xref: /openbmc/linux/drivers/mtd/nand/raw/atmel/nand-controller.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright 2017 ATMEL
3  * Copyright 2017 Free Electrons
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  *
7  * Derived from the atmel_nand.c driver which contained the following
8  * copyrights:
9  *
10  *   Copyright 2003 Rick Bronson
11  *
12  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
13  *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
14  *
15  *   Derived from drivers/mtd/spia.c (removed in v3.8)
16  *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
17  *
18  *
19  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20  *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21  *
22  *   Derived from Das U-Boot source code
23  *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24  *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25  *
26  *   Add Programmable Multibit ECC support for various AT91 SoC
27  *	Copyright 2012 ATMEL, Hong Xu
28  *
29  *   Add Nand Flash Controller support for SAMA5 SoC
30  *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31  *
32  * This program is free software; you can redistribute it and/or modify
33  * it under the terms of the GNU General Public License version 2 as
34  * published by the Free Software Foundation.
35  *
36  * A few words about the naming convention in this file. This convention
37  * applies to structure and function names.
38  *
39  * Prefixes:
40  *
41  * - atmel_nand_: all generic structures/functions
42  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
43  *		      (at91sam9 and avr32 SoCs)
44  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
45  *		       (sama5 SoCs and later)
46  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
47  *		 that is available in the HSMC block
48  * - <soc>_nand_: all SoC specific structures/functions
49  */
50 
51 #include <linux/clk.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/dmaengine.h>
54 #include <linux/genalloc.h>
55 #include <linux/gpio/consumer.h>
56 #include <linux/interrupt.h>
57 #include <linux/mfd/syscon.h>
58 #include <linux/mfd/syscon/atmel-matrix.h>
59 #include <linux/mfd/syscon/atmel-smc.h>
60 #include <linux/module.h>
61 #include <linux/mtd/rawnand.h>
62 #include <linux/of_address.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_platform.h>
65 #include <linux/iopoll.h>
66 #include <linux/platform_device.h>
67 #include <linux/regmap.h>
68 
69 #include "pmecc.h"
70 
71 #define ATMEL_HSMC_NFC_CFG			0x0
72 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
73 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
74 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
75 #define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
76 #define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
77 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
78 #define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
79 #define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
80 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
81 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
82 
83 #define ATMEL_HSMC_NFC_CTRL			0x4
84 #define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
85 #define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
86 
87 #define ATMEL_HSMC_NFC_SR			0x8
88 #define ATMEL_HSMC_NFC_IER			0xc
89 #define ATMEL_HSMC_NFC_IDR			0x10
90 #define ATMEL_HSMC_NFC_IMR			0x14
91 #define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
92 #define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
93 #define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
94 #define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
95 #define ATMEL_HSMC_NFC_SR_WR			BIT(11)
96 #define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
97 #define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
98 #define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
99 #define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
100 #define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
101 #define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
102 #define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
103 #define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
104 						 ATMEL_HSMC_NFC_SR_UNDEF | \
105 						 ATMEL_HSMC_NFC_SR_AWB | \
106 						 ATMEL_HSMC_NFC_SR_NFCASE)
107 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
108 
109 #define ATMEL_HSMC_NFC_ADDR			0x18
110 #define ATMEL_HSMC_NFC_BANK			0x1c
111 
112 #define ATMEL_NFC_MAX_RB_ID			7
113 
114 #define ATMEL_NFC_SRAM_SIZE			0x2400
115 
116 #define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
117 #define ATMEL_NFC_VCMD2				BIT(18)
118 #define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
119 #define ATMEL_NFC_CSID(cs)			((cs) << 22)
120 #define ATMEL_NFC_DATAEN			BIT(25)
121 #define ATMEL_NFC_NFCWR				BIT(26)
122 
123 #define ATMEL_NFC_MAX_ADDR_CYCLES		5
124 
125 #define ATMEL_NAND_ALE_OFFSET			BIT(21)
126 #define ATMEL_NAND_CLE_OFFSET			BIT(22)
127 
128 #define DEFAULT_TIMEOUT_MS			1000
129 #define MIN_DMA_LEN				128
130 
131 static bool atmel_nand_avoid_dma __read_mostly;
132 
133 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
134 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
135 
136 enum atmel_nand_rb_type {
137 	ATMEL_NAND_NO_RB,
138 	ATMEL_NAND_NATIVE_RB,
139 	ATMEL_NAND_GPIO_RB,
140 };
141 
142 struct atmel_nand_rb {
143 	enum atmel_nand_rb_type type;
144 	union {
145 		struct gpio_desc *gpio;
146 		int id;
147 	};
148 };
149 
150 struct atmel_nand_cs {
151 	int id;
152 	struct atmel_nand_rb rb;
153 	struct gpio_desc *csgpio;
154 	struct {
155 		void __iomem *virt;
156 		dma_addr_t dma;
157 	} io;
158 
159 	struct atmel_smc_cs_conf smcconf;
160 };
161 
162 struct atmel_nand {
163 	struct list_head node;
164 	struct device *dev;
165 	struct nand_chip base;
166 	struct atmel_nand_cs *activecs;
167 	struct atmel_pmecc_user *pmecc;
168 	struct gpio_desc *cdgpio;
169 	int numcs;
170 	struct atmel_nand_cs cs[];
171 };
172 
173 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
174 {
175 	return container_of(chip, struct atmel_nand, base);
176 }
177 
178 enum atmel_nfc_data_xfer {
179 	ATMEL_NFC_NO_DATA,
180 	ATMEL_NFC_READ_DATA,
181 	ATMEL_NFC_WRITE_DATA,
182 };
183 
184 struct atmel_nfc_op {
185 	u8 cs;
186 	u8 ncmds;
187 	u8 cmds[2];
188 	u8 naddrs;
189 	u8 addrs[5];
190 	enum atmel_nfc_data_xfer data;
191 	u32 wait;
192 	u32 errors;
193 };
194 
195 struct atmel_nand_controller;
196 struct atmel_nand_controller_caps;
197 
198 struct atmel_nand_controller_ops {
199 	int (*probe)(struct platform_device *pdev,
200 		     const struct atmel_nand_controller_caps *caps);
201 	int (*remove)(struct atmel_nand_controller *nc);
202 	void (*nand_init)(struct atmel_nand_controller *nc,
203 			  struct atmel_nand *nand);
204 	int (*ecc_init)(struct nand_chip *chip);
205 	int (*setup_data_interface)(struct atmel_nand *nand, int csline,
206 				    const struct nand_data_interface *conf);
207 };
208 
209 struct atmel_nand_controller_caps {
210 	bool has_dma;
211 	bool legacy_of_bindings;
212 	u32 ale_offs;
213 	u32 cle_offs;
214 	const struct atmel_nand_controller_ops *ops;
215 };
216 
217 struct atmel_nand_controller {
218 	struct nand_controller base;
219 	const struct atmel_nand_controller_caps *caps;
220 	struct device *dev;
221 	struct regmap *smc;
222 	struct dma_chan *dmac;
223 	struct atmel_pmecc *pmecc;
224 	struct list_head chips;
225 	struct clk *mck;
226 };
227 
228 static inline struct atmel_nand_controller *
229 to_nand_controller(struct nand_controller *ctl)
230 {
231 	return container_of(ctl, struct atmel_nand_controller, base);
232 }
233 
234 struct atmel_smc_nand_controller {
235 	struct atmel_nand_controller base;
236 	struct regmap *matrix;
237 	unsigned int ebi_csa_offs;
238 };
239 
240 static inline struct atmel_smc_nand_controller *
241 to_smc_nand_controller(struct nand_controller *ctl)
242 {
243 	return container_of(to_nand_controller(ctl),
244 			    struct atmel_smc_nand_controller, base);
245 }
246 
247 struct atmel_hsmc_nand_controller {
248 	struct atmel_nand_controller base;
249 	struct {
250 		struct gen_pool *pool;
251 		void __iomem *virt;
252 		dma_addr_t dma;
253 	} sram;
254 	const struct atmel_hsmc_reg_layout *hsmc_layout;
255 	struct regmap *io;
256 	struct atmel_nfc_op op;
257 	struct completion complete;
258 	int irq;
259 
260 	/* Only used when instantiating from legacy DT bindings. */
261 	struct clk *clk;
262 };
263 
264 static inline struct atmel_hsmc_nand_controller *
265 to_hsmc_nand_controller(struct nand_controller *ctl)
266 {
267 	return container_of(to_nand_controller(ctl),
268 			    struct atmel_hsmc_nand_controller, base);
269 }
270 
271 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
272 {
273 	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
274 	op->wait ^= status & op->wait;
275 
276 	return !op->wait || op->errors;
277 }
278 
279 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
280 {
281 	struct atmel_hsmc_nand_controller *nc = data;
282 	u32 sr, rcvd;
283 	bool done;
284 
285 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
286 
287 	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
288 	done = atmel_nfc_op_done(&nc->op, sr);
289 
290 	if (rcvd)
291 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
292 
293 	if (done)
294 		complete(&nc->complete);
295 
296 	return rcvd ? IRQ_HANDLED : IRQ_NONE;
297 }
298 
299 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
300 			  unsigned int timeout_ms)
301 {
302 	int ret;
303 
304 	if (!timeout_ms)
305 		timeout_ms = DEFAULT_TIMEOUT_MS;
306 
307 	if (poll) {
308 		u32 status;
309 
310 		ret = regmap_read_poll_timeout(nc->base.smc,
311 					       ATMEL_HSMC_NFC_SR, status,
312 					       atmel_nfc_op_done(&nc->op,
313 								 status),
314 					       0, timeout_ms * 1000);
315 	} else {
316 		init_completion(&nc->complete);
317 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
318 			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
319 		ret = wait_for_completion_timeout(&nc->complete,
320 						msecs_to_jiffies(timeout_ms));
321 		if (!ret)
322 			ret = -ETIMEDOUT;
323 		else
324 			ret = 0;
325 
326 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
327 	}
328 
329 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
330 		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
331 		ret = -ETIMEDOUT;
332 	}
333 
334 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
335 		dev_err(nc->base.dev, "Access to an undefined area\n");
336 		ret = -EIO;
337 	}
338 
339 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
340 		dev_err(nc->base.dev, "Access while busy\n");
341 		ret = -EIO;
342 	}
343 
344 	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
345 		dev_err(nc->base.dev, "Wrong access size\n");
346 		ret = -EIO;
347 	}
348 
349 	return ret;
350 }
351 
352 static void atmel_nand_dma_transfer_finished(void *data)
353 {
354 	struct completion *finished = data;
355 
356 	complete(finished);
357 }
358 
359 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
360 				   void *buf, dma_addr_t dev_dma, size_t len,
361 				   enum dma_data_direction dir)
362 {
363 	DECLARE_COMPLETION_ONSTACK(finished);
364 	dma_addr_t src_dma, dst_dma, buf_dma;
365 	struct dma_async_tx_descriptor *tx;
366 	dma_cookie_t cookie;
367 
368 	buf_dma = dma_map_single(nc->dev, buf, len, dir);
369 	if (dma_mapping_error(nc->dev, dev_dma)) {
370 		dev_err(nc->dev,
371 			"Failed to prepare a buffer for DMA access\n");
372 		goto err;
373 	}
374 
375 	if (dir == DMA_FROM_DEVICE) {
376 		src_dma = dev_dma;
377 		dst_dma = buf_dma;
378 	} else {
379 		src_dma = buf_dma;
380 		dst_dma = dev_dma;
381 	}
382 
383 	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
384 				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
385 	if (!tx) {
386 		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
387 		goto err_unmap;
388 	}
389 
390 	tx->callback = atmel_nand_dma_transfer_finished;
391 	tx->callback_param = &finished;
392 
393 	cookie = dmaengine_submit(tx);
394 	if (dma_submit_error(cookie)) {
395 		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
396 		goto err_unmap;
397 	}
398 
399 	dma_async_issue_pending(nc->dmac);
400 	wait_for_completion(&finished);
401 
402 	return 0;
403 
404 err_unmap:
405 	dma_unmap_single(nc->dev, buf_dma, len, dir);
406 
407 err:
408 	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
409 
410 	return -EIO;
411 }
412 
413 static u8 atmel_nand_read_byte(struct mtd_info *mtd)
414 {
415 	struct nand_chip *chip = mtd_to_nand(mtd);
416 	struct atmel_nand *nand = to_atmel_nand(chip);
417 
418 	return ioread8(nand->activecs->io.virt);
419 }
420 
421 static u16 atmel_nand_read_word(struct mtd_info *mtd)
422 {
423 	struct nand_chip *chip = mtd_to_nand(mtd);
424 	struct atmel_nand *nand = to_atmel_nand(chip);
425 
426 	return ioread16(nand->activecs->io.virt);
427 }
428 
429 static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
430 {
431 	struct nand_chip *chip = mtd_to_nand(mtd);
432 	struct atmel_nand *nand = to_atmel_nand(chip);
433 
434 	if (chip->options & NAND_BUSWIDTH_16)
435 		iowrite16(byte | (byte << 8), nand->activecs->io.virt);
436 	else
437 		iowrite8(byte, nand->activecs->io.virt);
438 }
439 
440 static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
441 {
442 	struct nand_chip *chip = mtd_to_nand(mtd);
443 	struct atmel_nand *nand = to_atmel_nand(chip);
444 	struct atmel_nand_controller *nc;
445 
446 	nc = to_nand_controller(chip->controller);
447 
448 	/*
449 	 * If the controller supports DMA, the buffer address is DMA-able and
450 	 * len is long enough to make DMA transfers profitable, let's trigger
451 	 * a DMA transfer. If it fails, fallback to PIO mode.
452 	 */
453 	if (nc->dmac && virt_addr_valid(buf) &&
454 	    len >= MIN_DMA_LEN &&
455 	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
456 				     DMA_FROM_DEVICE))
457 		return;
458 
459 	if (chip->options & NAND_BUSWIDTH_16)
460 		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
461 	else
462 		ioread8_rep(nand->activecs->io.virt, buf, len);
463 }
464 
465 static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
466 {
467 	struct nand_chip *chip = mtd_to_nand(mtd);
468 	struct atmel_nand *nand = to_atmel_nand(chip);
469 	struct atmel_nand_controller *nc;
470 
471 	nc = to_nand_controller(chip->controller);
472 
473 	/*
474 	 * If the controller supports DMA, the buffer address is DMA-able and
475 	 * len is long enough to make DMA transfers profitable, let's trigger
476 	 * a DMA transfer. If it fails, fallback to PIO mode.
477 	 */
478 	if (nc->dmac && virt_addr_valid(buf) &&
479 	    len >= MIN_DMA_LEN &&
480 	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
481 				     len, DMA_TO_DEVICE))
482 		return;
483 
484 	if (chip->options & NAND_BUSWIDTH_16)
485 		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
486 	else
487 		iowrite8_rep(nand->activecs->io.virt, buf, len);
488 }
489 
490 static int atmel_nand_dev_ready(struct mtd_info *mtd)
491 {
492 	struct nand_chip *chip = mtd_to_nand(mtd);
493 	struct atmel_nand *nand = to_atmel_nand(chip);
494 
495 	return gpiod_get_value(nand->activecs->rb.gpio);
496 }
497 
498 static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
499 {
500 	struct nand_chip *chip = mtd_to_nand(mtd);
501 	struct atmel_nand *nand = to_atmel_nand(chip);
502 
503 	if (cs < 0 || cs >= nand->numcs) {
504 		nand->activecs = NULL;
505 		chip->dev_ready = NULL;
506 		return;
507 	}
508 
509 	nand->activecs = &nand->cs[cs];
510 
511 	if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
512 		chip->dev_ready = atmel_nand_dev_ready;
513 }
514 
515 static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
516 {
517 	struct nand_chip *chip = mtd_to_nand(mtd);
518 	struct atmel_nand *nand = to_atmel_nand(chip);
519 	struct atmel_hsmc_nand_controller *nc;
520 	u32 status;
521 
522 	nc = to_hsmc_nand_controller(chip->controller);
523 
524 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
525 
526 	return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
527 }
528 
529 static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
530 {
531 	struct nand_chip *chip = mtd_to_nand(mtd);
532 	struct atmel_nand *nand = to_atmel_nand(chip);
533 	struct atmel_hsmc_nand_controller *nc;
534 
535 	nc = to_hsmc_nand_controller(chip->controller);
536 
537 	atmel_nand_select_chip(mtd, cs);
538 
539 	if (!nand->activecs) {
540 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
541 			     ATMEL_HSMC_NFC_CTRL_DIS);
542 		return;
543 	}
544 
545 	if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
546 		chip->dev_ready = atmel_hsmc_nand_dev_ready;
547 
548 	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
549 			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
550 			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
551 			   ATMEL_HSMC_NFC_CFG_RSPARE |
552 			   ATMEL_HSMC_NFC_CFG_WSPARE,
553 			   ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
554 			   ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
555 			   ATMEL_HSMC_NFC_CFG_RSPARE);
556 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
557 		     ATMEL_HSMC_NFC_CTRL_EN);
558 }
559 
560 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
561 {
562 	u8 *addrs = nc->op.addrs;
563 	unsigned int op = 0;
564 	u32 addr, val;
565 	int i, ret;
566 
567 	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
568 
569 	for (i = 0; i < nc->op.ncmds; i++)
570 		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
571 
572 	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
573 		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
574 
575 	op |= ATMEL_NFC_CSID(nc->op.cs) |
576 	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
577 
578 	if (nc->op.ncmds > 1)
579 		op |= ATMEL_NFC_VCMD2;
580 
581 	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
582 	       (addrs[3] << 24);
583 
584 	if (nc->op.data != ATMEL_NFC_NO_DATA) {
585 		op |= ATMEL_NFC_DATAEN;
586 		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
587 
588 		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
589 			op |= ATMEL_NFC_NFCWR;
590 	}
591 
592 	/* Clear all flags. */
593 	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
594 
595 	/* Send the command. */
596 	regmap_write(nc->io, op, addr);
597 
598 	ret = atmel_nfc_wait(nc, poll, 0);
599 	if (ret)
600 		dev_err(nc->base.dev,
601 			"Failed to send NAND command (err = %d)!",
602 			ret);
603 
604 	/* Reset the op state. */
605 	memset(&nc->op, 0, sizeof(nc->op));
606 
607 	return ret;
608 }
609 
610 static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
611 				     unsigned int ctrl)
612 {
613 	struct nand_chip *chip = mtd_to_nand(mtd);
614 	struct atmel_nand *nand = to_atmel_nand(chip);
615 	struct atmel_hsmc_nand_controller *nc;
616 
617 	nc = to_hsmc_nand_controller(chip->controller);
618 
619 	if (ctrl & NAND_ALE) {
620 		if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
621 			return;
622 
623 		nc->op.addrs[nc->op.naddrs++] = dat;
624 	} else if (ctrl & NAND_CLE) {
625 		if (nc->op.ncmds > 1)
626 			return;
627 
628 		nc->op.cmds[nc->op.ncmds++] = dat;
629 	}
630 
631 	if (dat == NAND_CMD_NONE) {
632 		nc->op.cs = nand->activecs->id;
633 		atmel_nfc_exec_op(nc, true);
634 	}
635 }
636 
637 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
638 				unsigned int ctrl)
639 {
640 	struct nand_chip *chip = mtd_to_nand(mtd);
641 	struct atmel_nand *nand = to_atmel_nand(chip);
642 	struct atmel_nand_controller *nc;
643 
644 	nc = to_nand_controller(chip->controller);
645 
646 	if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
647 		if (ctrl & NAND_NCE)
648 			gpiod_set_value(nand->activecs->csgpio, 0);
649 		else
650 			gpiod_set_value(nand->activecs->csgpio, 1);
651 	}
652 
653 	if (ctrl & NAND_ALE)
654 		writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
655 	else if (ctrl & NAND_CLE)
656 		writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
657 }
658 
659 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
660 				   bool oob_required)
661 {
662 	struct mtd_info *mtd = nand_to_mtd(chip);
663 	struct atmel_hsmc_nand_controller *nc;
664 	int ret = -EIO;
665 
666 	nc = to_hsmc_nand_controller(chip->controller);
667 
668 	if (nc->base.dmac)
669 		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
670 					      nc->sram.dma, mtd->writesize,
671 					      DMA_TO_DEVICE);
672 
673 	/* Falling back to CPU copy. */
674 	if (ret)
675 		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
676 
677 	if (oob_required)
678 		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
679 			    mtd->oobsize);
680 }
681 
682 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
683 				     bool oob_required)
684 {
685 	struct mtd_info *mtd = nand_to_mtd(chip);
686 	struct atmel_hsmc_nand_controller *nc;
687 	int ret = -EIO;
688 
689 	nc = to_hsmc_nand_controller(chip->controller);
690 
691 	if (nc->base.dmac)
692 		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
693 					      mtd->writesize, DMA_FROM_DEVICE);
694 
695 	/* Falling back to CPU copy. */
696 	if (ret)
697 		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
698 
699 	if (oob_required)
700 		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
701 			      mtd->oobsize);
702 }
703 
704 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
705 {
706 	struct mtd_info *mtd = nand_to_mtd(chip);
707 	struct atmel_hsmc_nand_controller *nc;
708 
709 	nc = to_hsmc_nand_controller(chip->controller);
710 
711 	if (column >= 0) {
712 		nc->op.addrs[nc->op.naddrs++] = column;
713 
714 		/*
715 		 * 2 address cycles for the column offset on large page NANDs.
716 		 */
717 		if (mtd->writesize > 512)
718 			nc->op.addrs[nc->op.naddrs++] = column >> 8;
719 	}
720 
721 	if (page >= 0) {
722 		nc->op.addrs[nc->op.naddrs++] = page;
723 		nc->op.addrs[nc->op.naddrs++] = page >> 8;
724 
725 		if (chip->options & NAND_ROW_ADDR_3)
726 			nc->op.addrs[nc->op.naddrs++] = page >> 16;
727 	}
728 }
729 
730 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
731 {
732 	struct atmel_nand *nand = to_atmel_nand(chip);
733 	struct atmel_nand_controller *nc;
734 	int ret;
735 
736 	nc = to_nand_controller(chip->controller);
737 
738 	if (raw)
739 		return 0;
740 
741 	ret = atmel_pmecc_enable(nand->pmecc, op);
742 	if (ret)
743 		dev_err(nc->dev,
744 			"Failed to enable ECC engine (err = %d)\n", ret);
745 
746 	return ret;
747 }
748 
749 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
750 {
751 	struct atmel_nand *nand = to_atmel_nand(chip);
752 
753 	if (!raw)
754 		atmel_pmecc_disable(nand->pmecc);
755 }
756 
757 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
758 {
759 	struct atmel_nand *nand = to_atmel_nand(chip);
760 	struct mtd_info *mtd = nand_to_mtd(chip);
761 	struct atmel_nand_controller *nc;
762 	struct mtd_oob_region oobregion;
763 	void *eccbuf;
764 	int ret, i;
765 
766 	nc = to_nand_controller(chip->controller);
767 
768 	if (raw)
769 		return 0;
770 
771 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
772 	if (ret) {
773 		dev_err(nc->dev,
774 			"Failed to transfer NAND page data (err = %d)\n",
775 			ret);
776 		return ret;
777 	}
778 
779 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
780 	eccbuf = chip->oob_poi + oobregion.offset;
781 
782 	for (i = 0; i < chip->ecc.steps; i++) {
783 		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
784 						   eccbuf);
785 		eccbuf += chip->ecc.bytes;
786 	}
787 
788 	return 0;
789 }
790 
791 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
792 					 bool raw)
793 {
794 	struct atmel_nand *nand = to_atmel_nand(chip);
795 	struct mtd_info *mtd = nand_to_mtd(chip);
796 	struct atmel_nand_controller *nc;
797 	struct mtd_oob_region oobregion;
798 	int ret, i, max_bitflips = 0;
799 	void *databuf, *eccbuf;
800 
801 	nc = to_nand_controller(chip->controller);
802 
803 	if (raw)
804 		return 0;
805 
806 	ret = atmel_pmecc_wait_rdy(nand->pmecc);
807 	if (ret) {
808 		dev_err(nc->dev,
809 			"Failed to read NAND page data (err = %d)\n",
810 			ret);
811 		return ret;
812 	}
813 
814 	mtd_ooblayout_ecc(mtd, 0, &oobregion);
815 	eccbuf = chip->oob_poi + oobregion.offset;
816 	databuf = buf;
817 
818 	for (i = 0; i < chip->ecc.steps; i++) {
819 		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
820 						 eccbuf);
821 		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
822 			ret = nand_check_erased_ecc_chunk(databuf,
823 							  chip->ecc.size,
824 							  eccbuf,
825 							  chip->ecc.bytes,
826 							  NULL, 0,
827 							  chip->ecc.strength);
828 
829 		if (ret >= 0)
830 			max_bitflips = max(ret, max_bitflips);
831 		else
832 			mtd->ecc_stats.failed++;
833 
834 		databuf += chip->ecc.size;
835 		eccbuf += chip->ecc.bytes;
836 	}
837 
838 	return max_bitflips;
839 }
840 
841 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
842 				     bool oob_required, int page, bool raw)
843 {
844 	struct mtd_info *mtd = nand_to_mtd(chip);
845 	struct atmel_nand *nand = to_atmel_nand(chip);
846 	int ret;
847 
848 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
849 
850 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
851 	if (ret)
852 		return ret;
853 
854 	atmel_nand_write_buf(mtd, buf, mtd->writesize);
855 
856 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
857 	if (ret) {
858 		atmel_pmecc_disable(nand->pmecc);
859 		return ret;
860 	}
861 
862 	atmel_nand_pmecc_disable(chip, raw);
863 
864 	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
865 
866 	return nand_prog_page_end_op(chip);
867 }
868 
869 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
870 				       struct nand_chip *chip, const u8 *buf,
871 				       int oob_required, int page)
872 {
873 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
874 }
875 
876 static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
877 					   struct nand_chip *chip,
878 					   const u8 *buf, int oob_required,
879 					   int page)
880 {
881 	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
882 }
883 
884 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
885 				    bool oob_required, int page, bool raw)
886 {
887 	struct mtd_info *mtd = nand_to_mtd(chip);
888 	int ret;
889 
890 	nand_read_page_op(chip, page, 0, NULL, 0);
891 
892 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
893 	if (ret)
894 		return ret;
895 
896 	atmel_nand_read_buf(mtd, buf, mtd->writesize);
897 	atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
898 
899 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
900 
901 	atmel_nand_pmecc_disable(chip, raw);
902 
903 	return ret;
904 }
905 
906 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
907 				      struct nand_chip *chip, u8 *buf,
908 				      int oob_required, int page)
909 {
910 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
911 }
912 
913 static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
914 					  struct nand_chip *chip, u8 *buf,
915 					  int oob_required, int page)
916 {
917 	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
918 }
919 
920 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
921 					  const u8 *buf, bool oob_required,
922 					  int page, bool raw)
923 {
924 	struct mtd_info *mtd = nand_to_mtd(chip);
925 	struct atmel_nand *nand = to_atmel_nand(chip);
926 	struct atmel_hsmc_nand_controller *nc;
927 	int ret, status;
928 
929 	nc = to_hsmc_nand_controller(chip->controller);
930 
931 	atmel_nfc_copy_to_sram(chip, buf, false);
932 
933 	nc->op.cmds[0] = NAND_CMD_SEQIN;
934 	nc->op.ncmds = 1;
935 	atmel_nfc_set_op_addr(chip, page, 0x0);
936 	nc->op.cs = nand->activecs->id;
937 	nc->op.data = ATMEL_NFC_WRITE_DATA;
938 
939 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
940 	if (ret)
941 		return ret;
942 
943 	ret = atmel_nfc_exec_op(nc, false);
944 	if (ret) {
945 		atmel_nand_pmecc_disable(chip, raw);
946 		dev_err(nc->base.dev,
947 			"Failed to transfer NAND page data (err = %d)\n",
948 			ret);
949 		return ret;
950 	}
951 
952 	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
953 
954 	atmel_nand_pmecc_disable(chip, raw);
955 
956 	if (ret)
957 		return ret;
958 
959 	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
960 
961 	nc->op.cmds[0] = NAND_CMD_PAGEPROG;
962 	nc->op.ncmds = 1;
963 	nc->op.cs = nand->activecs->id;
964 	ret = atmel_nfc_exec_op(nc, false);
965 	if (ret)
966 		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
967 			ret);
968 
969 	status = chip->waitfunc(mtd, chip);
970 	if (status & NAND_STATUS_FAIL)
971 		return -EIO;
972 
973 	return ret;
974 }
975 
976 static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
977 					    struct nand_chip *chip,
978 					    const u8 *buf, int oob_required,
979 					    int page)
980 {
981 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
982 					      false);
983 }
984 
985 static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
986 						struct nand_chip *chip,
987 						const u8 *buf,
988 						int oob_required, int page)
989 {
990 	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
991 					      true);
992 }
993 
994 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
995 					 bool oob_required, int page,
996 					 bool raw)
997 {
998 	struct mtd_info *mtd = nand_to_mtd(chip);
999 	struct atmel_nand *nand = to_atmel_nand(chip);
1000 	struct atmel_hsmc_nand_controller *nc;
1001 	int ret;
1002 
1003 	nc = to_hsmc_nand_controller(chip->controller);
1004 
1005 	/*
1006 	 * Optimized read page accessors only work when the NAND R/B pin is
1007 	 * connected to a native SoC R/B pin. If that's not the case, fallback
1008 	 * to the non-optimized one.
1009 	 */
1010 	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
1011 		nand_read_page_op(chip, page, 0, NULL, 0);
1012 
1013 		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1014 						raw);
1015 	}
1016 
1017 	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1018 
1019 	if (mtd->writesize > 512)
1020 		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1021 
1022 	atmel_nfc_set_op_addr(chip, page, 0x0);
1023 	nc->op.cs = nand->activecs->id;
1024 	nc->op.data = ATMEL_NFC_READ_DATA;
1025 
1026 	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1027 	if (ret)
1028 		return ret;
1029 
1030 	ret = atmel_nfc_exec_op(nc, false);
1031 	if (ret) {
1032 		atmel_nand_pmecc_disable(chip, raw);
1033 		dev_err(nc->base.dev,
1034 			"Failed to load NAND page data (err = %d)\n",
1035 			ret);
1036 		return ret;
1037 	}
1038 
1039 	atmel_nfc_copy_from_sram(chip, buf, true);
1040 
1041 	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1042 
1043 	atmel_nand_pmecc_disable(chip, raw);
1044 
1045 	return ret;
1046 }
1047 
1048 static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
1049 					   struct nand_chip *chip, u8 *buf,
1050 					   int oob_required, int page)
1051 {
1052 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1053 					     false);
1054 }
1055 
1056 static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
1057 					       struct nand_chip *chip,
1058 					       u8 *buf, int oob_required,
1059 					       int page)
1060 {
1061 	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062 					     true);
1063 }
1064 
1065 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1066 {
1067 	struct mtd_info *mtd = nand_to_mtd(chip);
1068 	struct atmel_nand *nand = to_atmel_nand(chip);
1069 	struct atmel_nand_controller *nc;
1070 	struct atmel_pmecc_user_req req;
1071 
1072 	nc = to_nand_controller(chip->controller);
1073 
1074 	if (!nc->pmecc) {
1075 		dev_err(nc->dev, "HW ECC not supported\n");
1076 		return -ENOTSUPP;
1077 	}
1078 
1079 	if (nc->caps->legacy_of_bindings) {
1080 		u32 val;
1081 
1082 		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1083 					  &val))
1084 			chip->ecc.strength = val;
1085 
1086 		if (!of_property_read_u32(nc->dev->of_node,
1087 					  "atmel,pmecc-sector-size",
1088 					  &val))
1089 			chip->ecc.size = val;
1090 	}
1091 
1092 	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
1093 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1094 	else if (chip->ecc.strength)
1095 		req.ecc.strength = chip->ecc.strength;
1096 	else if (chip->ecc_strength_ds)
1097 		req.ecc.strength = chip->ecc_strength_ds;
1098 	else
1099 		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1100 
1101 	if (chip->ecc.size)
1102 		req.ecc.sectorsize = chip->ecc.size;
1103 	else if (chip->ecc_step_ds)
1104 		req.ecc.sectorsize = chip->ecc_step_ds;
1105 	else
1106 		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1107 
1108 	req.pagesize = mtd->writesize;
1109 	req.oobsize = mtd->oobsize;
1110 
1111 	if (mtd->writesize <= 512) {
1112 		req.ecc.bytes = 4;
1113 		req.ecc.ooboffset = 0;
1114 	} else {
1115 		req.ecc.bytes = mtd->oobsize - 2;
1116 		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1117 	}
1118 
1119 	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1120 	if (IS_ERR(nand->pmecc))
1121 		return PTR_ERR(nand->pmecc);
1122 
1123 	chip->ecc.algo = NAND_ECC_BCH;
1124 	chip->ecc.size = req.ecc.sectorsize;
1125 	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1126 	chip->ecc.strength = req.ecc.strength;
1127 
1128 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1129 
1130 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1131 
1132 	return 0;
1133 }
1134 
1135 static int atmel_nand_ecc_init(struct nand_chip *chip)
1136 {
1137 	struct atmel_nand_controller *nc;
1138 	int ret;
1139 
1140 	nc = to_nand_controller(chip->controller);
1141 
1142 	switch (chip->ecc.mode) {
1143 	case NAND_ECC_NONE:
1144 	case NAND_ECC_SOFT:
1145 		/*
1146 		 * Nothing to do, the core will initialize everything for us.
1147 		 */
1148 		break;
1149 
1150 	case NAND_ECC_HW:
1151 		ret = atmel_nand_pmecc_init(chip);
1152 		if (ret)
1153 			return ret;
1154 
1155 		chip->ecc.read_page = atmel_nand_pmecc_read_page;
1156 		chip->ecc.write_page = atmel_nand_pmecc_write_page;
1157 		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1158 		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1159 		break;
1160 
1161 	default:
1162 		/* Other modes are not supported. */
1163 		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1164 			chip->ecc.mode);
1165 		return -ENOTSUPP;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1172 {
1173 	int ret;
1174 
1175 	ret = atmel_nand_ecc_init(chip);
1176 	if (ret)
1177 		return ret;
1178 
1179 	if (chip->ecc.mode != NAND_ECC_HW)
1180 		return 0;
1181 
1182 	/* Adjust the ECC operations for the HSMC IP. */
1183 	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1184 	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1185 	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1186 	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1187 
1188 	return 0;
1189 }
1190 
1191 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1192 					const struct nand_data_interface *conf,
1193 					struct atmel_smc_cs_conf *smcconf)
1194 {
1195 	u32 ncycles, totalcycles, timeps, mckperiodps;
1196 	struct atmel_nand_controller *nc;
1197 	int ret;
1198 
1199 	nc = to_nand_controller(nand->base.controller);
1200 
1201 	/* DDR interface not supported. */
1202 	if (conf->type != NAND_SDR_IFACE)
1203 		return -ENOTSUPP;
1204 
1205 	/*
1206 	 * tRC < 30ns implies EDO mode. This controller does not support this
1207 	 * mode.
1208 	 */
1209 	if (conf->timings.sdr.tRC_min < 30000)
1210 		return -ENOTSUPP;
1211 
1212 	atmel_smc_cs_conf_init(smcconf);
1213 
1214 	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1215 	mckperiodps *= 1000;
1216 
1217 	/*
1218 	 * Set write pulse timing. This one is easy to extract:
1219 	 *
1220 	 * NWE_PULSE = tWP
1221 	 */
1222 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1223 	totalcycles = ncycles;
1224 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1225 					  ncycles);
1226 	if (ret)
1227 		return ret;
1228 
1229 	/*
1230 	 * The write setup timing depends on the operation done on the NAND.
1231 	 * All operations goes through the same data bus, but the operation
1232 	 * type depends on the address we are writing to (ALE/CLE address
1233 	 * lines).
1234 	 * Since we have no way to differentiate the different operations at
1235 	 * the SMC level, we must consider the worst case (the biggest setup
1236 	 * time among all operation types):
1237 	 *
1238 	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1239 	 */
1240 	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1241 		      conf->timings.sdr.tALS_min);
1242 	timeps = max(timeps, conf->timings.sdr.tDS_min);
1243 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1244 	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1245 	totalcycles += ncycles;
1246 	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1247 					  ncycles);
1248 	if (ret)
1249 		return ret;
1250 
1251 	/*
1252 	 * As for the write setup timing, the write hold timing depends on the
1253 	 * operation done on the NAND:
1254 	 *
1255 	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1256 	 */
1257 	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1258 		      conf->timings.sdr.tALH_min);
1259 	timeps = max3(timeps, conf->timings.sdr.tDH_min,
1260 		      conf->timings.sdr.tWH_min);
1261 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1262 	totalcycles += ncycles;
1263 
1264 	/*
1265 	 * The write cycle timing is directly matching tWC, but is also
1266 	 * dependent on the other timings on the setup and hold timings we
1267 	 * calculated earlier, which gives:
1268 	 *
1269 	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1270 	 */
1271 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1272 	ncycles = max(totalcycles, ncycles);
1273 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1274 					  ncycles);
1275 	if (ret)
1276 		return ret;
1277 
1278 	/*
1279 	 * We don't want the CS line to be toggled between each byte/word
1280 	 * transfer to the NAND. The only way to guarantee that is to have the
1281 	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1282 	 *
1283 	 * NCS_WR_PULSE = NWE_CYCLE
1284 	 */
1285 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1286 					  ncycles);
1287 	if (ret)
1288 		return ret;
1289 
1290 	/*
1291 	 * As for the write setup timing, the read hold timing depends on the
1292 	 * operation done on the NAND:
1293 	 *
1294 	 * NRD_HOLD = max(tREH, tRHOH)
1295 	 */
1296 	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1297 	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1298 	totalcycles = ncycles;
1299 
1300 	/*
1301 	 * TDF = tRHZ - NRD_HOLD
1302 	 */
1303 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1304 	ncycles -= totalcycles;
1305 
1306 	/*
1307 	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1308 	 * we might end up with a config that does not fit in the TDF field.
1309 	 * Just take the max value in this case and hope that the NAND is more
1310 	 * tolerant than advertised.
1311 	 */
1312 	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1313 		ncycles = ATMEL_SMC_MODE_TDF_MAX;
1314 	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1315 		ncycles = ATMEL_SMC_MODE_TDF_MIN;
1316 
1317 	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1318 			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1319 
1320 	/*
1321 	 * Read pulse timing directly matches tRP:
1322 	 *
1323 	 * NRD_PULSE = tRP
1324 	 */
1325 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1326 	totalcycles += ncycles;
1327 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1328 					  ncycles);
1329 	if (ret)
1330 		return ret;
1331 
1332 	/*
1333 	 * The write cycle timing is directly matching tWC, but is also
1334 	 * dependent on the setup and hold timings we calculated earlier,
1335 	 * which gives:
1336 	 *
1337 	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1338 	 *
1339 	 * NRD_SETUP is always 0.
1340 	 */
1341 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1342 	ncycles = max(totalcycles, ncycles);
1343 	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1344 					  ncycles);
1345 	if (ret)
1346 		return ret;
1347 
1348 	/*
1349 	 * We don't want the CS line to be toggled between each byte/word
1350 	 * transfer from the NAND. The only way to guarantee that is to have
1351 	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1352 	 *
1353 	 * NCS_RD_PULSE = NRD_CYCLE
1354 	 */
1355 	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1356 					  ncycles);
1357 	if (ret)
1358 		return ret;
1359 
1360 	/* Txxx timings are directly matching tXXX ones. */
1361 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1362 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1363 					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1364 					   ncycles);
1365 	if (ret)
1366 		return ret;
1367 
1368 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1369 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1370 					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1371 					   ncycles);
1372 	/*
1373 	 * Version 4 of the ONFI spec mandates that tADL be at least 400
1374 	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
1375 	 * fit in the tADL field of the SMC reg. We need to relax the check and
1376 	 * accept the -ERANGE return code.
1377 	 *
1378 	 * Note that previous versions of the ONFI spec had a lower tADL_min
1379 	 * (100 or 200 ns). It's not clear why this timing constraint got
1380 	 * increased but it seems most NANDs are fine with values lower than
1381 	 * 400ns, so we should be safe.
1382 	 */
1383 	if (ret && ret != -ERANGE)
1384 		return ret;
1385 
1386 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1387 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1388 					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1389 					   ncycles);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1394 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1395 					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1396 					   ncycles);
1397 	if (ret)
1398 		return ret;
1399 
1400 	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1401 	ret = atmel_smc_cs_conf_set_timing(smcconf,
1402 					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1403 					   ncycles);
1404 	if (ret)
1405 		return ret;
1406 
1407 	/* Attach the CS line to the NFC logic. */
1408 	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1409 
1410 	/* Set the appropriate data bus width. */
1411 	if (nand->base.options & NAND_BUSWIDTH_16)
1412 		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1413 
1414 	/* Operate in NRD/NWE READ/WRITEMODE. */
1415 	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1416 			 ATMEL_SMC_MODE_WRITEMODE_NWE;
1417 
1418 	return 0;
1419 }
1420 
1421 static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
1422 					int csline,
1423 					const struct nand_data_interface *conf)
1424 {
1425 	struct atmel_nand_controller *nc;
1426 	struct atmel_smc_cs_conf smcconf;
1427 	struct atmel_nand_cs *cs;
1428 	int ret;
1429 
1430 	nc = to_nand_controller(nand->base.controller);
1431 
1432 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1433 	if (ret)
1434 		return ret;
1435 
1436 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1437 		return 0;
1438 
1439 	cs = &nand->cs[csline];
1440 	cs->smcconf = smcconf;
1441 	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1442 
1443 	return 0;
1444 }
1445 
1446 static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
1447 					int csline,
1448 					const struct nand_data_interface *conf)
1449 {
1450 	struct atmel_hsmc_nand_controller *nc;
1451 	struct atmel_smc_cs_conf smcconf;
1452 	struct atmel_nand_cs *cs;
1453 	int ret;
1454 
1455 	nc = to_hsmc_nand_controller(nand->base.controller);
1456 
1457 	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1458 	if (ret)
1459 		return ret;
1460 
1461 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1462 		return 0;
1463 
1464 	cs = &nand->cs[csline];
1465 	cs->smcconf = smcconf;
1466 
1467 	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1468 		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1469 
1470 	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1471 				 &cs->smcconf);
1472 
1473 	return 0;
1474 }
1475 
1476 static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
1477 					const struct nand_data_interface *conf)
1478 {
1479 	struct nand_chip *chip = mtd_to_nand(mtd);
1480 	struct atmel_nand *nand = to_atmel_nand(chip);
1481 	struct atmel_nand_controller *nc;
1482 
1483 	nc = to_nand_controller(nand->base.controller);
1484 
1485 	if (csline >= nand->numcs ||
1486 	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1487 		return -EINVAL;
1488 
1489 	return nc->caps->ops->setup_data_interface(nand, csline, conf);
1490 }
1491 
1492 static void atmel_nand_init(struct atmel_nand_controller *nc,
1493 			    struct atmel_nand *nand)
1494 {
1495 	struct nand_chip *chip = &nand->base;
1496 	struct mtd_info *mtd = nand_to_mtd(chip);
1497 
1498 	mtd->dev.parent = nc->dev;
1499 	nand->base.controller = &nc->base;
1500 
1501 	chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1502 	chip->read_byte = atmel_nand_read_byte;
1503 	chip->read_word = atmel_nand_read_word;
1504 	chip->write_byte = atmel_nand_write_byte;
1505 	chip->read_buf = atmel_nand_read_buf;
1506 	chip->write_buf = atmel_nand_write_buf;
1507 	chip->select_chip = atmel_nand_select_chip;
1508 
1509 	if (nc->mck && nc->caps->ops->setup_data_interface)
1510 		chip->setup_data_interface = atmel_nand_setup_data_interface;
1511 
1512 	/* Some NANDs require a longer delay than the default one (20us). */
1513 	chip->chip_delay = 40;
1514 
1515 	/*
1516 	 * Use a bounce buffer when the buffer passed by the MTD user is not
1517 	 * suitable for DMA.
1518 	 */
1519 	if (nc->dmac)
1520 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1521 
1522 	/* Default to HW ECC if pmecc is available. */
1523 	if (nc->pmecc)
1524 		chip->ecc.mode = NAND_ECC_HW;
1525 }
1526 
1527 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1528 				struct atmel_nand *nand)
1529 {
1530 	struct nand_chip *chip = &nand->base;
1531 	struct atmel_smc_nand_controller *smc_nc;
1532 	int i;
1533 
1534 	atmel_nand_init(nc, nand);
1535 
1536 	smc_nc = to_smc_nand_controller(chip->controller);
1537 	if (!smc_nc->matrix)
1538 		return;
1539 
1540 	/* Attach the CS to the NAND Flash logic. */
1541 	for (i = 0; i < nand->numcs; i++)
1542 		regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
1543 				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1544 }
1545 
1546 static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
1547 				 struct atmel_nand *nand)
1548 {
1549 	struct nand_chip *chip = &nand->base;
1550 
1551 	atmel_nand_init(nc, nand);
1552 
1553 	/* Overload some methods for the HSMC controller. */
1554 	chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
1555 	chip->select_chip = atmel_hsmc_nand_select_chip;
1556 }
1557 
1558 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1559 {
1560 	struct nand_chip *chip = &nand->base;
1561 	struct mtd_info *mtd = nand_to_mtd(chip);
1562 	int ret;
1563 
1564 	ret = mtd_device_unregister(mtd);
1565 	if (ret)
1566 		return ret;
1567 
1568 	nand_cleanup(chip);
1569 	list_del(&nand->node);
1570 
1571 	return 0;
1572 }
1573 
1574 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1575 					    struct device_node *np,
1576 					    int reg_cells)
1577 {
1578 	struct atmel_nand *nand;
1579 	struct gpio_desc *gpio;
1580 	int numcs, ret, i;
1581 
1582 	numcs = of_property_count_elems_of_size(np, "reg",
1583 						reg_cells * sizeof(u32));
1584 	if (numcs < 1) {
1585 		dev_err(nc->dev, "Missing or invalid reg property\n");
1586 		return ERR_PTR(-EINVAL);
1587 	}
1588 
1589 	nand = devm_kzalloc(nc->dev,
1590 			    sizeof(*nand) + (numcs * sizeof(*nand->cs)),
1591 			    GFP_KERNEL);
1592 	if (!nand) {
1593 		dev_err(nc->dev, "Failed to allocate NAND object\n");
1594 		return ERR_PTR(-ENOMEM);
1595 	}
1596 
1597 	nand->numcs = numcs;
1598 
1599 	gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
1600 						      &np->fwnode, GPIOD_IN,
1601 						      "nand-det");
1602 	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1603 		dev_err(nc->dev,
1604 			"Failed to get detect gpio (err = %ld)\n",
1605 			PTR_ERR(gpio));
1606 		return ERR_CAST(gpio);
1607 	}
1608 
1609 	if (!IS_ERR(gpio))
1610 		nand->cdgpio = gpio;
1611 
1612 	for (i = 0; i < numcs; i++) {
1613 		struct resource res;
1614 		u32 val;
1615 
1616 		ret = of_address_to_resource(np, 0, &res);
1617 		if (ret) {
1618 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1619 				ret);
1620 			return ERR_PTR(ret);
1621 		}
1622 
1623 		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1624 						 &val);
1625 		if (ret) {
1626 			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1627 				ret);
1628 			return ERR_PTR(ret);
1629 		}
1630 
1631 		nand->cs[i].id = val;
1632 
1633 		nand->cs[i].io.dma = res.start;
1634 		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1635 		if (IS_ERR(nand->cs[i].io.virt))
1636 			return ERR_CAST(nand->cs[i].io.virt);
1637 
1638 		if (!of_property_read_u32(np, "atmel,rb", &val)) {
1639 			if (val > ATMEL_NFC_MAX_RB_ID)
1640 				return ERR_PTR(-EINVAL);
1641 
1642 			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1643 			nand->cs[i].rb.id = val;
1644 		} else {
1645 			gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
1646 							"rb", i, &np->fwnode,
1647 							GPIOD_IN, "nand-rb");
1648 			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1649 				dev_err(nc->dev,
1650 					"Failed to get R/B gpio (err = %ld)\n",
1651 					PTR_ERR(gpio));
1652 				return ERR_CAST(gpio);
1653 			}
1654 
1655 			if (!IS_ERR(gpio)) {
1656 				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1657 				nand->cs[i].rb.gpio = gpio;
1658 			}
1659 		}
1660 
1661 		gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
1662 							      i, &np->fwnode,
1663 							      GPIOD_OUT_HIGH,
1664 							      "nand-cs");
1665 		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1666 			dev_err(nc->dev,
1667 				"Failed to get CS gpio (err = %ld)\n",
1668 				PTR_ERR(gpio));
1669 			return ERR_CAST(gpio);
1670 		}
1671 
1672 		if (!IS_ERR(gpio))
1673 			nand->cs[i].csgpio = gpio;
1674 	}
1675 
1676 	nand_set_flash_node(&nand->base, np);
1677 
1678 	return nand;
1679 }
1680 
1681 static int
1682 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1683 			       struct atmel_nand *nand)
1684 {
1685 	struct nand_chip *chip = &nand->base;
1686 	struct mtd_info *mtd = nand_to_mtd(chip);
1687 	int ret;
1688 
1689 	/* No card inserted, skip this NAND. */
1690 	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1691 		dev_info(nc->dev, "No SmartMedia card inserted.\n");
1692 		return 0;
1693 	}
1694 
1695 	nc->caps->ops->nand_init(nc, nand);
1696 
1697 	ret = nand_scan(mtd, nand->numcs);
1698 	if (ret) {
1699 		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1700 		return ret;
1701 	}
1702 
1703 	ret = mtd_device_register(mtd, NULL, 0);
1704 	if (ret) {
1705 		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1706 		nand_cleanup(chip);
1707 		return ret;
1708 	}
1709 
1710 	list_add_tail(&nand->node, &nc->chips);
1711 
1712 	return 0;
1713 }
1714 
1715 static int
1716 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1717 {
1718 	struct atmel_nand *nand, *tmp;
1719 	int ret;
1720 
1721 	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1722 		ret = atmel_nand_controller_remove_nand(nand);
1723 		if (ret)
1724 			return ret;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int
1731 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1732 {
1733 	struct device *dev = nc->dev;
1734 	struct platform_device *pdev = to_platform_device(dev);
1735 	struct atmel_nand *nand;
1736 	struct gpio_desc *gpio;
1737 	struct resource *res;
1738 
1739 	/*
1740 	 * Legacy bindings only allow connecting a single NAND with a unique CS
1741 	 * line to the controller.
1742 	 */
1743 	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1744 			    GFP_KERNEL);
1745 	if (!nand)
1746 		return -ENOMEM;
1747 
1748 	nand->numcs = 1;
1749 
1750 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1751 	nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1752 	if (IS_ERR(nand->cs[0].io.virt))
1753 		return PTR_ERR(nand->cs[0].io.virt);
1754 
1755 	nand->cs[0].io.dma = res->start;
1756 
1757 	/*
1758 	 * The old driver was hardcoding the CS id to 3 for all sama5
1759 	 * controllers. Since this id is only meaningful for the sama5
1760 	 * controller we can safely assign this id to 3 no matter the
1761 	 * controller.
1762 	 * If one wants to connect a NAND to a different CS line, he will
1763 	 * have to use the new bindings.
1764 	 */
1765 	nand->cs[0].id = 3;
1766 
1767 	/* R/B GPIO. */
1768 	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1769 	if (IS_ERR(gpio)) {
1770 		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1771 			PTR_ERR(gpio));
1772 		return PTR_ERR(gpio);
1773 	}
1774 
1775 	if (gpio) {
1776 		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1777 		nand->cs[0].rb.gpio = gpio;
1778 	}
1779 
1780 	/* CS GPIO. */
1781 	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1782 	if (IS_ERR(gpio)) {
1783 		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1784 			PTR_ERR(gpio));
1785 		return PTR_ERR(gpio);
1786 	}
1787 
1788 	nand->cs[0].csgpio = gpio;
1789 
1790 	/* Card detect GPIO. */
1791 	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1792 	if (IS_ERR(gpio)) {
1793 		dev_err(dev,
1794 			"Failed to get detect gpio (err = %ld)\n",
1795 			PTR_ERR(gpio));
1796 		return PTR_ERR(gpio);
1797 	}
1798 
1799 	nand->cdgpio = gpio;
1800 
1801 	nand_set_flash_node(&nand->base, nc->dev->of_node);
1802 
1803 	return atmel_nand_controller_add_nand(nc, nand);
1804 }
1805 
1806 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1807 {
1808 	struct device_node *np, *nand_np;
1809 	struct device *dev = nc->dev;
1810 	int ret, reg_cells;
1811 	u32 val;
1812 
1813 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1814 	if (nc->caps->legacy_of_bindings)
1815 		return atmel_nand_controller_legacy_add_nands(nc);
1816 
1817 	np = dev->of_node;
1818 
1819 	ret = of_property_read_u32(np, "#address-cells", &val);
1820 	if (ret) {
1821 		dev_err(dev, "missing #address-cells property\n");
1822 		return ret;
1823 	}
1824 
1825 	reg_cells = val;
1826 
1827 	ret = of_property_read_u32(np, "#size-cells", &val);
1828 	if (ret) {
1829 		dev_err(dev, "missing #address-cells property\n");
1830 		return ret;
1831 	}
1832 
1833 	reg_cells += val;
1834 
1835 	for_each_child_of_node(np, nand_np) {
1836 		struct atmel_nand *nand;
1837 
1838 		nand = atmel_nand_create(nc, nand_np, reg_cells);
1839 		if (IS_ERR(nand)) {
1840 			ret = PTR_ERR(nand);
1841 			goto err;
1842 		}
1843 
1844 		ret = atmel_nand_controller_add_nand(nc, nand);
1845 		if (ret)
1846 			goto err;
1847 	}
1848 
1849 	return 0;
1850 
1851 err:
1852 	atmel_nand_controller_remove_nands(nc);
1853 
1854 	return ret;
1855 }
1856 
1857 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1858 {
1859 	if (nc->dmac)
1860 		dma_release_channel(nc->dmac);
1861 
1862 	clk_put(nc->mck);
1863 }
1864 
1865 static const struct of_device_id atmel_matrix_of_ids[] = {
1866 	{
1867 		.compatible = "atmel,at91sam9260-matrix",
1868 		.data = (void *)AT91SAM9260_MATRIX_EBICSA,
1869 	},
1870 	{
1871 		.compatible = "atmel,at91sam9261-matrix",
1872 		.data = (void *)AT91SAM9261_MATRIX_EBICSA,
1873 	},
1874 	{
1875 		.compatible = "atmel,at91sam9263-matrix",
1876 		.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
1877 	},
1878 	{
1879 		.compatible = "atmel,at91sam9rl-matrix",
1880 		.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
1881 	},
1882 	{
1883 		.compatible = "atmel,at91sam9g45-matrix",
1884 		.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
1885 	},
1886 	{
1887 		.compatible = "atmel,at91sam9n12-matrix",
1888 		.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
1889 	},
1890 	{
1891 		.compatible = "atmel,at91sam9x5-matrix",
1892 		.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
1893 	},
1894 	{ /* sentinel */ },
1895 };
1896 
1897 static int atmel_nand_attach_chip(struct nand_chip *chip)
1898 {
1899 	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1900 	struct atmel_nand *nand = to_atmel_nand(chip);
1901 	struct mtd_info *mtd = nand_to_mtd(chip);
1902 	int ret;
1903 
1904 	ret = nc->caps->ops->ecc_init(chip);
1905 	if (ret)
1906 		return ret;
1907 
1908 	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1909 		/*
1910 		 * We keep the MTD name unchanged to avoid breaking platforms
1911 		 * where the MTD cmdline parser is used and the bootloader
1912 		 * has not been updated to use the new naming scheme.
1913 		 */
1914 		mtd->name = "atmel_nand";
1915 	} else if (!mtd->name) {
1916 		/*
1917 		 * If the new bindings are used and the bootloader has not been
1918 		 * updated to pass a new mtdparts parameter on the cmdline, you
1919 		 * should define the following property in your nand node:
1920 		 *
1921 		 *	label = "atmel_nand";
1922 		 *
1923 		 * This way, mtd->name will be set by the core when
1924 		 * nand_set_flash_node() is called.
1925 		 */
1926 		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
1927 					   "%s:nand.%d", dev_name(nc->dev),
1928 					   nand->cs[0].id);
1929 		if (!mtd->name) {
1930 			dev_err(nc->dev, "Failed to allocate mtd->name\n");
1931 			return -ENOMEM;
1932 		}
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 static const struct nand_controller_ops atmel_nand_controller_ops = {
1939 	.attach_chip = atmel_nand_attach_chip,
1940 };
1941 
1942 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
1943 				struct platform_device *pdev,
1944 				const struct atmel_nand_controller_caps *caps)
1945 {
1946 	struct device *dev = &pdev->dev;
1947 	struct device_node *np = dev->of_node;
1948 	int ret;
1949 
1950 	nand_controller_init(&nc->base);
1951 	nc->base.ops = &atmel_nand_controller_ops;
1952 	INIT_LIST_HEAD(&nc->chips);
1953 	nc->dev = dev;
1954 	nc->caps = caps;
1955 
1956 	platform_set_drvdata(pdev, nc);
1957 
1958 	nc->pmecc = devm_atmel_pmecc_get(dev);
1959 	if (IS_ERR(nc->pmecc)) {
1960 		ret = PTR_ERR(nc->pmecc);
1961 		if (ret != -EPROBE_DEFER)
1962 			dev_err(dev, "Could not get PMECC object (err = %d)\n",
1963 				ret);
1964 		return ret;
1965 	}
1966 
1967 	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
1968 		dma_cap_mask_t mask;
1969 
1970 		dma_cap_zero(mask);
1971 		dma_cap_set(DMA_MEMCPY, mask);
1972 
1973 		nc->dmac = dma_request_channel(mask, NULL, NULL);
1974 		if (!nc->dmac)
1975 			dev_err(nc->dev, "Failed to request DMA channel\n");
1976 	}
1977 
1978 	/* We do not retrieve the SMC syscon when parsing old DTs. */
1979 	if (nc->caps->legacy_of_bindings)
1980 		return 0;
1981 
1982 	nc->mck = of_clk_get(dev->parent->of_node, 0);
1983 	if (IS_ERR(nc->mck)) {
1984 		dev_err(dev, "Failed to retrieve MCK clk\n");
1985 		return PTR_ERR(nc->mck);
1986 	}
1987 
1988 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
1989 	if (!np) {
1990 		dev_err(dev, "Missing or invalid atmel,smc property\n");
1991 		return -EINVAL;
1992 	}
1993 
1994 	nc->smc = syscon_node_to_regmap(np);
1995 	of_node_put(np);
1996 	if (IS_ERR(nc->smc)) {
1997 		ret = PTR_ERR(nc->smc);
1998 		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
1999 		return ret;
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int
2006 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2007 {
2008 	struct device *dev = nc->base.dev;
2009 	const struct of_device_id *match;
2010 	struct device_node *np;
2011 	int ret;
2012 
2013 	/* We do not retrieve the matrix syscon when parsing old DTs. */
2014 	if (nc->base.caps->legacy_of_bindings)
2015 		return 0;
2016 
2017 	np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
2018 	if (!np)
2019 		return 0;
2020 
2021 	match = of_match_node(atmel_matrix_of_ids, np);
2022 	if (!match) {
2023 		of_node_put(np);
2024 		return 0;
2025 	}
2026 
2027 	nc->matrix = syscon_node_to_regmap(np);
2028 	of_node_put(np);
2029 	if (IS_ERR(nc->matrix)) {
2030 		ret = PTR_ERR(nc->matrix);
2031 		dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
2032 		return ret;
2033 	}
2034 
2035 	nc->ebi_csa_offs = (uintptr_t)match->data;
2036 
2037 	/*
2038 	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2039 	 * add 4 to ->ebi_csa_offs.
2040 	 */
2041 	if (of_device_is_compatible(dev->parent->of_node,
2042 				    "atmel,at91sam9263-ebi1"))
2043 		nc->ebi_csa_offs += 4;
2044 
2045 	return 0;
2046 }
2047 
2048 static int
2049 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2050 {
2051 	struct regmap_config regmap_conf = {
2052 		.reg_bits = 32,
2053 		.val_bits = 32,
2054 		.reg_stride = 4,
2055 	};
2056 
2057 	struct device *dev = nc->base.dev;
2058 	struct device_node *nand_np, *nfc_np;
2059 	void __iomem *iomem;
2060 	struct resource res;
2061 	int ret;
2062 
2063 	nand_np = dev->of_node;
2064 	nfc_np = of_find_compatible_node(dev->of_node, NULL,
2065 					 "atmel,sama5d3-nfc");
2066 
2067 	nc->clk = of_clk_get(nfc_np, 0);
2068 	if (IS_ERR(nc->clk)) {
2069 		ret = PTR_ERR(nc->clk);
2070 		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2071 			ret);
2072 		goto out;
2073 	}
2074 
2075 	ret = clk_prepare_enable(nc->clk);
2076 	if (ret) {
2077 		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2078 			ret);
2079 		goto out;
2080 	}
2081 
2082 	nc->irq = of_irq_get(nand_np, 0);
2083 	if (nc->irq <= 0) {
2084 		ret = nc->irq ?: -ENXIO;
2085 		if (ret != -EPROBE_DEFER)
2086 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2087 				ret);
2088 		goto out;
2089 	}
2090 
2091 	ret = of_address_to_resource(nfc_np, 0, &res);
2092 	if (ret) {
2093 		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2094 			ret);
2095 		goto out;
2096 	}
2097 
2098 	iomem = devm_ioremap_resource(dev, &res);
2099 	if (IS_ERR(iomem)) {
2100 		ret = PTR_ERR(iomem);
2101 		goto out;
2102 	}
2103 
2104 	regmap_conf.name = "nfc-io";
2105 	regmap_conf.max_register = resource_size(&res) - 4;
2106 	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2107 	if (IS_ERR(nc->io)) {
2108 		ret = PTR_ERR(nc->io);
2109 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2110 			ret);
2111 		goto out;
2112 	}
2113 
2114 	ret = of_address_to_resource(nfc_np, 1, &res);
2115 	if (ret) {
2116 		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2117 			ret);
2118 		goto out;
2119 	}
2120 
2121 	iomem = devm_ioremap_resource(dev, &res);
2122 	if (IS_ERR(iomem)) {
2123 		ret = PTR_ERR(iomem);
2124 		goto out;
2125 	}
2126 
2127 	regmap_conf.name = "smc";
2128 	regmap_conf.max_register = resource_size(&res) - 4;
2129 	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2130 	if (IS_ERR(nc->base.smc)) {
2131 		ret = PTR_ERR(nc->base.smc);
2132 		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2133 			ret);
2134 		goto out;
2135 	}
2136 
2137 	ret = of_address_to_resource(nfc_np, 2, &res);
2138 	if (ret) {
2139 		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2140 			ret);
2141 		goto out;
2142 	}
2143 
2144 	nc->sram.virt = devm_ioremap_resource(dev, &res);
2145 	if (IS_ERR(nc->sram.virt)) {
2146 		ret = PTR_ERR(nc->sram.virt);
2147 		goto out;
2148 	}
2149 
2150 	nc->sram.dma = res.start;
2151 
2152 out:
2153 	of_node_put(nfc_np);
2154 
2155 	return ret;
2156 }
2157 
2158 static int
2159 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2160 {
2161 	struct device *dev = nc->base.dev;
2162 	struct device_node *np;
2163 	int ret;
2164 
2165 	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2166 	if (!np) {
2167 		dev_err(dev, "Missing or invalid atmel,smc property\n");
2168 		return -EINVAL;
2169 	}
2170 
2171 	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2172 
2173 	nc->irq = of_irq_get(np, 0);
2174 	of_node_put(np);
2175 	if (nc->irq <= 0) {
2176 		ret = nc->irq ?: -ENXIO;
2177 		if (ret != -EPROBE_DEFER)
2178 			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2179 				ret);
2180 		return ret;
2181 	}
2182 
2183 	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2184 	if (!np) {
2185 		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	nc->io = syscon_node_to_regmap(np);
2190 	of_node_put(np);
2191 	if (IS_ERR(nc->io)) {
2192 		ret = PTR_ERR(nc->io);
2193 		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2194 		return ret;
2195 	}
2196 
2197 	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2198 					 "atmel,nfc-sram", 0);
2199 	if (!nc->sram.pool) {
2200 		dev_err(nc->base.dev, "Missing SRAM\n");
2201 		return -ENOMEM;
2202 	}
2203 
2204 	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2205 							   ATMEL_NFC_SRAM_SIZE,
2206 							   &nc->sram.dma);
2207 	if (!nc->sram.virt) {
2208 		dev_err(nc->base.dev,
2209 			"Could not allocate memory from the NFC SRAM pool\n");
2210 		return -ENOMEM;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 static int
2217 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2218 {
2219 	struct atmel_hsmc_nand_controller *hsmc_nc;
2220 	int ret;
2221 
2222 	ret = atmel_nand_controller_remove_nands(nc);
2223 	if (ret)
2224 		return ret;
2225 
2226 	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2227 	if (hsmc_nc->sram.pool)
2228 		gen_pool_free(hsmc_nc->sram.pool,
2229 			      (unsigned long)hsmc_nc->sram.virt,
2230 			      ATMEL_NFC_SRAM_SIZE);
2231 
2232 	if (hsmc_nc->clk) {
2233 		clk_disable_unprepare(hsmc_nc->clk);
2234 		clk_put(hsmc_nc->clk);
2235 	}
2236 
2237 	atmel_nand_controller_cleanup(nc);
2238 
2239 	return 0;
2240 }
2241 
2242 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2243 				const struct atmel_nand_controller_caps *caps)
2244 {
2245 	struct device *dev = &pdev->dev;
2246 	struct atmel_hsmc_nand_controller *nc;
2247 	int ret;
2248 
2249 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2250 	if (!nc)
2251 		return -ENOMEM;
2252 
2253 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2254 	if (ret)
2255 		return ret;
2256 
2257 	if (caps->legacy_of_bindings)
2258 		ret = atmel_hsmc_nand_controller_legacy_init(nc);
2259 	else
2260 		ret = atmel_hsmc_nand_controller_init(nc);
2261 
2262 	if (ret)
2263 		return ret;
2264 
2265 	/* Make sure all irqs are masked before registering our IRQ handler. */
2266 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2267 	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2268 			       IRQF_SHARED, "nfc", nc);
2269 	if (ret) {
2270 		dev_err(dev,
2271 			"Could not get register NFC interrupt handler (err = %d)\n",
2272 			ret);
2273 		goto err;
2274 	}
2275 
2276 	/* Initial NFC configuration. */
2277 	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2278 		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
2279 
2280 	ret = atmel_nand_controller_add_nands(&nc->base);
2281 	if (ret)
2282 		goto err;
2283 
2284 	return 0;
2285 
2286 err:
2287 	atmel_hsmc_nand_controller_remove(&nc->base);
2288 
2289 	return ret;
2290 }
2291 
2292 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2293 	.probe = atmel_hsmc_nand_controller_probe,
2294 	.remove = atmel_hsmc_nand_controller_remove,
2295 	.ecc_init = atmel_hsmc_nand_ecc_init,
2296 	.nand_init = atmel_hsmc_nand_init,
2297 	.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
2298 };
2299 
2300 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2301 	.has_dma = true,
2302 	.ale_offs = BIT(21),
2303 	.cle_offs = BIT(22),
2304 	.ops = &atmel_hsmc_nc_ops,
2305 };
2306 
2307 /* Only used to parse old bindings. */
2308 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2309 	.has_dma = true,
2310 	.ale_offs = BIT(21),
2311 	.cle_offs = BIT(22),
2312 	.ops = &atmel_hsmc_nc_ops,
2313 	.legacy_of_bindings = true,
2314 };
2315 
2316 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2317 				const struct atmel_nand_controller_caps *caps)
2318 {
2319 	struct device *dev = &pdev->dev;
2320 	struct atmel_smc_nand_controller *nc;
2321 	int ret;
2322 
2323 	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2324 	if (!nc)
2325 		return -ENOMEM;
2326 
2327 	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2328 	if (ret)
2329 		return ret;
2330 
2331 	ret = atmel_smc_nand_controller_init(nc);
2332 	if (ret)
2333 		return ret;
2334 
2335 	return atmel_nand_controller_add_nands(&nc->base);
2336 }
2337 
2338 static int
2339 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2340 {
2341 	int ret;
2342 
2343 	ret = atmel_nand_controller_remove_nands(nc);
2344 	if (ret)
2345 		return ret;
2346 
2347 	atmel_nand_controller_cleanup(nc);
2348 
2349 	return 0;
2350 }
2351 
2352 /*
2353  * The SMC reg layout of at91rm9200 is completely different which prevents us
2354  * from re-using atmel_smc_nand_setup_data_interface() for the
2355  * ->setup_data_interface() hook.
2356  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2357  * ->setup_data_interface() unassigned.
2358  */
2359 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2360 	.probe = atmel_smc_nand_controller_probe,
2361 	.remove = atmel_smc_nand_controller_remove,
2362 	.ecc_init = atmel_nand_ecc_init,
2363 	.nand_init = atmel_smc_nand_init,
2364 };
2365 
2366 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2367 	.ale_offs = BIT(21),
2368 	.cle_offs = BIT(22),
2369 	.ops = &at91rm9200_nc_ops,
2370 };
2371 
2372 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2373 	.probe = atmel_smc_nand_controller_probe,
2374 	.remove = atmel_smc_nand_controller_remove,
2375 	.ecc_init = atmel_nand_ecc_init,
2376 	.nand_init = atmel_smc_nand_init,
2377 	.setup_data_interface = atmel_smc_nand_setup_data_interface,
2378 };
2379 
2380 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2381 	.ale_offs = BIT(21),
2382 	.cle_offs = BIT(22),
2383 	.ops = &atmel_smc_nc_ops,
2384 };
2385 
2386 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2387 	.ale_offs = BIT(22),
2388 	.cle_offs = BIT(21),
2389 	.ops = &atmel_smc_nc_ops,
2390 };
2391 
2392 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2393 	.has_dma = true,
2394 	.ale_offs = BIT(21),
2395 	.cle_offs = BIT(22),
2396 	.ops = &atmel_smc_nc_ops,
2397 };
2398 
2399 /* Only used to parse old bindings. */
2400 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2401 	.ale_offs = BIT(21),
2402 	.cle_offs = BIT(22),
2403 	.ops = &atmel_smc_nc_ops,
2404 	.legacy_of_bindings = true,
2405 };
2406 
2407 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2408 	.ale_offs = BIT(22),
2409 	.cle_offs = BIT(21),
2410 	.ops = &atmel_smc_nc_ops,
2411 	.legacy_of_bindings = true,
2412 };
2413 
2414 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2415 	.has_dma = true,
2416 	.ale_offs = BIT(21),
2417 	.cle_offs = BIT(22),
2418 	.ops = &atmel_smc_nc_ops,
2419 	.legacy_of_bindings = true,
2420 };
2421 
2422 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2423 	{
2424 		.compatible = "atmel,at91rm9200-nand-controller",
2425 		.data = &atmel_rm9200_nc_caps,
2426 	},
2427 	{
2428 		.compatible = "atmel,at91sam9260-nand-controller",
2429 		.data = &atmel_sam9260_nc_caps,
2430 	},
2431 	{
2432 		.compatible = "atmel,at91sam9261-nand-controller",
2433 		.data = &atmel_sam9261_nc_caps,
2434 	},
2435 	{
2436 		.compatible = "atmel,at91sam9g45-nand-controller",
2437 		.data = &atmel_sam9g45_nc_caps,
2438 	},
2439 	{
2440 		.compatible = "atmel,sama5d3-nand-controller",
2441 		.data = &atmel_sama5_nc_caps,
2442 	},
2443 	/* Support for old/deprecated bindings: */
2444 	{
2445 		.compatible = "atmel,at91rm9200-nand",
2446 		.data = &atmel_rm9200_nand_caps,
2447 	},
2448 	{
2449 		.compatible = "atmel,sama5d4-nand",
2450 		.data = &atmel_rm9200_nand_caps,
2451 	},
2452 	{
2453 		.compatible = "atmel,sama5d2-nand",
2454 		.data = &atmel_rm9200_nand_caps,
2455 	},
2456 	{ /* sentinel */ },
2457 };
2458 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2459 
2460 static int atmel_nand_controller_probe(struct platform_device *pdev)
2461 {
2462 	const struct atmel_nand_controller_caps *caps;
2463 
2464 	if (pdev->id_entry)
2465 		caps = (void *)pdev->id_entry->driver_data;
2466 	else
2467 		caps = of_device_get_match_data(&pdev->dev);
2468 
2469 	if (!caps) {
2470 		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (caps->legacy_of_bindings) {
2475 		u32 ale_offs = 21;
2476 
2477 		/*
2478 		 * If we are parsing legacy DT props and the DT contains a
2479 		 * valid NFC node, forward the request to the sama5 logic.
2480 		 */
2481 		if (of_find_compatible_node(pdev->dev.of_node, NULL,
2482 					    "atmel,sama5d3-nfc"))
2483 			caps = &atmel_sama5_nand_caps;
2484 
2485 		/*
2486 		 * Even if the compatible says we are dealing with an
2487 		 * at91rm9200 controller, the atmel,nand-has-dma specify that
2488 		 * this controller supports DMA, which means we are in fact
2489 		 * dealing with an at91sam9g45+ controller.
2490 		 */
2491 		if (!caps->has_dma &&
2492 		    of_property_read_bool(pdev->dev.of_node,
2493 					  "atmel,nand-has-dma"))
2494 			caps = &atmel_sam9g45_nand_caps;
2495 
2496 		/*
2497 		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
2498 		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2499 		 * actually dealing with an at91sam9261 controller.
2500 		 */
2501 		of_property_read_u32(pdev->dev.of_node,
2502 				     "atmel,nand-addr-offset", &ale_offs);
2503 		if (ale_offs != 21)
2504 			caps = &atmel_sam9261_nand_caps;
2505 	}
2506 
2507 	return caps->ops->probe(pdev, caps);
2508 }
2509 
2510 static int atmel_nand_controller_remove(struct platform_device *pdev)
2511 {
2512 	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2513 
2514 	return nc->caps->ops->remove(nc);
2515 }
2516 
2517 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2518 {
2519 	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2520 	struct atmel_nand *nand;
2521 
2522 	if (nc->pmecc)
2523 		atmel_pmecc_reset(nc->pmecc);
2524 
2525 	list_for_each_entry(nand, &nc->chips, node) {
2526 		int i;
2527 
2528 		for (i = 0; i < nand->numcs; i++)
2529 			nand_reset(&nand->base, i);
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2536 			 atmel_nand_controller_resume);
2537 
2538 static struct platform_driver atmel_nand_controller_driver = {
2539 	.driver = {
2540 		.name = "atmel-nand-controller",
2541 		.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
2542 		.pm = &atmel_nand_controller_pm_ops,
2543 	},
2544 	.probe = atmel_nand_controller_probe,
2545 	.remove = atmel_nand_controller_remove,
2546 };
2547 module_platform_driver(atmel_nand_controller_driver);
2548 
2549 MODULE_LICENSE("GPL");
2550 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2551 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2552 MODULE_ALIAS("platform:atmel-nand-controller");
2553