1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arasan NAND Flash Controller Driver 4 * 5 * Copyright (C) 2014 - 2020 Xilinx, Inc. 6 * Author: 7 * Miquel Raynal <miquel.raynal@bootlin.com> 8 * Original work (fully rewritten): 9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com> 10 * Naga Sureshkumar Relli <nagasure@xilinx.com> 11 */ 12 13 #include <linux/bch.h> 14 #include <linux/bitfield.h> 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/interrupt.h> 20 #include <linux/iopoll.h> 21 #include <linux/module.h> 22 #include <linux/mtd/mtd.h> 23 #include <linux/mtd/partitions.h> 24 #include <linux/mtd/rawnand.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/slab.h> 28 29 #define PKT_REG 0x00 30 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x)) 31 #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x)) 32 33 #define MEM_ADDR1_REG 0x04 34 35 #define MEM_ADDR2_REG 0x08 36 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x)) 37 #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x)) 38 39 #define CMD_REG 0x0C 40 #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x)) 41 #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x)) 42 #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x)) 43 #define CMD_DMA_ENABLE BIT(27) 44 #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) 45 #define CMD_ECC_ENABLE BIT(31) 46 47 #define PROG_REG 0x10 48 #define PROG_PGRD BIT(0) 49 #define PROG_ERASE BIT(2) 50 #define PROG_STATUS BIT(3) 51 #define PROG_PGPROG BIT(4) 52 #define PROG_RDID BIT(6) 53 #define PROG_RDPARAM BIT(7) 54 #define PROG_RST BIT(8) 55 #define PROG_GET_FEATURE BIT(9) 56 #define PROG_SET_FEATURE BIT(10) 57 #define PROG_CHG_RD_COL_ENH BIT(14) 58 59 #define INTR_STS_EN_REG 0x14 60 #define INTR_SIG_EN_REG 0x18 61 #define INTR_STS_REG 0x1C 62 #define WRITE_READY BIT(0) 63 #define READ_READY BIT(1) 64 #define XFER_COMPLETE BIT(2) 65 #define DMA_BOUNDARY BIT(6) 66 #define EVENT_MASK GENMASK(7, 0) 67 68 #define READY_STS_REG 0x20 69 70 #define DMA_ADDR0_REG 0x50 71 #define DMA_ADDR1_REG 0x24 72 73 #define FLASH_STS_REG 0x28 74 75 #define TIMING_REG 0x2C 76 #define TCCS_TIME_500NS 0 77 #define TCCS_TIME_300NS 3 78 #define TCCS_TIME_200NS 2 79 #define TCCS_TIME_100NS 1 80 #define FAST_TCAD BIT(2) 81 #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x)) 82 #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x)) 83 84 #define DATA_PORT_REG 0x30 85 86 #define ECC_CONF_REG 0x34 87 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) 88 #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x)) 89 #define ECC_CONF_BCH_EN BIT(27) 90 91 #define ECC_ERR_CNT_REG 0x38 92 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x)) 93 #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x)) 94 95 #define ECC_SP_REG 0x3C 96 #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x)) 97 #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x)) 98 #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x)) 99 100 #define ECC_1ERR_CNT_REG 0x40 101 #define ECC_2ERR_CNT_REG 0x44 102 103 #define DATA_INTERFACE_REG 0x6C 104 #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x)) 105 #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x)) 106 #define DIFACE_SDR 0 107 #define DIFACE_NVDDR BIT(9) 108 109 #define ANFC_MAX_CS 2 110 #define ANFC_DFLT_TIMEOUT_US 1000000 111 #define ANFC_MAX_CHUNK_SIZE SZ_1M 112 #define ANFC_MAX_PARAM_SIZE SZ_4K 113 #define ANFC_MAX_STEPS SZ_2K 114 #define ANFC_MAX_PKT_SIZE (SZ_2K - 1) 115 #define ANFC_MAX_ADDR_CYC 5U 116 #define ANFC_RSVD_ECC_BYTES 21 117 118 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000 119 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000 120 121 static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL}; 122 123 /** 124 * struct anfc_op - Defines how to execute an operation 125 * @pkt_reg: Packet register 126 * @addr1_reg: Memory address 1 register 127 * @addr2_reg: Memory address 2 register 128 * @cmd_reg: Command register 129 * @prog_reg: Program register 130 * @steps: Number of "packets" to read/write 131 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin 132 * @len: Data transfer length 133 * @read: Data transfer direction from the controller point of view 134 * @buf: Data buffer 135 */ 136 struct anfc_op { 137 u32 pkt_reg; 138 u32 addr1_reg; 139 u32 addr2_reg; 140 u32 cmd_reg; 141 u32 prog_reg; 142 int steps; 143 unsigned int rdy_timeout_ms; 144 unsigned int len; 145 bool read; 146 u8 *buf; 147 }; 148 149 /** 150 * struct anand - Defines the NAND chip related information 151 * @node: Used to store NAND chips into a list 152 * @chip: NAND chip information structure 153 * @rb: Ready-busy line 154 * @page_sz: Register value of the page_sz field to use 155 * @clk: Expected clock frequency to use 156 * @data_iface: Data interface timing mode to use 157 * @timings: NV-DDR specific timings to use 158 * @ecc_conf: Hardware ECC configuration value 159 * @strength: Register value of the ECC strength 160 * @raddr_cycles: Row address cycle information 161 * @caddr_cycles: Column address cycle information 162 * @ecc_bits: Exact number of ECC bits per syndrome 163 * @ecc_total: Total number of ECC bytes 164 * @errloc: Array of errors located with soft BCH 165 * @hw_ecc: Buffer to store syndromes computed by hardware 166 * @bch: BCH structure 167 * @cs_idx: Array of chip-select for this device, values are indexes 168 * of the controller structure @gpio_cs array 169 * @ncs_idx: Size of the @cs_idx array 170 */ 171 struct anand { 172 struct list_head node; 173 struct nand_chip chip; 174 unsigned int rb; 175 unsigned int page_sz; 176 unsigned long clk; 177 u32 data_iface; 178 u32 timings; 179 u32 ecc_conf; 180 u32 strength; 181 u16 raddr_cycles; 182 u16 caddr_cycles; 183 unsigned int ecc_bits; 184 unsigned int ecc_total; 185 unsigned int *errloc; 186 u8 *hw_ecc; 187 struct bch_control *bch; 188 int *cs_idx; 189 int ncs_idx; 190 }; 191 192 /** 193 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance 194 * @dev: Pointer to the device structure 195 * @base: Remapped register area 196 * @controller_clk: Pointer to the system clock 197 * @bus_clk: Pointer to the flash clock 198 * @controller: Base controller structure 199 * @chips: List of all NAND chips attached to the controller 200 * @cur_clk: Current clock rate 201 * @cs_array: CS array. Native CS are left empty, the other cells are 202 * populated with their corresponding GPIO descriptor. 203 * @ncs: Size of @cs_array 204 * @cur_cs: Index in @cs_array of the currently in use CS 205 * @native_cs: Currently selected native CS 206 * @spare_cs: Native CS that is not wired (may be selected when a GPIO 207 * CS is in use) 208 */ 209 struct arasan_nfc { 210 struct device *dev; 211 void __iomem *base; 212 struct clk *controller_clk; 213 struct clk *bus_clk; 214 struct nand_controller controller; 215 struct list_head chips; 216 unsigned int cur_clk; 217 struct gpio_desc **cs_array; 218 unsigned int ncs; 219 int cur_cs; 220 unsigned int native_cs; 221 unsigned int spare_cs; 222 }; 223 224 static struct anand *to_anand(struct nand_chip *nand) 225 { 226 return container_of(nand, struct anand, chip); 227 } 228 229 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl) 230 { 231 return container_of(ctrl, struct arasan_nfc, controller); 232 } 233 234 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event) 235 { 236 u32 val; 237 int ret; 238 239 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val, 240 val & event, 0, 241 ANFC_DFLT_TIMEOUT_US); 242 if (ret) { 243 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event); 244 return -ETIMEDOUT; 245 } 246 247 writel_relaxed(event, nfc->base + INTR_STS_REG); 248 249 return 0; 250 } 251 252 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip, 253 unsigned int timeout_ms) 254 { 255 struct anand *anand = to_anand(chip); 256 u32 val; 257 int ret; 258 259 /* There is no R/B interrupt, we must poll a register */ 260 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val, 261 val & BIT(anand->rb), 262 1, timeout_ms * 1000); 263 if (ret) { 264 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n", 265 readl_relaxed(nfc->base + READY_STS_REG)); 266 return -ETIMEDOUT; 267 } 268 269 return 0; 270 } 271 272 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) 273 { 274 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG); 275 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG); 276 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG); 277 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG); 278 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG); 279 } 280 281 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps, 282 unsigned int *pktsize) 283 { 284 unsigned int nb, sz; 285 286 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) { 287 sz = len / nb; 288 if (sz <= ANFC_MAX_PKT_SIZE) 289 break; 290 } 291 292 if (sz * nb != len) 293 return -ENOTSUPP; 294 295 if (steps) 296 *steps = nb; 297 298 if (pktsize) 299 *pktsize = sz; 300 301 return 0; 302 } 303 304 static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs) 305 { 306 return nfc_cs >= 0 && nfc->cs_array[nfc_cs]; 307 } 308 309 static int anfc_relative_to_absolute_cs(struct anand *anand, int num) 310 { 311 return anand->cs_idx[num]; 312 } 313 314 static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx) 315 { 316 /* CS did not change: do nothing */ 317 if (nfc->cur_cs == nfc_cs_idx) 318 return; 319 320 /* Deassert the previous CS if it was a GPIO */ 321 if (anfc_is_gpio_cs(nfc, nfc->cur_cs)) 322 gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1); 323 324 /* Assert the new one */ 325 if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) { 326 nfc->native_cs = nfc->spare_cs; 327 gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0); 328 } else { 329 nfc->native_cs = nfc_cs_idx; 330 } 331 332 nfc->cur_cs = nfc_cs_idx; 333 } 334 335 static int anfc_select_target(struct nand_chip *chip, int target) 336 { 337 struct anand *anand = to_anand(chip); 338 struct arasan_nfc *nfc = to_anfc(chip->controller); 339 unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target); 340 int ret; 341 342 anfc_assert_cs(nfc, nfc_cs_idx); 343 344 /* Update the controller timings and the potential ECC configuration */ 345 writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG); 346 writel_relaxed(anand->timings, nfc->base + TIMING_REG); 347 348 /* Update clock frequency */ 349 if (nfc->cur_clk != anand->clk) { 350 clk_disable_unprepare(nfc->bus_clk); 351 ret = clk_set_rate(nfc->bus_clk, anand->clk); 352 if (ret) { 353 dev_err(nfc->dev, "Failed to change clock rate\n"); 354 return ret; 355 } 356 357 ret = clk_prepare_enable(nfc->bus_clk); 358 if (ret) { 359 dev_err(nfc->dev, 360 "Failed to re-enable the bus clock\n"); 361 return ret; 362 } 363 364 nfc->cur_clk = anand->clk; 365 } 366 367 return 0; 368 } 369 370 /* 371 * When using the embedded hardware ECC engine, the controller is in charge of 372 * feeding the engine with, first, the ECC residue present in the data array. 373 * A typical read operation is: 374 * 1/ Assert the read operation by sending the relevant command/address cycles 375 * but targeting the column of the first ECC bytes in the OOB area instead of 376 * the main data directly. 377 * 2/ After having read the relevant number of ECC bytes, the controller uses 378 * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command 379 * Register" to move the pointer back at the beginning of the main data. 380 * 3/ It will read the content of the main area for a given size (pktsize) and 381 * will feed the ECC engine with this buffer again. 382 * 4/ The ECC engine derives the ECC bytes for the given data and compare them 383 * with the ones already received. It eventually trigger status flags and 384 * then set the "Buffer Read Ready" flag. 385 * 5/ The corrected data is then available for reading from the data port 386 * register. 387 * 388 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never 389 * reports uncorrectable errors. Because of this bug, we have to use the 390 * software BCH implementation in the read path. 391 */ 392 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, 393 int oob_required, int page) 394 { 395 struct arasan_nfc *nfc = to_anfc(chip->controller); 396 struct mtd_info *mtd = nand_to_mtd(chip); 397 struct anand *anand = to_anand(chip); 398 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); 399 unsigned int max_bitflips = 0; 400 dma_addr_t dma_addr; 401 int step, ret; 402 struct anfc_op nfc_op = { 403 .pkt_reg = 404 PKT_SIZE(chip->ecc.size) | 405 PKT_STEPS(chip->ecc.steps), 406 .addr1_reg = 407 (page & 0xFF) << (8 * (anand->caddr_cycles)) | 408 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), 409 .addr2_reg = 410 ((page >> 16) & 0xFF) | 411 ADDR2_STRENGTH(anand->strength) | 412 ADDR2_CS(nfc->native_cs), 413 .cmd_reg = 414 CMD_1(NAND_CMD_READ0) | 415 CMD_2(NAND_CMD_READSTART) | 416 CMD_PAGE_SIZE(anand->page_sz) | 417 CMD_DMA_ENABLE | 418 CMD_NADDRS(anand->caddr_cycles + 419 anand->raddr_cycles), 420 .prog_reg = PROG_PGRD, 421 }; 422 423 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE); 424 if (dma_mapping_error(nfc->dev, dma_addr)) { 425 dev_err(nfc->dev, "Buffer mapping error"); 426 return -EIO; 427 } 428 429 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); 430 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); 431 432 anfc_trigger_op(nfc, &nfc_op); 433 434 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 435 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE); 436 if (ret) { 437 dev_err(nfc->dev, "Error reading page %d\n", page); 438 return ret; 439 } 440 441 /* Store the raw OOB bytes as well */ 442 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, 443 mtd->oobsize, 0); 444 if (ret) 445 return ret; 446 447 /* 448 * For each step, compute by softare the BCH syndrome over the raw data. 449 * Compare the theoretical amount of errors and compare with the 450 * hardware engine feedback. 451 */ 452 for (step = 0; step < chip->ecc.steps; step++) { 453 u8 *raw_buf = &buf[step * chip->ecc.size]; 454 unsigned int bit, byte; 455 int bf, i; 456 457 /* Extract the syndrome, it is not necessarily aligned */ 458 memset(anand->hw_ecc, 0, chip->ecc.bytes); 459 nand_extract_bits(anand->hw_ecc, 0, 460 &chip->oob_poi[mtd->oobsize - anand->ecc_total], 461 anand->ecc_bits * step, anand->ecc_bits); 462 463 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size, 464 anand->hw_ecc, NULL, NULL, anand->errloc); 465 if (!bf) { 466 continue; 467 } else if (bf > 0) { 468 for (i = 0; i < bf; i++) { 469 /* Only correct the data, not the syndrome */ 470 if (anand->errloc[i] < (chip->ecc.size * 8)) { 471 bit = BIT(anand->errloc[i] & 7); 472 byte = anand->errloc[i] >> 3; 473 raw_buf[byte] ^= bit; 474 } 475 } 476 477 mtd->ecc_stats.corrected += bf; 478 max_bitflips = max_t(unsigned int, max_bitflips, bf); 479 480 continue; 481 } 482 483 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size, 484 NULL, 0, NULL, 0, 485 chip->ecc.strength); 486 if (bf > 0) { 487 mtd->ecc_stats.corrected += bf; 488 max_bitflips = max_t(unsigned int, max_bitflips, bf); 489 memset(raw_buf, 0xFF, chip->ecc.size); 490 } else if (bf < 0) { 491 mtd->ecc_stats.failed++; 492 } 493 } 494 495 return 0; 496 } 497 498 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, 499 int oob_required, int page) 500 { 501 int ret; 502 503 ret = anfc_select_target(chip, chip->cur_cs); 504 if (ret) 505 return ret; 506 507 return anfc_read_page_hw_ecc(chip, buf, oob_required, page); 508 }; 509 510 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, 511 int oob_required, int page) 512 { 513 struct anand *anand = to_anand(chip); 514 struct arasan_nfc *nfc = to_anfc(chip->controller); 515 struct mtd_info *mtd = nand_to_mtd(chip); 516 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0); 517 dma_addr_t dma_addr; 518 u8 status; 519 int ret; 520 struct anfc_op nfc_op = { 521 .pkt_reg = 522 PKT_SIZE(chip->ecc.size) | 523 PKT_STEPS(chip->ecc.steps), 524 .addr1_reg = 525 (page & 0xFF) << (8 * (anand->caddr_cycles)) | 526 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))), 527 .addr2_reg = 528 ((page >> 16) & 0xFF) | 529 ADDR2_STRENGTH(anand->strength) | 530 ADDR2_CS(nfc->native_cs), 531 .cmd_reg = 532 CMD_1(NAND_CMD_SEQIN) | 533 CMD_2(NAND_CMD_PAGEPROG) | 534 CMD_PAGE_SIZE(anand->page_sz) | 535 CMD_DMA_ENABLE | 536 CMD_NADDRS(anand->caddr_cycles + 537 anand->raddr_cycles) | 538 CMD_ECC_ENABLE, 539 .prog_reg = PROG_PGPROG, 540 }; 541 542 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG); 543 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) | 544 ECC_SP_ADDRS(anand->caddr_cycles), 545 nfc->base + ECC_SP_REG); 546 547 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE); 548 if (dma_mapping_error(nfc->dev, dma_addr)) { 549 dev_err(nfc->dev, "Buffer mapping error"); 550 return -EIO; 551 } 552 553 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG); 554 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG); 555 556 anfc_trigger_op(nfc, &nfc_op); 557 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 558 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE); 559 if (ret) { 560 dev_err(nfc->dev, "Error writing page %d\n", page); 561 return ret; 562 } 563 564 /* Spare data is not protected */ 565 if (oob_required) { 566 ret = nand_write_oob_std(chip, page); 567 if (ret) 568 return ret; 569 } 570 571 /* Check write status on the chip side */ 572 ret = nand_status_op(chip, &status); 573 if (ret) 574 return ret; 575 576 if (status & NAND_STATUS_FAIL) 577 return -EIO; 578 579 return 0; 580 } 581 582 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, 583 int oob_required, int page) 584 { 585 int ret; 586 587 ret = anfc_select_target(chip, chip->cur_cs); 588 if (ret) 589 return ret; 590 591 return anfc_write_page_hw_ecc(chip, buf, oob_required, page); 592 }; 593 594 /* NAND framework ->exec_op() hooks and related helpers */ 595 static int anfc_parse_instructions(struct nand_chip *chip, 596 const struct nand_subop *subop, 597 struct anfc_op *nfc_op) 598 { 599 struct arasan_nfc *nfc = to_anfc(chip->controller); 600 struct anand *anand = to_anand(chip); 601 const struct nand_op_instr *instr = NULL; 602 bool first_cmd = true; 603 unsigned int op_id; 604 int ret, i; 605 606 memset(nfc_op, 0, sizeof(*nfc_op)); 607 nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs); 608 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz); 609 610 for (op_id = 0; op_id < subop->ninstrs; op_id++) { 611 unsigned int offset, naddrs, pktsize; 612 const u8 *addrs; 613 u8 *buf; 614 615 instr = &subop->instrs[op_id]; 616 617 switch (instr->type) { 618 case NAND_OP_CMD_INSTR: 619 if (first_cmd) 620 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode); 621 else 622 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode); 623 624 first_cmd = false; 625 break; 626 627 case NAND_OP_ADDR_INSTR: 628 offset = nand_subop_get_addr_start_off(subop, op_id); 629 naddrs = nand_subop_get_num_addr_cyc(subop, op_id); 630 addrs = &instr->ctx.addr.addrs[offset]; 631 nfc_op->cmd_reg |= CMD_NADDRS(naddrs); 632 633 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) { 634 if (i < 4) 635 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8; 636 else 637 nfc_op->addr2_reg |= addrs[i]; 638 } 639 640 break; 641 case NAND_OP_DATA_IN_INSTR: 642 nfc_op->read = true; 643 fallthrough; 644 case NAND_OP_DATA_OUT_INSTR: 645 offset = nand_subop_get_data_start_off(subop, op_id); 646 buf = instr->ctx.data.buf.in; 647 nfc_op->buf = &buf[offset]; 648 nfc_op->len = nand_subop_get_data_len(subop, op_id); 649 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps, 650 &pktsize); 651 if (ret) 652 return ret; 653 654 /* 655 * Number of DATA cycles must be aligned on 4, this 656 * means the controller might read/write more than 657 * requested. This is harmless most of the time as extra 658 * DATA are discarded in the write path and read pointer 659 * adjusted in the read path. 660 * 661 * FIXME: The core should mark operations where 662 * reading/writing more is allowed so the exec_op() 663 * implementation can take the right decision when the 664 * alignment constraint is not met: adjust the number of 665 * DATA cycles when it's allowed, reject the operation 666 * otherwise. 667 */ 668 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) | 669 PKT_STEPS(nfc_op->steps); 670 break; 671 case NAND_OP_WAITRDY_INSTR: 672 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; 673 break; 674 } 675 } 676 677 return 0; 678 } 679 680 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op) 681 { 682 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps; 683 unsigned int last_len = nfc_op->len % 4; 684 unsigned int offset, dir; 685 u8 *buf = nfc_op->buf; 686 int ret, i; 687 688 for (i = 0; i < nfc_op->steps; i++) { 689 dir = nfc_op->read ? READ_READY : WRITE_READY; 690 ret = anfc_wait_for_event(nfc, dir); 691 if (ret) { 692 dev_err(nfc->dev, "PIO %s ready signal not received\n", 693 nfc_op->read ? "Read" : "Write"); 694 return ret; 695 } 696 697 offset = i * (dwords * 4); 698 if (nfc_op->read) 699 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset], 700 dwords); 701 else 702 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset], 703 dwords); 704 } 705 706 if (last_len) { 707 u32 remainder; 708 709 offset = nfc_op->len - last_len; 710 711 if (nfc_op->read) { 712 remainder = readl_relaxed(nfc->base + DATA_PORT_REG); 713 memcpy(&buf[offset], &remainder, last_len); 714 } else { 715 memcpy(&remainder, &buf[offset], last_len); 716 writel_relaxed(remainder, nfc->base + DATA_PORT_REG); 717 } 718 } 719 720 return anfc_wait_for_event(nfc, XFER_COMPLETE); 721 } 722 723 static int anfc_misc_data_type_exec(struct nand_chip *chip, 724 const struct nand_subop *subop, 725 u32 prog_reg) 726 { 727 struct arasan_nfc *nfc = to_anfc(chip->controller); 728 struct anfc_op nfc_op = {}; 729 int ret; 730 731 ret = anfc_parse_instructions(chip, subop, &nfc_op); 732 if (ret) 733 return ret; 734 735 nfc_op.prog_reg = prog_reg; 736 anfc_trigger_op(nfc, &nfc_op); 737 738 if (nfc_op.rdy_timeout_ms) { 739 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 740 if (ret) 741 return ret; 742 } 743 744 return anfc_rw_pio_op(nfc, &nfc_op); 745 } 746 747 static int anfc_param_read_type_exec(struct nand_chip *chip, 748 const struct nand_subop *subop) 749 { 750 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM); 751 } 752 753 static int anfc_data_read_type_exec(struct nand_chip *chip, 754 const struct nand_subop *subop) 755 { 756 u32 prog_reg = PROG_PGRD; 757 758 /* 759 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN 760 * command through the READ PAGE "type" always works fine, when in 761 * NV-DDR mode the same command simply fails. However, it was also 762 * spotted that any CHANGE READ COLUMN command sent through the CHANGE 763 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR 764 * and NV-DDR). So, for simplicity, let's program the controller with 765 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to 766 * perform a CHANGE READ COLUMN operation. 767 */ 768 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT && 769 subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART) 770 prog_reg = PROG_CHG_RD_COL_ENH; 771 772 return anfc_misc_data_type_exec(chip, subop, prog_reg); 773 } 774 775 static int anfc_param_write_type_exec(struct nand_chip *chip, 776 const struct nand_subop *subop) 777 { 778 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE); 779 } 780 781 static int anfc_data_write_type_exec(struct nand_chip *chip, 782 const struct nand_subop *subop) 783 { 784 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG); 785 } 786 787 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip, 788 const struct nand_subop *subop, 789 u32 prog_reg) 790 { 791 struct arasan_nfc *nfc = to_anfc(chip->controller); 792 struct anfc_op nfc_op = {}; 793 int ret; 794 795 ret = anfc_parse_instructions(chip, subop, &nfc_op); 796 if (ret) 797 return ret; 798 799 nfc_op.prog_reg = prog_reg; 800 anfc_trigger_op(nfc, &nfc_op); 801 802 ret = anfc_wait_for_event(nfc, XFER_COMPLETE); 803 if (ret) 804 return ret; 805 806 if (nfc_op.rdy_timeout_ms) 807 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 808 809 return ret; 810 } 811 812 static int anfc_status_type_exec(struct nand_chip *chip, 813 const struct nand_subop *subop) 814 { 815 struct arasan_nfc *nfc = to_anfc(chip->controller); 816 u32 tmp; 817 int ret; 818 819 /* See anfc_check_op() for details about this constraint */ 820 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS) 821 return -ENOTSUPP; 822 823 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS); 824 if (ret) 825 return ret; 826 827 tmp = readl_relaxed(nfc->base + FLASH_STS_REG); 828 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1); 829 830 return 0; 831 } 832 833 static int anfc_reset_type_exec(struct nand_chip *chip, 834 const struct nand_subop *subop) 835 { 836 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST); 837 } 838 839 static int anfc_erase_type_exec(struct nand_chip *chip, 840 const struct nand_subop *subop) 841 { 842 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE); 843 } 844 845 static int anfc_wait_type_exec(struct nand_chip *chip, 846 const struct nand_subop *subop) 847 { 848 struct arasan_nfc *nfc = to_anfc(chip->controller); 849 struct anfc_op nfc_op = {}; 850 int ret; 851 852 ret = anfc_parse_instructions(chip, subop, &nfc_op); 853 if (ret) 854 return ret; 855 856 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms); 857 } 858 859 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER( 860 NAND_OP_PARSER_PATTERN( 861 anfc_param_read_type_exec, 862 NAND_OP_PARSER_PAT_CMD_ELEM(false), 863 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 864 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 865 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), 866 NAND_OP_PARSER_PATTERN( 867 anfc_param_write_type_exec, 868 NAND_OP_PARSER_PAT_CMD_ELEM(false), 869 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 870 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)), 871 NAND_OP_PARSER_PATTERN( 872 anfc_data_read_type_exec, 873 NAND_OP_PARSER_PAT_CMD_ELEM(false), 874 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 875 NAND_OP_PARSER_PAT_CMD_ELEM(false), 876 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), 877 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)), 878 NAND_OP_PARSER_PATTERN( 879 anfc_data_write_type_exec, 880 NAND_OP_PARSER_PAT_CMD_ELEM(false), 881 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 882 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE), 883 NAND_OP_PARSER_PAT_CMD_ELEM(false)), 884 NAND_OP_PARSER_PATTERN( 885 anfc_reset_type_exec, 886 NAND_OP_PARSER_PAT_CMD_ELEM(false), 887 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 888 NAND_OP_PARSER_PATTERN( 889 anfc_erase_type_exec, 890 NAND_OP_PARSER_PAT_CMD_ELEM(false), 891 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC), 892 NAND_OP_PARSER_PAT_CMD_ELEM(false), 893 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 894 NAND_OP_PARSER_PATTERN( 895 anfc_status_type_exec, 896 NAND_OP_PARSER_PAT_CMD_ELEM(false), 897 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)), 898 NAND_OP_PARSER_PATTERN( 899 anfc_wait_type_exec, 900 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), 901 ); 902 903 static int anfc_check_op(struct nand_chip *chip, 904 const struct nand_operation *op) 905 { 906 const struct nand_op_instr *instr; 907 int op_id; 908 909 /* 910 * The controller abstracts all the NAND operations and do not support 911 * data only operations. 912 * 913 * TODO: The nand_op_parser framework should be extended to 914 * support custom checks on DATA instructions. 915 */ 916 for (op_id = 0; op_id < op->ninstrs; op_id++) { 917 instr = &op->instrs[op_id]; 918 919 switch (instr->type) { 920 case NAND_OP_ADDR_INSTR: 921 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC) 922 return -ENOTSUPP; 923 924 break; 925 case NAND_OP_DATA_IN_INSTR: 926 case NAND_OP_DATA_OUT_INSTR: 927 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE) 928 return -ENOTSUPP; 929 930 if (anfc_pkt_len_config(instr->ctx.data.len, NULL, NULL)) 931 return -ENOTSUPP; 932 933 break; 934 default: 935 break; 936 } 937 } 938 939 /* 940 * The controller does not allow to proceed with a CMD+DATA_IN cycle 941 * manually on the bus by reading data from the data register. Instead, 942 * the controller abstract a status read operation with its own status 943 * register after ordering a read status operation. Hence, we cannot 944 * support any CMD+DATA_IN operation other than a READ STATUS. 945 * 946 * TODO: The nand_op_parser() framework should be extended to describe 947 * fixed patterns instead of open-coding this check here. 948 */ 949 if (op->ninstrs == 2 && 950 op->instrs[0].type == NAND_OP_CMD_INSTR && 951 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS && 952 op->instrs[1].type == NAND_OP_DATA_IN_INSTR) 953 return -ENOTSUPP; 954 955 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true); 956 } 957 958 static int anfc_exec_op(struct nand_chip *chip, 959 const struct nand_operation *op, 960 bool check_only) 961 { 962 int ret; 963 964 if (check_only) 965 return anfc_check_op(chip, op); 966 967 ret = anfc_select_target(chip, op->cs); 968 if (ret) 969 return ret; 970 971 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only); 972 } 973 974 static int anfc_setup_interface(struct nand_chip *chip, int target, 975 const struct nand_interface_config *conf) 976 { 977 struct anand *anand = to_anand(chip); 978 struct arasan_nfc *nfc = to_anfc(chip->controller); 979 struct device_node *np = nfc->dev->of_node; 980 const struct nand_sdr_timings *sdr; 981 const struct nand_nvddr_timings *nvddr; 982 unsigned int tccs_min, dqs_mode, fast_tcad; 983 984 if (nand_interface_is_nvddr(conf)) { 985 nvddr = nand_get_nvddr_timings(conf); 986 if (IS_ERR(nvddr)) 987 return PTR_ERR(nvddr); 988 } else { 989 sdr = nand_get_sdr_timings(conf); 990 if (IS_ERR(sdr)) 991 return PTR_ERR(sdr); 992 } 993 994 if (target < 0) 995 return 0; 996 997 if (nand_interface_is_sdr(conf)) { 998 anand->data_iface = DIFACE_SDR | 999 DIFACE_SDR_MODE(conf->timings.mode); 1000 anand->timings = 0; 1001 } else { 1002 anand->data_iface = DIFACE_NVDDR | 1003 DIFACE_DDR_MODE(conf->timings.mode); 1004 1005 if (conf->timings.nvddr.tCCS_min <= 100000) 1006 tccs_min = TCCS_TIME_100NS; 1007 else if (conf->timings.nvddr.tCCS_min <= 200000) 1008 tccs_min = TCCS_TIME_200NS; 1009 else if (conf->timings.nvddr.tCCS_min <= 300000) 1010 tccs_min = TCCS_TIME_300NS; 1011 else 1012 tccs_min = TCCS_TIME_500NS; 1013 1014 fast_tcad = 0; 1015 if (conf->timings.nvddr.tCAD_min < 45000) 1016 fast_tcad = FAST_TCAD; 1017 1018 switch (conf->timings.mode) { 1019 case 5: 1020 case 4: 1021 dqs_mode = 2; 1022 break; 1023 case 3: 1024 dqs_mode = 3; 1025 break; 1026 case 2: 1027 dqs_mode = 4; 1028 break; 1029 case 1: 1030 dqs_mode = 5; 1031 break; 1032 case 0: 1033 default: 1034 dqs_mode = 6; 1035 break; 1036 } 1037 1038 anand->timings = tccs_min | fast_tcad | 1039 DQS_BUFF_SEL_IN(dqs_mode) | 1040 DQS_BUFF_SEL_OUT(dqs_mode); 1041 } 1042 1043 if (nand_interface_is_sdr(conf)) { 1044 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK; 1045 } else { 1046 /* ONFI timings are defined in picoseconds */ 1047 anand->clk = div_u64((u64)NSEC_PER_SEC * 1000, 1048 conf->timings.nvddr.tCK_min); 1049 } 1050 1051 /* 1052 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work 1053 * with f > 90MHz (default clock is 100MHz) but signals are unstable 1054 * with higher modes. Hence we decrease a little bit the clock rate to 1055 * 80MHz when using SDR modes 2-5 with this SoC. 1056 */ 1057 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") && 1058 nand_interface_is_sdr(conf) && conf->timings.mode >= 2) 1059 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK; 1060 1061 return 0; 1062 } 1063 1064 static int anfc_calc_hw_ecc_bytes(int step_size, int strength) 1065 { 1066 unsigned int bch_gf_mag, ecc_bits; 1067 1068 switch (step_size) { 1069 case SZ_512: 1070 bch_gf_mag = 13; 1071 break; 1072 case SZ_1K: 1073 bch_gf_mag = 14; 1074 break; 1075 default: 1076 return -EINVAL; 1077 } 1078 1079 ecc_bits = bch_gf_mag * strength; 1080 1081 return DIV_ROUND_UP(ecc_bits, 8); 1082 } 1083 1084 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12}; 1085 1086 static const int anfc_hw_ecc_1024_strengths[] = {24}; 1087 1088 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = { 1089 { 1090 .stepsize = SZ_512, 1091 .strengths = anfc_hw_ecc_512_strengths, 1092 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths), 1093 }, 1094 { 1095 .stepsize = SZ_1K, 1096 .strengths = anfc_hw_ecc_1024_strengths, 1097 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths), 1098 }, 1099 }; 1100 1101 static const struct nand_ecc_caps anfc_hw_ecc_caps = { 1102 .stepinfos = anfc_hw_ecc_step_infos, 1103 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos), 1104 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes, 1105 }; 1106 1107 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc, 1108 struct nand_chip *chip) 1109 { 1110 struct anand *anand = to_anand(chip); 1111 struct mtd_info *mtd = nand_to_mtd(chip); 1112 struct nand_ecc_ctrl *ecc = &chip->ecc; 1113 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset; 1114 int ret; 1115 1116 switch (mtd->writesize) { 1117 case SZ_512: 1118 case SZ_2K: 1119 case SZ_4K: 1120 case SZ_8K: 1121 case SZ_16K: 1122 break; 1123 default: 1124 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize); 1125 return -EINVAL; 1126 } 1127 1128 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize); 1129 if (ret) 1130 return ret; 1131 1132 switch (ecc->strength) { 1133 case 12: 1134 anand->strength = 0x1; 1135 break; 1136 case 8: 1137 anand->strength = 0x2; 1138 break; 1139 case 4: 1140 anand->strength = 0x3; 1141 break; 1142 case 24: 1143 anand->strength = 0x4; 1144 break; 1145 default: 1146 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength); 1147 return -EINVAL; 1148 } 1149 1150 switch (ecc->size) { 1151 case SZ_512: 1152 bch_gf_mag = 13; 1153 bch_prim_poly = 0x201b; 1154 break; 1155 case SZ_1K: 1156 bch_gf_mag = 14; 1157 bch_prim_poly = 0x4443; 1158 break; 1159 default: 1160 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength); 1161 return -EINVAL; 1162 } 1163 1164 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); 1165 1166 ecc->steps = mtd->writesize / ecc->size; 1167 ecc->algo = NAND_ECC_ALGO_BCH; 1168 anand->ecc_bits = bch_gf_mag * ecc->strength; 1169 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8); 1170 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8); 1171 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total; 1172 anand->ecc_conf = ECC_CONF_COL(ecc_offset) | 1173 ECC_CONF_LEN(anand->ecc_total) | 1174 ECC_CONF_BCH_EN; 1175 1176 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength, 1177 sizeof(*anand->errloc), GFP_KERNEL); 1178 if (!anand->errloc) 1179 return -ENOMEM; 1180 1181 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL); 1182 if (!anand->hw_ecc) 1183 return -ENOMEM; 1184 1185 /* Enforce bit swapping to fit the hardware */ 1186 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true); 1187 if (!anand->bch) 1188 return -EINVAL; 1189 1190 ecc->read_page = anfc_sel_read_page_hw_ecc; 1191 ecc->write_page = anfc_sel_write_page_hw_ecc; 1192 1193 return 0; 1194 } 1195 1196 static int anfc_attach_chip(struct nand_chip *chip) 1197 { 1198 struct anand *anand = to_anand(chip); 1199 struct arasan_nfc *nfc = to_anfc(chip->controller); 1200 struct mtd_info *mtd = nand_to_mtd(chip); 1201 int ret = 0; 1202 1203 if (mtd->writesize <= SZ_512) 1204 anand->caddr_cycles = 1; 1205 else 1206 anand->caddr_cycles = 2; 1207 1208 if (chip->options & NAND_ROW_ADDR_3) 1209 anand->raddr_cycles = 3; 1210 else 1211 anand->raddr_cycles = 2; 1212 1213 switch (mtd->writesize) { 1214 case 512: 1215 anand->page_sz = 0; 1216 break; 1217 case 1024: 1218 anand->page_sz = 5; 1219 break; 1220 case 2048: 1221 anand->page_sz = 1; 1222 break; 1223 case 4096: 1224 anand->page_sz = 2; 1225 break; 1226 case 8192: 1227 anand->page_sz = 3; 1228 break; 1229 case 16384: 1230 anand->page_sz = 4; 1231 break; 1232 default: 1233 return -EINVAL; 1234 } 1235 1236 /* These hooks are valid for all ECC providers */ 1237 chip->ecc.read_page_raw = nand_monolithic_read_page_raw; 1238 chip->ecc.write_page_raw = nand_monolithic_write_page_raw; 1239 1240 switch (chip->ecc.engine_type) { 1241 case NAND_ECC_ENGINE_TYPE_NONE: 1242 case NAND_ECC_ENGINE_TYPE_SOFT: 1243 case NAND_ECC_ENGINE_TYPE_ON_DIE: 1244 break; 1245 case NAND_ECC_ENGINE_TYPE_ON_HOST: 1246 ret = anfc_init_hw_ecc_controller(nfc, chip); 1247 break; 1248 default: 1249 dev_err(nfc->dev, "Unsupported ECC mode: %d\n", 1250 chip->ecc.engine_type); 1251 return -EINVAL; 1252 } 1253 1254 return ret; 1255 } 1256 1257 static void anfc_detach_chip(struct nand_chip *chip) 1258 { 1259 struct anand *anand = to_anand(chip); 1260 1261 if (anand->bch) 1262 bch_free(anand->bch); 1263 } 1264 1265 static const struct nand_controller_ops anfc_ops = { 1266 .exec_op = anfc_exec_op, 1267 .setup_interface = anfc_setup_interface, 1268 .attach_chip = anfc_attach_chip, 1269 .detach_chip = anfc_detach_chip, 1270 }; 1271 1272 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np) 1273 { 1274 struct anand *anand; 1275 struct nand_chip *chip; 1276 struct mtd_info *mtd; 1277 int rb, ret, i; 1278 1279 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL); 1280 if (!anand) 1281 return -ENOMEM; 1282 1283 /* Chip-select init */ 1284 anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 1285 if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) { 1286 dev_err(nfc->dev, "Invalid reg property\n"); 1287 return -EINVAL; 1288 } 1289 1290 anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx, 1291 sizeof(*anand->cs_idx), GFP_KERNEL); 1292 if (!anand->cs_idx) 1293 return -ENOMEM; 1294 1295 for (i = 0; i < anand->ncs_idx; i++) { 1296 ret = of_property_read_u32_index(np, "reg", i, 1297 &anand->cs_idx[i]); 1298 if (ret) { 1299 dev_err(nfc->dev, "invalid CS property: %d\n", ret); 1300 return ret; 1301 } 1302 } 1303 1304 /* Ready-busy init */ 1305 ret = of_property_read_u32(np, "nand-rb", &rb); 1306 if (ret) 1307 return ret; 1308 1309 if (rb >= ANFC_MAX_CS) { 1310 dev_err(nfc->dev, "Wrong RB %d\n", rb); 1311 return -EINVAL; 1312 } 1313 1314 anand->rb = rb; 1315 1316 chip = &anand->chip; 1317 mtd = nand_to_mtd(chip); 1318 mtd->dev.parent = nfc->dev; 1319 chip->controller = &nfc->controller; 1320 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | 1321 NAND_USES_DMA; 1322 1323 nand_set_flash_node(chip, np); 1324 if (!mtd->name) { 1325 dev_err(nfc->dev, "NAND label property is mandatory\n"); 1326 return -EINVAL; 1327 } 1328 1329 ret = nand_scan(chip, anand->ncs_idx); 1330 if (ret) { 1331 dev_err(nfc->dev, "Scan operation failed\n"); 1332 return ret; 1333 } 1334 1335 ret = mtd_device_register(mtd, NULL, 0); 1336 if (ret) { 1337 nand_cleanup(chip); 1338 return ret; 1339 } 1340 1341 list_add_tail(&anand->node, &nfc->chips); 1342 1343 return 0; 1344 } 1345 1346 static void anfc_chips_cleanup(struct arasan_nfc *nfc) 1347 { 1348 struct anand *anand, *tmp; 1349 struct nand_chip *chip; 1350 int ret; 1351 1352 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) { 1353 chip = &anand->chip; 1354 ret = mtd_device_unregister(nand_to_mtd(chip)); 1355 WARN_ON(ret); 1356 nand_cleanup(chip); 1357 list_del(&anand->node); 1358 } 1359 } 1360 1361 static int anfc_chips_init(struct arasan_nfc *nfc) 1362 { 1363 struct device_node *np = nfc->dev->of_node, *nand_np; 1364 int nchips = of_get_child_count(np); 1365 int ret; 1366 1367 if (!nchips) { 1368 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n", 1369 nchips); 1370 return -EINVAL; 1371 } 1372 1373 for_each_child_of_node(np, nand_np) { 1374 ret = anfc_chip_init(nfc, nand_np); 1375 if (ret) { 1376 of_node_put(nand_np); 1377 anfc_chips_cleanup(nfc); 1378 break; 1379 } 1380 } 1381 1382 return ret; 1383 } 1384 1385 static void anfc_reset(struct arasan_nfc *nfc) 1386 { 1387 /* Disable interrupt signals */ 1388 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG); 1389 1390 /* Enable interrupt status */ 1391 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG); 1392 1393 nfc->cur_cs = -1; 1394 } 1395 1396 static int anfc_parse_cs(struct arasan_nfc *nfc) 1397 { 1398 int ret; 1399 1400 /* Check the gpio-cs property */ 1401 ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs); 1402 if (ret) 1403 return ret; 1404 1405 /* 1406 * The controller native CS cannot be both disabled at the same time. 1407 * Hence, only one native CS can be used if GPIO CS are needed, so that 1408 * the other is selected when a non-native CS must be asserted (not 1409 * wired physically or configured as GPIO instead of NAND CS). In this 1410 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected 1411 * whenever a GPIO CS must be asserted. 1412 */ 1413 if (nfc->cs_array && nfc->ncs > 2) { 1414 if (!nfc->cs_array[0] && !nfc->cs_array[1]) { 1415 dev_err(nfc->dev, 1416 "Assign a single native CS when using GPIOs\n"); 1417 return -EINVAL; 1418 } 1419 1420 if (nfc->cs_array[0]) 1421 nfc->spare_cs = 0; 1422 else 1423 nfc->spare_cs = 1; 1424 } 1425 1426 if (!nfc->cs_array) { 1427 nfc->cs_array = anfc_default_cs_array; 1428 nfc->ncs = ANFC_MAX_CS; 1429 return 0; 1430 } 1431 1432 return 0; 1433 } 1434 1435 static int anfc_probe(struct platform_device *pdev) 1436 { 1437 struct arasan_nfc *nfc; 1438 int ret; 1439 1440 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); 1441 if (!nfc) 1442 return -ENOMEM; 1443 1444 nfc->dev = &pdev->dev; 1445 nand_controller_init(&nfc->controller); 1446 nfc->controller.ops = &anfc_ops; 1447 INIT_LIST_HEAD(&nfc->chips); 1448 1449 nfc->base = devm_platform_ioremap_resource(pdev, 0); 1450 if (IS_ERR(nfc->base)) 1451 return PTR_ERR(nfc->base); 1452 1453 anfc_reset(nfc); 1454 1455 nfc->controller_clk = devm_clk_get_enabled(&pdev->dev, "controller"); 1456 if (IS_ERR(nfc->controller_clk)) 1457 return PTR_ERR(nfc->controller_clk); 1458 1459 nfc->bus_clk = devm_clk_get_enabled(&pdev->dev, "bus"); 1460 if (IS_ERR(nfc->bus_clk)) 1461 return PTR_ERR(nfc->bus_clk); 1462 1463 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 1464 if (ret) 1465 return ret; 1466 1467 ret = anfc_parse_cs(nfc); 1468 if (ret) 1469 return ret; 1470 1471 ret = anfc_chips_init(nfc); 1472 if (ret) 1473 return ret; 1474 1475 platform_set_drvdata(pdev, nfc); 1476 1477 return 0; 1478 } 1479 1480 static void anfc_remove(struct platform_device *pdev) 1481 { 1482 struct arasan_nfc *nfc = platform_get_drvdata(pdev); 1483 1484 anfc_chips_cleanup(nfc); 1485 } 1486 1487 static const struct of_device_id anfc_ids[] = { 1488 { 1489 .compatible = "xlnx,zynqmp-nand-controller", 1490 }, 1491 { 1492 .compatible = "arasan,nfc-v3p10", 1493 }, 1494 {} 1495 }; 1496 MODULE_DEVICE_TABLE(of, anfc_ids); 1497 1498 static struct platform_driver anfc_driver = { 1499 .driver = { 1500 .name = "arasan-nand-controller", 1501 .of_match_table = anfc_ids, 1502 }, 1503 .probe = anfc_probe, 1504 .remove_new = anfc_remove, 1505 }; 1506 module_platform_driver(anfc_driver); 1507 1508 MODULE_LICENSE("GPL v2"); 1509 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>"); 1510 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>"); 1511 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); 1512 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver"); 1513