400 1419 * nanoseconds, but, depending on the master clock rate, 400 ns may not 1420 * fit in the tADL field of the SMC reg. We need to relax the check and 1421 * accept the -ERANGE return code. 1422 * 1423 * Note that previous versions of the ONFI spec had a lower tADL_min 1424 * (100 or 200 ns). It's not clear why this timing constraint got 1425 * increased but it seems most NANDs are fine with values lower than 1426 * 400ns, so we should be safe. 1427 */ 1428 if (ret && ret != -ERANGE) 1429 return ret; 1430 1431 ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); 1432 ret = atmel_smc_cs_conf_set_timing(smcconf, 1433 ATMEL_HSMC_TIMINGS_TAR_SHIFT, 1434 ncycles); 1435 if (ret) 1436 return ret; 1437 1438 ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); 1439 ret = atmel_smc_cs_conf_set_timing(smcconf, 1440 ATMEL_HSMC_TIMINGS_TRR_SHIFT, 1441 ncycles); 1442 if (ret) 1443 return ret; 1444 1445 ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); 1446 ret = atmel_smc_cs_conf_set_timing(smcconf, 1447 ATMEL_HSMC_TIMINGS_TWB_SHIFT, 1448 ncycles); 1449 if (ret) 1450 return ret; 1451 1452 /* Attach the CS line to the NFC logic. */ 1453 smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; 1454 1455 /* Set the appropriate data bus width. */ 1456 if (nand->base.options & NAND_BUSWIDTH_16) 1457 smcconf->mode |= ATMEL_SMC_MODE_DBW_16; 1458 1459 /* Operate in NRD/NWE READ/WRITEMODE. */ 1460 smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | 1461 ATMEL_SMC_MODE_WRITEMODE_NWE; 1462 1463 return 0; 1464 } 1465 1466 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand, 1467 int csline, 1468 const struct nand_interface_config *conf) 1469 { 1470 struct atmel_nand_controller *nc; 1471 struct atmel_smc_cs_conf smcconf; 1472 struct atmel_nand_cs *cs; 1473 int ret; 1474 1475 nc = to_nand_controller(nand->base.controller); 1476 1477 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1478 if (ret) 1479 return ret; 1480 1481 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1482 return 0; 1483 1484 cs = &nand->cs[csline]; 1485 cs->smcconf = smcconf; 1486 atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); 1487 1488 return 0; 1489 } 1490 1491 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand, 1492 int csline, 1493 const struct nand_interface_config *conf) 1494 { 1495 struct atmel_hsmc_nand_controller *nc; 1496 struct atmel_smc_cs_conf smcconf; 1497 struct atmel_nand_cs *cs; 1498 int ret; 1499 1500 nc = to_hsmc_nand_controller(nand->base.controller); 1501 1502 ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); 1503 if (ret) 1504 return ret; 1505 1506 if (csline == NAND_DATA_IFACE_CHECK_ONLY) 1507 return 0; 1508 1509 cs = &nand->cs[csline]; 1510 cs->smcconf = smcconf; 1511 1512 if (cs->rb.type == ATMEL_NAND_NATIVE_RB) 1513 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); 1514 1515 atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, 1516 &cs->smcconf); 1517 1518 return 0; 1519 } 1520 1521 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline, 1522 const struct nand_interface_config *conf) 1523 { 1524 struct atmel_nand *nand = to_atmel_nand(chip); 1525 struct atmel_nand_controller *nc; 1526 1527 nc = to_nand_controller(nand->base.controller); 1528 1529 if (csline >= nand->numcs || 1530 (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) 1531 return -EINVAL; 1532 1533 return nc->caps->ops->setup_interface(nand, csline, conf); 1534 } 1535 1536 static int atmel_nand_exec_op(struct nand_chip *chip, 1537 const struct nand_operation *op, 1538 bool check_only) 1539 { 1540 struct atmel_nand *nand = to_atmel_nand(chip); 1541 struct atmel_nand_controller *nc; 1542 1543 nc = to_nand_controller(nand->base.controller); 1544 1545 return nc->caps->ops->exec_op(nand, op, check_only); 1546 } 1547 1548 static void atmel_nand_init(struct atmel_nand_controller *nc, 1549 struct atmel_nand *nand) 1550 { 1551 struct nand_chip *chip = &nand->base; 1552 struct mtd_info *mtd = nand_to_mtd(chip); 1553 1554 mtd->dev.parent = nc->dev; 1555 nand->base.controller = &nc->base; 1556 1557 if (!nc->mck || !nc->caps->ops->setup_interface) 1558 chip->options |= NAND_KEEP_TIMINGS; 1559 1560 /* 1561 * Use a bounce buffer when the buffer passed by the MTD user is not 1562 * suitable for DMA. 1563 */ 1564 if (nc->dmac) 1565 chip->options |= NAND_USES_DMA; 1566 1567 /* Default to HW ECC if pmecc is available. */ 1568 if (nc->pmecc) 1569 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; 1570 } 1571 1572 static void atmel_smc_nand_init(struct atmel_nand_controller *nc, 1573 struct atmel_nand *nand) 1574 { 1575 struct nand_chip *chip = &nand->base; 1576 struct atmel_smc_nand_controller *smc_nc; 1577 int i; 1578 1579 atmel_nand_init(nc, nand); 1580 1581 smc_nc = to_smc_nand_controller(chip->controller); 1582 if (!smc_nc->ebi_csa_regmap) 1583 return; 1584 1585 /* Attach the CS to the NAND Flash logic. */ 1586 for (i = 0; i < nand->numcs; i++) 1587 regmap_update_bits(smc_nc->ebi_csa_regmap, 1588 smc_nc->ebi_csa->offs, 1589 BIT(nand->cs[i].id), BIT(nand->cs[i].id)); 1590 1591 if (smc_nc->ebi_csa->nfd0_on_d16) 1592 regmap_update_bits(smc_nc->ebi_csa_regmap, 1593 smc_nc->ebi_csa->offs, 1594 smc_nc->ebi_csa->nfd0_on_d16, 1595 smc_nc->ebi_csa->nfd0_on_d16); 1596 } 1597 1598 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand) 1599 { 1600 struct nand_chip *chip = &nand->base; 1601 struct mtd_info *mtd = nand_to_mtd(chip); 1602 int ret; 1603 1604 ret = mtd_device_unregister(mtd); 1605 if (ret) 1606 return ret; 1607 1608 nand_cleanup(chip); 1609 list_del(&nand->node); 1610 1611 return 0; 1612 } 1613 1614 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, 1615 struct device_node *np, 1616 int reg_cells) 1617 { 1618 struct atmel_nand *nand; 1619 struct gpio_desc *gpio; 1620 int numcs, ret, i; 1621 1622 numcs = of_property_count_elems_of_size(np, "reg", 1623 reg_cells * sizeof(u32)); 1624 if (numcs < 1) { 1625 dev_err(nc->dev, "Missing or invalid reg property\n"); 1626 return ERR_PTR(-EINVAL); 1627 } 1628 1629 nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL); 1630 if (!nand) { 1631 dev_err(nc->dev, "Failed to allocate NAND object\n"); 1632 return ERR_PTR(-ENOMEM); 1633 } 1634 1635 nand->numcs = numcs; 1636 1637 gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np), 1638 "det", GPIOD_IN, "nand-det"); 1639 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1640 dev_err(nc->dev, 1641 "Failed to get detect gpio (err = %ld)\n", 1642 PTR_ERR(gpio)); 1643 return ERR_CAST(gpio); 1644 } 1645 1646 if (!IS_ERR(gpio)) 1647 nand->cdgpio = gpio; 1648 1649 for (i = 0; i < numcs; i++) { 1650 struct resource res; 1651 u32 val; 1652 1653 ret = of_address_to_resource(np, 0, &res); 1654 if (ret) { 1655 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1656 ret); 1657 return ERR_PTR(ret); 1658 } 1659 1660 ret = of_property_read_u32_index(np, "reg", i * reg_cells, 1661 &val); 1662 if (ret) { 1663 dev_err(nc->dev, "Invalid reg property (err = %d)\n", 1664 ret); 1665 return ERR_PTR(ret); 1666 } 1667 1668 nand->cs[i].id = val; 1669 1670 nand->cs[i].io.dma = res.start; 1671 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); 1672 if (IS_ERR(nand->cs[i].io.virt)) 1673 return ERR_CAST(nand->cs[i].io.virt); 1674 1675 if (!of_property_read_u32(np, "atmel,rb", &val)) { 1676 if (val > ATMEL_NFC_MAX_RB_ID) 1677 return ERR_PTR(-EINVAL); 1678 1679 nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; 1680 nand->cs[i].rb.id = val; 1681 } else { 1682 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1683 of_fwnode_handle(np), 1684 "rb", i, GPIOD_IN, 1685 "nand-rb"); 1686 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1687 dev_err(nc->dev, 1688 "Failed to get R/B gpio (err = %ld)\n", 1689 PTR_ERR(gpio)); 1690 return ERR_CAST(gpio); 1691 } 1692 1693 if (!IS_ERR(gpio)) { 1694 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; 1695 nand->cs[i].rb.gpio = gpio; 1696 } 1697 } 1698 1699 gpio = devm_fwnode_gpiod_get_index(nc->dev, 1700 of_fwnode_handle(np), 1701 "cs", i, GPIOD_OUT_HIGH, 1702 "nand-cs"); 1703 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { 1704 dev_err(nc->dev, 1705 "Failed to get CS gpio (err = %ld)\n", 1706 PTR_ERR(gpio)); 1707 return ERR_CAST(gpio); 1708 } 1709 1710 if (!IS_ERR(gpio)) 1711 nand->cs[i].csgpio = gpio; 1712 } 1713 1714 nand_set_flash_node(&nand->base, np); 1715 1716 return nand; 1717 } 1718 1719 static int 1720 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, 1721 struct atmel_nand *nand) 1722 { 1723 struct nand_chip *chip = &nand->base; 1724 struct mtd_info *mtd = nand_to_mtd(chip); 1725 int ret; 1726 1727 /* No card inserted, skip this NAND. */ 1728 if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { 1729 dev_info(nc->dev, "No SmartMedia card inserted.\n"); 1730 return 0; 1731 } 1732 1733 nc->caps->ops->nand_init(nc, nand); 1734 1735 ret = nand_scan(chip, nand->numcs); 1736 if (ret) { 1737 dev_err(nc->dev, "NAND scan failed: %d\n", ret); 1738 return ret; 1739 } 1740 1741 ret = mtd_device_register(mtd, NULL, 0); 1742 if (ret) { 1743 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); 1744 nand_cleanup(chip); 1745 return ret; 1746 } 1747 1748 list_add_tail(&nand->node, &nc->chips); 1749 1750 return 0; 1751 } 1752 1753 static int 1754 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) 1755 { 1756 struct atmel_nand *nand, *tmp; 1757 int ret; 1758 1759 list_for_each_entry_safe(nand, tmp, &nc->chips, node) { 1760 ret = atmel_nand_controller_remove_nand(nand); 1761 if (ret) 1762 return ret; 1763 } 1764 1765 return 0; 1766 } 1767 1768 static int 1769 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) 1770 { 1771 struct device *dev = nc->dev; 1772 struct platform_device *pdev = to_platform_device(dev); 1773 struct atmel_nand *nand; 1774 struct gpio_desc *gpio; 1775 struct resource *res; 1776 1777 /* 1778 * Legacy bindings only allow connecting a single NAND with a unique CS 1779 * line to the controller. 1780 */ 1781 nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), 1782 GFP_KERNEL); 1783 if (!nand) 1784 return -ENOMEM; 1785 1786 nand->numcs = 1; 1787 1788 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1789 nand->cs[0].io.virt = devm_ioremap_resource(dev, res); 1790 if (IS_ERR(nand->cs[0].io.virt)) 1791 return PTR_ERR(nand->cs[0].io.virt); 1792 1793 nand->cs[0].io.dma = res->start; 1794 1795 /* 1796 * The old driver was hardcoding the CS id to 3 for all sama5 1797 * controllers. Since this id is only meaningful for the sama5 1798 * controller we can safely assign this id to 3 no matter the 1799 * controller. 1800 * If one wants to connect a NAND to a different CS line, he will 1801 * have to use the new bindings. 1802 */ 1803 nand->cs[0].id = 3; 1804 1805 /* R/B GPIO. */ 1806 gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); 1807 if (IS_ERR(gpio)) { 1808 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", 1809 PTR_ERR(gpio)); 1810 return PTR_ERR(gpio); 1811 } 1812 1813 if (gpio) { 1814 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; 1815 nand->cs[0].rb.gpio = gpio; 1816 } 1817 1818 /* CS GPIO. */ 1819 gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); 1820 if (IS_ERR(gpio)) { 1821 dev_err(dev, "Failed to get CS gpio (err = %ld)\n", 1822 PTR_ERR(gpio)); 1823 return PTR_ERR(gpio); 1824 } 1825 1826 nand->cs[0].csgpio = gpio; 1827 1828 /* Card detect GPIO. */ 1829 gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); 1830 if (IS_ERR(gpio)) { 1831 dev_err(dev, 1832 "Failed to get detect gpio (err = %ld)\n", 1833 PTR_ERR(gpio)); 1834 return PTR_ERR(gpio); 1835 } 1836 1837 nand->cdgpio = gpio; 1838 1839 nand_set_flash_node(&nand->base, nc->dev->of_node); 1840 1841 return atmel_nand_controller_add_nand(nc, nand); 1842 } 1843 1844 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) 1845 { 1846 struct device_node *np, *nand_np; 1847 struct device *dev = nc->dev; 1848 int ret, reg_cells; 1849 u32 val; 1850 1851 /* We do not retrieve the SMC syscon when parsing old DTs. */ 1852 if (nc->caps->legacy_of_bindings) 1853 return atmel_nand_controller_legacy_add_nands(nc); 1854 1855 np = dev->of_node; 1856 1857 ret = of_property_read_u32(np, "#address-cells", &val); 1858 if (ret) { 1859 dev_err(dev, "missing #address-cells property\n"); 1860 return ret; 1861 } 1862 1863 reg_cells = val; 1864 1865 ret = of_property_read_u32(np, "#size-cells", &val); 1866 if (ret) { 1867 dev_err(dev, "missing #size-cells property\n"); 1868 return ret; 1869 } 1870 1871 reg_cells += val; 1872 1873 for_each_child_of_node(np, nand_np) { 1874 struct atmel_nand *nand; 1875 1876 nand = atmel_nand_create(nc, nand_np, reg_cells); 1877 if (IS_ERR(nand)) { 1878 ret = PTR_ERR(nand); 1879 goto err; 1880 } 1881 1882 ret = atmel_nand_controller_add_nand(nc, nand); 1883 if (ret) 1884 goto err; 1885 } 1886 1887 return 0; 1888 1889 err: 1890 atmel_nand_controller_remove_nands(nc); 1891 1892 return ret; 1893 } 1894 1895 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) 1896 { 1897 if (nc->dmac) 1898 dma_release_channel(nc->dmac); 1899 1900 clk_put(nc->mck); 1901 } 1902 1903 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = { 1904 .offs = AT91SAM9260_MATRIX_EBICSA, 1905 }; 1906 1907 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = { 1908 .offs = AT91SAM9261_MATRIX_EBICSA, 1909 }; 1910 1911 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = { 1912 .offs = AT91SAM9263_MATRIX_EBI0CSA, 1913 }; 1914 1915 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = { 1916 .offs = AT91SAM9RL_MATRIX_EBICSA, 1917 }; 1918 1919 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = { 1920 .offs = AT91SAM9G45_MATRIX_EBICSA, 1921 }; 1922 1923 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = { 1924 .offs = AT91SAM9N12_MATRIX_EBICSA, 1925 }; 1926 1927 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = { 1928 .offs = AT91SAM9X5_MATRIX_EBICSA, 1929 }; 1930 1931 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = { 1932 .offs = AT91_SFR_CCFG_EBICSA, 1933 .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16, 1934 }; 1935 1936 static const struct of_device_id atmel_ebi_csa_regmap_of_ids[] = { 1937 { 1938 .compatible = "atmel,at91sam9260-matrix", 1939 .data = &at91sam9260_ebi_csa, 1940 }, 1941 { 1942 .compatible = "atmel,at91sam9261-matrix", 1943 .data = &at91sam9261_ebi_csa, 1944 }, 1945 { 1946 .compatible = "atmel,at91sam9263-matrix", 1947 .data = &at91sam9263_ebi_csa, 1948 }, 1949 { 1950 .compatible = "atmel,at91sam9rl-matrix", 1951 .data = &at91sam9rl_ebi_csa, 1952 }, 1953 { 1954 .compatible = "atmel,at91sam9g45-matrix", 1955 .data = &at91sam9g45_ebi_csa, 1956 }, 1957 { 1958 .compatible = "atmel,at91sam9n12-matrix", 1959 .data = &at91sam9n12_ebi_csa, 1960 }, 1961 { 1962 .compatible = "atmel,at91sam9x5-matrix", 1963 .data = &at91sam9x5_ebi_csa, 1964 }, 1965 { 1966 .compatible = "microchip,sam9x60-sfr", 1967 .data = &sam9x60_ebi_csa, 1968 }, 1969 { /* sentinel */ }, 1970 }; 1971 1972 static int atmel_nand_attach_chip(struct nand_chip *chip) 1973 { 1974 struct atmel_nand_controller *nc = to_nand_controller(chip->controller); 1975 struct atmel_nand *nand = to_atmel_nand(chip); 1976 struct mtd_info *mtd = nand_to_mtd(chip); 1977 int ret; 1978 1979 ret = nc->caps->ops->ecc_init(chip); 1980 if (ret) 1981 return ret; 1982 1983 if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { 1984 /* 1985 * We keep the MTD name unchanged to avoid breaking platforms 1986 * where the MTD cmdline parser is used and the bootloader 1987 * has not been updated to use the new naming scheme. 1988 */ 1989 mtd->name = "atmel_nand"; 1990 } else if (!mtd->name) { 1991 /* 1992 * If the new bindings are used and the bootloader has not been 1993 * updated to pass a new mtdparts parameter on the cmdline, you 1994 * should define the following property in your nand node: 1995 * 1996 * label = "atmel_nand"; 1997 * 1998 * This way, mtd->name will be set by the core when 1999 * nand_set_flash_node() is called. 2000 */ 2001 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, 2002 "%s:nand.%d", dev_name(nc->dev), 2003 nand->cs[0].id); 2004 if (!mtd->name) { 2005 dev_err(nc->dev, "Failed to allocate mtd->name\n"); 2006 return -ENOMEM; 2007 } 2008 } 2009 2010 return 0; 2011 } 2012 2013 static const struct nand_controller_ops atmel_nand_controller_ops = { 2014 .attach_chip = atmel_nand_attach_chip, 2015 .setup_interface = atmel_nand_setup_interface, 2016 .exec_op = atmel_nand_exec_op, 2017 }; 2018 2019 static int atmel_nand_controller_init(struct atmel_nand_controller *nc, 2020 struct platform_device *pdev, 2021 const struct atmel_nand_controller_caps *caps) 2022 { 2023 struct device *dev = &pdev->dev; 2024 struct device_node *np = dev->of_node; 2025 int ret; 2026 2027 nand_controller_init(&nc->base); 2028 nc->base.ops = &atmel_nand_controller_ops; 2029 INIT_LIST_HEAD(&nc->chips); 2030 nc->dev = dev; 2031 nc->caps = caps; 2032 2033 platform_set_drvdata(pdev, nc); 2034 2035 nc->pmecc = devm_atmel_pmecc_get(dev); 2036 if (IS_ERR(nc->pmecc)) 2037 return dev_err_probe(dev, PTR_ERR(nc->pmecc), 2038 "Could not get PMECC object\n"); 2039 2040 if (nc->caps->has_dma && !atmel_nand_avoid_dma) { 2041 dma_cap_mask_t mask; 2042 2043 dma_cap_zero(mask); 2044 dma_cap_set(DMA_MEMCPY, mask); 2045 2046 nc->dmac = dma_request_channel(mask, NULL, NULL); 2047 if (!nc->dmac) 2048 dev_err(nc->dev, "Failed to request DMA channel\n"); 2049 } 2050 2051 /* We do not retrieve the SMC syscon when parsing old DTs. */ 2052 if (nc->caps->legacy_of_bindings) 2053 return 0; 2054 2055 nc->mck = of_clk_get(dev->parent->of_node, 0); 2056 if (IS_ERR(nc->mck)) { 2057 dev_err(dev, "Failed to retrieve MCK clk\n"); 2058 return PTR_ERR(nc->mck); 2059 } 2060 2061 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2062 if (!np) { 2063 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2064 return -EINVAL; 2065 } 2066 2067 nc->smc = syscon_node_to_regmap(np); 2068 of_node_put(np); 2069 if (IS_ERR(nc->smc)) { 2070 ret = PTR_ERR(nc->smc); 2071 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); 2072 return ret; 2073 } 2074 2075 return 0; 2076 } 2077 2078 static int 2079 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) 2080 { 2081 struct device *dev = nc->base.dev; 2082 const struct of_device_id *match; 2083 struct device_node *np; 2084 int ret; 2085 2086 /* We do not retrieve the EBICSA regmap when parsing old DTs. */ 2087 if (nc->base.caps->legacy_of_bindings) 2088 return 0; 2089 2090 np = of_parse_phandle(dev->parent->of_node, 2091 nc->base.caps->ebi_csa_regmap_name, 0); 2092 if (!np) 2093 return 0; 2094 2095 match = of_match_node(atmel_ebi_csa_regmap_of_ids, np); 2096 if (!match) { 2097 of_node_put(np); 2098 return 0; 2099 } 2100 2101 nc->ebi_csa_regmap = syscon_node_to_regmap(np); 2102 of_node_put(np); 2103 if (IS_ERR(nc->ebi_csa_regmap)) { 2104 ret = PTR_ERR(nc->ebi_csa_regmap); 2105 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret); 2106 return ret; 2107 } 2108 2109 nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data; 2110 2111 /* 2112 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 2113 * add 4 to ->ebi_csa->offs. 2114 */ 2115 if (of_device_is_compatible(dev->parent->of_node, 2116 "atmel,at91sam9263-ebi1")) 2117 nc->ebi_csa->offs += 4; 2118 2119 return 0; 2120 } 2121 2122 static int 2123 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) 2124 { 2125 struct regmap_config regmap_conf = { 2126 .reg_bits = 32, 2127 .val_bits = 32, 2128 .reg_stride = 4, 2129 }; 2130 2131 struct device *dev = nc->base.dev; 2132 struct device_node *nand_np, *nfc_np; 2133 void __iomem *iomem; 2134 struct resource res; 2135 int ret; 2136 2137 nand_np = dev->of_node; 2138 nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc"); 2139 if (!nfc_np) { 2140 dev_err(dev, "Could not find device node for sama5d3-nfc\n"); 2141 return -ENODEV; 2142 } 2143 2144 nc->clk = of_clk_get(nfc_np, 0); 2145 if (IS_ERR(nc->clk)) { 2146 ret = PTR_ERR(nc->clk); 2147 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", 2148 ret); 2149 goto out; 2150 } 2151 2152 ret = clk_prepare_enable(nc->clk); 2153 if (ret) { 2154 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", 2155 ret); 2156 goto out; 2157 } 2158 2159 nc->irq = of_irq_get(nand_np, 0); 2160 if (nc->irq <= 0) { 2161 ret = nc->irq ?: -ENXIO; 2162 if (ret != -EPROBE_DEFER) 2163 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2164 ret); 2165 goto out; 2166 } 2167 2168 ret = of_address_to_resource(nfc_np, 0, &res); 2169 if (ret) { 2170 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", 2171 ret); 2172 goto out; 2173 } 2174 2175 iomem = devm_ioremap_resource(dev, &res); 2176 if (IS_ERR(iomem)) { 2177 ret = PTR_ERR(iomem); 2178 goto out; 2179 } 2180 2181 regmap_conf.name = "nfc-io"; 2182 regmap_conf.max_register = resource_size(&res) - 4; 2183 nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2184 if (IS_ERR(nc->io)) { 2185 ret = PTR_ERR(nc->io); 2186 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2187 ret); 2188 goto out; 2189 } 2190 2191 ret = of_address_to_resource(nfc_np, 1, &res); 2192 if (ret) { 2193 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", 2194 ret); 2195 goto out; 2196 } 2197 2198 iomem = devm_ioremap_resource(dev, &res); 2199 if (IS_ERR(iomem)) { 2200 ret = PTR_ERR(iomem); 2201 goto out; 2202 } 2203 2204 regmap_conf.name = "smc"; 2205 regmap_conf.max_register = resource_size(&res) - 4; 2206 nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); 2207 if (IS_ERR(nc->base.smc)) { 2208 ret = PTR_ERR(nc->base.smc); 2209 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", 2210 ret); 2211 goto out; 2212 } 2213 2214 ret = of_address_to_resource(nfc_np, 2, &res); 2215 if (ret) { 2216 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", 2217 ret); 2218 goto out; 2219 } 2220 2221 nc->sram.virt = devm_ioremap_resource(dev, &res); 2222 if (IS_ERR(nc->sram.virt)) { 2223 ret = PTR_ERR(nc->sram.virt); 2224 goto out; 2225 } 2226 2227 nc->sram.dma = res.start; 2228 2229 out: 2230 of_node_put(nfc_np); 2231 2232 return ret; 2233 } 2234 2235 static int 2236 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) 2237 { 2238 struct device *dev = nc->base.dev; 2239 struct device_node *np; 2240 int ret; 2241 2242 np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); 2243 if (!np) { 2244 dev_err(dev, "Missing or invalid atmel,smc property\n"); 2245 return -EINVAL; 2246 } 2247 2248 nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); 2249 2250 nc->irq = of_irq_get(np, 0); 2251 of_node_put(np); 2252 if (nc->irq <= 0) { 2253 ret = nc->irq ?: -ENXIO; 2254 if (ret != -EPROBE_DEFER) 2255 dev_err(dev, "Failed to get IRQ number (err = %d)\n", 2256 ret); 2257 return ret; 2258 } 2259 2260 np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); 2261 if (!np) { 2262 dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); 2263 return -EINVAL; 2264 } 2265 2266 nc->io = syscon_node_to_regmap(np); 2267 of_node_put(np); 2268 if (IS_ERR(nc->io)) { 2269 ret = PTR_ERR(nc->io); 2270 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); 2271 return ret; 2272 } 2273 2274 nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, 2275 "atmel,nfc-sram", 0); 2276 if (!nc->sram.pool) { 2277 dev_err(nc->base.dev, "Missing SRAM\n"); 2278 return -ENOMEM; 2279 } 2280 2281 nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool, 2282 ATMEL_NFC_SRAM_SIZE, 2283 &nc->sram.dma); 2284 if (!nc->sram.virt) { 2285 dev_err(nc->base.dev, 2286 "Could not allocate memory from the NFC SRAM pool\n"); 2287 return -ENOMEM; 2288 } 2289 2290 return 0; 2291 } 2292 2293 static int 2294 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) 2295 { 2296 struct atmel_hsmc_nand_controller *hsmc_nc; 2297 int ret; 2298 2299 ret = atmel_nand_controller_remove_nands(nc); 2300 if (ret) 2301 return ret; 2302 2303 hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); 2304 regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL, 2305 ATMEL_HSMC_NFC_CTRL_DIS); 2306 2307 if (hsmc_nc->sram.pool) 2308 gen_pool_free(hsmc_nc->sram.pool, 2309 (unsigned long)hsmc_nc->sram.virt, 2310 ATMEL_NFC_SRAM_SIZE); 2311 2312 if (hsmc_nc->clk) { 2313 clk_disable_unprepare(hsmc_nc->clk); 2314 clk_put(hsmc_nc->clk); 2315 } 2316 2317 atmel_nand_controller_cleanup(nc); 2318 2319 return 0; 2320 } 2321 2322 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, 2323 const struct atmel_nand_controller_caps *caps) 2324 { 2325 struct device *dev = &pdev->dev; 2326 struct atmel_hsmc_nand_controller *nc; 2327 int ret; 2328 2329 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2330 if (!nc) 2331 return -ENOMEM; 2332 2333 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2334 if (ret) 2335 return ret; 2336 2337 if (caps->legacy_of_bindings) 2338 ret = atmel_hsmc_nand_controller_legacy_init(nc); 2339 else 2340 ret = atmel_hsmc_nand_controller_init(nc); 2341 2342 if (ret) 2343 return ret; 2344 2345 /* Make sure all irqs are masked before registering our IRQ handler. */ 2346 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); 2347 ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, 2348 IRQF_SHARED, "nfc", nc); 2349 if (ret) { 2350 dev_err(dev, 2351 "Could not get register NFC interrupt handler (err = %d)\n", 2352 ret); 2353 goto err; 2354 } 2355 2356 /* Initial NFC configuration. */ 2357 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, 2358 ATMEL_HSMC_NFC_CFG_DTO_MAX); 2359 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, 2360 ATMEL_HSMC_NFC_CTRL_EN); 2361 2362 ret = atmel_nand_controller_add_nands(&nc->base); 2363 if (ret) 2364 goto err; 2365 2366 return 0; 2367 2368 err: 2369 atmel_hsmc_nand_controller_remove(&nc->base); 2370 2371 return ret; 2372 } 2373 2374 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { 2375 .probe = atmel_hsmc_nand_controller_probe, 2376 .remove = atmel_hsmc_nand_controller_remove, 2377 .ecc_init = atmel_hsmc_nand_ecc_init, 2378 .nand_init = atmel_nand_init, 2379 .setup_interface = atmel_hsmc_nand_setup_interface, 2380 .exec_op = atmel_hsmc_nand_exec_op, 2381 }; 2382 2383 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { 2384 .has_dma = true, 2385 .ale_offs = BIT(21), 2386 .cle_offs = BIT(22), 2387 .ops = &atmel_hsmc_nc_ops, 2388 }; 2389 2390 /* Only used to parse old bindings. */ 2391 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { 2392 .has_dma = true, 2393 .ale_offs = BIT(21), 2394 .cle_offs = BIT(22), 2395 .ops = &atmel_hsmc_nc_ops, 2396 .legacy_of_bindings = true, 2397 }; 2398 2399 static int atmel_smc_nand_controller_probe(struct platform_device *pdev, 2400 const struct atmel_nand_controller_caps *caps) 2401 { 2402 struct device *dev = &pdev->dev; 2403 struct atmel_smc_nand_controller *nc; 2404 int ret; 2405 2406 nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); 2407 if (!nc) 2408 return -ENOMEM; 2409 2410 ret = atmel_nand_controller_init(&nc->base, pdev, caps); 2411 if (ret) 2412 return ret; 2413 2414 ret = atmel_smc_nand_controller_init(nc); 2415 if (ret) 2416 return ret; 2417 2418 return atmel_nand_controller_add_nands(&nc->base); 2419 } 2420 2421 static int 2422 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) 2423 { 2424 int ret; 2425 2426 ret = atmel_nand_controller_remove_nands(nc); 2427 if (ret) 2428 return ret; 2429 2430 atmel_nand_controller_cleanup(nc); 2431 2432 return 0; 2433 } 2434 2435 /* 2436 * The SMC reg layout of at91rm9200 is completely different which prevents us 2437 * from re-using atmel_smc_nand_setup_interface() for the 2438 * ->setup_interface() hook. 2439 * At this point, there's no support for the at91rm9200 SMC IP, so we leave 2440 * ->setup_interface() unassigned. 2441 */ 2442 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { 2443 .probe = atmel_smc_nand_controller_probe, 2444 .remove = atmel_smc_nand_controller_remove, 2445 .ecc_init = atmel_nand_ecc_init, 2446 .nand_init = atmel_smc_nand_init, 2447 .exec_op = atmel_smc_nand_exec_op, 2448 }; 2449 2450 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { 2451 .ale_offs = BIT(21), 2452 .cle_offs = BIT(22), 2453 .ebi_csa_regmap_name = "atmel,matrix", 2454 .ops = &at91rm9200_nc_ops, 2455 }; 2456 2457 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { 2458 .probe = atmel_smc_nand_controller_probe, 2459 .remove = atmel_smc_nand_controller_remove, 2460 .ecc_init = atmel_nand_ecc_init, 2461 .nand_init = atmel_smc_nand_init, 2462 .setup_interface = atmel_smc_nand_setup_interface, 2463 .exec_op = atmel_smc_nand_exec_op, 2464 }; 2465 2466 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { 2467 .ale_offs = BIT(21), 2468 .cle_offs = BIT(22), 2469 .ebi_csa_regmap_name = "atmel,matrix", 2470 .ops = &atmel_smc_nc_ops, 2471 }; 2472 2473 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { 2474 .ale_offs = BIT(22), 2475 .cle_offs = BIT(21), 2476 .ebi_csa_regmap_name = "atmel,matrix", 2477 .ops = &atmel_smc_nc_ops, 2478 }; 2479 2480 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { 2481 .has_dma = true, 2482 .ale_offs = BIT(21), 2483 .cle_offs = BIT(22), 2484 .ebi_csa_regmap_name = "atmel,matrix", 2485 .ops = &atmel_smc_nc_ops, 2486 }; 2487 2488 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = { 2489 .has_dma = true, 2490 .ale_offs = BIT(21), 2491 .cle_offs = BIT(22), 2492 .ebi_csa_regmap_name = "microchip,sfr", 2493 .ops = &atmel_smc_nc_ops, 2494 }; 2495 2496 /* Only used to parse old bindings. */ 2497 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { 2498 .ale_offs = BIT(21), 2499 .cle_offs = BIT(22), 2500 .ops = &atmel_smc_nc_ops, 2501 .legacy_of_bindings = true, 2502 }; 2503 2504 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { 2505 .ale_offs = BIT(22), 2506 .cle_offs = BIT(21), 2507 .ops = &atmel_smc_nc_ops, 2508 .legacy_of_bindings = true, 2509 }; 2510 2511 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { 2512 .has_dma = true, 2513 .ale_offs = BIT(21), 2514 .cle_offs = BIT(22), 2515 .ops = &atmel_smc_nc_ops, 2516 .legacy_of_bindings = true, 2517 }; 2518 2519 static const struct of_device_id atmel_nand_controller_of_ids[] = { 2520 { 2521 .compatible = "atmel,at91rm9200-nand-controller", 2522 .data = &atmel_rm9200_nc_caps, 2523 }, 2524 { 2525 .compatible = "atmel,at91sam9260-nand-controller", 2526 .data = &atmel_sam9260_nc_caps, 2527 }, 2528 { 2529 .compatible = "atmel,at91sam9261-nand-controller", 2530 .data = &atmel_sam9261_nc_caps, 2531 }, 2532 { 2533 .compatible = "atmel,at91sam9g45-nand-controller", 2534 .data = &atmel_sam9g45_nc_caps, 2535 }, 2536 { 2537 .compatible = "atmel,sama5d3-nand-controller", 2538 .data = &atmel_sama5_nc_caps, 2539 }, 2540 { 2541 .compatible = "microchip,sam9x60-nand-controller", 2542 .data = µchip_sam9x60_nc_caps, 2543 }, 2544 /* Support for old/deprecated bindings: */ 2545 { 2546 .compatible = "atmel,at91rm9200-nand", 2547 .data = &atmel_rm9200_nand_caps, 2548 }, 2549 { 2550 .compatible = "atmel,sama5d4-nand", 2551 .data = &atmel_rm9200_nand_caps, 2552 }, 2553 { 2554 .compatible = "atmel,sama5d2-nand", 2555 .data = &atmel_rm9200_nand_caps, 2556 }, 2557 { /* sentinel */ }, 2558 }; 2559 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); 2560 2561 static int atmel_nand_controller_probe(struct platform_device *pdev) 2562 { 2563 const struct atmel_nand_controller_caps *caps; 2564 2565 if (pdev->id_entry) 2566 caps = (void *)pdev->id_entry->driver_data; 2567 else 2568 caps = of_device_get_match_data(&pdev->dev); 2569 2570 if (!caps) { 2571 dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); 2572 return -EINVAL; 2573 } 2574 2575 if (caps->legacy_of_bindings) { 2576 struct device_node *nfc_node; 2577 u32 ale_offs = 21; 2578 2579 /* 2580 * If we are parsing legacy DT props and the DT contains a 2581 * valid NFC node, forward the request to the sama5 logic. 2582 */ 2583 nfc_node = of_get_compatible_child(pdev->dev.of_node, 2584 "atmel,sama5d3-nfc"); 2585 if (nfc_node) { 2586 caps = &atmel_sama5_nand_caps; 2587 of_node_put(nfc_node); 2588 } 2589 2590 /* 2591 * Even if the compatible says we are dealing with an 2592 * at91rm9200 controller, the atmel,nand-has-dma specify that 2593 * this controller supports DMA, which means we are in fact 2594 * dealing with an at91sam9g45+ controller. 2595 */ 2596 if (!caps->has_dma && 2597 of_property_read_bool(pdev->dev.of_node, 2598 "atmel,nand-has-dma")) 2599 caps = &atmel_sam9g45_nand_caps; 2600 2601 /* 2602 * All SoCs except the at91sam9261 are assigning ALE to A21 and 2603 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're 2604 * actually dealing with an at91sam9261 controller. 2605 */ 2606 of_property_read_u32(pdev->dev.of_node, 2607 "atmel,nand-addr-offset", &ale_offs); 2608 if (ale_offs != 21) 2609 caps = &atmel_sam9261_nand_caps; 2610 } 2611 2612 return caps->ops->probe(pdev, caps); 2613 } 2614 2615 static int atmel_nand_controller_remove(struct platform_device *pdev) 2616 { 2617 struct atmel_nand_controller *nc = platform_get_drvdata(pdev); 2618 2619 return nc->caps->ops->remove(nc); 2620 } 2621 2622 static __maybe_unused int atmel_nand_controller_resume(struct device *dev) 2623 { 2624 struct atmel_nand_controller *nc = dev_get_drvdata(dev); 2625 struct atmel_nand *nand; 2626 2627 if (nc->pmecc) 2628 atmel_pmecc_reset(nc->pmecc); 2629 2630 list_for_each_entry(nand, &nc->chips, node) { 2631 int i; 2632 2633 for (i = 0; i < nand->numcs; i++) 2634 nand_reset(&nand->base, i); 2635 } 2636 2637 return 0; 2638 } 2639 2640 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, 2641 atmel_nand_controller_resume); 2642 2643 static struct platform_driver atmel_nand_controller_driver = { 2644 .driver = { 2645 .name = "atmel-nand-controller", 2646 .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), 2647 .pm = &atmel_nand_controller_pm_ops, 2648 }, 2649 .probe = atmel_nand_controller_probe, 2650 .remove = atmel_nand_controller_remove, 2651 }; 2652 module_platform_driver(atmel_nand_controller_driver); 2653 2654 MODULE_LICENSE("GPL"); 2655 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>"); 2656 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); 2657 MODULE_ALIAS("platform:atmel-nand-controller"); 2658