xref: /openbmc/linux/drivers/mtd/nand/raw/arasan-nand-controller.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arasan NAND Flash Controller Driver
4  *
5  * Copyright (C) 2014 - 2020 Xilinx, Inc.
6  * Author:
7  *   Miquel Raynal <miquel.raynal@bootlin.com>
8  * Original work (fully rewritten):
9  *   Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10  *   Naga Sureshkumar Relli <nagasure@xilinx.com>
11  */
12 
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/iopoll.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 
28 #define PKT_REG				0x00
29 #define   PKT_SIZE(x)			FIELD_PREP(GENMASK(10, 0), (x))
30 #define   PKT_STEPS(x)			FIELD_PREP(GENMASK(23, 12), (x))
31 
32 #define MEM_ADDR1_REG			0x04
33 
34 #define MEM_ADDR2_REG			0x08
35 #define   ADDR2_STRENGTH(x)		FIELD_PREP(GENMASK(27, 25), (x))
36 #define   ADDR2_CS(x)			FIELD_PREP(GENMASK(31, 30), (x))
37 
38 #define CMD_REG				0x0C
39 #define   CMD_1(x)			FIELD_PREP(GENMASK(7, 0), (x))
40 #define   CMD_2(x)			FIELD_PREP(GENMASK(15, 8), (x))
41 #define   CMD_PAGE_SIZE(x)		FIELD_PREP(GENMASK(25, 23), (x))
42 #define   CMD_DMA_ENABLE		BIT(27)
43 #define   CMD_NADDRS(x)			FIELD_PREP(GENMASK(30, 28), (x))
44 #define   CMD_ECC_ENABLE		BIT(31)
45 
46 #define PROG_REG			0x10
47 #define   PROG_PGRD			BIT(0)
48 #define   PROG_ERASE			BIT(2)
49 #define   PROG_STATUS			BIT(3)
50 #define   PROG_PGPROG			BIT(4)
51 #define   PROG_RDID			BIT(6)
52 #define   PROG_RDPARAM			BIT(7)
53 #define   PROG_RST			BIT(8)
54 #define   PROG_GET_FEATURE		BIT(9)
55 #define   PROG_SET_FEATURE		BIT(10)
56 
57 #define INTR_STS_EN_REG			0x14
58 #define INTR_SIG_EN_REG			0x18
59 #define INTR_STS_REG			0x1C
60 #define   WRITE_READY			BIT(0)
61 #define   READ_READY			BIT(1)
62 #define   XFER_COMPLETE			BIT(2)
63 #define   DMA_BOUNDARY			BIT(6)
64 #define   EVENT_MASK			GENMASK(7, 0)
65 
66 #define READY_STS_REG			0x20
67 
68 #define DMA_ADDR0_REG			0x50
69 #define DMA_ADDR1_REG			0x24
70 
71 #define FLASH_STS_REG			0x28
72 
73 #define DATA_PORT_REG			0x30
74 
75 #define ECC_CONF_REG			0x34
76 #define   ECC_CONF_COL(x)		FIELD_PREP(GENMASK(15, 0), (x))
77 #define   ECC_CONF_LEN(x)		FIELD_PREP(GENMASK(26, 16), (x))
78 #define   ECC_CONF_BCH_EN		BIT(27)
79 
80 #define ECC_ERR_CNT_REG			0x38
81 #define   GET_PKT_ERR_CNT(x)		FIELD_GET(GENMASK(7, 0), (x))
82 #define   GET_PAGE_ERR_CNT(x)		FIELD_GET(GENMASK(16, 8), (x))
83 
84 #define ECC_SP_REG			0x3C
85 #define   ECC_SP_CMD1(x)		FIELD_PREP(GENMASK(7, 0), (x))
86 #define   ECC_SP_CMD2(x)		FIELD_PREP(GENMASK(15, 8), (x))
87 #define   ECC_SP_ADDRS(x)		FIELD_PREP(GENMASK(30, 28), (x))
88 
89 #define ECC_1ERR_CNT_REG		0x40
90 #define ECC_2ERR_CNT_REG		0x44
91 
92 #define DATA_INTERFACE_REG		0x6C
93 #define   DIFACE_SDR_MODE(x)		FIELD_PREP(GENMASK(2, 0), (x))
94 #define   DIFACE_DDR_MODE(x)		FIELD_PREP(GENMASK(5, 3), (X))
95 #define   DIFACE_SDR			0
96 #define   DIFACE_NVDDR			BIT(9)
97 
98 #define ANFC_MAX_CS			2
99 #define ANFC_DFLT_TIMEOUT_US		1000000
100 #define ANFC_MAX_CHUNK_SIZE		SZ_1M
101 #define ANFC_MAX_PARAM_SIZE		SZ_4K
102 #define ANFC_MAX_STEPS			SZ_2K
103 #define ANFC_MAX_PKT_SIZE		(SZ_2K - 1)
104 #define ANFC_MAX_ADDR_CYC		5U
105 #define ANFC_RSVD_ECC_BYTES		21
106 
107 #define ANFC_XLNX_SDR_DFLT_CORE_CLK	100000000
108 #define ANFC_XLNX_SDR_HS_CORE_CLK	80000000
109 
110 /**
111  * struct anfc_op - Defines how to execute an operation
112  * @pkt_reg: Packet register
113  * @addr1_reg: Memory address 1 register
114  * @addr2_reg: Memory address 2 register
115  * @cmd_reg: Command register
116  * @prog_reg: Program register
117  * @steps: Number of "packets" to read/write
118  * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
119  * @len: Data transfer length
120  * @read: Data transfer direction from the controller point of view
121  */
122 struct anfc_op {
123 	u32 pkt_reg;
124 	u32 addr1_reg;
125 	u32 addr2_reg;
126 	u32 cmd_reg;
127 	u32 prog_reg;
128 	int steps;
129 	unsigned int rdy_timeout_ms;
130 	unsigned int len;
131 	bool read;
132 	u8 *buf;
133 };
134 
135 /**
136  * struct anand - Defines the NAND chip related information
137  * @node:		Used to store NAND chips into a list
138  * @chip:		NAND chip information structure
139  * @cs:			Chip select line
140  * @rb:			Ready-busy line
141  * @page_sz:		Register value of the page_sz field to use
142  * @clk:		Expected clock frequency to use
143  * @timings:		Data interface timing mode to use
144  * @ecc_conf:		Hardware ECC configuration value
145  * @strength:		Register value of the ECC strength
146  * @raddr_cycles:	Row address cycle information
147  * @caddr_cycles:	Column address cycle information
148  * @ecc_bits:		Exact number of ECC bits per syndrome
149  * @ecc_total:		Total number of ECC bytes
150  * @errloc:		Array of errors located with soft BCH
151  * @hw_ecc:		Buffer to store syndromes computed by hardware
152  * @bch:		BCH structure
153  */
154 struct anand {
155 	struct list_head node;
156 	struct nand_chip chip;
157 	unsigned int cs;
158 	unsigned int rb;
159 	unsigned int page_sz;
160 	unsigned long clk;
161 	u32 timings;
162 	u32 ecc_conf;
163 	u32 strength;
164 	u16 raddr_cycles;
165 	u16 caddr_cycles;
166 	unsigned int ecc_bits;
167 	unsigned int ecc_total;
168 	unsigned int *errloc;
169 	u8 *hw_ecc;
170 	struct bch_control *bch;
171 };
172 
173 /**
174  * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
175  * @dev:		Pointer to the device structure
176  * @base:		Remapped register area
177  * @controller_clk:		Pointer to the system clock
178  * @bus_clk:		Pointer to the flash clock
179  * @controller:		Base controller structure
180  * @chips:		List of all NAND chips attached to the controller
181  * @assigned_cs:	Bitmask describing already assigned CS lines
182  * @cur_clk:		Current clock rate
183  */
184 struct arasan_nfc {
185 	struct device *dev;
186 	void __iomem *base;
187 	struct clk *controller_clk;
188 	struct clk *bus_clk;
189 	struct nand_controller controller;
190 	struct list_head chips;
191 	unsigned long assigned_cs;
192 	unsigned int cur_clk;
193 };
194 
195 static struct anand *to_anand(struct nand_chip *nand)
196 {
197 	return container_of(nand, struct anand, chip);
198 }
199 
200 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
201 {
202 	return container_of(ctrl, struct arasan_nfc, controller);
203 }
204 
205 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
206 {
207 	u32 val;
208 	int ret;
209 
210 	ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
211 					 val & event, 0,
212 					 ANFC_DFLT_TIMEOUT_US);
213 	if (ret) {
214 		dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
215 		return -ETIMEDOUT;
216 	}
217 
218 	writel_relaxed(event, nfc->base + INTR_STS_REG);
219 
220 	return 0;
221 }
222 
223 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
224 			    unsigned int timeout_ms)
225 {
226 	struct anand *anand = to_anand(chip);
227 	u32 val;
228 	int ret;
229 
230 	/* There is no R/B interrupt, we must poll a register */
231 	ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
232 					 val & BIT(anand->rb),
233 					 1, timeout_ms * 1000);
234 	if (ret) {
235 		dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
236 			readl_relaxed(nfc->base + READY_STS_REG));
237 		return -ETIMEDOUT;
238 	}
239 
240 	return 0;
241 }
242 
243 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
244 {
245 	writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
246 	writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
247 	writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
248 	writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
249 	writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
250 }
251 
252 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
253 			       unsigned int *pktsize)
254 {
255 	unsigned int nb, sz;
256 
257 	for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
258 		sz = len / nb;
259 		if (sz <= ANFC_MAX_PKT_SIZE)
260 			break;
261 	}
262 
263 	if (sz * nb != len)
264 		return -ENOTSUPP;
265 
266 	if (steps)
267 		*steps = nb;
268 
269 	if (pktsize)
270 		*pktsize = sz;
271 
272 	return 0;
273 }
274 
275 /*
276  * When using the embedded hardware ECC engine, the controller is in charge of
277  * feeding the engine with, first, the ECC residue present in the data array.
278  * A typical read operation is:
279  * 1/ Assert the read operation by sending the relevant command/address cycles
280  *    but targeting the column of the first ECC bytes in the OOB area instead of
281  *    the main data directly.
282  * 2/ After having read the relevant number of ECC bytes, the controller uses
283  *    the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
284  *    Register" to move the pointer back at the beginning of the main data.
285  * 3/ It will read the content of the main area for a given size (pktsize) and
286  *    will feed the ECC engine with this buffer again.
287  * 4/ The ECC engine derives the ECC bytes for the given data and compare them
288  *    with the ones already received. It eventually trigger status flags and
289  *    then set the "Buffer Read Ready" flag.
290  * 5/ The corrected data is then available for reading from the data port
291  *    register.
292  *
293  * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
294  * reports uncorrectable errors. Because of this bug, we have to use the
295  * software BCH implementation in the read path.
296  */
297 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
298 				 int oob_required, int page)
299 {
300 	struct arasan_nfc *nfc = to_anfc(chip->controller);
301 	struct mtd_info *mtd = nand_to_mtd(chip);
302 	struct anand *anand = to_anand(chip);
303 	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
304 	unsigned int max_bitflips = 0;
305 	dma_addr_t dma_addr;
306 	int step, ret;
307 	struct anfc_op nfc_op = {
308 		.pkt_reg =
309 			PKT_SIZE(chip->ecc.size) |
310 			PKT_STEPS(chip->ecc.steps),
311 		.addr1_reg =
312 			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
313 			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
314 		.addr2_reg =
315 			((page >> 16) & 0xFF) |
316 			ADDR2_STRENGTH(anand->strength) |
317 			ADDR2_CS(anand->cs),
318 		.cmd_reg =
319 			CMD_1(NAND_CMD_READ0) |
320 			CMD_2(NAND_CMD_READSTART) |
321 			CMD_PAGE_SIZE(anand->page_sz) |
322 			CMD_DMA_ENABLE |
323 			CMD_NADDRS(anand->caddr_cycles +
324 				   anand->raddr_cycles),
325 		.prog_reg = PROG_PGRD,
326 	};
327 
328 	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
329 	if (dma_mapping_error(nfc->dev, dma_addr)) {
330 		dev_err(nfc->dev, "Buffer mapping error");
331 		return -EIO;
332 	}
333 
334 	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
335 	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
336 
337 	anfc_trigger_op(nfc, &nfc_op);
338 
339 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
340 	dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
341 	if (ret) {
342 		dev_err(nfc->dev, "Error reading page %d\n", page);
343 		return ret;
344 	}
345 
346 	/* Store the raw OOB bytes as well */
347 	ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
348 					 mtd->oobsize, 0);
349 	if (ret)
350 		return ret;
351 
352 	/*
353 	 * For each step, compute by softare the BCH syndrome over the raw data.
354 	 * Compare the theoretical amount of errors and compare with the
355 	 * hardware engine feedback.
356 	 */
357 	for (step = 0; step < chip->ecc.steps; step++) {
358 		u8 *raw_buf = &buf[step * chip->ecc.size];
359 		unsigned int bit, byte;
360 		int bf, i;
361 
362 		/* Extract the syndrome, it is not necessarily aligned */
363 		memset(anand->hw_ecc, 0, chip->ecc.bytes);
364 		nand_extract_bits(anand->hw_ecc, 0,
365 				  &chip->oob_poi[mtd->oobsize - anand->ecc_total],
366 				  anand->ecc_bits * step, anand->ecc_bits);
367 
368 		bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
369 				anand->hw_ecc, NULL, NULL, anand->errloc);
370 		if (!bf) {
371 			continue;
372 		} else if (bf > 0) {
373 			for (i = 0; i < bf; i++) {
374 				/* Only correct the data, not the syndrome */
375 				if (anand->errloc[i] < (chip->ecc.size * 8)) {
376 					bit = BIT(anand->errloc[i] & 7);
377 					byte = anand->errloc[i] >> 3;
378 					raw_buf[byte] ^= bit;
379 				}
380 			}
381 
382 			mtd->ecc_stats.corrected += bf;
383 			max_bitflips = max_t(unsigned int, max_bitflips, bf);
384 
385 			continue;
386 		}
387 
388 		bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
389 						 NULL, 0, NULL, 0,
390 						 chip->ecc.strength);
391 		if (bf > 0) {
392 			mtd->ecc_stats.corrected += bf;
393 			max_bitflips = max_t(unsigned int, max_bitflips, bf);
394 			memset(raw_buf, 0xFF, chip->ecc.size);
395 		} else if (bf < 0) {
396 			mtd->ecc_stats.failed++;
397 		}
398 	}
399 
400 	return 0;
401 }
402 
403 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
404 				  int oob_required, int page)
405 {
406 	struct anand *anand = to_anand(chip);
407 	struct arasan_nfc *nfc = to_anfc(chip->controller);
408 	struct mtd_info *mtd = nand_to_mtd(chip);
409 	unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
410 	dma_addr_t dma_addr;
411 	int ret;
412 	struct anfc_op nfc_op = {
413 		.pkt_reg =
414 			PKT_SIZE(chip->ecc.size) |
415 			PKT_STEPS(chip->ecc.steps),
416 		.addr1_reg =
417 			(page & 0xFF) << (8 * (anand->caddr_cycles)) |
418 			(((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
419 		.addr2_reg =
420 			((page >> 16) & 0xFF) |
421 			ADDR2_STRENGTH(anand->strength) |
422 			ADDR2_CS(anand->cs),
423 		.cmd_reg =
424 			CMD_1(NAND_CMD_SEQIN) |
425 			CMD_2(NAND_CMD_PAGEPROG) |
426 			CMD_PAGE_SIZE(anand->page_sz) |
427 			CMD_DMA_ENABLE |
428 			CMD_NADDRS(anand->caddr_cycles +
429 				   anand->raddr_cycles) |
430 			CMD_ECC_ENABLE,
431 		.prog_reg = PROG_PGPROG,
432 	};
433 
434 	writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
435 	writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
436 		       ECC_SP_ADDRS(anand->caddr_cycles),
437 		       nfc->base + ECC_SP_REG);
438 
439 	dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
440 	if (dma_mapping_error(nfc->dev, dma_addr)) {
441 		dev_err(nfc->dev, "Buffer mapping error");
442 		return -EIO;
443 	}
444 
445 	writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
446 	writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
447 
448 	anfc_trigger_op(nfc, &nfc_op);
449 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
450 	dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
451 	if (ret) {
452 		dev_err(nfc->dev, "Error writing page %d\n", page);
453 		return ret;
454 	}
455 
456 	/* Spare data is not protected */
457 	if (oob_required)
458 		ret = nand_write_oob_std(chip, page);
459 
460 	return ret;
461 }
462 
463 /* NAND framework ->exec_op() hooks and related helpers */
464 static int anfc_parse_instructions(struct nand_chip *chip,
465 				   const struct nand_subop *subop,
466 				   struct anfc_op *nfc_op)
467 {
468 	struct anand *anand = to_anand(chip);
469 	const struct nand_op_instr *instr = NULL;
470 	bool first_cmd = true;
471 	unsigned int op_id;
472 	int ret, i;
473 
474 	memset(nfc_op, 0, sizeof(*nfc_op));
475 	nfc_op->addr2_reg = ADDR2_CS(anand->cs);
476 	nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
477 
478 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
479 		unsigned int offset, naddrs, pktsize;
480 		const u8 *addrs;
481 		u8 *buf;
482 
483 		instr = &subop->instrs[op_id];
484 
485 		switch (instr->type) {
486 		case NAND_OP_CMD_INSTR:
487 			if (first_cmd)
488 				nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
489 			else
490 				nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
491 
492 			first_cmd = false;
493 			break;
494 
495 		case NAND_OP_ADDR_INSTR:
496 			offset = nand_subop_get_addr_start_off(subop, op_id);
497 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
498 			addrs = &instr->ctx.addr.addrs[offset];
499 			nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
500 
501 			for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
502 				if (i < 4)
503 					nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
504 				else
505 					nfc_op->addr2_reg |= addrs[i];
506 			}
507 
508 			break;
509 		case NAND_OP_DATA_IN_INSTR:
510 			nfc_op->read = true;
511 			fallthrough;
512 		case NAND_OP_DATA_OUT_INSTR:
513 			offset = nand_subop_get_data_start_off(subop, op_id);
514 			buf = instr->ctx.data.buf.in;
515 			nfc_op->buf = &buf[offset];
516 			nfc_op->len = nand_subop_get_data_len(subop, op_id);
517 			ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
518 						  &pktsize);
519 			if (ret)
520 				return ret;
521 
522 			/*
523 			 * Number of DATA cycles must be aligned on 4, this
524 			 * means the controller might read/write more than
525 			 * requested. This is harmless most of the time as extra
526 			 * DATA are discarded in the write path and read pointer
527 			 * adjusted in the read path.
528 			 *
529 			 * FIXME: The core should mark operations where
530 			 * reading/writing more is allowed so the exec_op()
531 			 * implementation can take the right decision when the
532 			 * alignment constraint is not met: adjust the number of
533 			 * DATA cycles when it's allowed, reject the operation
534 			 * otherwise.
535 			 */
536 			nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
537 					   PKT_STEPS(nfc_op->steps);
538 			break;
539 		case NAND_OP_WAITRDY_INSTR:
540 			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
541 			break;
542 		}
543 	}
544 
545 	return 0;
546 }
547 
548 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
549 {
550 	unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
551 	unsigned int last_len = nfc_op->len % 4;
552 	unsigned int offset, dir;
553 	u8 *buf = nfc_op->buf;
554 	int ret, i;
555 
556 	for (i = 0; i < nfc_op->steps; i++) {
557 		dir = nfc_op->read ? READ_READY : WRITE_READY;
558 		ret = anfc_wait_for_event(nfc, dir);
559 		if (ret) {
560 			dev_err(nfc->dev, "PIO %s ready signal not received\n",
561 				nfc_op->read ? "Read" : "Write");
562 			return ret;
563 		}
564 
565 		offset = i * (dwords * 4);
566 		if (nfc_op->read)
567 			ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
568 				     dwords);
569 		else
570 			iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
571 				      dwords);
572 	}
573 
574 	if (last_len) {
575 		u32 remainder;
576 
577 		offset = nfc_op->len - last_len;
578 
579 		if (nfc_op->read) {
580 			remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
581 			memcpy(&buf[offset], &remainder, last_len);
582 		} else {
583 			memcpy(&remainder, &buf[offset], last_len);
584 			writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
585 		}
586 	}
587 
588 	return anfc_wait_for_event(nfc, XFER_COMPLETE);
589 }
590 
591 static int anfc_misc_data_type_exec(struct nand_chip *chip,
592 				    const struct nand_subop *subop,
593 				    u32 prog_reg)
594 {
595 	struct arasan_nfc *nfc = to_anfc(chip->controller);
596 	struct anfc_op nfc_op = {};
597 	int ret;
598 
599 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
600 	if (ret)
601 		return ret;
602 
603 	nfc_op.prog_reg = prog_reg;
604 	anfc_trigger_op(nfc, &nfc_op);
605 
606 	if (nfc_op.rdy_timeout_ms) {
607 		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
608 		if (ret)
609 			return ret;
610 	}
611 
612 	return anfc_rw_pio_op(nfc, &nfc_op);
613 }
614 
615 static int anfc_param_read_type_exec(struct nand_chip *chip,
616 				     const struct nand_subop *subop)
617 {
618 	return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
619 }
620 
621 static int anfc_data_read_type_exec(struct nand_chip *chip,
622 				    const struct nand_subop *subop)
623 {
624 	return anfc_misc_data_type_exec(chip, subop, PROG_PGRD);
625 }
626 
627 static int anfc_param_write_type_exec(struct nand_chip *chip,
628 				      const struct nand_subop *subop)
629 {
630 	return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
631 }
632 
633 static int anfc_data_write_type_exec(struct nand_chip *chip,
634 				     const struct nand_subop *subop)
635 {
636 	return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
637 }
638 
639 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
640 				       const struct nand_subop *subop,
641 				       u32 prog_reg)
642 {
643 	struct arasan_nfc *nfc = to_anfc(chip->controller);
644 	struct anfc_op nfc_op = {};
645 	int ret;
646 
647 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
648 	if (ret)
649 		return ret;
650 
651 	nfc_op.prog_reg = prog_reg;
652 	anfc_trigger_op(nfc, &nfc_op);
653 
654 	ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
655 	if (ret)
656 		return ret;
657 
658 	if (nfc_op.rdy_timeout_ms)
659 		ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
660 
661 	return ret;
662 }
663 
664 static int anfc_status_type_exec(struct nand_chip *chip,
665 				 const struct nand_subop *subop)
666 {
667 	struct arasan_nfc *nfc = to_anfc(chip->controller);
668 	u32 tmp;
669 	int ret;
670 
671 	/* See anfc_check_op() for details about this constraint */
672 	if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
673 		return -ENOTSUPP;
674 
675 	ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
676 	if (ret)
677 		return ret;
678 
679 	tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
680 	memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
681 
682 	return 0;
683 }
684 
685 static int anfc_reset_type_exec(struct nand_chip *chip,
686 				const struct nand_subop *subop)
687 {
688 	return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
689 }
690 
691 static int anfc_erase_type_exec(struct nand_chip *chip,
692 				const struct nand_subop *subop)
693 {
694 	return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
695 }
696 
697 static int anfc_wait_type_exec(struct nand_chip *chip,
698 			       const struct nand_subop *subop)
699 {
700 	struct arasan_nfc *nfc = to_anfc(chip->controller);
701 	struct anfc_op nfc_op = {};
702 	int ret;
703 
704 	ret = anfc_parse_instructions(chip, subop, &nfc_op);
705 	if (ret)
706 		return ret;
707 
708 	return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
709 }
710 
711 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
712 	NAND_OP_PARSER_PATTERN(
713 		anfc_param_read_type_exec,
714 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
715 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
716 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
717 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
718 	NAND_OP_PARSER_PATTERN(
719 		anfc_param_write_type_exec,
720 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
721 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
722 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
723 	NAND_OP_PARSER_PATTERN(
724 		anfc_data_read_type_exec,
725 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
726 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
727 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
728 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
729 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
730 	NAND_OP_PARSER_PATTERN(
731 		anfc_data_write_type_exec,
732 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
733 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
734 		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
735 		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
736 	NAND_OP_PARSER_PATTERN(
737 		anfc_reset_type_exec,
738 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
739 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
740 	NAND_OP_PARSER_PATTERN(
741 		anfc_erase_type_exec,
742 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
743 		NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
744 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
745 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
746 	NAND_OP_PARSER_PATTERN(
747 		anfc_status_type_exec,
748 		NAND_OP_PARSER_PAT_CMD_ELEM(false),
749 		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
750 	NAND_OP_PARSER_PATTERN(
751 		anfc_wait_type_exec,
752 		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
753 	);
754 
755 static int anfc_select_target(struct nand_chip *chip, int target)
756 {
757 	struct anand *anand = to_anand(chip);
758 	struct arasan_nfc *nfc = to_anfc(chip->controller);
759 	int ret;
760 
761 	/* Update the controller timings and the potential ECC configuration */
762 	writel_relaxed(anand->timings, nfc->base + DATA_INTERFACE_REG);
763 
764 	/* Update clock frequency */
765 	if (nfc->cur_clk != anand->clk) {
766 		clk_disable_unprepare(nfc->controller_clk);
767 		ret = clk_set_rate(nfc->controller_clk, anand->clk);
768 		if (ret) {
769 			dev_err(nfc->dev, "Failed to change clock rate\n");
770 			return ret;
771 		}
772 
773 		ret = clk_prepare_enable(nfc->controller_clk);
774 		if (ret) {
775 			dev_err(nfc->dev,
776 				"Failed to re-enable the controller clock\n");
777 			return ret;
778 		}
779 
780 		nfc->cur_clk = anand->clk;
781 	}
782 
783 	return 0;
784 }
785 
786 static int anfc_check_op(struct nand_chip *chip,
787 			 const struct nand_operation *op)
788 {
789 	const struct nand_op_instr *instr;
790 	int op_id;
791 
792 	/*
793 	 * The controller abstracts all the NAND operations and do not support
794 	 * data only operations.
795 	 *
796 	 * TODO: The nand_op_parser framework should be extended to
797 	 * support custom checks on DATA instructions.
798 	 */
799 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
800 		instr = &op->instrs[op_id];
801 
802 		switch (instr->type) {
803 		case NAND_OP_ADDR_INSTR:
804 			if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
805 				return -ENOTSUPP;
806 
807 			break;
808 		case NAND_OP_DATA_IN_INSTR:
809 		case NAND_OP_DATA_OUT_INSTR:
810 			if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
811 				return -ENOTSUPP;
812 
813 			if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
814 				return -ENOTSUPP;
815 
816 			break;
817 		default:
818 			break;
819 		}
820 	}
821 
822 	/*
823 	 * The controller does not allow to proceed with a CMD+DATA_IN cycle
824 	 * manually on the bus by reading data from the data register. Instead,
825 	 * the controller abstract a status read operation with its own status
826 	 * register after ordering a read status operation. Hence, we cannot
827 	 * support any CMD+DATA_IN operation other than a READ STATUS.
828 	 *
829 	 * TODO: The nand_op_parser() framework should be extended to describe
830 	 * fixed patterns instead of open-coding this check here.
831 	 */
832 	if (op->ninstrs == 2 &&
833 	    op->instrs[0].type == NAND_OP_CMD_INSTR &&
834 	    op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
835 	    op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
836 		return -ENOTSUPP;
837 
838 	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
839 }
840 
841 static int anfc_exec_op(struct nand_chip *chip,
842 			const struct nand_operation *op,
843 			bool check_only)
844 {
845 	int ret;
846 
847 	if (check_only)
848 		return anfc_check_op(chip, op);
849 
850 	ret = anfc_select_target(chip, op->cs);
851 	if (ret)
852 		return ret;
853 
854 	return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
855 }
856 
857 static int anfc_setup_interface(struct nand_chip *chip, int target,
858 				const struct nand_interface_config *conf)
859 {
860 	struct anand *anand = to_anand(chip);
861 	struct arasan_nfc *nfc = to_anfc(chip->controller);
862 	struct device_node *np = nfc->dev->of_node;
863 
864 	if (target < 0)
865 		return 0;
866 
867 	anand->timings = DIFACE_SDR | DIFACE_SDR_MODE(conf->timings.mode);
868 	anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
869 
870 	/*
871 	 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
872 	 * with f > 90MHz (default clock is 100MHz) but signals are unstable
873 	 * with higher modes. Hence we decrease a little bit the clock rate to
874 	 * 80MHz when using modes 2-5 with this SoC.
875 	 */
876 	if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
877 	    conf->timings.mode >= 2)
878 		anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
879 
880 	return 0;
881 }
882 
883 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
884 {
885 	unsigned int bch_gf_mag, ecc_bits;
886 
887 	switch (step_size) {
888 	case SZ_512:
889 		bch_gf_mag = 13;
890 		break;
891 	case SZ_1K:
892 		bch_gf_mag = 14;
893 		break;
894 	default:
895 		return -EINVAL;
896 	}
897 
898 	ecc_bits = bch_gf_mag * strength;
899 
900 	return DIV_ROUND_UP(ecc_bits, 8);
901 }
902 
903 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
904 
905 static const int anfc_hw_ecc_1024_strengths[] = {24};
906 
907 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
908 	{
909 		.stepsize = SZ_512,
910 		.strengths = anfc_hw_ecc_512_strengths,
911 		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
912 	},
913 	{
914 		.stepsize = SZ_1K,
915 		.strengths = anfc_hw_ecc_1024_strengths,
916 		.nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
917 	},
918 };
919 
920 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
921 	.stepinfos = anfc_hw_ecc_step_infos,
922 	.nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
923 	.calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
924 };
925 
926 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
927 				       struct nand_chip *chip)
928 {
929 	struct anand *anand = to_anand(chip);
930 	struct mtd_info *mtd = nand_to_mtd(chip);
931 	struct nand_ecc_ctrl *ecc = &chip->ecc;
932 	unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
933 	int ret;
934 
935 	switch (mtd->writesize) {
936 	case SZ_512:
937 	case SZ_2K:
938 	case SZ_4K:
939 	case SZ_8K:
940 	case SZ_16K:
941 		break;
942 	default:
943 		dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
944 		return -EINVAL;
945 	}
946 
947 	ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
948 	if (ret)
949 		return ret;
950 
951 	switch (ecc->strength) {
952 	case 12:
953 		anand->strength = 0x1;
954 		break;
955 	case 8:
956 		anand->strength = 0x2;
957 		break;
958 	case 4:
959 		anand->strength = 0x3;
960 		break;
961 	case 24:
962 		anand->strength = 0x4;
963 		break;
964 	default:
965 		dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
966 		return -EINVAL;
967 	}
968 
969 	switch (ecc->size) {
970 	case SZ_512:
971 		bch_gf_mag = 13;
972 		bch_prim_poly = 0x201b;
973 		break;
974 	case SZ_1K:
975 		bch_gf_mag = 14;
976 		bch_prim_poly = 0x4443;
977 		break;
978 	default:
979 		dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
980 		return -EINVAL;
981 	}
982 
983 	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
984 
985 	ecc->steps = mtd->writesize / ecc->size;
986 	ecc->algo = NAND_ECC_BCH;
987 	anand->ecc_bits = bch_gf_mag * ecc->strength;
988 	ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
989 	anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
990 	ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
991 	anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
992 			  ECC_CONF_LEN(anand->ecc_total) |
993 			  ECC_CONF_BCH_EN;
994 
995 	anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
996 					   sizeof(*anand->errloc), GFP_KERNEL);
997 	if (!anand->errloc)
998 		return -ENOMEM;
999 
1000 	anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1001 	if (!anand->hw_ecc)
1002 		return -ENOMEM;
1003 
1004 	/* Enforce bit swapping to fit the hardware */
1005 	anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1006 	if (!anand->bch)
1007 		return -EINVAL;
1008 
1009 	ecc->read_page = anfc_read_page_hw_ecc;
1010 	ecc->write_page = anfc_write_page_hw_ecc;
1011 
1012 	return 0;
1013 }
1014 
1015 static int anfc_attach_chip(struct nand_chip *chip)
1016 {
1017 	struct anand *anand = to_anand(chip);
1018 	struct arasan_nfc *nfc = to_anfc(chip->controller);
1019 	struct mtd_info *mtd = nand_to_mtd(chip);
1020 	int ret = 0;
1021 
1022 	if (mtd->writesize <= SZ_512)
1023 		anand->caddr_cycles = 1;
1024 	else
1025 		anand->caddr_cycles = 2;
1026 
1027 	if (chip->options & NAND_ROW_ADDR_3)
1028 		anand->raddr_cycles = 3;
1029 	else
1030 		anand->raddr_cycles = 2;
1031 
1032 	switch (mtd->writesize) {
1033 	case 512:
1034 		anand->page_sz = 0;
1035 		break;
1036 	case 1024:
1037 		anand->page_sz = 5;
1038 		break;
1039 	case 2048:
1040 		anand->page_sz = 1;
1041 		break;
1042 	case 4096:
1043 		anand->page_sz = 2;
1044 		break;
1045 	case 8192:
1046 		anand->page_sz = 3;
1047 		break;
1048 	case 16384:
1049 		anand->page_sz = 4;
1050 		break;
1051 	default:
1052 		return -EINVAL;
1053 	}
1054 
1055 	/* These hooks are valid for all ECC providers */
1056 	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1057 	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1058 
1059 	switch (chip->ecc.mode) {
1060 	case NAND_ECC_NONE:
1061 	case NAND_ECC_SOFT:
1062 	case NAND_ECC_ON_DIE:
1063 		break;
1064 	case NAND_ECC_HW:
1065 		ret = anfc_init_hw_ecc_controller(nfc, chip);
1066 		break;
1067 	default:
1068 		dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1069 			chip->ecc.mode);
1070 		return -EINVAL;
1071 	}
1072 
1073 	return ret;
1074 }
1075 
1076 static void anfc_detach_chip(struct nand_chip *chip)
1077 {
1078 	struct anand *anand = to_anand(chip);
1079 
1080 	if (anand->bch)
1081 		bch_free(anand->bch);
1082 }
1083 
1084 static const struct nand_controller_ops anfc_ops = {
1085 	.exec_op = anfc_exec_op,
1086 	.setup_interface = anfc_setup_interface,
1087 	.attach_chip = anfc_attach_chip,
1088 	.detach_chip = anfc_detach_chip,
1089 };
1090 
1091 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1092 {
1093 	struct anand *anand;
1094 	struct nand_chip *chip;
1095 	struct mtd_info *mtd;
1096 	int cs, rb, ret;
1097 
1098 	anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1099 	if (!anand)
1100 		return -ENOMEM;
1101 
1102 	/* We do not support multiple CS per chip yet */
1103 	if (of_property_count_elems_of_size(np, "reg", sizeof(u32)) != 1) {
1104 		dev_err(nfc->dev, "Invalid reg property\n");
1105 		return -EINVAL;
1106 	}
1107 
1108 	ret = of_property_read_u32(np, "reg", &cs);
1109 	if (ret)
1110 		return ret;
1111 
1112 	ret = of_property_read_u32(np, "nand-rb", &rb);
1113 	if (ret)
1114 		return ret;
1115 
1116 	if (cs >= ANFC_MAX_CS || rb >= ANFC_MAX_CS) {
1117 		dev_err(nfc->dev, "Wrong CS %d or RB %d\n", cs, rb);
1118 		return -EINVAL;
1119 	}
1120 
1121 	if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1122 		dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1123 		return -EINVAL;
1124 	}
1125 
1126 	anand->cs = cs;
1127 	anand->rb = rb;
1128 
1129 	chip = &anand->chip;
1130 	mtd = nand_to_mtd(chip);
1131 	mtd->dev.parent = nfc->dev;
1132 	chip->controller = &nfc->controller;
1133 	chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1134 			NAND_USES_DMA;
1135 
1136 	nand_set_flash_node(chip, np);
1137 	if (!mtd->name) {
1138 		dev_err(nfc->dev, "NAND label property is mandatory\n");
1139 		return -EINVAL;
1140 	}
1141 
1142 	ret = nand_scan(chip, 1);
1143 	if (ret) {
1144 		dev_err(nfc->dev, "Scan operation failed\n");
1145 		return ret;
1146 	}
1147 
1148 	ret = mtd_device_register(mtd, NULL, 0);
1149 	if (ret) {
1150 		nand_cleanup(chip);
1151 		return ret;
1152 	}
1153 
1154 	list_add_tail(&anand->node, &nfc->chips);
1155 
1156 	return 0;
1157 }
1158 
1159 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1160 {
1161 	struct anand *anand, *tmp;
1162 	struct nand_chip *chip;
1163 	int ret;
1164 
1165 	list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1166 		chip = &anand->chip;
1167 		ret = mtd_device_unregister(nand_to_mtd(chip));
1168 		WARN_ON(ret);
1169 		nand_cleanup(chip);
1170 		list_del(&anand->node);
1171 	}
1172 }
1173 
1174 static int anfc_chips_init(struct arasan_nfc *nfc)
1175 {
1176 	struct device_node *np = nfc->dev->of_node, *nand_np;
1177 	int nchips = of_get_child_count(np);
1178 	int ret;
1179 
1180 	if (!nchips || nchips > ANFC_MAX_CS) {
1181 		dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1182 			nchips);
1183 		return -EINVAL;
1184 	}
1185 
1186 	for_each_child_of_node(np, nand_np) {
1187 		ret = anfc_chip_init(nfc, nand_np);
1188 		if (ret) {
1189 			of_node_put(nand_np);
1190 			anfc_chips_cleanup(nfc);
1191 			break;
1192 		}
1193 	}
1194 
1195 	return ret;
1196 }
1197 
1198 static void anfc_reset(struct arasan_nfc *nfc)
1199 {
1200 	/* Disable interrupt signals */
1201 	writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1202 
1203 	/* Enable interrupt status */
1204 	writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1205 }
1206 
1207 static int anfc_probe(struct platform_device *pdev)
1208 {
1209 	struct arasan_nfc *nfc;
1210 	int ret;
1211 
1212 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1213 	if (!nfc)
1214 		return -ENOMEM;
1215 
1216 	nfc->dev = &pdev->dev;
1217 	nand_controller_init(&nfc->controller);
1218 	nfc->controller.ops = &anfc_ops;
1219 	INIT_LIST_HEAD(&nfc->chips);
1220 
1221 	nfc->base = devm_platform_ioremap_resource(pdev, 0);
1222 	if (IS_ERR(nfc->base))
1223 		return PTR_ERR(nfc->base);
1224 
1225 	anfc_reset(nfc);
1226 
1227 	nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1228 	if (IS_ERR(nfc->controller_clk))
1229 		return PTR_ERR(nfc->controller_clk);
1230 
1231 	nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1232 	if (IS_ERR(nfc->bus_clk))
1233 		return PTR_ERR(nfc->bus_clk);
1234 
1235 	ret = clk_prepare_enable(nfc->controller_clk);
1236 	if (ret)
1237 		return ret;
1238 
1239 	ret = clk_prepare_enable(nfc->bus_clk);
1240 	if (ret)
1241 		goto disable_controller_clk;
1242 
1243 	ret = anfc_chips_init(nfc);
1244 	if (ret)
1245 		goto disable_bus_clk;
1246 
1247 	platform_set_drvdata(pdev, nfc);
1248 
1249 	return 0;
1250 
1251 disable_bus_clk:
1252 	clk_disable_unprepare(nfc->bus_clk);
1253 
1254 disable_controller_clk:
1255 	clk_disable_unprepare(nfc->controller_clk);
1256 
1257 	return ret;
1258 }
1259 
1260 static int anfc_remove(struct platform_device *pdev)
1261 {
1262 	struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1263 
1264 	anfc_chips_cleanup(nfc);
1265 
1266 	clk_disable_unprepare(nfc->bus_clk);
1267 	clk_disable_unprepare(nfc->controller_clk);
1268 
1269 	return 0;
1270 }
1271 
1272 static const struct of_device_id anfc_ids[] = {
1273 	{
1274 		.compatible = "xlnx,zynqmp-nand-controller",
1275 	},
1276 	{
1277 		.compatible = "arasan,nfc-v3p10",
1278 	},
1279 	{}
1280 };
1281 MODULE_DEVICE_TABLE(of, anfc_ids);
1282 
1283 static struct platform_driver anfc_driver = {
1284 	.driver = {
1285 		.name = "arasan-nand-controller",
1286 		.of_match_table = anfc_ids,
1287 	},
1288 	.probe = anfc_probe,
1289 	.remove = anfc_remove,
1290 };
1291 module_platform_driver(anfc_driver);
1292 
1293 MODULE_LICENSE("GPL v2");
1294 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1295 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1296 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1297 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1298