xref: /openbmc/linux/drivers/mtd/nand/onenand/onenand_base.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *	auto-placement support, read-while load support, various fixes
11  *
12  *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *	Flex-OneNAND support
14  *	Amul Kumar Saha <amul.saha at samsung.com>
15  *	OTP support
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29 
30 #include <asm/io.h>
31 
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38 
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41 
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
44 				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 				"DIE_BDRY: SLC boundary of the die"
46 				"LOCK: Locking information for SLC boundary"
47 				"    : 0->Set boundary in unlocked status"
48 				"    : 1->Set boundary in locked status");
49 
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52 
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
55 			"Syntax : otp=LOCK_TYPE"
56 			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 			"	   : 0 -> Default (No Blocks Locked)"
58 			"	   : 1 -> OTP Block lock"
59 			"	   : 2 -> 1st Block lock"
60 			"	   : 3 -> BOTH OTP Block and 1st Block lock");
61 
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67 				     struct mtd_oob_region *oobregion)
68 {
69 	if (section > 7)
70 		return -ERANGE;
71 
72 	oobregion->offset = (section * 16) + 6;
73 	oobregion->length = 10;
74 
75 	return 0;
76 }
77 
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79 				      struct mtd_oob_region *oobregion)
80 {
81 	if (section > 7)
82 		return -ERANGE;
83 
84 	oobregion->offset = (section * 16) + 2;
85 	oobregion->length = 4;
86 
87 	return 0;
88 }
89 
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91 	.ecc = flexonenand_ooblayout_ecc,
92 	.free = flexonenand_ooblayout_free,
93 };
94 
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103 				     struct mtd_oob_region *oobregion)
104 {
105 	if (section > 7)
106 		return -ERANGE;
107 
108 	oobregion->offset = (section * 16) + 7;
109 	oobregion->length = 9;
110 
111 	return 0;
112 }
113 
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115 				      struct mtd_oob_region *oobregion)
116 {
117 	if (section >= 8)
118 		return -ERANGE;
119 
120 	/*
121 	 * free bytes are using the spare area fields marked as
122 	 * "Managed by internal ECC logic for Logical Sector Number area"
123 	 */
124 	oobregion->offset = (section * 16) + 2;
125 	oobregion->length = 3;
126 
127 	return 0;
128 }
129 
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131 	.ecc = onenand_ooblayout_128_ecc,
132 	.free = onenand_ooblayout_128_free,
133 };
134 
135 /*
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139 				       struct mtd_oob_region *oobregion)
140 {
141 	if (section > 3)
142 		return -ERANGE;
143 
144 	oobregion->offset = (section * 16) + 8;
145 	oobregion->length = 5;
146 
147 	return 0;
148 }
149 
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151 					struct mtd_oob_region *oobregion)
152 {
153 	int sections = (mtd->oobsize / 32) * 2;
154 
155 	if (section >= sections)
156 		return -ERANGE;
157 
158 	if (section & 1) {
159 		oobregion->offset = ((section - 1) * 16) + 14;
160 		oobregion->length = 2;
161 	} else  {
162 		oobregion->offset = (section * 16) + 2;
163 		oobregion->length = 3;
164 	}
165 
166 	return 0;
167 }
168 
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170 	.ecc = onenand_ooblayout_32_64_ecc,
171 	.free = onenand_ooblayout_32_64_free,
172 };
173 
174 static const unsigned char ffchars[] = {
175 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
177 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
179 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
181 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
183 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
185 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
187 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
189 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
191 };
192 
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @addr:		address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201 	return readw(addr);
202 }
203 
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @value:		value to write
207  * @addr:		address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213 	writew(value, addr);
214 }
215 
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @this:		onenand chip data structure
219  * @block:		the block
220  * @return		translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226 	/* Device Flash Core select, NAND Flash Block Address */
227 	if (block & this->density_mask)
228 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229 
230 	return block;
231 }
232 
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @this:		onenand chip data structure
236  * @block:		the block
237  * @return		set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243 	/* Device BufferRAM Select */
244 	if (block & this->density_mask)
245 		return ONENAND_DDP_CHIP1;
246 
247 	return ONENAND_DDP_CHIP0;
248 }
249 
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @page:		the page address
253  * @sector:	the sector address
254  * @return		combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260 	/* Flash Page Address, Flash Sector Address */
261 	int fpa, fsa;
262 
263 	fpa = page & ONENAND_FPA_MASK;
264 	fsa = sector & ONENAND_FSA_MASK;
265 
266 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268 
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @dataram1:	DataRAM index
272  * @sectors:	the sector address
273  * @count:		the number of sectors
274  * Return:		the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280 	int bsa, bsc;
281 
282 	/* BufferRAM Sector Address */
283 	bsa = sectors & ONENAND_BSA_MASK;
284 
285 	if (dataram1)
286 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
287 	else
288 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
289 
290 	/* BufferRAM Sector Count */
291 	bsc = count & ONENAND_BSC_MASK;
292 
293 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295 
296 /**
297  * flexonenand_block- For given address return block number
298  * @this:         - OneNAND device structure
299  * @addr:		- Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303 	unsigned boundary, blk, die = 0;
304 
305 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306 		die = 1;
307 		addr -= this->diesize[0];
308 	}
309 
310 	boundary = this->boundary[die];
311 
312 	blk = addr >> (this->erase_shift - 1);
313 	if (blk > boundary)
314 		blk = (blk + boundary + 1) >> 1;
315 
316 	blk += die ? this->density_mask : 0;
317 	return blk;
318 }
319 
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322 	if (!FLEXONENAND(this))
323 		return addr >> this->erase_shift;
324 	return flexonenand_block(this, addr);
325 }
326 
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:		OneNAND device structure
330  * @block:		Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336 	loff_t ofs = 0;
337 	int die = 0, boundary;
338 
339 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340 		block -= this->density_mask;
341 		die = 1;
342 		ofs = this->diesize[0];
343 	}
344 
345 	boundary = this->boundary[die];
346 	ofs += (loff_t)block << (this->erase_shift - 1);
347 	if (block > (boundary + 1))
348 		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349 	return ofs;
350 }
351 
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354 	if (!FLEXONENAND(this))
355 		return (loff_t)block << this->erase_shift;
356 	return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359 
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @dev_id:	OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369 	return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371 
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @mtd:		MTD device structure
375  * @addr:		address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379 	int i;
380 
381 	for (i = 0; i < mtd->numeraseregions; i++)
382 		if (addr < mtd->eraseregions[i].offset)
383 			break;
384 	return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387 
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @mtd:		MTD device structure
391  * @cmd:		the command to be sent
392  * @addr:		offset to read from or write to
393  * @len:		number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400 	struct onenand_chip *this = mtd->priv;
401 	int value, block, page;
402 
403 	/* Address translation */
404 	switch (cmd) {
405 	case ONENAND_CMD_UNLOCK:
406 	case ONENAND_CMD_LOCK:
407 	case ONENAND_CMD_LOCK_TIGHT:
408 	case ONENAND_CMD_UNLOCK_ALL:
409 		block = -1;
410 		page = -1;
411 		break;
412 
413 	case FLEXONENAND_CMD_PI_ACCESS:
414 		/* addr contains die index */
415 		block = addr * this->density_mask;
416 		page = -1;
417 		break;
418 
419 	case ONENAND_CMD_ERASE:
420 	case ONENAND_CMD_MULTIBLOCK_ERASE:
421 	case ONENAND_CMD_ERASE_VERIFY:
422 	case ONENAND_CMD_BUFFERRAM:
423 	case ONENAND_CMD_OTP_ACCESS:
424 		block = onenand_block(this, addr);
425 		page = -1;
426 		break;
427 
428 	case FLEXONENAND_CMD_READ_PI:
429 		cmd = ONENAND_CMD_READ;
430 		block = addr * this->density_mask;
431 		page = 0;
432 		break;
433 
434 	default:
435 		block = onenand_block(this, addr);
436 		if (FLEXONENAND(this))
437 			page = (int) (addr - onenand_addr(this, block))>>\
438 				this->page_shift;
439 		else
440 			page = (int) (addr >> this->page_shift);
441 		if (ONENAND_IS_2PLANE(this)) {
442 			/* Make the even block number */
443 			block &= ~1;
444 			/* Is it the odd plane? */
445 			if (addr & this->writesize)
446 				block++;
447 			page >>= 1;
448 		}
449 		page &= this->page_mask;
450 		break;
451 	}
452 
453 	/* NOTE: The setting order of the registers is very important! */
454 	if (cmd == ONENAND_CMD_BUFFERRAM) {
455 		/* Select DataRAM for DDP */
456 		value = onenand_bufferram_address(this, block);
457 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458 
459 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 			/* It is always BufferRAM0 */
461 			ONENAND_SET_BUFFERRAM0(this);
462 		else
463 			/* Switch to the next data buffer */
464 			ONENAND_SET_NEXT_BUFFERRAM(this);
465 
466 		return 0;
467 	}
468 
469 	if (block != -1) {
470 		/* Write 'DFS, FBA' of Flash */
471 		value = onenand_block_address(this, block);
472 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473 
474 		/* Select DataRAM for DDP */
475 		value = onenand_bufferram_address(this, block);
476 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477 	}
478 
479 	if (page != -1) {
480 		/* Now we use page size operation */
481 		int sectors = 0, count = 0;
482 		int dataram;
483 
484 		switch (cmd) {
485 		case FLEXONENAND_CMD_RECOVER_LSB:
486 		case ONENAND_CMD_READ:
487 		case ONENAND_CMD_READOOB:
488 			if (ONENAND_IS_4KB_PAGE(this))
489 				/* It is always BufferRAM0 */
490 				dataram = ONENAND_SET_BUFFERRAM0(this);
491 			else
492 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493 			break;
494 
495 		default:
496 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497 				cmd = ONENAND_CMD_2X_PROG;
498 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
499 			break;
500 		}
501 
502 		/* Write 'FPA, FSA' of Flash */
503 		value = onenand_page_address(page, sectors);
504 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505 
506 		/* Write 'BSA, BSC' of DataRAM */
507 		value = onenand_buffer_address(dataram, sectors, count);
508 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509 	}
510 
511 	/* Interrupt clear */
512 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513 
514 	/* Write command */
515 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516 
517 	return 0;
518 }
519 
520 /**
521  * onenand_read_ecc - return ecc status
522  * @this:		onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526 	int ecc, i, result = 0;
527 
528 	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530 
531 	for (i = 0; i < 4; i++) {
532 		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533 		if (likely(!ecc))
534 			continue;
535 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536 			return ONENAND_ECC_2BIT_ALL;
537 		else
538 			result = ONENAND_ECC_1BIT_ALL;
539 	}
540 
541 	return result;
542 }
543 
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @mtd:		MTD device structure
547  * @state:		state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555 	struct onenand_chip * this = mtd->priv;
556 	unsigned long timeout;
557 	unsigned int flags = ONENAND_INT_MASTER;
558 	unsigned int interrupt = 0;
559 	unsigned int ctrl;
560 
561 	/* The 20 msec is enough */
562 	timeout = jiffies + msecs_to_jiffies(20);
563 	while (time_before(jiffies, timeout)) {
564 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565 
566 		if (interrupt & flags)
567 			break;
568 
569 		if (state != FL_READING && state != FL_PREPARING_ERASE)
570 			cond_resched();
571 	}
572 	/* To get correct interrupt status in timeout case */
573 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574 
575 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576 
577 	/*
578 	 * In the Spec. it checks the controller status first
579 	 * However if you get the correct information in case of
580 	 * power off recovery (POR) test, it should read ECC status first
581 	 */
582 	if (interrupt & ONENAND_INT_READ) {
583 		int ecc = onenand_read_ecc(this);
584 		if (ecc) {
585 			if (ecc & ONENAND_ECC_2BIT_ALL) {
586 				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587 					__func__, ecc);
588 				mtd->ecc_stats.failed++;
589 				return -EBADMSG;
590 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
591 				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592 					__func__, ecc);
593 				mtd->ecc_stats.corrected++;
594 			}
595 		}
596 	} else if (state == FL_READING) {
597 		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 			__func__, ctrl, interrupt);
599 		return -EIO;
600 	}
601 
602 	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603 		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 		       __func__, ctrl, interrupt);
605 		return -EIO;
606 	}
607 
608 	if (!(interrupt & ONENAND_INT_MASTER)) {
609 		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 		       __func__, ctrl, interrupt);
611 		return -EIO;
612 	}
613 
614 	/* If there's controller error, it's a real error */
615 	if (ctrl & ONENAND_CTRL_ERROR) {
616 		printk(KERN_ERR "%s: controller error = 0x%04x\n",
617 			__func__, ctrl);
618 		if (ctrl & ONENAND_CTRL_LOCK)
619 			printk(KERN_ERR "%s: it's locked error.\n", __func__);
620 		return -EIO;
621 	}
622 
623 	return 0;
624 }
625 
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @irq:		onenand interrupt number
629  * @dev_id:	interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635 	struct onenand_chip *this = data;
636 
637 	/* To handle shared interrupt */
638 	if (!this->complete.done)
639 		complete(&this->complete);
640 
641 	return IRQ_HANDLED;
642 }
643 
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @mtd:		MTD device structure
647  * @state:		state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653 	struct onenand_chip *this = mtd->priv;
654 
655 	wait_for_completion(&this->complete);
656 
657 	return onenand_wait(mtd, state);
658 }
659 
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @mtd:		MTD device structure
663  * @state:		state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669 	struct onenand_chip *this = mtd->priv;
670 	unsigned long remain, timeout;
671 
672 	/* We use interrupt wait first */
673 	this->wait = onenand_interrupt_wait;
674 
675 	timeout = msecs_to_jiffies(100);
676 	remain = wait_for_completion_timeout(&this->complete, timeout);
677 	if (!remain) {
678 		printk(KERN_INFO "OneNAND: There's no interrupt. "
679 				"We use the normal wait\n");
680 
681 		/* Release the irq */
682 		free_irq(this->irq, this);
683 
684 		this->wait = onenand_wait;
685 	}
686 
687 	return onenand_wait(mtd, state);
688 }
689 
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @mtd:		MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700 	struct onenand_chip *this = mtd->priv;
701 	int syscfg;
702 
703 	init_completion(&this->complete);
704 
705 	if (this->irq <= 0) {
706 		this->wait = onenand_wait;
707 		return;
708 	}
709 
710 	if (request_irq(this->irq, &onenand_interrupt,
711 				IRQF_SHARED, "onenand", this)) {
712 		/* If we can't get irq, use the normal wait */
713 		this->wait = onenand_wait;
714 		return;
715 	}
716 
717 	/* Enable interrupt */
718 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719 	syscfg |= ONENAND_SYS_CFG1_IOBE;
720 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721 
722 	this->wait = onenand_try_interrupt_wait;
723 }
724 
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @mtd:		MTD data structure
728  * @area:		BufferRAM area
729  * @return		offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735 	struct onenand_chip *this = mtd->priv;
736 
737 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 		/* Note: the 'this->writesize' is a real page size */
739 		if (area == ONENAND_DATARAM)
740 			return this->writesize;
741 		if (area == ONENAND_SPARERAM)
742 			return mtd->oobsize;
743 	}
744 
745 	return 0;
746 }
747 
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @mtd:		MTD data structure
751  * @area:		BufferRAM area
752  * @buffer:	the databuffer to put/get data
753  * @offset:	offset to read from or write to
754  * @count:		number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759 		unsigned char *buffer, int offset, size_t count)
760 {
761 	struct onenand_chip *this = mtd->priv;
762 	void __iomem *bufferram;
763 
764 	bufferram = this->base + area;
765 
766 	bufferram += onenand_bufferram_offset(mtd, area);
767 
768 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769 		unsigned short word;
770 
771 		/* Align with word(16-bit) size */
772 		count--;
773 
774 		/* Read word and save byte */
775 		word = this->read_word(bufferram + offset + count);
776 		buffer[count] = (word & 0xff);
777 	}
778 
779 	memcpy(buffer, bufferram + offset, count);
780 
781 	return 0;
782 }
783 
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @mtd:		MTD data structure
787  * @area:		BufferRAM area
788  * @buffer:	the databuffer to put/get data
789  * @offset:	offset to read from or write to
790  * @count:		number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795 		unsigned char *buffer, int offset, size_t count)
796 {
797 	struct onenand_chip *this = mtd->priv;
798 	void __iomem *bufferram;
799 
800 	bufferram = this->base + area;
801 
802 	bufferram += onenand_bufferram_offset(mtd, area);
803 
804 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805 
806 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807 		unsigned short word;
808 
809 		/* Align with word(16-bit) size */
810 		count--;
811 
812 		/* Read word and save byte */
813 		word = this->read_word(bufferram + offset + count);
814 		buffer[count] = (word & 0xff);
815 	}
816 
817 	memcpy(buffer, bufferram + offset, count);
818 
819 	this->mmcontrol(mtd, 0);
820 
821 	return 0;
822 }
823 
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @mtd:		MTD data structure
827  * @area:		BufferRAM area
828  * @buffer:	the databuffer to put/get data
829  * @offset:	offset to read from or write to
830  * @count:		number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835 		const unsigned char *buffer, int offset, size_t count)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	void __iomem *bufferram;
839 
840 	bufferram = this->base + area;
841 
842 	bufferram += onenand_bufferram_offset(mtd, area);
843 
844 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845 		unsigned short word;
846 		int byte_offset;
847 
848 		/* Align with word(16-bit) size */
849 		count--;
850 
851 		/* Calculate byte access offset */
852 		byte_offset = offset + count;
853 
854 		/* Read word and save byte */
855 		word = this->read_word(bufferram + byte_offset);
856 		word = (word & ~0xff) | buffer[count];
857 		this->write_word(word, bufferram + byte_offset);
858 	}
859 
860 	memcpy(bufferram + offset, buffer, count);
861 
862 	return 0;
863 }
864 
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @mtd:		MTD data structure
868  * @addr:		address to check
869  * @return		blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875 	struct onenand_chip *this = mtd->priv;
876 	int blockpage, block, page;
877 
878 	/* Calculate the even block number */
879 	block = (int) (addr >> this->erase_shift) & ~1;
880 	/* Is it the odd plane? */
881 	if (addr & this->writesize)
882 		block++;
883 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884 	blockpage = (block << 7) | page;
885 
886 	return blockpage;
887 }
888 
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @mtd:		MTD data structure
892  * @addr:		address to check
893  * @return		1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899 	struct onenand_chip *this = mtd->priv;
900 	int blockpage, found = 0;
901 	unsigned int i;
902 
903 	if (ONENAND_IS_2PLANE(this))
904 		blockpage = onenand_get_2x_blockpage(mtd, addr);
905 	else
906 		blockpage = (int) (addr >> this->page_shift);
907 
908 	/* Is there valid data? */
909 	i = ONENAND_CURRENT_BUFFERRAM(this);
910 	if (this->bufferram[i].blockpage == blockpage)
911 		found = 1;
912 	else {
913 		/* Check another BufferRAM */
914 		i = ONENAND_NEXT_BUFFERRAM(this);
915 		if (this->bufferram[i].blockpage == blockpage) {
916 			ONENAND_SET_NEXT_BUFFERRAM(this);
917 			found = 1;
918 		}
919 	}
920 
921 	if (found && ONENAND_IS_DDP(this)) {
922 		/* Select DataRAM for DDP */
923 		int block = onenand_block(this, addr);
924 		int value = onenand_bufferram_address(this, block);
925 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926 	}
927 
928 	return found;
929 }
930 
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @mtd:		MTD data structure
934  * @addr:		address to update
935  * @valid:		valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940 		int valid)
941 {
942 	struct onenand_chip *this = mtd->priv;
943 	int blockpage;
944 	unsigned int i;
945 
946 	if (ONENAND_IS_2PLANE(this))
947 		blockpage = onenand_get_2x_blockpage(mtd, addr);
948 	else
949 		blockpage = (int) (addr >> this->page_shift);
950 
951 	/* Invalidate another BufferRAM */
952 	i = ONENAND_NEXT_BUFFERRAM(this);
953 	if (this->bufferram[i].blockpage == blockpage)
954 		this->bufferram[i].blockpage = -1;
955 
956 	/* Update BufferRAM */
957 	i = ONENAND_CURRENT_BUFFERRAM(this);
958 	if (valid)
959 		this->bufferram[i].blockpage = blockpage;
960 	else
961 		this->bufferram[i].blockpage = -1;
962 }
963 
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @mtd:		MTD data structure
967  * @addr:		start address to invalidate
968  * @len:		length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973 		unsigned int len)
974 {
975 	struct onenand_chip *this = mtd->priv;
976 	int i;
977 	loff_t end_addr = addr + len;
978 
979 	/* Invalidate BufferRAM */
980 	for (i = 0; i < MAX_BUFFERRAM; i++) {
981 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982 		if (buf_addr >= addr && buf_addr < end_addr)
983 			this->bufferram[i].blockpage = -1;
984 	}
985 }
986 
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @mtd:		MTD device structure
990  * @new_state:	the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996 	struct onenand_chip *this = mtd->priv;
997 	DECLARE_WAITQUEUE(wait, current);
998 
999 	/*
1000 	 * Grab the lock and see if the device is available
1001 	 */
1002 	while (1) {
1003 		spin_lock(&this->chip_lock);
1004 		if (this->state == FL_READY) {
1005 			this->state = new_state;
1006 			spin_unlock(&this->chip_lock);
1007 			if (new_state != FL_PM_SUSPENDED && this->enable)
1008 				this->enable(mtd);
1009 			break;
1010 		}
1011 		if (new_state == FL_PM_SUSPENDED) {
1012 			spin_unlock(&this->chip_lock);
1013 			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014 		}
1015 		set_current_state(TASK_UNINTERRUPTIBLE);
1016 		add_wait_queue(&this->wq, &wait);
1017 		spin_unlock(&this->chip_lock);
1018 		schedule();
1019 		remove_wait_queue(&this->wq, &wait);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @mtd:		MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033 	struct onenand_chip *this = mtd->priv;
1034 
1035 	if (this->state != FL_PM_SUSPENDED && this->disable)
1036 		this->disable(mtd);
1037 	/* Release the chip */
1038 	spin_lock(&this->chip_lock);
1039 	this->state = FL_READY;
1040 	wake_up(&this->wq);
1041 	spin_unlock(&this->chip_lock);
1042 }
1043 
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @mtd:		MTD device structure
1047  * @buf:		destination address
1048  * @column:	oob offset to read from
1049  * @thislen:	oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052 				int thislen)
1053 {
1054 	struct onenand_chip *this = mtd->priv;
1055 
1056 	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057 			     mtd->oobsize);
1058 	return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059 					   column, thislen);
1060 }
1061 
1062 /**
1063  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064  * @mtd:		MTD device structure
1065  * @addr:		address to recover
1066  * @status:	return value from onenand_wait / onenand_bbt_wait
1067  *
1068  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069  * lower page address and MSB page has higher page address in paired pages.
1070  * If power off occurs during MSB page program, the paired LSB page data can
1071  * become corrupt. LSB page recovery read is a way to read LSB page though page
1072  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073  * read after power up, issue LSB page recovery read.
1074  */
1075 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076 {
1077 	struct onenand_chip *this = mtd->priv;
1078 	int i;
1079 
1080 	/* Recovery is only for Flex-OneNAND */
1081 	if (!FLEXONENAND(this))
1082 		return status;
1083 
1084 	/* check if we failed due to uncorrectable error */
1085 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086 		return status;
1087 
1088 	/* check if address lies in MLC region */
1089 	i = flexonenand_region(mtd, addr);
1090 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091 		return status;
1092 
1093 	/* We are attempting to reread, so decrement stats.failed
1094 	 * which was incremented by onenand_wait due to read failure
1095 	 */
1096 	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097 		__func__);
1098 	mtd->ecc_stats.failed--;
1099 
1100 	/* Issue the LSB page recovery command */
1101 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102 	return this->wait(mtd, FL_READING);
1103 }
1104 
1105 /**
1106  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107  * @mtd:		MTD device structure
1108  * @from:		offset to read from
1109  * @ops:		oob operation description structure
1110  *
1111  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112  * So, read-while-load is not present.
1113  */
1114 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115 				struct mtd_oob_ops *ops)
1116 {
1117 	struct onenand_chip *this = mtd->priv;
1118 	struct mtd_ecc_stats stats;
1119 	size_t len = ops->len;
1120 	size_t ooblen = ops->ooblen;
1121 	u_char *buf = ops->datbuf;
1122 	u_char *oobbuf = ops->oobbuf;
1123 	int read = 0, column, thislen;
1124 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1125 	int ret = 0;
1126 	int writesize = this->writesize;
1127 
1128 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129 			(int)len);
1130 
1131 	oobsize = mtd_oobavail(mtd, ops);
1132 	oobcolumn = from & (mtd->oobsize - 1);
1133 
1134 	/* Do not allow reads past end of device */
1135 	if (from + len > mtd->size) {
1136 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137 			__func__);
1138 		ops->retlen = 0;
1139 		ops->oobretlen = 0;
1140 		return -EINVAL;
1141 	}
1142 
1143 	stats = mtd->ecc_stats;
1144 
1145 	while (read < len) {
1146 		cond_resched();
1147 
1148 		thislen = min_t(int, writesize, len - read);
1149 
1150 		column = from & (writesize - 1);
1151 		if (column + thislen > writesize)
1152 			thislen = writesize - column;
1153 
1154 		if (!onenand_check_bufferram(mtd, from)) {
1155 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156 
1157 			ret = this->wait(mtd, FL_READING);
1158 			if (unlikely(ret))
1159 				ret = onenand_recover_lsb(mtd, from, ret);
1160 			onenand_update_bufferram(mtd, from, !ret);
1161 			if (mtd_is_eccerr(ret))
1162 				ret = 0;
1163 			if (ret)
1164 				break;
1165 		}
1166 
1167 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168 		if (oobbuf) {
1169 			thisooblen = oobsize - oobcolumn;
1170 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171 
1172 			if (ops->mode == MTD_OPS_AUTO_OOB)
1173 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174 			else
1175 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176 			oobread += thisooblen;
1177 			oobbuf += thisooblen;
1178 			oobcolumn = 0;
1179 		}
1180 
1181 		read += thislen;
1182 		if (read == len)
1183 			break;
1184 
1185 		from += thislen;
1186 		buf += thislen;
1187 	}
1188 
1189 	/*
1190 	 * Return success, if no ECC failures, else -EBADMSG
1191 	 * fs driver will take care of that, because
1192 	 * retlen == desired len and result == -EBADMSG
1193 	 */
1194 	ops->retlen = read;
1195 	ops->oobretlen = oobread;
1196 
1197 	if (ret)
1198 		return ret;
1199 
1200 	if (mtd->ecc_stats.failed - stats.failed)
1201 		return -EBADMSG;
1202 
1203 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206 
1207 /**
1208  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209  * @mtd:		MTD device structure
1210  * @from:		offset to read from
1211  * @ops:		oob operation description structure
1212  *
1213  * OneNAND read main and/or out-of-band data
1214  */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 				struct mtd_oob_ops *ops)
1217 {
1218 	struct onenand_chip *this = mtd->priv;
1219 	struct mtd_ecc_stats stats;
1220 	size_t len = ops->len;
1221 	size_t ooblen = ops->ooblen;
1222 	u_char *buf = ops->datbuf;
1223 	u_char *oobbuf = ops->oobbuf;
1224 	int read = 0, column, thislen;
1225 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 	int ret = 0, boundary = 0;
1227 	int writesize = this->writesize;
1228 
1229 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230 			(int)len);
1231 
1232 	oobsize = mtd_oobavail(mtd, ops);
1233 	oobcolumn = from & (mtd->oobsize - 1);
1234 
1235 	/* Do not allow reads past end of device */
1236 	if ((from + len) > mtd->size) {
1237 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238 			__func__);
1239 		ops->retlen = 0;
1240 		ops->oobretlen = 0;
1241 		return -EINVAL;
1242 	}
1243 
1244 	stats = mtd->ecc_stats;
1245 
1246 	/* Read-while-load method */
1247 
1248 	/* Do first load to bufferRAM */
1249 	if (read < len) {
1250 		if (!onenand_check_bufferram(mtd, from)) {
1251 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252 			ret = this->wait(mtd, FL_READING);
1253 			onenand_update_bufferram(mtd, from, !ret);
1254 			if (mtd_is_eccerr(ret))
1255 				ret = 0;
1256 		}
1257 	}
1258 
1259 	thislen = min_t(int, writesize, len - read);
1260 	column = from & (writesize - 1);
1261 	if (column + thislen > writesize)
1262 		thislen = writesize - column;
1263 
1264 	while (!ret) {
1265 		/* If there is more to load then start next load */
1266 		from += thislen;
1267 		if (read + thislen < len) {
1268 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269 			/*
1270 			 * Chip boundary handling in DDP
1271 			 * Now we issued chip 1 read and pointed chip 1
1272 			 * bufferram so we have to point chip 0 bufferram.
1273 			 */
1274 			if (ONENAND_IS_DDP(this) &&
1275 			    unlikely(from == (this->chipsize >> 1))) {
1276 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277 				boundary = 1;
1278 			} else
1279 				boundary = 0;
1280 			ONENAND_SET_PREV_BUFFERRAM(this);
1281 		}
1282 		/* While load is going, read from last bufferRAM */
1283 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284 
1285 		/* Read oob area if needed */
1286 		if (oobbuf) {
1287 			thisooblen = oobsize - oobcolumn;
1288 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289 
1290 			if (ops->mode == MTD_OPS_AUTO_OOB)
1291 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292 			else
1293 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294 			oobread += thisooblen;
1295 			oobbuf += thisooblen;
1296 			oobcolumn = 0;
1297 		}
1298 
1299 		/* See if we are done */
1300 		read += thislen;
1301 		if (read == len)
1302 			break;
1303 		/* Set up for next read from bufferRAM */
1304 		if (unlikely(boundary))
1305 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306 		ONENAND_SET_NEXT_BUFFERRAM(this);
1307 		buf += thislen;
1308 		thislen = min_t(int, writesize, len - read);
1309 		column = 0;
1310 		cond_resched();
1311 		/* Now wait for load */
1312 		ret = this->wait(mtd, FL_READING);
1313 		onenand_update_bufferram(mtd, from, !ret);
1314 		if (mtd_is_eccerr(ret))
1315 			ret = 0;
1316 	}
1317 
1318 	/*
1319 	 * Return success, if no ECC failures, else -EBADMSG
1320 	 * fs driver will take care of that, because
1321 	 * retlen == desired len and result == -EBADMSG
1322 	 */
1323 	ops->retlen = read;
1324 	ops->oobretlen = oobread;
1325 
1326 	if (ret)
1327 		return ret;
1328 
1329 	if (mtd->ecc_stats.failed - stats.failed)
1330 		return -EBADMSG;
1331 
1332 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334 }
1335 
1336 /**
1337  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338  * @mtd:		MTD device structure
1339  * @from:		offset to read from
1340  * @ops:		oob operation description structure
1341  *
1342  * OneNAND read out-of-band data from the spare area
1343  */
1344 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345 			struct mtd_oob_ops *ops)
1346 {
1347 	struct onenand_chip *this = mtd->priv;
1348 	struct mtd_ecc_stats stats;
1349 	int read = 0, thislen, column, oobsize;
1350 	size_t len = ops->ooblen;
1351 	unsigned int mode = ops->mode;
1352 	u_char *buf = ops->oobbuf;
1353 	int ret = 0, readcmd;
1354 
1355 	from += ops->ooboffs;
1356 
1357 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358 			(int)len);
1359 
1360 	/* Initialize return length value */
1361 	ops->oobretlen = 0;
1362 
1363 	if (mode == MTD_OPS_AUTO_OOB)
1364 		oobsize = mtd->oobavail;
1365 	else
1366 		oobsize = mtd->oobsize;
1367 
1368 	column = from & (mtd->oobsize - 1);
1369 
1370 	if (unlikely(column >= oobsize)) {
1371 		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372 			__func__);
1373 		return -EINVAL;
1374 	}
1375 
1376 	stats = mtd->ecc_stats;
1377 
1378 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379 
1380 	while (read < len) {
1381 		cond_resched();
1382 
1383 		thislen = oobsize - column;
1384 		thislen = min_t(int, thislen, len);
1385 
1386 		this->command(mtd, readcmd, from, mtd->oobsize);
1387 
1388 		onenand_update_bufferram(mtd, from, 0);
1389 
1390 		ret = this->wait(mtd, FL_READING);
1391 		if (unlikely(ret))
1392 			ret = onenand_recover_lsb(mtd, from, ret);
1393 
1394 		if (ret && !mtd_is_eccerr(ret)) {
1395 			printk(KERN_ERR "%s: read failed = 0x%x\n",
1396 				__func__, ret);
1397 			break;
1398 		}
1399 
1400 		if (mode == MTD_OPS_AUTO_OOB)
1401 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402 		else
1403 			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404 
1405 		read += thislen;
1406 
1407 		if (read == len)
1408 			break;
1409 
1410 		buf += thislen;
1411 
1412 		/* Read more? */
1413 		if (read < len) {
1414 			/* Page size */
1415 			from += mtd->writesize;
1416 			column = 0;
1417 		}
1418 	}
1419 
1420 	ops->oobretlen = read;
1421 
1422 	if (ret)
1423 		return ret;
1424 
1425 	if (mtd->ecc_stats.failed - stats.failed)
1426 		return -EBADMSG;
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433  * @mtd:		MTD device structure
1434  * @from:		offset to read from
1435  * @ops:		oob operation description structure
1436  *
1437  * Read main and/or out-of-band
1438  */
1439 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440 			    struct mtd_oob_ops *ops)
1441 {
1442 	struct onenand_chip *this = mtd->priv;
1443 	int ret;
1444 
1445 	switch (ops->mode) {
1446 	case MTD_OPS_PLACE_OOB:
1447 	case MTD_OPS_AUTO_OOB:
1448 		break;
1449 	case MTD_OPS_RAW:
1450 		/* Not implemented yet */
1451 	default:
1452 		return -EINVAL;
1453 	}
1454 
1455 	onenand_get_device(mtd, FL_READING);
1456 	if (ops->datbuf)
1457 		ret = ONENAND_IS_4KB_PAGE(this) ?
1458 			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459 			onenand_read_ops_nolock(mtd, from, ops);
1460 	else
1461 		ret = onenand_read_oob_nolock(mtd, from, ops);
1462 	onenand_release_device(mtd);
1463 
1464 	return ret;
1465 }
1466 
1467 /**
1468  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469  * @mtd:		MTD device structure
1470  * @state:		state to select the max. timeout value
1471  *
1472  * Wait for command done.
1473  */
1474 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475 {
1476 	struct onenand_chip *this = mtd->priv;
1477 	unsigned long timeout;
1478 	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479 
1480 	/* The 20 msec is enough */
1481 	timeout = jiffies + msecs_to_jiffies(20);
1482 	while (time_before(jiffies, timeout)) {
1483 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484 		if (interrupt & ONENAND_INT_MASTER)
1485 			break;
1486 	}
1487 	/* To get correct interrupt status in timeout case */
1488 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490 	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491 	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492 
1493 	if (interrupt & ONENAND_INT_READ) {
1494 		ecc = onenand_read_ecc(this);
1495 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1496 			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497 			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1498 			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1499 			return ONENAND_BBT_READ_ECC_ERROR;
1500 		}
1501 	} else {
1502 		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503 		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1504 		       __func__, ctrl, interrupt, addr1, addr8);
1505 		return ONENAND_BBT_READ_FATAL_ERROR;
1506 	}
1507 
1508 	/* Initial bad block case: 0x2400 or 0x0400 */
1509 	if (ctrl & ONENAND_CTRL_ERROR) {
1510 		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511 		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512 		return ONENAND_BBT_READ_ERROR;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520  * @mtd:		MTD device structure
1521  * @from:		offset to read from
1522  * @ops:		oob operation description structure
1523  *
1524  * OneNAND read out-of-band data from the spare area for bbt scan
1525  */
1526 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1527 			    struct mtd_oob_ops *ops)
1528 {
1529 	struct onenand_chip *this = mtd->priv;
1530 	int read = 0, thislen, column;
1531 	int ret = 0, readcmd;
1532 	size_t len = ops->ooblen;
1533 	u_char *buf = ops->oobbuf;
1534 
1535 	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536 			len);
1537 
1538 	/* Initialize return value */
1539 	ops->oobretlen = 0;
1540 
1541 	/* Do not allow reads past end of device */
1542 	if (unlikely((from + len) > mtd->size)) {
1543 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544 			__func__);
1545 		return ONENAND_BBT_READ_FATAL_ERROR;
1546 	}
1547 
1548 	/* Grab the lock and see if the device is available */
1549 	onenand_get_device(mtd, FL_READING);
1550 
1551 	column = from & (mtd->oobsize - 1);
1552 
1553 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554 
1555 	while (read < len) {
1556 		cond_resched();
1557 
1558 		thislen = mtd->oobsize - column;
1559 		thislen = min_t(int, thislen, len);
1560 
1561 		this->command(mtd, readcmd, from, mtd->oobsize);
1562 
1563 		onenand_update_bufferram(mtd, from, 0);
1564 
1565 		ret = this->bbt_wait(mtd, FL_READING);
1566 		if (unlikely(ret))
1567 			ret = onenand_recover_lsb(mtd, from, ret);
1568 
1569 		if (ret)
1570 			break;
1571 
1572 		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573 		read += thislen;
1574 		if (read == len)
1575 			break;
1576 
1577 		buf += thislen;
1578 
1579 		/* Read more? */
1580 		if (read < len) {
1581 			/* Update Page size */
1582 			from += this->writesize;
1583 			column = 0;
1584 		}
1585 	}
1586 
1587 	/* Deselect and wake up anyone waiting on the device */
1588 	onenand_release_device(mtd);
1589 
1590 	ops->oobretlen = read;
1591 	return ret;
1592 }
1593 
1594 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595 /**
1596  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597  * @mtd:		MTD device structure
1598  * @buf:		the databuffer to verify
1599  * @to:		offset to read from
1600  */
1601 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602 {
1603 	struct onenand_chip *this = mtd->priv;
1604 	u_char *oob_buf = this->oob_buf;
1605 	int status, i, readcmd;
1606 
1607 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608 
1609 	this->command(mtd, readcmd, to, mtd->oobsize);
1610 	onenand_update_bufferram(mtd, to, 0);
1611 	status = this->wait(mtd, FL_READING);
1612 	if (status)
1613 		return status;
1614 
1615 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616 	for (i = 0; i < mtd->oobsize; i++)
1617 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618 			return -EBADMSG;
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * onenand_verify - [GENERIC] verify the chip contents after a write
1625  * @mtd:          MTD device structure
1626  * @buf:          the databuffer to verify
1627  * @addr:         offset to read from
1628  * @len:          number of bytes to read and compare
1629  */
1630 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631 {
1632 	struct onenand_chip *this = mtd->priv;
1633 	int ret = 0;
1634 	int thislen, column;
1635 
1636 	column = addr & (this->writesize - 1);
1637 
1638 	while (len != 0) {
1639 		thislen = min_t(int, this->writesize - column, len);
1640 
1641 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642 
1643 		onenand_update_bufferram(mtd, addr, 0);
1644 
1645 		ret = this->wait(mtd, FL_READING);
1646 		if (ret)
1647 			return ret;
1648 
1649 		onenand_update_bufferram(mtd, addr, 1);
1650 
1651 		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652 
1653 		if (memcmp(buf, this->verify_buf + column, thislen))
1654 			return -EBADMSG;
1655 
1656 		len -= thislen;
1657 		buf += thislen;
1658 		addr += thislen;
1659 		column = 0;
1660 	}
1661 
1662 	return 0;
1663 }
1664 #else
1665 #define onenand_verify(...)		(0)
1666 #define onenand_verify_oob(...)		(0)
1667 #endif
1668 
1669 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1670 
1671 static void onenand_panic_wait(struct mtd_info *mtd)
1672 {
1673 	struct onenand_chip *this = mtd->priv;
1674 	unsigned int interrupt;
1675 	int i;
1676 
1677 	for (i = 0; i < 2000; i++) {
1678 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679 		if (interrupt & ONENAND_INT_MASTER)
1680 			break;
1681 		udelay(10);
1682 	}
1683 }
1684 
1685 /**
1686  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687  * @mtd:		MTD device structure
1688  * @to:		offset to write to
1689  * @len:		number of bytes to write
1690  * @retlen:	pointer to variable to store the number of written bytes
1691  * @buf:		the data to write
1692  *
1693  * Write with ECC
1694  */
1695 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696 			 size_t *retlen, const u_char *buf)
1697 {
1698 	struct onenand_chip *this = mtd->priv;
1699 	int column, subpage;
1700 	int written = 0;
1701 
1702 	if (this->state == FL_PM_SUSPENDED)
1703 		return -EBUSY;
1704 
1705 	/* Wait for any existing operation to clear */
1706 	onenand_panic_wait(mtd);
1707 
1708 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709 			(int)len);
1710 
1711 	/* Reject writes, which are not page aligned */
1712         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714 			__func__);
1715                 return -EINVAL;
1716         }
1717 
1718 	column = to & (mtd->writesize - 1);
1719 
1720 	/* Loop until all data write */
1721 	while (written < len) {
1722 		int thislen = min_t(int, mtd->writesize - column, len - written);
1723 		u_char *wbuf = (u_char *) buf;
1724 
1725 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726 
1727 		/* Partial page write */
1728 		subpage = thislen < mtd->writesize;
1729 		if (subpage) {
1730 			memset(this->page_buf, 0xff, mtd->writesize);
1731 			memcpy(this->page_buf + column, buf, thislen);
1732 			wbuf = this->page_buf;
1733 		}
1734 
1735 		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736 		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737 
1738 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739 
1740 		onenand_panic_wait(mtd);
1741 
1742 		/* In partial page write we don't update bufferram */
1743 		onenand_update_bufferram(mtd, to, !subpage);
1744 		if (ONENAND_IS_2PLANE(this)) {
1745 			ONENAND_SET_BUFFERRAM1(this);
1746 			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747 		}
1748 
1749 		written += thislen;
1750 
1751 		if (written == len)
1752 			break;
1753 
1754 		column = 0;
1755 		to += thislen;
1756 		buf += thislen;
1757 	}
1758 
1759 	*retlen = written;
1760 	return 0;
1761 }
1762 
1763 /**
1764  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765  * @mtd:		MTD device structure
1766  * @oob_buf:	oob buffer
1767  * @buf:		source address
1768  * @column:	oob offset to write to
1769  * @thislen:	oob length to write
1770  */
1771 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772 				  const u_char *buf, int column, int thislen)
1773 {
1774 	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775 }
1776 
1777 /**
1778  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779  * @mtd:		MTD device structure
1780  * @to:		offset to write to
1781  * @ops:		oob operation description structure
1782  *
1783  * Write main and/or oob with ECC
1784  */
1785 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786 				struct mtd_oob_ops *ops)
1787 {
1788 	struct onenand_chip *this = mtd->priv;
1789 	int written = 0, column, thislen = 0, subpage = 0;
1790 	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792 	size_t len = ops->len;
1793 	size_t ooblen = ops->ooblen;
1794 	const u_char *buf = ops->datbuf;
1795 	const u_char *oob = ops->oobbuf;
1796 	u_char *oobbuf;
1797 	int ret = 0, cmd;
1798 
1799 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800 			(int)len);
1801 
1802 	/* Initialize retlen, in case of early exit */
1803 	ops->retlen = 0;
1804 	ops->oobretlen = 0;
1805 
1806 	/* Reject writes, which are not page aligned */
1807         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809 			__func__);
1810                 return -EINVAL;
1811         }
1812 
1813 	/* Check zero length */
1814 	if (!len)
1815 		return 0;
1816 	oobsize = mtd_oobavail(mtd, ops);
1817 	oobcolumn = to & (mtd->oobsize - 1);
1818 
1819 	column = to & (mtd->writesize - 1);
1820 
1821 	/* Loop until all data write */
1822 	while (1) {
1823 		if (written < len) {
1824 			u_char *wbuf = (u_char *) buf;
1825 
1826 			thislen = min_t(int, mtd->writesize - column, len - written);
1827 			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828 
1829 			cond_resched();
1830 
1831 			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832 
1833 			/* Partial page write */
1834 			subpage = thislen < mtd->writesize;
1835 			if (subpage) {
1836 				memset(this->page_buf, 0xff, mtd->writesize);
1837 				memcpy(this->page_buf + column, buf, thislen);
1838 				wbuf = this->page_buf;
1839 			}
1840 
1841 			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842 
1843 			if (oob) {
1844 				oobbuf = this->oob_buf;
1845 
1846 				/* We send data to spare ram with oobsize
1847 				 * to prevent byte access */
1848 				memset(oobbuf, 0xff, mtd->oobsize);
1849 				if (ops->mode == MTD_OPS_AUTO_OOB)
1850 					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851 				else
1852 					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853 
1854 				oobwritten += thisooblen;
1855 				oob += thisooblen;
1856 				oobcolumn = 0;
1857 			} else
1858 				oobbuf = (u_char *) ffchars;
1859 
1860 			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861 		} else
1862 			ONENAND_SET_NEXT_BUFFERRAM(this);
1863 
1864 		/*
1865 		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1866 		 * write-while-program feature.
1867 		 */
1868 		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869 			ONENAND_SET_PREV_BUFFERRAM(this);
1870 
1871 			ret = this->wait(mtd, FL_WRITING);
1872 
1873 			/* In partial page write we don't update bufferram */
1874 			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875 			if (ret) {
1876 				written -= prevlen;
1877 				printk(KERN_ERR "%s: write failed %d\n",
1878 					__func__, ret);
1879 				break;
1880 			}
1881 
1882 			if (written == len) {
1883 				/* Only check verify write turn on */
1884 				ret = onenand_verify(mtd, buf - len, to - len, len);
1885 				if (ret)
1886 					printk(KERN_ERR "%s: verify failed %d\n",
1887 						__func__, ret);
1888 				break;
1889 			}
1890 
1891 			ONENAND_SET_NEXT_BUFFERRAM(this);
1892 		}
1893 
1894 		this->ongoing = 0;
1895 		cmd = ONENAND_CMD_PROG;
1896 
1897 		/* Exclude 1st OTP and OTP blocks for cache program feature */
1898 		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899 		    likely(onenand_block(this, to) != 0) &&
1900 		    ONENAND_IS_4KB_PAGE(this) &&
1901 		    ((written + thislen) < len)) {
1902 			cmd = ONENAND_CMD_2X_CACHE_PROG;
1903 			this->ongoing = 1;
1904 		}
1905 
1906 		this->command(mtd, cmd, to, mtd->writesize);
1907 
1908 		/*
1909 		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1910 		 */
1911 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912 			ret = this->wait(mtd, FL_WRITING);
1913 
1914 			/* In partial page write we don't update bufferram */
1915 			onenand_update_bufferram(mtd, to, !ret && !subpage);
1916 			if (ret) {
1917 				printk(KERN_ERR "%s: write failed %d\n",
1918 					__func__, ret);
1919 				break;
1920 			}
1921 
1922 			/* Only check verify write turn on */
1923 			ret = onenand_verify(mtd, buf, to, thislen);
1924 			if (ret) {
1925 				printk(KERN_ERR "%s: verify failed %d\n",
1926 					__func__, ret);
1927 				break;
1928 			}
1929 
1930 			written += thislen;
1931 
1932 			if (written == len)
1933 				break;
1934 
1935 		} else
1936 			written += thislen;
1937 
1938 		column = 0;
1939 		prev_subpage = subpage;
1940 		prev = to;
1941 		prevlen = thislen;
1942 		to += thislen;
1943 		buf += thislen;
1944 		first = 0;
1945 	}
1946 
1947 	/* In error case, clear all bufferrams */
1948 	if (written != len)
1949 		onenand_invalidate_bufferram(mtd, 0, -1);
1950 
1951 	ops->retlen = written;
1952 	ops->oobretlen = oobwritten;
1953 
1954 	return ret;
1955 }
1956 
1957 
1958 /**
1959  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960  * @mtd:		MTD device structure
1961  * @to:			offset to write to
1962  * @ops:                oob operation description structure
1963  *
1964  * OneNAND write out-of-band
1965  */
1966 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1967 				    struct mtd_oob_ops *ops)
1968 {
1969 	struct onenand_chip *this = mtd->priv;
1970 	int column, ret = 0, oobsize;
1971 	int written = 0, oobcmd;
1972 	u_char *oobbuf;
1973 	size_t len = ops->ooblen;
1974 	const u_char *buf = ops->oobbuf;
1975 	unsigned int mode = ops->mode;
1976 
1977 	to += ops->ooboffs;
1978 
1979 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1980 			(int)len);
1981 
1982 	/* Initialize retlen, in case of early exit */
1983 	ops->oobretlen = 0;
1984 
1985 	if (mode == MTD_OPS_AUTO_OOB)
1986 		oobsize = mtd->oobavail;
1987 	else
1988 		oobsize = mtd->oobsize;
1989 
1990 	column = to & (mtd->oobsize - 1);
1991 
1992 	if (unlikely(column >= oobsize)) {
1993 		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1994 			__func__);
1995 		return -EINVAL;
1996 	}
1997 
1998 	/* For compatibility with NAND: Do not allow write past end of page */
1999 	if (unlikely(column + len > oobsize)) {
2000 		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2001 			__func__);
2002 		return -EINVAL;
2003 	}
2004 
2005 	oobbuf = this->oob_buf;
2006 
2007 	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2008 
2009 	/* Loop until all data write */
2010 	while (written < len) {
2011 		int thislen = min_t(int, oobsize, len - written);
2012 
2013 		cond_resched();
2014 
2015 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2016 
2017 		/* We send data to spare ram with oobsize
2018 		 * to prevent byte access */
2019 		memset(oobbuf, 0xff, mtd->oobsize);
2020 		if (mode == MTD_OPS_AUTO_OOB)
2021 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2022 		else
2023 			memcpy(oobbuf + column, buf, thislen);
2024 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2025 
2026 		if (ONENAND_IS_4KB_PAGE(this)) {
2027 			/* Set main area of DataRAM to 0xff*/
2028 			memset(this->page_buf, 0xff, mtd->writesize);
2029 			this->write_bufferram(mtd, ONENAND_DATARAM,
2030 					 this->page_buf, 0, mtd->writesize);
2031 		}
2032 
2033 		this->command(mtd, oobcmd, to, mtd->oobsize);
2034 
2035 		onenand_update_bufferram(mtd, to, 0);
2036 		if (ONENAND_IS_2PLANE(this)) {
2037 			ONENAND_SET_BUFFERRAM1(this);
2038 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2039 		}
2040 
2041 		ret = this->wait(mtd, FL_WRITING);
2042 		if (ret) {
2043 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2044 			break;
2045 		}
2046 
2047 		ret = onenand_verify_oob(mtd, oobbuf, to);
2048 		if (ret) {
2049 			printk(KERN_ERR "%s: verify failed %d\n",
2050 				__func__, ret);
2051 			break;
2052 		}
2053 
2054 		written += thislen;
2055 		if (written == len)
2056 			break;
2057 
2058 		to += mtd->writesize;
2059 		buf += thislen;
2060 		column = 0;
2061 	}
2062 
2063 	ops->oobretlen = written;
2064 
2065 	return ret;
2066 }
2067 
2068 /**
2069  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070  * @mtd:		MTD device structure
2071  * @to:			offset to write
2072  * @ops:		oob operation description structure
2073  */
2074 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2075 			     struct mtd_oob_ops *ops)
2076 {
2077 	int ret;
2078 
2079 	switch (ops->mode) {
2080 	case MTD_OPS_PLACE_OOB:
2081 	case MTD_OPS_AUTO_OOB:
2082 		break;
2083 	case MTD_OPS_RAW:
2084 		/* Not implemented yet */
2085 	default:
2086 		return -EINVAL;
2087 	}
2088 
2089 	onenand_get_device(mtd, FL_WRITING);
2090 	if (ops->datbuf)
2091 		ret = onenand_write_ops_nolock(mtd, to, ops);
2092 	else
2093 		ret = onenand_write_oob_nolock(mtd, to, ops);
2094 	onenand_release_device(mtd);
2095 
2096 	return ret;
2097 }
2098 
2099 /**
2100  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2101  * @mtd:		MTD device structure
2102  * @ofs:		offset from device start
2103  * @allowbbt:	1, if its allowed to access the bbt area
2104  *
2105  * Check, if the block is bad. Either by reading the bad block table or
2106  * calling of the scan function.
2107  */
2108 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2109 {
2110 	struct onenand_chip *this = mtd->priv;
2111 	struct bbm_info *bbm = this->bbm;
2112 
2113 	/* Return info from the table */
2114 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2115 }
2116 
2117 
2118 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2119 					   struct erase_info *instr)
2120 {
2121 	struct onenand_chip *this = mtd->priv;
2122 	loff_t addr = instr->addr;
2123 	int len = instr->len;
2124 	unsigned int block_size = (1 << this->erase_shift);
2125 	int ret = 0;
2126 
2127 	while (len) {
2128 		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2129 		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2130 		if (ret) {
2131 			printk(KERN_ERR "%s: Failed verify, block %d\n",
2132 			       __func__, onenand_block(this, addr));
2133 			instr->fail_addr = addr;
2134 			return -1;
2135 		}
2136 		len -= block_size;
2137 		addr += block_size;
2138 	}
2139 	return 0;
2140 }
2141 
2142 /**
2143  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2144  * @mtd:		MTD device structure
2145  * @instr:		erase instruction
2146  * @block_size:		block size
2147  *
2148  * Erase one or more blocks up to 64 block at a time
2149  */
2150 static int onenand_multiblock_erase(struct mtd_info *mtd,
2151 				    struct erase_info *instr,
2152 				    unsigned int block_size)
2153 {
2154 	struct onenand_chip *this = mtd->priv;
2155 	loff_t addr = instr->addr;
2156 	int len = instr->len;
2157 	int eb_count = 0;
2158 	int ret = 0;
2159 	int bdry_block = 0;
2160 
2161 	if (ONENAND_IS_DDP(this)) {
2162 		loff_t bdry_addr = this->chipsize >> 1;
2163 		if (addr < bdry_addr && (addr + len) > bdry_addr)
2164 			bdry_block = bdry_addr >> this->erase_shift;
2165 	}
2166 
2167 	/* Pre-check bbs */
2168 	while (len) {
2169 		/* Check if we have a bad block, we do not erase bad blocks */
2170 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2171 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2172 			       "at addr 0x%012llx\n",
2173 			       __func__, (unsigned long long) addr);
2174 			return -EIO;
2175 		}
2176 		len -= block_size;
2177 		addr += block_size;
2178 	}
2179 
2180 	len = instr->len;
2181 	addr = instr->addr;
2182 
2183 	/* loop over 64 eb batches */
2184 	while (len) {
2185 		struct erase_info verify_instr = *instr;
2186 		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2187 
2188 		verify_instr.addr = addr;
2189 		verify_instr.len = 0;
2190 
2191 		/* do not cross chip boundary */
2192 		if (bdry_block) {
2193 			int this_block = (addr >> this->erase_shift);
2194 
2195 			if (this_block < bdry_block) {
2196 				max_eb_count = min(max_eb_count,
2197 						   (bdry_block - this_block));
2198 			}
2199 		}
2200 
2201 		eb_count = 0;
2202 
2203 		while (len > block_size && eb_count < (max_eb_count - 1)) {
2204 			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2205 				      addr, block_size);
2206 			onenand_invalidate_bufferram(mtd, addr, block_size);
2207 
2208 			ret = this->wait(mtd, FL_PREPARING_ERASE);
2209 			if (ret) {
2210 				printk(KERN_ERR "%s: Failed multiblock erase, "
2211 				       "block %d\n", __func__,
2212 				       onenand_block(this, addr));
2213 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2214 				return -EIO;
2215 			}
2216 
2217 			len -= block_size;
2218 			addr += block_size;
2219 			eb_count++;
2220 		}
2221 
2222 		/* last block of 64-eb series */
2223 		cond_resched();
2224 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2225 		onenand_invalidate_bufferram(mtd, addr, block_size);
2226 
2227 		ret = this->wait(mtd, FL_ERASING);
2228 		/* Check if it is write protected */
2229 		if (ret) {
2230 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2231 			       __func__, onenand_block(this, addr));
2232 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2233 			return -EIO;
2234 		}
2235 
2236 		len -= block_size;
2237 		addr += block_size;
2238 		eb_count++;
2239 
2240 		/* verify */
2241 		verify_instr.len = eb_count * block_size;
2242 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2243 			instr->fail_addr = verify_instr.fail_addr;
2244 			return -EIO;
2245 		}
2246 
2247 	}
2248 	return 0;
2249 }
2250 
2251 
2252 /**
2253  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2254  * @mtd:		MTD device structure
2255  * @instr:		erase instruction
2256  * @region:	erase region
2257  * @block_size:	erase block size
2258  *
2259  * Erase one or more blocks one block at a time
2260  */
2261 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2262 					struct erase_info *instr,
2263 					struct mtd_erase_region_info *region,
2264 					unsigned int block_size)
2265 {
2266 	struct onenand_chip *this = mtd->priv;
2267 	loff_t addr = instr->addr;
2268 	int len = instr->len;
2269 	loff_t region_end = 0;
2270 	int ret = 0;
2271 
2272 	if (region) {
2273 		/* region is set for Flex-OneNAND */
2274 		region_end = region->offset + region->erasesize * region->numblocks;
2275 	}
2276 
2277 	/* Loop through the blocks */
2278 	while (len) {
2279 		cond_resched();
2280 
2281 		/* Check if we have a bad block, we do not erase bad blocks */
2282 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2283 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2284 					"at addr 0x%012llx\n",
2285 					__func__, (unsigned long long) addr);
2286 			return -EIO;
2287 		}
2288 
2289 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2290 
2291 		onenand_invalidate_bufferram(mtd, addr, block_size);
2292 
2293 		ret = this->wait(mtd, FL_ERASING);
2294 		/* Check, if it is write protected */
2295 		if (ret) {
2296 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2297 				__func__, onenand_block(this, addr));
2298 			instr->fail_addr = addr;
2299 			return -EIO;
2300 		}
2301 
2302 		len -= block_size;
2303 		addr += block_size;
2304 
2305 		if (region && addr == region_end) {
2306 			if (!len)
2307 				break;
2308 			region++;
2309 
2310 			block_size = region->erasesize;
2311 			region_end = region->offset + region->erasesize * region->numblocks;
2312 
2313 			if (len & (block_size - 1)) {
2314 				/* FIXME: This should be handled at MTD partitioning level. */
2315 				printk(KERN_ERR "%s: Unaligned address\n",
2316 					__func__);
2317 				return -EIO;
2318 			}
2319 		}
2320 	}
2321 	return 0;
2322 }
2323 
2324 /**
2325  * onenand_erase - [MTD Interface] erase block(s)
2326  * @mtd:		MTD device structure
2327  * @instr:		erase instruction
2328  *
2329  * Erase one or more blocks
2330  */
2331 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2332 {
2333 	struct onenand_chip *this = mtd->priv;
2334 	unsigned int block_size;
2335 	loff_t addr = instr->addr;
2336 	loff_t len = instr->len;
2337 	int ret = 0;
2338 	struct mtd_erase_region_info *region = NULL;
2339 	loff_t region_offset = 0;
2340 
2341 	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2342 			(unsigned long long)instr->addr,
2343 			(unsigned long long)instr->len);
2344 
2345 	if (FLEXONENAND(this)) {
2346 		/* Find the eraseregion of this address */
2347 		int i = flexonenand_region(mtd, addr);
2348 
2349 		region = &mtd->eraseregions[i];
2350 		block_size = region->erasesize;
2351 
2352 		/* Start address within region must align on block boundary.
2353 		 * Erase region's start offset is always block start address.
2354 		 */
2355 		region_offset = region->offset;
2356 	} else
2357 		block_size = 1 << this->erase_shift;
2358 
2359 	/* Start address must align on block boundary */
2360 	if (unlikely((addr - region_offset) & (block_size - 1))) {
2361 		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2362 		return -EINVAL;
2363 	}
2364 
2365 	/* Length must align on block boundary */
2366 	if (unlikely(len & (block_size - 1))) {
2367 		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2368 		return -EINVAL;
2369 	}
2370 
2371 	/* Grab the lock and see if the device is available */
2372 	onenand_get_device(mtd, FL_ERASING);
2373 
2374 	if (ONENAND_IS_4KB_PAGE(this) || region ||
2375 	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2376 		/* region is set for Flex-OneNAND (no mb erase) */
2377 		ret = onenand_block_by_block_erase(mtd, instr,
2378 						   region, block_size);
2379 	} else {
2380 		ret = onenand_multiblock_erase(mtd, instr, block_size);
2381 	}
2382 
2383 	/* Deselect and wake up anyone waiting on the device */
2384 	onenand_release_device(mtd);
2385 
2386 	return ret;
2387 }
2388 
2389 /**
2390  * onenand_sync - [MTD Interface] sync
2391  * @mtd:		MTD device structure
2392  *
2393  * Sync is actually a wait for chip ready function
2394  */
2395 static void onenand_sync(struct mtd_info *mtd)
2396 {
2397 	pr_debug("%s: called\n", __func__);
2398 
2399 	/* Grab the lock and see if the device is available */
2400 	onenand_get_device(mtd, FL_SYNCING);
2401 
2402 	/* Release it and go back */
2403 	onenand_release_device(mtd);
2404 }
2405 
2406 /**
2407  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2408  * @mtd:		MTD device structure
2409  * @ofs:		offset relative to mtd start
2410  *
2411  * Check whether the block is bad
2412  */
2413 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2414 {
2415 	int ret;
2416 
2417 	onenand_get_device(mtd, FL_READING);
2418 	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2419 	onenand_release_device(mtd);
2420 	return ret;
2421 }
2422 
2423 /**
2424  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2425  * @mtd:		MTD device structure
2426  * @ofs:		offset from device start
2427  *
2428  * This is the default implementation, which can be overridden by
2429  * a hardware specific driver.
2430  */
2431 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2432 {
2433 	struct onenand_chip *this = mtd->priv;
2434 	struct bbm_info *bbm = this->bbm;
2435 	u_char buf[2] = {0, 0};
2436 	struct mtd_oob_ops ops = {
2437 		.mode = MTD_OPS_PLACE_OOB,
2438 		.ooblen = 2,
2439 		.oobbuf = buf,
2440 		.ooboffs = 0,
2441 	};
2442 	int block;
2443 
2444 	/* Get block number */
2445 	block = onenand_block(this, ofs);
2446         if (bbm->bbt)
2447                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2448 
2449         /* We write two bytes, so we don't have to mess with 16-bit access */
2450         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2451 	/* FIXME : What to do when marking SLC block in partition
2452 	 * 	   with MLC erasesize? For now, it is not advisable to
2453 	 *	   create partitions containing both SLC and MLC regions.
2454 	 */
2455 	return onenand_write_oob_nolock(mtd, ofs, &ops);
2456 }
2457 
2458 /**
2459  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2460  * @mtd:		MTD device structure
2461  * @ofs:		offset relative to mtd start
2462  *
2463  * Mark the block as bad
2464  */
2465 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2466 {
2467 	struct onenand_chip *this = mtd->priv;
2468 	int ret;
2469 
2470 	ret = onenand_block_isbad(mtd, ofs);
2471 	if (ret) {
2472 		/* If it was bad already, return success and do nothing */
2473 		if (ret > 0)
2474 			return 0;
2475 		return ret;
2476 	}
2477 
2478 	onenand_get_device(mtd, FL_WRITING);
2479 	ret = this->block_markbad(mtd, ofs);
2480 	onenand_release_device(mtd);
2481 	return ret;
2482 }
2483 
2484 /**
2485  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2486  * @mtd:		MTD device structure
2487  * @ofs:		offset relative to mtd start
2488  * @len:		number of bytes to lock or unlock
2489  * @cmd:		lock or unlock command
2490  *
2491  * Lock or unlock one or more blocks
2492  */
2493 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2494 {
2495 	struct onenand_chip *this = mtd->priv;
2496 	int start, end, block, value, status;
2497 	int wp_status_mask;
2498 
2499 	start = onenand_block(this, ofs);
2500 	end = onenand_block(this, ofs + len) - 1;
2501 
2502 	if (cmd == ONENAND_CMD_LOCK)
2503 		wp_status_mask = ONENAND_WP_LS;
2504 	else
2505 		wp_status_mask = ONENAND_WP_US;
2506 
2507 	/* Continuous lock scheme */
2508 	if (this->options & ONENAND_HAS_CONT_LOCK) {
2509 		/* Set start block address */
2510 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2511 		/* Set end block address */
2512 		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2513 		/* Write lock command */
2514 		this->command(mtd, cmd, 0, 0);
2515 
2516 		/* There's no return value */
2517 		this->wait(mtd, FL_LOCKING);
2518 
2519 		/* Sanity check */
2520 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2521 		    & ONENAND_CTRL_ONGO)
2522 			continue;
2523 
2524 		/* Check lock status */
2525 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2526 		if (!(status & wp_status_mask))
2527 			printk(KERN_ERR "%s: wp status = 0x%x\n",
2528 				__func__, status);
2529 
2530 		return 0;
2531 	}
2532 
2533 	/* Block lock scheme */
2534 	for (block = start; block < end + 1; block++) {
2535 		/* Set block address */
2536 		value = onenand_block_address(this, block);
2537 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2538 		/* Select DataRAM for DDP */
2539 		value = onenand_bufferram_address(this, block);
2540 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2541 		/* Set start block address */
2542 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2543 		/* Write lock command */
2544 		this->command(mtd, cmd, 0, 0);
2545 
2546 		/* There's no return value */
2547 		this->wait(mtd, FL_LOCKING);
2548 
2549 		/* Sanity check */
2550 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2551 		    & ONENAND_CTRL_ONGO)
2552 			continue;
2553 
2554 		/* Check lock status */
2555 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2556 		if (!(status & wp_status_mask))
2557 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2558 				__func__, block, status);
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 /**
2565  * onenand_lock - [MTD Interface] Lock block(s)
2566  * @mtd:		MTD device structure
2567  * @ofs:		offset relative to mtd start
2568  * @len:		number of bytes to unlock
2569  *
2570  * Lock one or more blocks
2571  */
2572 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2573 {
2574 	int ret;
2575 
2576 	onenand_get_device(mtd, FL_LOCKING);
2577 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2578 	onenand_release_device(mtd);
2579 	return ret;
2580 }
2581 
2582 /**
2583  * onenand_unlock - [MTD Interface] Unlock block(s)
2584  * @mtd:		MTD device structure
2585  * @ofs:		offset relative to mtd start
2586  * @len:		number of bytes to unlock
2587  *
2588  * Unlock one or more blocks
2589  */
2590 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2591 {
2592 	int ret;
2593 
2594 	onenand_get_device(mtd, FL_LOCKING);
2595 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2596 	onenand_release_device(mtd);
2597 	return ret;
2598 }
2599 
2600 /**
2601  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2602  * @this:		onenand chip data structure
2603  *
2604  * Check lock status
2605  */
2606 static int onenand_check_lock_status(struct onenand_chip *this)
2607 {
2608 	unsigned int value, block, status;
2609 	unsigned int end;
2610 
2611 	end = this->chipsize >> this->erase_shift;
2612 	for (block = 0; block < end; block++) {
2613 		/* Set block address */
2614 		value = onenand_block_address(this, block);
2615 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2616 		/* Select DataRAM for DDP */
2617 		value = onenand_bufferram_address(this, block);
2618 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2619 		/* Set start block address */
2620 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2621 
2622 		/* Check lock status */
2623 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2624 		if (!(status & ONENAND_WP_US)) {
2625 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2626 				__func__, block, status);
2627 			return 0;
2628 		}
2629 	}
2630 
2631 	return 1;
2632 }
2633 
2634 /**
2635  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2636  * @mtd:		MTD device structure
2637  *
2638  * Unlock all blocks
2639  */
2640 static void onenand_unlock_all(struct mtd_info *mtd)
2641 {
2642 	struct onenand_chip *this = mtd->priv;
2643 	loff_t ofs = 0;
2644 	loff_t len = mtd->size;
2645 
2646 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2647 		/* Set start block address */
2648 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2649 		/* Write unlock command */
2650 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2651 
2652 		/* There's no return value */
2653 		this->wait(mtd, FL_LOCKING);
2654 
2655 		/* Sanity check */
2656 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2657 		    & ONENAND_CTRL_ONGO)
2658 			continue;
2659 
2660 		/* Don't check lock status */
2661 		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2662 			return;
2663 
2664 		/* Check lock status */
2665 		if (onenand_check_lock_status(this))
2666 			return;
2667 
2668 		/* Workaround for all block unlock in DDP */
2669 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2670 			/* All blocks on another chip */
2671 			ofs = this->chipsize >> 1;
2672 			len = this->chipsize >> 1;
2673 		}
2674 	}
2675 
2676 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2677 }
2678 
2679 #ifdef CONFIG_MTD_ONENAND_OTP
2680 
2681 /**
2682  * onenand_otp_command - Send OTP specific command to OneNAND device
2683  * @mtd:	 MTD device structure
2684  * @cmd:	 the command to be sent
2685  * @addr:	 offset to read from or write to
2686  * @len:	 number of bytes to read or write
2687  */
2688 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2689 				size_t len)
2690 {
2691 	struct onenand_chip *this = mtd->priv;
2692 	int value, block, page;
2693 
2694 	/* Address translation */
2695 	switch (cmd) {
2696 	case ONENAND_CMD_OTP_ACCESS:
2697 		block = (int) (addr >> this->erase_shift);
2698 		page = -1;
2699 		break;
2700 
2701 	default:
2702 		block = (int) (addr >> this->erase_shift);
2703 		page = (int) (addr >> this->page_shift);
2704 
2705 		if (ONENAND_IS_2PLANE(this)) {
2706 			/* Make the even block number */
2707 			block &= ~1;
2708 			/* Is it the odd plane? */
2709 			if (addr & this->writesize)
2710 				block++;
2711 			page >>= 1;
2712 		}
2713 		page &= this->page_mask;
2714 		break;
2715 	}
2716 
2717 	if (block != -1) {
2718 		/* Write 'DFS, FBA' of Flash */
2719 		value = onenand_block_address(this, block);
2720 		this->write_word(value, this->base +
2721 				ONENAND_REG_START_ADDRESS1);
2722 	}
2723 
2724 	if (page != -1) {
2725 		/* Now we use page size operation */
2726 		int sectors = 4, count = 4;
2727 		int dataram;
2728 
2729 		switch (cmd) {
2730 		default:
2731 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2732 				cmd = ONENAND_CMD_2X_PROG;
2733 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2734 			break;
2735 		}
2736 
2737 		/* Write 'FPA, FSA' of Flash */
2738 		value = onenand_page_address(page, sectors);
2739 		this->write_word(value, this->base +
2740 				ONENAND_REG_START_ADDRESS8);
2741 
2742 		/* Write 'BSA, BSC' of DataRAM */
2743 		value = onenand_buffer_address(dataram, sectors, count);
2744 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2745 	}
2746 
2747 	/* Interrupt clear */
2748 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2749 
2750 	/* Write command */
2751 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2752 
2753 	return 0;
2754 }
2755 
2756 /**
2757  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2758  * @mtd:		MTD device structure
2759  * @to:			offset to write to
2760  * @ops:                oob operation description structure
2761  *
2762  * OneNAND write out-of-band only for OTP
2763  */
2764 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2765 				    struct mtd_oob_ops *ops)
2766 {
2767 	struct onenand_chip *this = mtd->priv;
2768 	int column, ret = 0, oobsize;
2769 	int written = 0;
2770 	u_char *oobbuf;
2771 	size_t len = ops->ooblen;
2772 	const u_char *buf = ops->oobbuf;
2773 	int block, value, status;
2774 
2775 	to += ops->ooboffs;
2776 
2777 	/* Initialize retlen, in case of early exit */
2778 	ops->oobretlen = 0;
2779 
2780 	oobsize = mtd->oobsize;
2781 
2782 	column = to & (mtd->oobsize - 1);
2783 
2784 	oobbuf = this->oob_buf;
2785 
2786 	/* Loop until all data write */
2787 	while (written < len) {
2788 		int thislen = min_t(int, oobsize, len - written);
2789 
2790 		cond_resched();
2791 
2792 		block = (int) (to >> this->erase_shift);
2793 		/*
2794 		 * Write 'DFS, FBA' of Flash
2795 		 * Add: F100h DQ=DFS, FBA
2796 		 */
2797 
2798 		value = onenand_block_address(this, block);
2799 		this->write_word(value, this->base +
2800 				ONENAND_REG_START_ADDRESS1);
2801 
2802 		/*
2803 		 * Select DataRAM for DDP
2804 		 * Add: F101h DQ=DBS
2805 		 */
2806 
2807 		value = onenand_bufferram_address(this, block);
2808 		this->write_word(value, this->base +
2809 				ONENAND_REG_START_ADDRESS2);
2810 		ONENAND_SET_NEXT_BUFFERRAM(this);
2811 
2812 		/*
2813 		 * Enter OTP access mode
2814 		 */
2815 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2816 		this->wait(mtd, FL_OTPING);
2817 
2818 		/* We send data to spare ram with oobsize
2819 		 * to prevent byte access */
2820 		memcpy(oobbuf + column, buf, thislen);
2821 
2822 		/*
2823 		 * Write Data into DataRAM
2824 		 * Add: 8th Word
2825 		 * in sector0/spare/page0
2826 		 * DQ=XXFCh
2827 		 */
2828 		this->write_bufferram(mtd, ONENAND_SPARERAM,
2829 					oobbuf, 0, mtd->oobsize);
2830 
2831 		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2832 		onenand_update_bufferram(mtd, to, 0);
2833 		if (ONENAND_IS_2PLANE(this)) {
2834 			ONENAND_SET_BUFFERRAM1(this);
2835 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2836 		}
2837 
2838 		ret = this->wait(mtd, FL_WRITING);
2839 		if (ret) {
2840 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2841 			break;
2842 		}
2843 
2844 		/* Exit OTP access mode */
2845 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2846 		this->wait(mtd, FL_RESETTING);
2847 
2848 		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2849 		status &= 0x60;
2850 
2851 		if (status == 0x60) {
2852 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2853 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2854 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2855 		} else if (status == 0x20) {
2856 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2857 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2858 			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2859 		} else if (status == 0x40) {
2860 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2861 			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2862 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2863 		} else {
2864 			printk(KERN_DEBUG "Reboot to check\n");
2865 		}
2866 
2867 		written += thislen;
2868 		if (written == len)
2869 			break;
2870 
2871 		to += mtd->writesize;
2872 		buf += thislen;
2873 		column = 0;
2874 	}
2875 
2876 	ops->oobretlen = written;
2877 
2878 	return ret;
2879 }
2880 
2881 /* Internal OTP operation */
2882 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2883 		size_t *retlen, u_char *buf);
2884 
2885 /**
2886  * do_otp_read - [DEFAULT] Read OTP block area
2887  * @mtd:		MTD device structure
2888  * @from:		The offset to read
2889  * @len:		number of bytes to read
2890  * @retlen:	pointer to variable to store the number of readbytes
2891  * @buf:		the databuffer to put/get data
2892  *
2893  * Read OTP block area.
2894  */
2895 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2896 		size_t *retlen, u_char *buf)
2897 {
2898 	struct onenand_chip *this = mtd->priv;
2899 	struct mtd_oob_ops ops = {
2900 		.len	= len,
2901 		.ooblen	= 0,
2902 		.datbuf	= buf,
2903 		.oobbuf	= NULL,
2904 	};
2905 	int ret;
2906 
2907 	/* Enter OTP access mode */
2908 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2909 	this->wait(mtd, FL_OTPING);
2910 
2911 	ret = ONENAND_IS_4KB_PAGE(this) ?
2912 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2913 		onenand_read_ops_nolock(mtd, from, &ops);
2914 
2915 	/* Exit OTP access mode */
2916 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2917 	this->wait(mtd, FL_RESETTING);
2918 
2919 	return ret;
2920 }
2921 
2922 /**
2923  * do_otp_write - [DEFAULT] Write OTP block area
2924  * @mtd:		MTD device structure
2925  * @to:		The offset to write
2926  * @len:		number of bytes to write
2927  * @retlen:	pointer to variable to store the number of write bytes
2928  * @buf:		the databuffer to put/get data
2929  *
2930  * Write OTP block area.
2931  */
2932 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2933 		size_t *retlen, u_char *buf)
2934 {
2935 	struct onenand_chip *this = mtd->priv;
2936 	unsigned char *pbuf = buf;
2937 	int ret;
2938 	struct mtd_oob_ops ops;
2939 
2940 	/* Force buffer page aligned */
2941 	if (len < mtd->writesize) {
2942 		memcpy(this->page_buf, buf, len);
2943 		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2944 		pbuf = this->page_buf;
2945 		len = mtd->writesize;
2946 	}
2947 
2948 	/* Enter OTP access mode */
2949 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2950 	this->wait(mtd, FL_OTPING);
2951 
2952 	ops.len = len;
2953 	ops.ooblen = 0;
2954 	ops.datbuf = pbuf;
2955 	ops.oobbuf = NULL;
2956 	ret = onenand_write_ops_nolock(mtd, to, &ops);
2957 	*retlen = ops.retlen;
2958 
2959 	/* Exit OTP access mode */
2960 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2961 	this->wait(mtd, FL_RESETTING);
2962 
2963 	return ret;
2964 }
2965 
2966 /**
2967  * do_otp_lock - [DEFAULT] Lock OTP block area
2968  * @mtd:		MTD device structure
2969  * @from:		The offset to lock
2970  * @len:		number of bytes to lock
2971  * @retlen:	pointer to variable to store the number of lock bytes
2972  * @buf:		the databuffer to put/get data
2973  *
2974  * Lock OTP block area.
2975  */
2976 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2977 		size_t *retlen, u_char *buf)
2978 {
2979 	struct onenand_chip *this = mtd->priv;
2980 	struct mtd_oob_ops ops;
2981 	int ret;
2982 
2983 	if (FLEXONENAND(this)) {
2984 
2985 		/* Enter OTP access mode */
2986 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2987 		this->wait(mtd, FL_OTPING);
2988 		/*
2989 		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2990 		 * main area of page 49.
2991 		 */
2992 		ops.len = mtd->writesize;
2993 		ops.ooblen = 0;
2994 		ops.datbuf = buf;
2995 		ops.oobbuf = NULL;
2996 		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
2997 		*retlen = ops.retlen;
2998 
2999 		/* Exit OTP access mode */
3000 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3001 		this->wait(mtd, FL_RESETTING);
3002 	} else {
3003 		ops.mode = MTD_OPS_PLACE_OOB;
3004 		ops.ooblen = len;
3005 		ops.oobbuf = buf;
3006 		ops.ooboffs = 0;
3007 		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3008 		*retlen = ops.oobretlen;
3009 	}
3010 
3011 	return ret;
3012 }
3013 
3014 /**
3015  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3016  * @mtd:		MTD device structure
3017  * @from:		The offset to read/write
3018  * @len:		number of bytes to read/write
3019  * @retlen:	pointer to variable to store the number of read bytes
3020  * @buf:		the databuffer to put/get data
3021  * @action:	do given action
3022  * @mode:		specify user and factory
3023  *
3024  * Handle OTP operation.
3025  */
3026 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3027 			size_t *retlen, u_char *buf,
3028 			otp_op_t action, int mode)
3029 {
3030 	struct onenand_chip *this = mtd->priv;
3031 	int otp_pages;
3032 	int density;
3033 	int ret = 0;
3034 
3035 	*retlen = 0;
3036 
3037 	density = onenand_get_density(this->device_id);
3038 	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3039 		otp_pages = 20;
3040 	else
3041 		otp_pages = 50;
3042 
3043 	if (mode == MTD_OTP_FACTORY) {
3044 		from += mtd->writesize * otp_pages;
3045 		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3046 	}
3047 
3048 	/* Check User/Factory boundary */
3049 	if (mode == MTD_OTP_USER) {
3050 		if (mtd->writesize * otp_pages < from + len)
3051 			return 0;
3052 	} else {
3053 		if (mtd->writesize * otp_pages <  len)
3054 			return 0;
3055 	}
3056 
3057 	onenand_get_device(mtd, FL_OTPING);
3058 	while (len > 0 && otp_pages > 0) {
3059 		if (!action) {	/* OTP Info functions */
3060 			struct otp_info *otpinfo;
3061 
3062 			len -= sizeof(struct otp_info);
3063 			if (len <= 0) {
3064 				ret = -ENOSPC;
3065 				break;
3066 			}
3067 
3068 			otpinfo = (struct otp_info *) buf;
3069 			otpinfo->start = from;
3070 			otpinfo->length = mtd->writesize;
3071 			otpinfo->locked = 0;
3072 
3073 			from += mtd->writesize;
3074 			buf += sizeof(struct otp_info);
3075 			*retlen += sizeof(struct otp_info);
3076 		} else {
3077 			size_t tmp_retlen;
3078 
3079 			ret = action(mtd, from, len, &tmp_retlen, buf);
3080 			if (ret)
3081 				break;
3082 
3083 			buf += tmp_retlen;
3084 			len -= tmp_retlen;
3085 			*retlen += tmp_retlen;
3086 
3087 		}
3088 		otp_pages--;
3089 	}
3090 	onenand_release_device(mtd);
3091 
3092 	return ret;
3093 }
3094 
3095 /**
3096  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3097  * @mtd:		MTD device structure
3098  * @len:		number of bytes to read
3099  * @retlen:	pointer to variable to store the number of read bytes
3100  * @buf:		the databuffer to put/get data
3101  *
3102  * Read factory OTP info.
3103  */
3104 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3105 				      size_t *retlen, struct otp_info *buf)
3106 {
3107 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3108 				MTD_OTP_FACTORY);
3109 }
3110 
3111 /**
3112  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3113  * @mtd:		MTD device structure
3114  * @from:		The offset to read
3115  * @len:		number of bytes to read
3116  * @retlen:	pointer to variable to store the number of read bytes
3117  * @buf:		the databuffer to put/get data
3118  *
3119  * Read factory OTP area.
3120  */
3121 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3122 			size_t len, size_t *retlen, u_char *buf)
3123 {
3124 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3125 }
3126 
3127 /**
3128  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3129  * @mtd:		MTD device structure
3130  * @retlen:	pointer to variable to store the number of read bytes
3131  * @len:		number of bytes to read
3132  * @buf:		the databuffer to put/get data
3133  *
3134  * Read user OTP info.
3135  */
3136 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3137 				      size_t *retlen, struct otp_info *buf)
3138 {
3139 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3140 				MTD_OTP_USER);
3141 }
3142 
3143 /**
3144  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3145  * @mtd:		MTD device structure
3146  * @from:		The offset to read
3147  * @len:		number of bytes to read
3148  * @retlen:	pointer to variable to store the number of read bytes
3149  * @buf:		the databuffer to put/get data
3150  *
3151  * Read user OTP area.
3152  */
3153 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3154 			size_t len, size_t *retlen, u_char *buf)
3155 {
3156 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3157 }
3158 
3159 /**
3160  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3161  * @mtd:		MTD device structure
3162  * @from:		The offset to write
3163  * @len:		number of bytes to write
3164  * @retlen:	pointer to variable to store the number of write bytes
3165  * @buf:		the databuffer to put/get data
3166  *
3167  * Write user OTP area.
3168  */
3169 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3170 			size_t len, size_t *retlen, const u_char *buf)
3171 {
3172 	return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
3173 				do_otp_write, MTD_OTP_USER);
3174 }
3175 
3176 /**
3177  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3178  * @mtd:		MTD device structure
3179  * @from:		The offset to lock
3180  * @len:		number of bytes to unlock
3181  *
3182  * Write lock mark on spare area in page 0 in OTP block
3183  */
3184 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3185 			size_t len)
3186 {
3187 	struct onenand_chip *this = mtd->priv;
3188 	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3189 	size_t retlen;
3190 	int ret;
3191 	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3192 
3193 	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3194 						 : mtd->oobsize);
3195 	/*
3196 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3197 	 * We write 16 bytes spare area instead of 2 bytes.
3198 	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3199 	 * main area of page 49.
3200 	 */
3201 
3202 	from = 0;
3203 	len = FLEXONENAND(this) ? mtd->writesize : 16;
3204 
3205 	/*
3206 	 * Note: OTP lock operation
3207 	 *       OTP block : 0xXXFC			XX 1111 1100
3208 	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3209 	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3210 	 */
3211 	if (FLEXONENAND(this))
3212 		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3213 
3214 	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3215 	if (otp == 1)
3216 		buf[otp_lock_offset] = 0xFC;
3217 	else if (otp == 2)
3218 		buf[otp_lock_offset] = 0xF3;
3219 	else if (otp == 3)
3220 		buf[otp_lock_offset] = 0xF0;
3221 	else if (otp != 0)
3222 		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3223 
3224 	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3225 
3226 	return ret ? : retlen;
3227 }
3228 
3229 #endif	/* CONFIG_MTD_ONENAND_OTP */
3230 
3231 /**
3232  * onenand_check_features - Check and set OneNAND features
3233  * @mtd:		MTD data structure
3234  *
3235  * Check and set OneNAND features
3236  * - lock scheme
3237  * - two plane
3238  */
3239 static void onenand_check_features(struct mtd_info *mtd)
3240 {
3241 	struct onenand_chip *this = mtd->priv;
3242 	unsigned int density, process, numbufs;
3243 
3244 	/* Lock scheme depends on density and process */
3245 	density = onenand_get_density(this->device_id);
3246 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3247 	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3248 
3249 	/* Lock scheme */
3250 	switch (density) {
3251 	case ONENAND_DEVICE_DENSITY_8Gb:
3252 		this->options |= ONENAND_HAS_NOP_1;
3253 		fallthrough;
3254 	case ONENAND_DEVICE_DENSITY_4Gb:
3255 		if (ONENAND_IS_DDP(this))
3256 			this->options |= ONENAND_HAS_2PLANE;
3257 		else if (numbufs == 1) {
3258 			this->options |= ONENAND_HAS_4KB_PAGE;
3259 			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3260 			/*
3261 			 * There are two different 4KiB pagesize chips
3262 			 * and no way to detect it by H/W config values.
3263 			 *
3264 			 * To detect the correct NOP for each chips,
3265 			 * It should check the version ID as workaround.
3266 			 *
3267 			 * Now it has as following
3268 			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3269 			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3270 			 */
3271 			if ((this->version_id & 0xf) == 0xe)
3272 				this->options |= ONENAND_HAS_NOP_1;
3273 		}
3274 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3275 		break;
3276 
3277 	case ONENAND_DEVICE_DENSITY_2Gb:
3278 		/* 2Gb DDP does not have 2 plane */
3279 		if (!ONENAND_IS_DDP(this))
3280 			this->options |= ONENAND_HAS_2PLANE;
3281 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3282 		break;
3283 
3284 	case ONENAND_DEVICE_DENSITY_1Gb:
3285 		/* A-Die has all block unlock */
3286 		if (process)
3287 			this->options |= ONENAND_HAS_UNLOCK_ALL;
3288 		break;
3289 
3290 	default:
3291 		/* Some OneNAND has continuous lock scheme */
3292 		if (!process)
3293 			this->options |= ONENAND_HAS_CONT_LOCK;
3294 		break;
3295 	}
3296 
3297 	/* The MLC has 4KiB pagesize. */
3298 	if (ONENAND_IS_MLC(this))
3299 		this->options |= ONENAND_HAS_4KB_PAGE;
3300 
3301 	if (ONENAND_IS_4KB_PAGE(this))
3302 		this->options &= ~ONENAND_HAS_2PLANE;
3303 
3304 	if (FLEXONENAND(this)) {
3305 		this->options &= ~ONENAND_HAS_CONT_LOCK;
3306 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3307 	}
3308 
3309 	if (this->options & ONENAND_HAS_CONT_LOCK)
3310 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3311 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3312 		printk(KERN_DEBUG "Chip support all block unlock\n");
3313 	if (this->options & ONENAND_HAS_2PLANE)
3314 		printk(KERN_DEBUG "Chip has 2 plane\n");
3315 	if (this->options & ONENAND_HAS_4KB_PAGE)
3316 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3317 	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3318 		printk(KERN_DEBUG "Chip has cache program feature\n");
3319 }
3320 
3321 /**
3322  * onenand_print_device_info - Print device & version ID
3323  * @device:        device ID
3324  * @version:	version ID
3325  *
3326  * Print device & version ID
3327  */
3328 static void onenand_print_device_info(int device, int version)
3329 {
3330 	int vcc, demuxed, ddp, density, flexonenand;
3331 
3332         vcc = device & ONENAND_DEVICE_VCC_MASK;
3333         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3334         ddp = device & ONENAND_DEVICE_IS_DDP;
3335         density = onenand_get_density(device);
3336 	flexonenand = device & DEVICE_IS_FLEXONENAND;
3337 	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3338 		demuxed ? "" : "Muxed ",
3339 		flexonenand ? "Flex-" : "",
3340                 ddp ? "(DDP)" : "",
3341                 (16 << density),
3342                 vcc ? "2.65/3.3" : "1.8",
3343                 device);
3344 	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3345 }
3346 
3347 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3348         {ONENAND_MFR_SAMSUNG, "Samsung"},
3349 	{ONENAND_MFR_NUMONYX, "Numonyx"},
3350 };
3351 
3352 /**
3353  * onenand_check_maf - Check manufacturer ID
3354  * @manuf:         manufacturer ID
3355  *
3356  * Check manufacturer ID
3357  */
3358 static int onenand_check_maf(int manuf)
3359 {
3360 	int size = ARRAY_SIZE(onenand_manuf_ids);
3361 	char *name;
3362         int i;
3363 
3364 	for (i = 0; i < size; i++)
3365                 if (manuf == onenand_manuf_ids[i].id)
3366                         break;
3367 
3368 	if (i < size)
3369 		name = onenand_manuf_ids[i].name;
3370 	else
3371 		name = "Unknown";
3372 
3373 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3374 
3375 	return (i == size);
3376 }
3377 
3378 /**
3379  * flexonenand_get_boundary	- Reads the SLC boundary
3380  * @mtd:		MTD data structure
3381  */
3382 static int flexonenand_get_boundary(struct mtd_info *mtd)
3383 {
3384 	struct onenand_chip *this = mtd->priv;
3385 	unsigned die, bdry;
3386 	int syscfg, locked;
3387 
3388 	/* Disable ECC */
3389 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3390 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3391 
3392 	for (die = 0; die < this->dies; die++) {
3393 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3394 		this->wait(mtd, FL_SYNCING);
3395 
3396 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3397 		this->wait(mtd, FL_READING);
3398 
3399 		bdry = this->read_word(this->base + ONENAND_DATARAM);
3400 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3401 			locked = 0;
3402 		else
3403 			locked = 1;
3404 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3405 
3406 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3407 		this->wait(mtd, FL_RESETTING);
3408 
3409 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3410 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3411 	}
3412 
3413 	/* Enable ECC */
3414 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3415 	return 0;
3416 }
3417 
3418 /**
3419  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3420  * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3421  * @mtd:		- MTD device structure
3422  */
3423 static void flexonenand_get_size(struct mtd_info *mtd)
3424 {
3425 	struct onenand_chip *this = mtd->priv;
3426 	int die, i, eraseshift, density;
3427 	int blksperdie, maxbdry;
3428 	loff_t ofs;
3429 
3430 	density = onenand_get_density(this->device_id);
3431 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3432 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3433 	maxbdry = blksperdie - 1;
3434 	eraseshift = this->erase_shift - 1;
3435 
3436 	mtd->numeraseregions = this->dies << 1;
3437 
3438 	/* This fills up the device boundary */
3439 	flexonenand_get_boundary(mtd);
3440 	die = ofs = 0;
3441 	i = -1;
3442 	for (; die < this->dies; die++) {
3443 		if (!die || this->boundary[die-1] != maxbdry) {
3444 			i++;
3445 			mtd->eraseregions[i].offset = ofs;
3446 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3447 			mtd->eraseregions[i].numblocks =
3448 							this->boundary[die] + 1;
3449 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3450 			eraseshift++;
3451 		} else {
3452 			mtd->numeraseregions -= 1;
3453 			mtd->eraseregions[i].numblocks +=
3454 							this->boundary[die] + 1;
3455 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3456 		}
3457 		if (this->boundary[die] != maxbdry) {
3458 			i++;
3459 			mtd->eraseregions[i].offset = ofs;
3460 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3461 			mtd->eraseregions[i].numblocks = maxbdry ^
3462 							 this->boundary[die];
3463 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3464 			eraseshift--;
3465 		} else
3466 			mtd->numeraseregions -= 1;
3467 	}
3468 
3469 	/* Expose MLC erase size except when all blocks are SLC */
3470 	mtd->erasesize = 1 << this->erase_shift;
3471 	if (mtd->numeraseregions == 1)
3472 		mtd->erasesize >>= 1;
3473 
3474 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3475 	for (i = 0; i < mtd->numeraseregions; i++)
3476 		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3477 			" numblocks: %04u]\n",
3478 			(unsigned int) mtd->eraseregions[i].offset,
3479 			mtd->eraseregions[i].erasesize,
3480 			mtd->eraseregions[i].numblocks);
3481 
3482 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3483 		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3484 		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3485 						 << (this->erase_shift - 1);
3486 		mtd->size += this->diesize[die];
3487 	}
3488 }
3489 
3490 /**
3491  * flexonenand_check_blocks_erased - Check if blocks are erased
3492  * @mtd:	mtd info structure
3493  * @start:	first erase block to check
3494  * @end:	last erase block to check
3495  *
3496  * Converting an unerased block from MLC to SLC
3497  * causes byte values to change. Since both data and its ECC
3498  * have changed, reads on the block give uncorrectable error.
3499  * This might lead to the block being detected as bad.
3500  *
3501  * Avoid this by ensuring that the block to be converted is
3502  * erased.
3503  */
3504 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3505 {
3506 	struct onenand_chip *this = mtd->priv;
3507 	int i, ret;
3508 	int block;
3509 	struct mtd_oob_ops ops = {
3510 		.mode = MTD_OPS_PLACE_OOB,
3511 		.ooboffs = 0,
3512 		.ooblen	= mtd->oobsize,
3513 		.datbuf	= NULL,
3514 		.oobbuf	= this->oob_buf,
3515 	};
3516 	loff_t addr;
3517 
3518 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3519 
3520 	for (block = start; block <= end; block++) {
3521 		addr = flexonenand_addr(this, block);
3522 		if (onenand_block_isbad_nolock(mtd, addr, 0))
3523 			continue;
3524 
3525 		/*
3526 		 * Since main area write results in ECC write to spare,
3527 		 * it is sufficient to check only ECC bytes for change.
3528 		 */
3529 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3530 		if (ret)
3531 			return ret;
3532 
3533 		for (i = 0; i < mtd->oobsize; i++)
3534 			if (this->oob_buf[i] != 0xff)
3535 				break;
3536 
3537 		if (i != mtd->oobsize) {
3538 			printk(KERN_WARNING "%s: Block %d not erased.\n",
3539 				__func__, block);
3540 			return 1;
3541 		}
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 /*
3548  * flexonenand_set_boundary	- Writes the SLC boundary
3549  */
3550 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3551 				    int boundary, int lock)
3552 {
3553 	struct onenand_chip *this = mtd->priv;
3554 	int ret, density, blksperdie, old, new, thisboundary;
3555 	loff_t addr;
3556 
3557 	/* Change only once for SDP Flex-OneNAND */
3558 	if (die && (!ONENAND_IS_DDP(this)))
3559 		return 0;
3560 
3561 	/* boundary value of -1 indicates no required change */
3562 	if (boundary < 0 || boundary == this->boundary[die])
3563 		return 0;
3564 
3565 	density = onenand_get_density(this->device_id);
3566 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3567 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3568 
3569 	if (boundary >= blksperdie) {
3570 		printk(KERN_ERR "%s: Invalid boundary value. "
3571 				"Boundary not changed.\n", __func__);
3572 		return -EINVAL;
3573 	}
3574 
3575 	/* Check if converting blocks are erased */
3576 	old = this->boundary[die] + (die * this->density_mask);
3577 	new = boundary + (die * this->density_mask);
3578 	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3579 	if (ret) {
3580 		printk(KERN_ERR "%s: Please erase blocks "
3581 				"before boundary change\n", __func__);
3582 		return ret;
3583 	}
3584 
3585 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3586 	this->wait(mtd, FL_SYNCING);
3587 
3588 	/* Check is boundary is locked */
3589 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3590 	this->wait(mtd, FL_READING);
3591 
3592 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3593 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3594 		printk(KERN_ERR "%s: boundary locked\n", __func__);
3595 		ret = 1;
3596 		goto out;
3597 	}
3598 
3599 	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3600 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3601 
3602 	addr = die ? this->diesize[0] : 0;
3603 
3604 	boundary &= FLEXONENAND_PI_MASK;
3605 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3606 
3607 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3608 	ret = this->wait(mtd, FL_ERASING);
3609 	if (ret) {
3610 		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3611 		       __func__, die);
3612 		goto out;
3613 	}
3614 
3615 	this->write_word(boundary, this->base + ONENAND_DATARAM);
3616 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3617 	ret = this->wait(mtd, FL_WRITING);
3618 	if (ret) {
3619 		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3620 			__func__, die);
3621 		goto out;
3622 	}
3623 
3624 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3625 	ret = this->wait(mtd, FL_WRITING);
3626 out:
3627 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3628 	this->wait(mtd, FL_RESETTING);
3629 	if (!ret)
3630 		/* Recalculate device size on boundary change*/
3631 		flexonenand_get_size(mtd);
3632 
3633 	return ret;
3634 }
3635 
3636 /**
3637  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3638  * @mtd:		MTD device structure
3639  *
3640  * OneNAND detection method:
3641  *   Compare the values from command with ones from register
3642  */
3643 static int onenand_chip_probe(struct mtd_info *mtd)
3644 {
3645 	struct onenand_chip *this = mtd->priv;
3646 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3647 	int syscfg;
3648 
3649 	/* Save system configuration 1 */
3650 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3651 	/* Clear Sync. Burst Read mode to read BootRAM */
3652 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3653 
3654 	/* Send the command for reading device ID from BootRAM */
3655 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3656 
3657 	/* Read manufacturer and device IDs from BootRAM */
3658 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3659 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3660 
3661 	/* Reset OneNAND to read default register values */
3662 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3663 	/* Wait reset */
3664 	this->wait(mtd, FL_RESETTING);
3665 
3666 	/* Restore system configuration 1 */
3667 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3668 
3669 	/* Check manufacturer ID */
3670 	if (onenand_check_maf(bram_maf_id))
3671 		return -ENXIO;
3672 
3673 	/* Read manufacturer and device IDs from Register */
3674 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3675 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3676 
3677 	/* Check OneNAND device */
3678 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3679 		return -ENXIO;
3680 
3681 	return 0;
3682 }
3683 
3684 /**
3685  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3686  * @mtd:		MTD device structure
3687  */
3688 static int onenand_probe(struct mtd_info *mtd)
3689 {
3690 	struct onenand_chip *this = mtd->priv;
3691 	int dev_id, ver_id;
3692 	int density;
3693 	int ret;
3694 
3695 	ret = this->chip_probe(mtd);
3696 	if (ret)
3697 		return ret;
3698 
3699 	/* Device and version IDs from Register */
3700 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3701 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3702 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3703 
3704 	/* Flash device information */
3705 	onenand_print_device_info(dev_id, ver_id);
3706 	this->device_id = dev_id;
3707 	this->version_id = ver_id;
3708 
3709 	/* Check OneNAND features */
3710 	onenand_check_features(mtd);
3711 
3712 	density = onenand_get_density(dev_id);
3713 	if (FLEXONENAND(this)) {
3714 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3715 		/* Maximum possible erase regions */
3716 		mtd->numeraseregions = this->dies << 1;
3717 		mtd->eraseregions =
3718 			kcalloc(this->dies << 1,
3719 				sizeof(struct mtd_erase_region_info),
3720 				GFP_KERNEL);
3721 		if (!mtd->eraseregions)
3722 			return -ENOMEM;
3723 	}
3724 
3725 	/*
3726 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3727 	 * mtd->size represents the actual device size.
3728 	 */
3729 	this->chipsize = (16 << density) << 20;
3730 
3731 	/* OneNAND page size & block size */
3732 	/* The data buffer size is equal to page size */
3733 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3734 	/* We use the full BufferRAM */
3735 	if (ONENAND_IS_4KB_PAGE(this))
3736 		mtd->writesize <<= 1;
3737 
3738 	mtd->oobsize = mtd->writesize >> 5;
3739 	/* Pages per a block are always 64 in OneNAND */
3740 	mtd->erasesize = mtd->writesize << 6;
3741 	/*
3742 	 * Flex-OneNAND SLC area has 64 pages per block.
3743 	 * Flex-OneNAND MLC area has 128 pages per block.
3744 	 * Expose MLC erase size to find erase_shift and page_mask.
3745 	 */
3746 	if (FLEXONENAND(this))
3747 		mtd->erasesize <<= 1;
3748 
3749 	this->erase_shift = ffs(mtd->erasesize) - 1;
3750 	this->page_shift = ffs(mtd->writesize) - 1;
3751 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3752 	/* Set density mask. it is used for DDP */
3753 	if (ONENAND_IS_DDP(this))
3754 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3755 	/* It's real page size */
3756 	this->writesize = mtd->writesize;
3757 
3758 	/* REVISIT: Multichip handling */
3759 
3760 	if (FLEXONENAND(this))
3761 		flexonenand_get_size(mtd);
3762 	else
3763 		mtd->size = this->chipsize;
3764 
3765 	/*
3766 	 * We emulate the 4KiB page and 256KiB erase block size
3767 	 * But oobsize is still 64 bytes.
3768 	 * It is only valid if you turn on 2X program support,
3769 	 * Otherwise it will be ignored by compiler.
3770 	 */
3771 	if (ONENAND_IS_2PLANE(this)) {
3772 		mtd->writesize <<= 1;
3773 		mtd->erasesize <<= 1;
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 /**
3780  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3781  * @mtd:		MTD device structure
3782  */
3783 static int onenand_suspend(struct mtd_info *mtd)
3784 {
3785 	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3786 }
3787 
3788 /**
3789  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3790  * @mtd:		MTD device structure
3791  */
3792 static void onenand_resume(struct mtd_info *mtd)
3793 {
3794 	struct onenand_chip *this = mtd->priv;
3795 
3796 	if (this->state == FL_PM_SUSPENDED)
3797 		onenand_release_device(mtd);
3798 	else
3799 		printk(KERN_ERR "%s: resume() called for the chip which is not "
3800 				"in suspended state\n", __func__);
3801 }
3802 
3803 /**
3804  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3805  * @mtd:		MTD device structure
3806  * @maxchips:	Number of chips to scan for
3807  *
3808  * This fills out all the not initialized function pointers
3809  * with the defaults.
3810  * The flash ID is read and the mtd/chip structures are
3811  * filled with the appropriate values.
3812  */
3813 int onenand_scan(struct mtd_info *mtd, int maxchips)
3814 {
3815 	int i, ret;
3816 	struct onenand_chip *this = mtd->priv;
3817 
3818 	if (!this->read_word)
3819 		this->read_word = onenand_readw;
3820 	if (!this->write_word)
3821 		this->write_word = onenand_writew;
3822 
3823 	if (!this->command)
3824 		this->command = onenand_command;
3825 	if (!this->wait)
3826 		onenand_setup_wait(mtd);
3827 	if (!this->bbt_wait)
3828 		this->bbt_wait = onenand_bbt_wait;
3829 	if (!this->unlock_all)
3830 		this->unlock_all = onenand_unlock_all;
3831 
3832 	if (!this->chip_probe)
3833 		this->chip_probe = onenand_chip_probe;
3834 
3835 	if (!this->read_bufferram)
3836 		this->read_bufferram = onenand_read_bufferram;
3837 	if (!this->write_bufferram)
3838 		this->write_bufferram = onenand_write_bufferram;
3839 
3840 	if (!this->block_markbad)
3841 		this->block_markbad = onenand_default_block_markbad;
3842 	if (!this->scan_bbt)
3843 		this->scan_bbt = onenand_default_bbt;
3844 
3845 	if (onenand_probe(mtd))
3846 		return -ENXIO;
3847 
3848 	/* Set Sync. Burst Read after probing */
3849 	if (this->mmcontrol) {
3850 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3851 		this->read_bufferram = onenand_sync_read_bufferram;
3852 	}
3853 
3854 	/* Allocate buffers, if necessary */
3855 	if (!this->page_buf) {
3856 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3857 		if (!this->page_buf)
3858 			return -ENOMEM;
3859 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3860 		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3861 		if (!this->verify_buf) {
3862 			kfree(this->page_buf);
3863 			return -ENOMEM;
3864 		}
3865 #endif
3866 		this->options |= ONENAND_PAGEBUF_ALLOC;
3867 	}
3868 	if (!this->oob_buf) {
3869 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3870 		if (!this->oob_buf) {
3871 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3872 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3873 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3874 				kfree(this->verify_buf);
3875 #endif
3876 				kfree(this->page_buf);
3877 			}
3878 			return -ENOMEM;
3879 		}
3880 		this->options |= ONENAND_OOBBUF_ALLOC;
3881 	}
3882 
3883 	this->state = FL_READY;
3884 	init_waitqueue_head(&this->wq);
3885 	spin_lock_init(&this->chip_lock);
3886 
3887 	/*
3888 	 * Allow subpage writes up to oobsize.
3889 	 */
3890 	switch (mtd->oobsize) {
3891 	case 128:
3892 		if (FLEXONENAND(this)) {
3893 			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3894 			mtd->subpage_sft = 0;
3895 		} else {
3896 			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3897 			mtd->subpage_sft = 2;
3898 		}
3899 		if (ONENAND_IS_NOP_1(this))
3900 			mtd->subpage_sft = 0;
3901 		break;
3902 	case 64:
3903 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3904 		mtd->subpage_sft = 2;
3905 		break;
3906 
3907 	case 32:
3908 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909 		mtd->subpage_sft = 1;
3910 		break;
3911 
3912 	default:
3913 		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3914 			__func__, mtd->oobsize);
3915 		mtd->subpage_sft = 0;
3916 		/* To prevent kernel oops */
3917 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3918 		break;
3919 	}
3920 
3921 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3922 
3923 	/*
3924 	 * The number of bytes available for a client to place data into
3925 	 * the out of band area
3926 	 */
3927 	ret = mtd_ooblayout_count_freebytes(mtd);
3928 	if (ret < 0)
3929 		ret = 0;
3930 
3931 	mtd->oobavail = ret;
3932 
3933 	mtd->ecc_strength = 1;
3934 
3935 	/* Fill in remaining MTD driver data */
3936 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3937 	mtd->flags = MTD_CAP_NANDFLASH;
3938 	mtd->_erase = onenand_erase;
3939 	mtd->_point = NULL;
3940 	mtd->_unpoint = NULL;
3941 	mtd->_read_oob = onenand_read_oob;
3942 	mtd->_write_oob = onenand_write_oob;
3943 	mtd->_panic_write = onenand_panic_write;
3944 #ifdef CONFIG_MTD_ONENAND_OTP
3945 	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3946 	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3947 	mtd->_get_user_prot_info = onenand_get_user_prot_info;
3948 	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3949 	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3950 	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3951 #endif
3952 	mtd->_sync = onenand_sync;
3953 	mtd->_lock = onenand_lock;
3954 	mtd->_unlock = onenand_unlock;
3955 	mtd->_suspend = onenand_suspend;
3956 	mtd->_resume = onenand_resume;
3957 	mtd->_block_isbad = onenand_block_isbad;
3958 	mtd->_block_markbad = onenand_block_markbad;
3959 	mtd->owner = THIS_MODULE;
3960 	mtd->writebufsize = mtd->writesize;
3961 
3962 	/* Unlock whole block */
3963 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3964 		this->unlock_all(mtd);
3965 
3966 	/* Set the bad block marker position */
3967 	this->badblockpos = ONENAND_BADBLOCK_POS;
3968 
3969 	ret = this->scan_bbt(mtd);
3970 	if ((!FLEXONENAND(this)) || ret)
3971 		return ret;
3972 
3973 	/* Change Flex-OneNAND boundaries if required */
3974 	for (i = 0; i < MAX_DIES; i++)
3975 		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3976 						 flex_bdry[(2 * i) + 1]);
3977 
3978 	return 0;
3979 }
3980 
3981 /**
3982  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3983  * @mtd:		MTD device structure
3984  */
3985 void onenand_release(struct mtd_info *mtd)
3986 {
3987 	struct onenand_chip *this = mtd->priv;
3988 
3989 	/* Deregister partitions */
3990 	mtd_device_unregister(mtd);
3991 
3992 	/* Free bad block table memory, if allocated */
3993 	if (this->bbm) {
3994 		struct bbm_info *bbm = this->bbm;
3995 		kfree(bbm->bbt);
3996 		kfree(this->bbm);
3997 	}
3998 	/* Buffers allocated by onenand_scan */
3999 	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4000 		kfree(this->page_buf);
4001 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4002 		kfree(this->verify_buf);
4003 #endif
4004 	}
4005 	if (this->options & ONENAND_OOBBUF_ALLOC)
4006 		kfree(this->oob_buf);
4007 	kfree(mtd->eraseregions);
4008 }
4009 
4010 EXPORT_SYMBOL_GPL(onenand_scan);
4011 EXPORT_SYMBOL_GPL(onenand_release);
4012 
4013 MODULE_LICENSE("GPL");
4014 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4015 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4016