1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arasan NAND Flash Controller Driver 4 * 5 * Copyright (C) 2014 - 2020 Xilinx, Inc. 6 * Author: 7 * Miquel Raynal <miquel.raynal@bootlin.com> 8 * Original work (fully rewritten): 9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com> 10 * Naga Sureshkumar Relli <nagasure@xilinx.com> 11 */ 12 13 #include <linux/bch.h> 14 #include <linux/bitfield.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/interrupt.h> 19 #include <linux/iopoll.h> 20 #include <linux/module.h> 21 #include <linux/mtd/mtd.h> 22 #include <linux/mtd/partitions.h> 23 #include <linux/mtd/rawnand.h> 24 #include <linux/of.h> 25 #include <linux/platform_device.h> 26 #include <linux/slab.h> 27 28 #define PKT_REG 0x00 29 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) 30 #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) 31 32 #define MEM_ADDR1_REG 0x04 33 34 #define MEM_ADDR2_REG 0x08 35 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) 36 #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) 37 38 #define CMD_REG 0x0C 39 #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) 40 #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) 41 #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) 42 #define CMD_DMA_ENABLE BIT(27) 43 #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) 44 #define CMD_ECC_ENABLE BIT(31) 45 46 #define PROG_REG 0x10 47 #define PROG_PGRD BIT(0) 48 #define PROG_ERASE BIT(2) 49 #define PROG_STATUS BIT(3) 50 #define PROG_PGPROG BIT(4) 51 #define PROG_RDID BIT(6) 52 #define PROG_RDPARAM BIT(7) 53 #define PROG_RST BIT(8) 54 #define PROG_GET_FEATURE BIT(9) 55 #define PROG_SET_FEATURE BIT(10) 56 57 #define INTR_STS_EN_REG 0x14 58 #define INTR_SIG_EN_REG 0x18 59 #define INTR_STS_REG 0x1C 60 #define WRITE_READY BIT(0) 61 #define READ_READY BIT(1) 62 #define XFER_COMPLETE BIT(2) 63 #define DMA_BOUNDARY BIT(6) 64 #define EVENT_MASK GENMASK(7, 0) 65 66 #define READY_STS_REG 0x20 67 68 #define DMA_ADDR0_REG 0x50 69 #define DMA_ADDR1_REG 0x24 70 71 #define FLASH_STS_REG 0x28 72 73 #define DATA_PORT_REG 0x30 74 75 #define ECC_CONF_REG 0x34 76 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) 77 #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) 78 #define ECC_CONF_BCH_EN BIT(27) 79 80 #define ECC_ERR_CNT_REG 0x38 81 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) 82 #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) 83 84 #define ECC_SP_REG 0x3C 85 #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) 86 #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) 87 #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) 88 89 #define ECC_1ERR_CNT_REG 0x40 90 #define ECC_2ERR_CNT_REG 0x44 91 92 #define DATA_INTERFACE_REG 0x6C 93 #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) 94 #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (X)) 95 #define DIFACE_SDR 0 96 #define DIFACE_NVDDR BIT(9) 97 98 #define ANFC_MAX_CS 2 99 #define ANFC_DFLT_TIMEOUT_US 1000000 100 #define ANFC_MAX_CHUNK_SIZE SZ_1M 101 #define ANFC_MAX_PARAM_SIZE SZ_4K 102 #define ANFC_MAX_STEPS SZ_2K 103 #define ANFC_MAX_PKT_SIZE (SZ_2K - 1) 104 #define ANFC_MAX_ADDR_CYC 5U 105 #define ANFC_RSVD_ECC_BYTES 21 106 107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 108 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 109 110 /** 111 * struct anfc_op - Defines how to execute an operation 112 * @pkt_reg: Packet register 113 * @addr1_reg: Memory address 1 register 114 * @addr2_reg: Memory address 2 register 115 * @cmd_reg: Command register 116 * @prog_reg: Program register 117 * @steps: Number of "packets" to read/write 118 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 119 * @len: Data transfer length 120 * @read: Data transfer direction from the controller point of view 121 */ 122 struct anfc_op { 123 u32 pkt_reg; 124 u32 addr1_reg; 125 u32 addr2_reg; 126 u32 cmd_reg; 127 u32 prog_reg; 128 int steps; 129 unsigned int rdy_timeout_ms; 130 unsigned int len; 131 bool read; 132 u8 *buf; 133 }; 134 135 /** 136 * struct anand - Defines the NAND chip related information 137 * @node: Used to store NAND chips into a list 138 * @chip: NAND chip information structure 139 * @cs: Chip select line 140 * @rb: Ready-busy line 141 * @page_sz: Register value of the page_sz field to use 142 * @clk: Expected clock frequency to use 143 * @timings: Data interface timing mode to use 144 * @ecc_conf: Hardware ECC configuration value 145 * @strength: Register value of the ECC strength 146 * @raddr_cycles: Row address cycle information 147 * @caddr_cycles: Column address cycle information 148 * @ecc_bits: Exact number of ECC bits per syndrome 149 * @ecc_total: Total number of ECC bytes 150 * @errloc: Array of errors located with soft BCH 151 * @hw_ecc: Buffer to store syndromes computed by hardware 152 * @bch: BCH structure 153 */ 154 struct anand { 155 struct list_head node; 156 struct nand_chip chip; 157 unsigned int cs; 158 unsigned int rb; 159 unsigned int page_sz; 160 unsigned long clk; 161 u32 timings; 162 u32 ecc_conf; 163 u32 strength; 164 u16 raddr_cycles; 165 u16 caddr_cycles; 166 unsigned int ecc_bits; 167 unsigned int ecc_total; 168 unsigned int *errloc; 169 u8 *hw_ecc; 170 struct bch_control *bch; 171 }; 172 173 /** 174 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance 175 * @dev: Pointer to the device structure 176 * @base: Remapped register area 177 * @controller_clk: Pointer to the system clock 178 * @bus_clk: Pointer to the flash clock 179 * @controller: Base controller structure 180 * @chips: List of all NAND chips attached to the controller 181 * @assigned_cs: Bitmask describing already assigned CS lines 182 * @cur_clk: Current clock rate 183 */ 184 struct arasan_nfc { 185 struct device *dev; 186 void __iomem *base; 187 struct clk *controller_clk; 188 struct clk *bus_clk; 189 struct nand_controller controller; 190 struct list_head chips; 191 unsigned long assigned_cs; 192 unsigned int cur_clk; 193 }; 194 195 static struct anand *to_anand(struct nand_chip *nand) 196 { 197 return container_of(nand, struct anand, chip); 198 } 199 200 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) 201 { 202 return container_of(ctrl, struct arasan_nfc, controller); 203 } 204 205 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) 206 { 207 u32 val; 208 int ret; 209 210 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, 211 val & event, 0, 212 ANFC_DFLT_TIMEOUT_US); 213 if (ret) { 214 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); 215 return -ETIMEDOUT; 216 } 217 218 writel_relaxed(event, nfc->base + INTR_STS_REG); 219 220 return 0; 221 } 222 223 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, 224 unsigned int timeout_ms) 225 { 226 struct anand *anand = to_anand(chip); 227 u32 val; 228 int ret; 229 230 /* There is no R/B interrupt, we must poll a register */ 231 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, 232 val & BIT(anand->rb), 233 1, timeout_ms * 1000); 234 if (ret) { 235 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", 236 readl_relaxed(nfc->base + READY_STS_REG)); 237 return -ETIMEDOUT; 238 } 239 240 return 0; 241 } 242 243 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) 244 { 245 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); 246 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); 247 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); 248 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); 249 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); 250 } 251 252 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, 253 unsigned int *pktsize) 254 { 255 unsigned int nb, sz; 256 257 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { 258 sz = len / nb; 259 if (sz <= ANFC_MAX_PKT_SIZE) 260 break; 261 } 262 263 if (sz * nb != len) 264 return -ENOTSUPP; 265 266 if (steps) 267 *steps = nb; 268 269 if (pktsize) 270 *pktsize = sz; 271 272 return 0; 273 } 274 275 /* 276 * When using the embedded hardware ECC engine, the controller is in charge of 277 * feeding the engine with, first, the ECC residue present in the data array. 278 * A typical read operation is: 279 * 1/ Assert the read operation by sending the relevant command/address cycles 280 * but targeting the column of the first ECC bytes in the OOB area instead of 281 * the main data directly. 282 * 2/ After having read the relevant number of ECC bytes, the controller uses 283 * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command 284 * Register" to move the pointer back at the beginning of the main data. 285 * 3/ It will read the content of the main area for a given size (pktsize) and 286 * will feed the ECC engine with this buffer again. 287 * 4/ The ECC engine derives the ECC bytes for the given data and compare them 288 * with the ones already received. It eventually trigger status flags and 289 * then set the "Buffer Read Ready" flag. 290 * 5/ The corrected data is then available for reading from the data port 291 * register. 292 * 293 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never 294 * reports uncorrectable errors. Because of this bug, we have to use the 295 * software BCH implementation in the read path. 296 */ 297 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, 298 int oob_required, int page) 299 { 300 struct arasan_nfc *nfc = to_anfc(chip->controller); 301 struct mtd_info *mtd = nand_to_mtd(chip); 302 struct anand *anand = to_anand(chip); 303 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); 304 unsigned int max_bitflips = 0; 305 dma_addr_t dma_addr; 306 int step, ret; 307 struct anfc_op nfc_op = { 308 .pkt_reg = 309 PKT_SIZE(chip->ecc.size) | 310 PKT_STEPS(chip->ecc.steps), 311 .addr1_reg = 312 (page & 0xFF) << (8 * (anand->caddr_cycles)) | 313 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), 314 .addr2_reg = 315 ((page >> 16) & 0xFF) | 316 ADDR2_STRENGTH(anand->strength) | 317 ADDR2_CS(anand->cs), 318 .cmd_reg = 319 CMD_1(NAND_CMD_READ0) | 320 CMD_2(NAND_CMD_READSTART) | 321 CMD_PAGE_SIZE(anand->page_sz) | 322 CMD_DMA_ENABLE | 323 CMD_NADDRS(anand->caddr_cycles + 324 anand->raddr_cycles), 325 .prog_reg = PROG_PGRD, 326 }; 327 328 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); 329 if (dma_mapping_error(nfc->dev, dma_addr)) { 330 dev_err(nfc->dev, "Buffer mapping error"); 331 return -EIO; 332 } 333 334 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); 335 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); 336 337 anfc_trigger_op(nfc, &nfc_op); 338 339 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 340 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); 341 if (ret) { 342 dev_err(nfc->dev, "Error reading page %d\n", page); 343 return ret; 344 } 345 346 /* Store the raw OOB bytes as well */ 347 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, 348 mtd->oobsize, 0); 349 if (ret) 350 return ret; 351 352 /* 353 * For each step, compute by softare the BCH syndrome over the raw data. 354 * Compare the theoretical amount of errors and compare with the 355 * hardware engine feedback. 356 */ 357 for (step = 0; step < chip->ecc.steps; step++) { 358 u8 *raw_buf = &buf[step * chip->ecc.size]; 359 unsigned int bit, byte; 360 int bf, i; 361 362 /* Extract the syndrome, it is not necessarily aligned */ 363 memset(anand->hw_ecc, 0, chip->ecc.bytes); 364 nand_extract_bits(anand->hw_ecc, 0, 365 &chip->oob_poi[mtd->oobsize - anand->ecc_total], 366 anand->ecc_bits * step, anand->ecc_bits); 367 368 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, 369 anand->hw_ecc, NULL, NULL, anand->errloc); 370 if (!bf) { 371 continue; 372 } else if (bf > 0) { 373 for (i = 0; i < bf; i++) { 374 /* Only correct the data, not the syndrome */ 375 if (anand->errloc[i] < (chip->ecc.size * 8)) { 376 bit = BIT(anand->errloc[i] & 7); 377 byte = anand->errloc[i] >> 3; 378 raw_buf[byte] ^= bit; 379 } 380 } 381 382 mtd->ecc_stats.corrected += bf; 383 max_bitflips = max_t(unsigned int, max_bitflips, bf); 384 385 continue; 386 } 387 388 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, 389 NULL, 0, NULL, 0, 390 chip->ecc.strength); 391 if (bf > 0) { 392 mtd->ecc_stats.corrected += bf; 393 max_bitflips = max_t(unsigned int, max_bitflips, bf); 394 memset(raw_buf, 0xFF, chip->ecc.size); 395 } else if (bf < 0) { 396 mtd->ecc_stats.failed++; 397 } 398 } 399 400 return 0; 401 } 402 403 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, 404 int oob_required, int page) 405 { 406 struct anand *anand = to_anand(chip); 407 struct arasan_nfc *nfc = to_anfc(chip->controller); 408 struct mtd_info *mtd = nand_to_mtd(chip); 409 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); 410 dma_addr_t dma_addr; 411 int ret; 412 struct anfc_op nfc_op = { 413 .pkt_reg = 414 PKT_SIZE(chip->ecc.size) | 415 PKT_STEPS(chip->ecc.steps), 416 .addr1_reg = 417 (page & 0xFF) << (8 * (anand->caddr_cycles)) | 418 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), 419 .addr2_reg = 420 ((page >> 16) & 0xFF) | 421 ADDR2_STRENGTH(anand->strength) | 422 ADDR2_CS(anand->cs), 423 .cmd_reg = 424 CMD_1(NAND_CMD_SEQIN) | 425 CMD_2(NAND_CMD_PAGEPROG) | 426 CMD_PAGE_SIZE(anand->page_sz) | 427 CMD_DMA_ENABLE | 428 CMD_NADDRS(anand->caddr_cycles + 429 anand->raddr_cycles) | 430 CMD_ECC_ENABLE, 431 .prog_reg = PROG_PGPROG, 432 }; 433 434 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); 435 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | 436 ECC_SP_ADDRS(anand->caddr_cycles), 437 nfc->base + ECC_SP_REG); 438 439 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); 440 if (dma_mapping_error(nfc->dev, dma_addr)) { 441 dev_err(nfc->dev, "Buffer mapping error"); 442 return -EIO; 443 } 444 445 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); 446 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); 447 448 anfc_trigger_op(nfc, &nfc_op); 449 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 450 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); 451 if (ret) { 452 dev_err(nfc->dev, "Error writing page %d\n", page); 453 return ret; 454 } 455 456 /* Spare data is not protected */ 457 if (oob_required) 458 ret = nand_write_oob_std(chip, page); 459 460 return ret; 461 } 462 463 /* NAND framework ->exec_op() hooks and related helpers */ 464 static int anfc_parse_instructions(struct nand_chip *chip, 465 const struct nand_subop *subop, 466 struct anfc_op *nfc_op) 467 { 468 struct anand *anand = to_anand(chip); 469 const struct nand_op_instr *instr = NULL; 470 bool first_cmd = true; 471 unsigned int op_id; 472 int ret, i; 473 474 memset(nfc_op, 0, sizeof(*nfc_op)); 475 nfc_op->addr2_reg = ADDR2_CS(anand->cs); 476 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); 477 478 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 479 unsigned int offset, naddrs, pktsize; 480 const u8 *addrs; 481 u8 *buf; 482 483 instr = &subop->instrs[op_id]; 484 485 switch (instr->type) { 486 case NAND_OP_CMD_INSTR: 487 if (first_cmd) 488 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); 489 else 490 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); 491 492 first_cmd = false; 493 break; 494 495 case NAND_OP_ADDR_INSTR: 496 offset = nand_subop_get_addr_start_off(subop, op_id); 497 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 498 addrs = &instr->ctx.addr.addrs[offset]; 499 nfc_op->cmd_reg |= CMD_NADDRS(naddrs); 500 501 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { 502 if (i < 4) 503 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; 504 else 505 nfc_op->addr2_reg |= addrs[i]; 506 } 507 508 break; 509 case NAND_OP_DATA_IN_INSTR: 510 nfc_op->read = true; 511 fallthrough; 512 case NAND_OP_DATA_OUT_INSTR: 513 offset = nand_subop_get_data_start_off(subop, op_id); 514 buf = instr->ctx.data.buf.in; 515 nfc_op->buf = &buf[offset]; 516 nfc_op->len = nand_subop_get_data_len(subop, op_id); 517 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, 518 &pktsize); 519 if (ret) 520 return ret; 521 522 /* 523 * Number of DATA cycles must be aligned on 4, this 524 * means the controller might read/write more than 525 * requested. This is harmless most of the time as extra 526 * DATA are discarded in the write path and read pointer 527 * adjusted in the read path. 528 * 529 * FIXME: The core should mark operations where 530 * reading/writing more is allowed so the exec_op() 531 * implementation can take the right decision when the 532 * alignment constraint is not met: adjust the number of 533 * DATA cycles when it's allowed, reject the operation 534 * otherwise. 535 */ 536 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | 537 PKT_STEPS(nfc_op->steps); 538 break; 539 case NAND_OP_WAITRDY_INSTR: 540 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 541 break; 542 } 543 } 544 545 return 0; 546 } 547 548 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) 549 { 550 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; 551 unsigned int last_len = nfc_op->len % 4; 552 unsigned int offset, dir; 553 u8 *buf = nfc_op->buf; 554 int ret, i; 555 556 for (i = 0; i < nfc_op->steps; i++) { 557 dir = nfc_op->read ? READ_READY : WRITE_READY; 558 ret = anfc_wait_for_event(nfc, dir); 559 if (ret) { 560 dev_err(nfc->dev, "PIO %s ready signal not received\n", 561 nfc_op->read ? "Read" : "Write"); 562 return ret; 563 } 564 565 offset = i * (dwords * 4); 566 if (nfc_op->read) 567 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], 568 dwords); 569 else 570 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], 571 dwords); 572 } 573 574 if (last_len) { 575 u32 remainder; 576 577 offset = nfc_op->len - last_len; 578 579 if (nfc_op->read) { 580 remainder = readl_relaxed(nfc->base + DATA_PORT_REG); 581 memcpy(&buf[offset], &remainder, last_len); 582 } else { 583 memcpy(&remainder, &buf[offset], last_len); 584 writel_relaxed(remainder, nfc->base + DATA_PORT_REG); 585 } 586 } 587 588 return anfc_wait_for_event(nfc, XFER_COMPLETE); 589 } 590 591 static int anfc_misc_data_type_exec(struct nand_chip *chip, 592 const struct nand_subop *subop, 593 u32 prog_reg) 594 { 595 struct arasan_nfc *nfc = to_anfc(chip->controller); 596 struct anfc_op nfc_op = {}; 597 int ret; 598 599 ret = anfc_parse_instructions(chip, subop, &nfc_op); 600 if (ret) 601 return ret; 602 603 nfc_op.prog_reg = prog_reg; 604 anfc_trigger_op(nfc, &nfc_op); 605 606 if (nfc_op.rdy_timeout_ms) { 607 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 608 if (ret) 609 return ret; 610 } 611 612 return anfc_rw_pio_op(nfc, &nfc_op); 613 } 614 615 static int anfc_param_read_type_exec(struct nand_chip *chip, 616 const struct nand_subop *subop) 617 { 618 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); 619 } 620 621 static int anfc_data_read_type_exec(struct nand_chip *chip, 622 const struct nand_subop *subop) 623 { 624 return anfc_misc_data_type_exec(chip, subop, PROG_PGRD); 625 } 626 627 static int anfc_param_write_type_exec(struct nand_chip *chip, 628 const struct nand_subop *subop) 629 { 630 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); 631 } 632 633 static int anfc_data_write_type_exec(struct nand_chip *chip, 634 const struct nand_subop *subop) 635 { 636 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); 637 } 638 639 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, 640 const struct nand_subop *subop, 641 u32 prog_reg) 642 { 643 struct arasan_nfc *nfc = to_anfc(chip->controller); 644 struct anfc_op nfc_op = {}; 645 int ret; 646 647 ret = anfc_parse_instructions(chip, subop, &nfc_op); 648 if (ret) 649 return ret; 650 651 nfc_op.prog_reg = prog_reg; 652 anfc_trigger_op(nfc, &nfc_op); 653 654 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 655 if (ret) 656 return ret; 657 658 if (nfc_op.rdy_timeout_ms) 659 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 660 661 return ret; 662 } 663 664 static int anfc_status_type_exec(struct nand_chip *chip, 665 const struct nand_subop *subop) 666 { 667 struct arasan_nfc *nfc = to_anfc(chip->controller); 668 u32 tmp; 669 int ret; 670 671 /* See anfc_check_op() for details about this constraint */ 672 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) 673 return -ENOTSUPP; 674 675 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); 676 if (ret) 677 return ret; 678 679 tmp = readl_relaxed(nfc->base + FLASH_STS_REG); 680 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); 681 682 return 0; 683 } 684 685 static int anfc_reset_type_exec(struct nand_chip *chip, 686 const struct nand_subop *subop) 687 { 688 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); 689 } 690 691 static int anfc_erase_type_exec(struct nand_chip *chip, 692 const struct nand_subop *subop) 693 { 694 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); 695 } 696 697 static int anfc_wait_type_exec(struct nand_chip *chip, 698 const struct nand_subop *subop) 699 { 700 struct arasan_nfc *nfc = to_anfc(chip->controller); 701 struct anfc_op nfc_op = {}; 702 int ret; 703 704 ret = anfc_parse_instructions(chip, subop, &nfc_op); 705 if (ret) 706 return ret; 707 708 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 709 } 710 711 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( 712 NAND_OP_PARSER_PATTERN( 713 anfc_param_read_type_exec, 714 NAND_OP_PARSER_PAT_CMD_ELEM(false), 715 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 716 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 717 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), 718 NAND_OP_PARSER_PATTERN( 719 anfc_param_write_type_exec, 720 NAND_OP_PARSER_PAT_CMD_ELEM(false), 721 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 722 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), 723 NAND_OP_PARSER_PATTERN( 724 anfc_data_read_type_exec, 725 NAND_OP_PARSER_PAT_CMD_ELEM(false), 726 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 727 NAND_OP_PARSER_PAT_CMD_ELEM(false), 728 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 729 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), 730 NAND_OP_PARSER_PATTERN( 731 anfc_data_write_type_exec, 732 NAND_OP_PARSER_PAT_CMD_ELEM(false), 733 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 734 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), 735 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 736 NAND_OP_PARSER_PATTERN( 737 anfc_reset_type_exec, 738 NAND_OP_PARSER_PAT_CMD_ELEM(false), 739 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 740 NAND_OP_PARSER_PATTERN( 741 anfc_erase_type_exec, 742 NAND_OP_PARSER_PAT_CMD_ELEM(false), 743 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 744 NAND_OP_PARSER_PAT_CMD_ELEM(false), 745 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 746 NAND_OP_PARSER_PATTERN( 747 anfc_status_type_exec, 748 NAND_OP_PARSER_PAT_CMD_ELEM(false), 749 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), 750 NAND_OP_PARSER_PATTERN( 751 anfc_wait_type_exec, 752 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 753 ); 754 755 static int anfc_select_target(struct nand_chip *chip, int target) 756 { 757 struct anand *anand = to_anand(chip); 758 struct arasan_nfc *nfc = to_anfc(chip->controller); 759 int ret; 760 761 /* Update the controller timings and the potential ECC configuration */ 762 writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG); 763 764 /* Update clock frequency */ 765 if (nfc->cur_clk != anand->clk) { 766 clk_disable_unprepare(nfc->controller_clk); 767 ret = clk_set_rate(nfc->controller_clk, anand->clk); 768 if (ret) { 769 dev_err(nfc->dev, "Failed to change clock rate\n"); 770 return ret; 771 } 772 773 ret = clk_prepare_enable(nfc->controller_clk); 774 if (ret) { 775 dev_err(nfc->dev, 776 "Failed to re-enable the controller clock\n"); 777 return ret; 778 } 779 780 nfc->cur_clk = anand->clk; 781 } 782 783 return 0; 784 } 785 786 static int anfc_check_op(struct nand_chip *chip, 787 const struct nand_operation *op) 788 { 789 const struct nand_op_instr *instr; 790 int op_id; 791 792 /* 793 * The controller abstracts all the NAND operations and do not support 794 * data only operations. 795 * 796 * TODO: The nand_op_parser framework should be extended to 797 * support custom checks on DATA instructions. 798 */ 799 for (op_id = 0; op_id < op->ninstrs; op_id++) { 800 instr = &op->instrs[op_id]; 801 802 switch (instr->type) { 803 case NAND_OP_ADDR_INSTR: 804 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) 805 return -ENOTSUPP; 806 807 break; 808 case NAND_OP_DATA_IN_INSTR: 809 case NAND_OP_DATA_OUT_INSTR: 810 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) 811 return -ENOTSUPP; 812 813 if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0)) 814 return -ENOTSUPP; 815 816 break; 817 default: 818 break; 819 } 820 } 821 822 /* 823 * The controller does not allow to proceed with a CMD+DATA_IN cycle 824 * manually on the bus by reading data from the data register. Instead, 825 * the controller abstract a status read operation with its own status 826 * register after ordering a read status operation. Hence, we cannot 827 * support any CMD+DATA_IN operation other than a READ STATUS. 828 * 829 * TODO: The nand_op_parser() framework should be extended to describe 830 * fixed patterns instead of open-coding this check here. 831 */ 832 if (op->ninstrs == 2 && 833 op->instrs[0].type == NAND_OP_CMD_INSTR && 834 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && 835 op->instrs[1].type == NAND_OP_DATA_IN_INSTR) 836 return -ENOTSUPP; 837 838 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); 839 } 840 841 static int anfc_exec_op(struct nand_chip *chip, 842 const struct nand_operation *op, 843 bool check_only) 844 { 845 int ret; 846 847 if (check_only) 848 return anfc_check_op(chip, op); 849 850 ret = anfc_select_target(chip, op->cs); 851 if (ret) 852 return ret; 853 854 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); 855 } 856 857 static int anfc_setup_data_interface(struct nand_chip *chip, int target, 858 const struct nand_data_interface *conf) 859 { 860 struct anand *anand = to_anand(chip); 861 struct arasan_nfc *nfc = to_anfc(chip->controller); 862 struct device_node *np = nfc->dev->of_node; 863 864 if (target < 0) 865 return 0; 866 867 anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode); 868 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; 869 870 /* 871 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work 872 * with f > 90MHz (default clock is 100MHz) but signals are unstable 873 * with higher modes. Hence we decrease a little bit the clock rate to 874 * 80MHz when using modes 2-5 with this SoC. 875 */ 876 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && 877 conf->timings.mode >= 2) 878 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; 879 880 return 0; 881 } 882 883 static int anfc_calc_hw_ecc_bytes(int step_size, int strength) 884 { 885 unsigned int bch_gf_mag, ecc_bits; 886 887 switch (step_size) { 888 case SZ_512: 889 bch_gf_mag = 13; 890 break; 891 case SZ_1K: 892 bch_gf_mag = 14; 893 break; 894 default: 895 return -EINVAL; 896 } 897 898 ecc_bits = bch_gf_mag * strength; 899 900 return DIV_ROUND_UP(ecc_bits, 8); 901 } 902 903 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; 904 905 static const int anfc_hw_ecc_1024_strengths[] = {24}; 906 907 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { 908 { 909 .stepsize = SZ_512, 910 .strengths = anfc_hw_ecc_512_strengths, 911 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), 912 }, 913 { 914 .stepsize = SZ_1K, 915 .strengths = anfc_hw_ecc_1024_strengths, 916 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), 917 }, 918 }; 919 920 static const struct nand_ecc_caps anfc_hw_ecc_caps = { 921 .stepinfos = anfc_hw_ecc_step_infos, 922 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), 923 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, 924 }; 925 926 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, 927 struct nand_chip *chip) 928 { 929 struct anand *anand = to_anand(chip); 930 struct mtd_info *mtd = nand_to_mtd(chip); 931 struct nand_ecc_ctrl *ecc = &chip->ecc; 932 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; 933 int ret; 934 935 switch (mtd->writesize) { 936 case SZ_512: 937 case SZ_2K: 938 case SZ_4K: 939 case SZ_8K: 940 case SZ_16K: 941 break; 942 default: 943 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); 944 return -EINVAL; 945 } 946 947 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); 948 if (ret) 949 return ret; 950 951 switch (ecc->strength) { 952 case 12: 953 anand->strength = 0x1; 954 break; 955 case 8: 956 anand->strength = 0x2; 957 break; 958 case 4: 959 anand->strength = 0x3; 960 break; 961 case 24: 962 anand->strength = 0x4; 963 break; 964 default: 965 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); 966 return -EINVAL; 967 } 968 969 switch (ecc->size) { 970 case SZ_512: 971 bch_gf_mag = 13; 972 bch_prim_poly = 0x201b; 973 break; 974 case SZ_1K: 975 bch_gf_mag = 14; 976 bch_prim_poly = 0x4443; 977 break; 978 default: 979 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); 980 return -EINVAL; 981 } 982 983 mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); 984 985 ecc->steps = mtd->writesize / ecc->size; 986 ecc->algo = NAND_ECC_BCH; 987 anand->ecc_bits = bch_gf_mag * ecc->strength; 988 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); 989 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); 990 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; 991 anand->ecc_conf = ECC_CONF_COL(ecc_offset) | 992 ECC_CONF_LEN(anand->ecc_total) | 993 ECC_CONF_BCH_EN; 994 995 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, 996 sizeof(*anand->errloc), GFP_KERNEL); 997 if (!anand->errloc) 998 return -ENOMEM; 999 1000 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); 1001 if (!anand->hw_ecc) 1002 return -ENOMEM; 1003 1004 /* Enforce bit swapping to fit the hardware */ 1005 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); 1006 if (!anand->bch) 1007 return -EINVAL; 1008 1009 ecc->read_page = anfc_read_page_hw_ecc; 1010 ecc->write_page = anfc_write_page_hw_ecc; 1011 1012 return 0; 1013 } 1014 1015 static int anfc_attach_chip(struct nand_chip *chip) 1016 { 1017 struct anand *anand = to_anand(chip); 1018 struct arasan_nfc *nfc = to_anfc(chip->controller); 1019 struct mtd_info *mtd = nand_to_mtd(chip); 1020 int ret = 0; 1021 1022 if (mtd->writesize <= SZ_512) 1023 anand->caddr_cycles = 1; 1024 else 1025 anand->caddr_cycles = 2; 1026 1027 if (chip->options & NAND_ROW_ADDR_3) 1028 anand->raddr_cycles = 3; 1029 else 1030 anand->raddr_cycles = 2; 1031 1032 switch (mtd->writesize) { 1033 case 512: 1034 anand->page_sz = 0; 1035 break; 1036 case 1024: 1037 anand->page_sz = 5; 1038 break; 1039 case 2048: 1040 anand->page_sz = 1; 1041 break; 1042 case 4096: 1043 anand->page_sz = 2; 1044 break; 1045 case 8192: 1046 anand->page_sz = 3; 1047 break; 1048 case 16384: 1049 anand->page_sz = 4; 1050 break; 1051 default: 1052 return -EINVAL; 1053 } 1054 1055 /* These hooks are valid for all ECC providers */ 1056 chip->ecc.read_page_raw = nand_monolithic_read_page_raw; 1057 chip->ecc.write_page_raw = nand_monolithic_write_page_raw; 1058 1059 switch (chip->ecc.mode) { 1060 case NAND_ECC_NONE: 1061 case NAND_ECC_SOFT: 1062 case NAND_ECC_ON_DIE: 1063 break; 1064 case NAND_ECC_HW: 1065 ret = anfc_init_hw_ecc_controller(nfc, chip); 1066 break; 1067 default: 1068 dev_err(nfc->dev, "Unsupported ECC mode: %d\n", 1069 chip->ecc.mode); 1070 return -EINVAL; 1071 } 1072 1073 return ret; 1074 } 1075 1076 static void anfc_detach_chip(struct nand_chip *chip) 1077 { 1078 struct anand *anand = to_anand(chip); 1079 1080 if (anand->bch) 1081 bch_free(anand->bch); 1082 } 1083 1084 static const struct nand_controller_ops anfc_ops = { 1085 .exec_op = anfc_exec_op, 1086 .setup_data_interface = anfc_setup_data_interface, 1087 .attach_chip = anfc_attach_chip, 1088 .detach_chip = anfc_detach_chip, 1089 }; 1090 1091 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) 1092 { 1093 struct anand *anand; 1094 struct nand_chip *chip; 1095 struct mtd_info *mtd; 1096 int cs, rb, ret; 1097 1098 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); 1099 if (!anand) 1100 return -ENOMEM; 1101 1102 /* We do not support multiple CS per chip yet */ 1103 if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) { 1104 dev_err(nfc->dev, "Invalid reg property\n"); 1105 return -EINVAL; 1106 } 1107 1108 ret = of_property_read_u32(np, "reg", &cs); 1109 if (ret) 1110 return ret; 1111 1112 ret = of_property_read_u32(np, "nand-rb", &rb); 1113 if (ret) 1114 return ret; 1115 1116 if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) { 1117 dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb); 1118 return -EINVAL; 1119 } 1120 1121 if (test_and_set_bit(cs, &nfc->assigned_cs)) { 1122 dev_err(nfc->dev, "Already assigned CS %d\n", cs); 1123 return -EINVAL; 1124 } 1125 1126 anand->cs = cs; 1127 anand->rb = rb; 1128 1129 chip = &anand->chip; 1130 mtd = nand_to_mtd(chip); 1131 mtd->dev.parent = nfc->dev; 1132 chip->controller = &nfc->controller; 1133 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 1134 NAND_USES_DMA; 1135 1136 nand_set_flash_node(chip, np); 1137 if (!mtd->name) { 1138 dev_err(nfc->dev, "NAND label property is mandatory\n"); 1139 return -EINVAL; 1140 } 1141 1142 ret = nand_scan(chip, 1); 1143 if (ret) { 1144 dev_err(nfc->dev, "Scan operation failed\n"); 1145 return ret; 1146 } 1147 1148 ret = mtd_device_register(mtd, NULL, 0); 1149 if (ret) { 1150 nand_cleanup(chip); 1151 return ret; 1152 } 1153 1154 list_add_tail(&anand->node, &nfc->chips); 1155 1156 return 0; 1157 } 1158 1159 static void anfc_chips_cleanup(struct arasan_nfc *nfc) 1160 { 1161 struct anand *anand, *tmp; 1162 struct nand_chip *chip; 1163 int ret; 1164 1165 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { 1166 chip = &anand->chip; 1167 ret = mtd_device_unregister(nand_to_mtd(chip)); 1168 WARN_ON(ret); 1169 nand_cleanup(chip); 1170 list_del(&anand->node); 1171 } 1172 } 1173 1174 static int anfc_chips_init(struct arasan_nfc *nfc) 1175 { 1176 struct device_node *np = nfc->dev->of_node, *nand_np; 1177 int nchips = of_get_child_count(np); 1178 int ret; 1179 1180 if (!nchips || nchips > ANFC_MAX_CS) { 1181 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", 1182 nchips); 1183 return -EINVAL; 1184 } 1185 1186 for_each_child_of_node(np, nand_np) { 1187 ret = anfc_chip_init(nfc, nand_np); 1188 if (ret) { 1189 of_node_put(nand_np); 1190 anfc_chips_cleanup(nfc); 1191 break; 1192 } 1193 } 1194 1195 return ret; 1196 } 1197 1198 static void anfc_reset(struct arasan_nfc *nfc) 1199 { 1200 /* Disable interrupt signals */ 1201 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); 1202 1203 /* Enable interrupt status */ 1204 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); 1205 } 1206 1207 static int anfc_probe(struct platform_device *pdev) 1208 { 1209 struct arasan_nfc *nfc; 1210 int ret; 1211 1212 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); 1213 if (!nfc) 1214 return -ENOMEM; 1215 1216 nfc->dev = &pdev->dev; 1217 nand_controller_init(&nfc->controller); 1218 nfc->controller.ops = &anfc_ops; 1219 INIT_LIST_HEAD(&nfc->chips); 1220 1221 nfc->base = devm_platform_ioremap_resource(pdev, 0); 1222 if (IS_ERR(nfc->base)) 1223 return PTR_ERR(nfc->base); 1224 1225 anfc_reset(nfc); 1226 1227 nfc->controller_clk = devm_clk_get(&pdev->dev, "controller"); 1228 if (IS_ERR(nfc->controller_clk)) 1229 return PTR_ERR(nfc->controller_clk); 1230 1231 nfc->bus_clk = devm_clk_get(&pdev->dev, "bus"); 1232 if (IS_ERR(nfc->bus_clk)) 1233 return PTR_ERR(nfc->bus_clk); 1234 1235 ret = clk_prepare_enable(nfc->controller_clk); 1236 if (ret) 1237 return ret; 1238 1239 ret = clk_prepare_enable(nfc->bus_clk); 1240 if (ret) 1241 goto disable_controller_clk; 1242 1243 ret = anfc_chips_init(nfc); 1244 if (ret) 1245 goto disable_bus_clk; 1246 1247 platform_set_drvdata(pdev, nfc); 1248 1249 return 0; 1250 1251 disable_bus_clk: 1252 clk_disable_unprepare(nfc->bus_clk); 1253 1254 disable_controller_clk: 1255 clk_disable_unprepare(nfc->controller_clk); 1256 1257 return ret; 1258 } 1259 1260 static int anfc_remove(struct platform_device *pdev) 1261 { 1262 struct arasan_nfc *nfc = platform_get_drvdata(pdev); 1263 1264 anfc_chips_cleanup(nfc); 1265 1266 clk_disable_unprepare(nfc->bus_clk); 1267 clk_disable_unprepare(nfc->controller_clk); 1268 1269 return 0; 1270 } 1271 1272 static const struct of_device_id anfc_ids[] = { 1273 { 1274 .compatible = "xlnx,zynqmp-nand-controller", 1275 }, 1276 { 1277 .compatible = "arasan,nfc-v3p10", 1278 }, 1279 {} 1280 }; 1281 MODULE_DEVICE_TABLE(of, anfc_ids); 1282 1283 static struct platform_driver anfc_driver = { 1284 .driver = { 1285 .name = "arasan-nand-controller", 1286 .of_match_table = anfc_ids, 1287 }, 1288 .probe = anfc_probe, 1289 .remove = anfc_remove, 1290 }; 1291 module_platform_driver(anfc_driver); 1292 1293 MODULE_LICENSE("GPL v2"); 1294 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>"); 1295 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>"); 1296 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); 1297 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); 1298