1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *	auto-placement support, read-while load support, various fixes
11  *
12  *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *	Flex-OneNAND support
14  *	Amul Kumar Saha <amul.saha at samsung.com>
15  *	OTP support
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29 
30 #include <asm/io.h>
31 
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38 
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41 
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
44 				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 				"DIE_BDRY: SLC boundary of the die"
46 				"LOCK: Locking information for SLC boundary"
47 				"    : 0->Set boundary in unlocked status"
48 				"    : 1->Set boundary in locked status");
49 
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52 
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
55 			"Syntax : otp=LOCK_TYPE"
56 			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 			"	   : 0 -> Default (No Blocks Locked)"
58 			"	   : 1 -> OTP Block lock"
59 			"	   : 2 -> 1st Block lock"
60 			"	   : 3 -> BOTH OTP Block and 1st Block lock");
61 
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67 				     struct mtd_oob_region *oobregion)
68 {
69 	if (section > 7)
70 		return -ERANGE;
71 
72 	oobregion->offset = (section * 16) + 6;
73 	oobregion->length = 10;
74 
75 	return 0;
76 }
77 
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79 				      struct mtd_oob_region *oobregion)
80 {
81 	if (section > 7)
82 		return -ERANGE;
83 
84 	oobregion->offset = (section * 16) + 2;
85 	oobregion->length = 4;
86 
87 	return 0;
88 }
89 
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91 	.ecc = flexonenand_ooblayout_ecc,
92 	.free = flexonenand_ooblayout_free,
93 };
94 
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103 				     struct mtd_oob_region *oobregion)
104 {
105 	if (section > 7)
106 		return -ERANGE;
107 
108 	oobregion->offset = (section * 16) + 7;
109 	oobregion->length = 9;
110 
111 	return 0;
112 }
113 
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115 				      struct mtd_oob_region *oobregion)
116 {
117 	if (section >= 8)
118 		return -ERANGE;
119 
120 	/*
121 	 * free bytes are using the spare area fields marked as
122 	 * "Managed by internal ECC logic for Logical Sector Number area"
123 	 */
124 	oobregion->offset = (section * 16) + 2;
125 	oobregion->length = 3;
126 
127 	return 0;
128 }
129 
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131 	.ecc = onenand_ooblayout_128_ecc,
132 	.free = onenand_ooblayout_128_free,
133 };
134 
135 /**
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139 				       struct mtd_oob_region *oobregion)
140 {
141 	if (section > 3)
142 		return -ERANGE;
143 
144 	oobregion->offset = (section * 16) + 8;
145 	oobregion->length = 5;
146 
147 	return 0;
148 }
149 
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151 					struct mtd_oob_region *oobregion)
152 {
153 	int sections = (mtd->oobsize / 32) * 2;
154 
155 	if (section >= sections)
156 		return -ERANGE;
157 
158 	if (section & 1) {
159 		oobregion->offset = ((section - 1) * 16) + 14;
160 		oobregion->length = 2;
161 	} else  {
162 		oobregion->offset = (section * 16) + 2;
163 		oobregion->length = 3;
164 	}
165 
166 	return 0;
167 }
168 
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170 	.ecc = onenand_ooblayout_32_64_ecc,
171 	.free = onenand_ooblayout_32_64_free,
172 };
173 
174 static const unsigned char ffchars[] = {
175 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
177 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
179 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
181 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
183 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
185 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
187 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
189 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
191 };
192 
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @param addr		address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201 	return readw(addr);
202 }
203 
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @param value		value to write
207  * @param addr		address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213 	writew(value, addr);
214 }
215 
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @param this		onenand chip data structure
219  * @param block		the block
220  * @return		translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226 	/* Device Flash Core select, NAND Flash Block Address */
227 	if (block & this->density_mask)
228 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229 
230 	return block;
231 }
232 
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @param this		onenand chip data structure
236  * @param block		the block
237  * @return		set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243 	/* Device BufferRAM Select */
244 	if (block & this->density_mask)
245 		return ONENAND_DDP_CHIP1;
246 
247 	return ONENAND_DDP_CHIP0;
248 }
249 
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @param page		the page address
253  * @param sector	the sector address
254  * @return		combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260 	/* Flash Page Address, Flash Sector Address */
261 	int fpa, fsa;
262 
263 	fpa = page & ONENAND_FPA_MASK;
264 	fsa = sector & ONENAND_FSA_MASK;
265 
266 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268 
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @param dataram1	DataRAM index
272  * @param sectors	the sector address
273  * @param count		the number of sectors
274  * @return		the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280 	int bsa, bsc;
281 
282 	/* BufferRAM Sector Address */
283 	bsa = sectors & ONENAND_BSA_MASK;
284 
285 	if (dataram1)
286 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
287 	else
288 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
289 
290 	/* BufferRAM Sector Count */
291 	bsc = count & ONENAND_BSC_MASK;
292 
293 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295 
296 /**
297  * flexonenand_block- For given address return block number
298  * @param this         - OneNAND device structure
299  * @param addr		- Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303 	unsigned boundary, blk, die = 0;
304 
305 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306 		die = 1;
307 		addr -= this->diesize[0];
308 	}
309 
310 	boundary = this->boundary[die];
311 
312 	blk = addr >> (this->erase_shift - 1);
313 	if (blk > boundary)
314 		blk = (blk + boundary + 1) >> 1;
315 
316 	blk += die ? this->density_mask : 0;
317 	return blk;
318 }
319 
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322 	if (!FLEXONENAND(this))
323 		return addr >> this->erase_shift;
324 	return flexonenand_block(this, addr);
325 }
326 
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:		OneNAND device structure
330  * @block:		Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336 	loff_t ofs = 0;
337 	int die = 0, boundary;
338 
339 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340 		block -= this->density_mask;
341 		die = 1;
342 		ofs = this->diesize[0];
343 	}
344 
345 	boundary = this->boundary[die];
346 	ofs += (loff_t)block << (this->erase_shift - 1);
347 	if (block > (boundary + 1))
348 		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349 	return ofs;
350 }
351 
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354 	if (!FLEXONENAND(this))
355 		return (loff_t)block << this->erase_shift;
356 	return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359 
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @param dev_id	OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369 	return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371 
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @param mtd		MTD device structure
375  * @param addr		address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379 	int i;
380 
381 	for (i = 0; i < mtd->numeraseregions; i++)
382 		if (addr < mtd->eraseregions[i].offset)
383 			break;
384 	return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387 
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @param mtd		MTD device structure
391  * @param cmd		the command to be sent
392  * @param addr		offset to read from or write to
393  * @param len		number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400 	struct onenand_chip *this = mtd->priv;
401 	int value, block, page;
402 
403 	/* Address translation */
404 	switch (cmd) {
405 	case ONENAND_CMD_UNLOCK:
406 	case ONENAND_CMD_LOCK:
407 	case ONENAND_CMD_LOCK_TIGHT:
408 	case ONENAND_CMD_UNLOCK_ALL:
409 		block = -1;
410 		page = -1;
411 		break;
412 
413 	case FLEXONENAND_CMD_PI_ACCESS:
414 		/* addr contains die index */
415 		block = addr * this->density_mask;
416 		page = -1;
417 		break;
418 
419 	case ONENAND_CMD_ERASE:
420 	case ONENAND_CMD_MULTIBLOCK_ERASE:
421 	case ONENAND_CMD_ERASE_VERIFY:
422 	case ONENAND_CMD_BUFFERRAM:
423 	case ONENAND_CMD_OTP_ACCESS:
424 		block = onenand_block(this, addr);
425 		page = -1;
426 		break;
427 
428 	case FLEXONENAND_CMD_READ_PI:
429 		cmd = ONENAND_CMD_READ;
430 		block = addr * this->density_mask;
431 		page = 0;
432 		break;
433 
434 	default:
435 		block = onenand_block(this, addr);
436 		if (FLEXONENAND(this))
437 			page = (int) (addr - onenand_addr(this, block))>>\
438 				this->page_shift;
439 		else
440 			page = (int) (addr >> this->page_shift);
441 		if (ONENAND_IS_2PLANE(this)) {
442 			/* Make the even block number */
443 			block &= ~1;
444 			/* Is it the odd plane? */
445 			if (addr & this->writesize)
446 				block++;
447 			page >>= 1;
448 		}
449 		page &= this->page_mask;
450 		break;
451 	}
452 
453 	/* NOTE: The setting order of the registers is very important! */
454 	if (cmd == ONENAND_CMD_BUFFERRAM) {
455 		/* Select DataRAM for DDP */
456 		value = onenand_bufferram_address(this, block);
457 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458 
459 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 			/* It is always BufferRAM0 */
461 			ONENAND_SET_BUFFERRAM0(this);
462 		else
463 			/* Switch to the next data buffer */
464 			ONENAND_SET_NEXT_BUFFERRAM(this);
465 
466 		return 0;
467 	}
468 
469 	if (block != -1) {
470 		/* Write 'DFS, FBA' of Flash */
471 		value = onenand_block_address(this, block);
472 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473 
474 		/* Select DataRAM for DDP */
475 		value = onenand_bufferram_address(this, block);
476 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477 	}
478 
479 	if (page != -1) {
480 		/* Now we use page size operation */
481 		int sectors = 0, count = 0;
482 		int dataram;
483 
484 		switch (cmd) {
485 		case FLEXONENAND_CMD_RECOVER_LSB:
486 		case ONENAND_CMD_READ:
487 		case ONENAND_CMD_READOOB:
488 			if (ONENAND_IS_4KB_PAGE(this))
489 				/* It is always BufferRAM0 */
490 				dataram = ONENAND_SET_BUFFERRAM0(this);
491 			else
492 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493 			break;
494 
495 		default:
496 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497 				cmd = ONENAND_CMD_2X_PROG;
498 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
499 			break;
500 		}
501 
502 		/* Write 'FPA, FSA' of Flash */
503 		value = onenand_page_address(page, sectors);
504 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505 
506 		/* Write 'BSA, BSC' of DataRAM */
507 		value = onenand_buffer_address(dataram, sectors, count);
508 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509 	}
510 
511 	/* Interrupt clear */
512 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513 
514 	/* Write command */
515 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516 
517 	return 0;
518 }
519 
520 /**
521  * onenand_read_ecc - return ecc status
522  * @param this		onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526 	int ecc, i, result = 0;
527 
528 	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530 
531 	for (i = 0; i < 4; i++) {
532 		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533 		if (likely(!ecc))
534 			continue;
535 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536 			return ONENAND_ECC_2BIT_ALL;
537 		else
538 			result = ONENAND_ECC_1BIT_ALL;
539 	}
540 
541 	return result;
542 }
543 
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @param mtd		MTD device structure
547  * @param state		state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555 	struct onenand_chip * this = mtd->priv;
556 	unsigned long timeout;
557 	unsigned int flags = ONENAND_INT_MASTER;
558 	unsigned int interrupt = 0;
559 	unsigned int ctrl;
560 
561 	/* The 20 msec is enough */
562 	timeout = jiffies + msecs_to_jiffies(20);
563 	while (time_before(jiffies, timeout)) {
564 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565 
566 		if (interrupt & flags)
567 			break;
568 
569 		if (state != FL_READING && state != FL_PREPARING_ERASE)
570 			cond_resched();
571 	}
572 	/* To get correct interrupt status in timeout case */
573 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574 
575 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576 
577 	/*
578 	 * In the Spec. it checks the controller status first
579 	 * However if you get the correct information in case of
580 	 * power off recovery (POR) test, it should read ECC status first
581 	 */
582 	if (interrupt & ONENAND_INT_READ) {
583 		int ecc = onenand_read_ecc(this);
584 		if (ecc) {
585 			if (ecc & ONENAND_ECC_2BIT_ALL) {
586 				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587 					__func__, ecc);
588 				mtd->ecc_stats.failed++;
589 				return -EBADMSG;
590 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
591 				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592 					__func__, ecc);
593 				mtd->ecc_stats.corrected++;
594 			}
595 		}
596 	} else if (state == FL_READING) {
597 		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 			__func__, ctrl, interrupt);
599 		return -EIO;
600 	}
601 
602 	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603 		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 		       __func__, ctrl, interrupt);
605 		return -EIO;
606 	}
607 
608 	if (!(interrupt & ONENAND_INT_MASTER)) {
609 		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 		       __func__, ctrl, interrupt);
611 		return -EIO;
612 	}
613 
614 	/* If there's controller error, it's a real error */
615 	if (ctrl & ONENAND_CTRL_ERROR) {
616 		printk(KERN_ERR "%s: controller error = 0x%04x\n",
617 			__func__, ctrl);
618 		if (ctrl & ONENAND_CTRL_LOCK)
619 			printk(KERN_ERR "%s: it's locked error.\n", __func__);
620 		return -EIO;
621 	}
622 
623 	return 0;
624 }
625 
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @param irq		onenand interrupt number
629  * @param dev_id	interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635 	struct onenand_chip *this = data;
636 
637 	/* To handle shared interrupt */
638 	if (!this->complete.done)
639 		complete(&this->complete);
640 
641 	return IRQ_HANDLED;
642 }
643 
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @param mtd		MTD device structure
647  * @param state		state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653 	struct onenand_chip *this = mtd->priv;
654 
655 	wait_for_completion(&this->complete);
656 
657 	return onenand_wait(mtd, state);
658 }
659 
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @param mtd		MTD device structure
663  * @param state		state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669 	struct onenand_chip *this = mtd->priv;
670 	unsigned long remain, timeout;
671 
672 	/* We use interrupt wait first */
673 	this->wait = onenand_interrupt_wait;
674 
675 	timeout = msecs_to_jiffies(100);
676 	remain = wait_for_completion_timeout(&this->complete, timeout);
677 	if (!remain) {
678 		printk(KERN_INFO "OneNAND: There's no interrupt. "
679 				"We use the normal wait\n");
680 
681 		/* Release the irq */
682 		free_irq(this->irq, this);
683 
684 		this->wait = onenand_wait;
685 	}
686 
687 	return onenand_wait(mtd, state);
688 }
689 
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @param mtd		MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700 	struct onenand_chip *this = mtd->priv;
701 	int syscfg;
702 
703 	init_completion(&this->complete);
704 
705 	if (this->irq <= 0) {
706 		this->wait = onenand_wait;
707 		return;
708 	}
709 
710 	if (request_irq(this->irq, &onenand_interrupt,
711 				IRQF_SHARED, "onenand", this)) {
712 		/* If we can't get irq, use the normal wait */
713 		this->wait = onenand_wait;
714 		return;
715 	}
716 
717 	/* Enable interrupt */
718 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719 	syscfg |= ONENAND_SYS_CFG1_IOBE;
720 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721 
722 	this->wait = onenand_try_interrupt_wait;
723 }
724 
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @param mtd		MTD data structure
728  * @param area		BufferRAM area
729  * @return		offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735 	struct onenand_chip *this = mtd->priv;
736 
737 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 		/* Note: the 'this->writesize' is a real page size */
739 		if (area == ONENAND_DATARAM)
740 			return this->writesize;
741 		if (area == ONENAND_SPARERAM)
742 			return mtd->oobsize;
743 	}
744 
745 	return 0;
746 }
747 
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @param mtd		MTD data structure
751  * @param area		BufferRAM area
752  * @param buffer	the databuffer to put/get data
753  * @param offset	offset to read from or write to
754  * @param count		number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759 		unsigned char *buffer, int offset, size_t count)
760 {
761 	struct onenand_chip *this = mtd->priv;
762 	void __iomem *bufferram;
763 
764 	bufferram = this->base + area;
765 
766 	bufferram += onenand_bufferram_offset(mtd, area);
767 
768 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769 		unsigned short word;
770 
771 		/* Align with word(16-bit) size */
772 		count--;
773 
774 		/* Read word and save byte */
775 		word = this->read_word(bufferram + offset + count);
776 		buffer[count] = (word & 0xff);
777 	}
778 
779 	memcpy(buffer, bufferram + offset, count);
780 
781 	return 0;
782 }
783 
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @param mtd		MTD data structure
787  * @param area		BufferRAM area
788  * @param buffer	the databuffer to put/get data
789  * @param offset	offset to read from or write to
790  * @param count		number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795 		unsigned char *buffer, int offset, size_t count)
796 {
797 	struct onenand_chip *this = mtd->priv;
798 	void __iomem *bufferram;
799 
800 	bufferram = this->base + area;
801 
802 	bufferram += onenand_bufferram_offset(mtd, area);
803 
804 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805 
806 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807 		unsigned short word;
808 
809 		/* Align with word(16-bit) size */
810 		count--;
811 
812 		/* Read word and save byte */
813 		word = this->read_word(bufferram + offset + count);
814 		buffer[count] = (word & 0xff);
815 	}
816 
817 	memcpy(buffer, bufferram + offset, count);
818 
819 	this->mmcontrol(mtd, 0);
820 
821 	return 0;
822 }
823 
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @param mtd		MTD data structure
827  * @param area		BufferRAM area
828  * @param buffer	the databuffer to put/get data
829  * @param offset	offset to read from or write to
830  * @param count		number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835 		const unsigned char *buffer, int offset, size_t count)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	void __iomem *bufferram;
839 
840 	bufferram = this->base + area;
841 
842 	bufferram += onenand_bufferram_offset(mtd, area);
843 
844 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845 		unsigned short word;
846 		int byte_offset;
847 
848 		/* Align with word(16-bit) size */
849 		count--;
850 
851 		/* Calculate byte access offset */
852 		byte_offset = offset + count;
853 
854 		/* Read word and save byte */
855 		word = this->read_word(bufferram + byte_offset);
856 		word = (word & ~0xff) | buffer[count];
857 		this->write_word(word, bufferram + byte_offset);
858 	}
859 
860 	memcpy(bufferram + offset, buffer, count);
861 
862 	return 0;
863 }
864 
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @param mtd		MTD data structure
868  * @param addr		address to check
869  * @return		blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875 	struct onenand_chip *this = mtd->priv;
876 	int blockpage, block, page;
877 
878 	/* Calculate the even block number */
879 	block = (int) (addr >> this->erase_shift) & ~1;
880 	/* Is it the odd plane? */
881 	if (addr & this->writesize)
882 		block++;
883 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884 	blockpage = (block << 7) | page;
885 
886 	return blockpage;
887 }
888 
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @param mtd		MTD data structure
892  * @param addr		address to check
893  * @return		1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899 	struct onenand_chip *this = mtd->priv;
900 	int blockpage, found = 0;
901 	unsigned int i;
902 
903 	if (ONENAND_IS_2PLANE(this))
904 		blockpage = onenand_get_2x_blockpage(mtd, addr);
905 	else
906 		blockpage = (int) (addr >> this->page_shift);
907 
908 	/* Is there valid data? */
909 	i = ONENAND_CURRENT_BUFFERRAM(this);
910 	if (this->bufferram[i].blockpage == blockpage)
911 		found = 1;
912 	else {
913 		/* Check another BufferRAM */
914 		i = ONENAND_NEXT_BUFFERRAM(this);
915 		if (this->bufferram[i].blockpage == blockpage) {
916 			ONENAND_SET_NEXT_BUFFERRAM(this);
917 			found = 1;
918 		}
919 	}
920 
921 	if (found && ONENAND_IS_DDP(this)) {
922 		/* Select DataRAM for DDP */
923 		int block = onenand_block(this, addr);
924 		int value = onenand_bufferram_address(this, block);
925 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926 	}
927 
928 	return found;
929 }
930 
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @param mtd		MTD data structure
934  * @param addr		address to update
935  * @param valid		valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940 		int valid)
941 {
942 	struct onenand_chip *this = mtd->priv;
943 	int blockpage;
944 	unsigned int i;
945 
946 	if (ONENAND_IS_2PLANE(this))
947 		blockpage = onenand_get_2x_blockpage(mtd, addr);
948 	else
949 		blockpage = (int) (addr >> this->page_shift);
950 
951 	/* Invalidate another BufferRAM */
952 	i = ONENAND_NEXT_BUFFERRAM(this);
953 	if (this->bufferram[i].blockpage == blockpage)
954 		this->bufferram[i].blockpage = -1;
955 
956 	/* Update BufferRAM */
957 	i = ONENAND_CURRENT_BUFFERRAM(this);
958 	if (valid)
959 		this->bufferram[i].blockpage = blockpage;
960 	else
961 		this->bufferram[i].blockpage = -1;
962 }
963 
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @param mtd		MTD data structure
967  * @param addr		start address to invalidate
968  * @param len		length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973 		unsigned int len)
974 {
975 	struct onenand_chip *this = mtd->priv;
976 	int i;
977 	loff_t end_addr = addr + len;
978 
979 	/* Invalidate BufferRAM */
980 	for (i = 0; i < MAX_BUFFERRAM; i++) {
981 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982 		if (buf_addr >= addr && buf_addr < end_addr)
983 			this->bufferram[i].blockpage = -1;
984 	}
985 }
986 
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @param mtd		MTD device structure
990  * @param new_state	the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996 	struct onenand_chip *this = mtd->priv;
997 	DECLARE_WAITQUEUE(wait, current);
998 
999 	/*
1000 	 * Grab the lock and see if the device is available
1001 	 */
1002 	while (1) {
1003 		spin_lock(&this->chip_lock);
1004 		if (this->state == FL_READY) {
1005 			this->state = new_state;
1006 			spin_unlock(&this->chip_lock);
1007 			if (new_state != FL_PM_SUSPENDED && this->enable)
1008 				this->enable(mtd);
1009 			break;
1010 		}
1011 		if (new_state == FL_PM_SUSPENDED) {
1012 			spin_unlock(&this->chip_lock);
1013 			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014 		}
1015 		set_current_state(TASK_UNINTERRUPTIBLE);
1016 		add_wait_queue(&this->wq, &wait);
1017 		spin_unlock(&this->chip_lock);
1018 		schedule();
1019 		remove_wait_queue(&this->wq, &wait);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @param mtd		MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033 	struct onenand_chip *this = mtd->priv;
1034 
1035 	if (this->state != FL_PM_SUSPENDED && this->disable)
1036 		this->disable(mtd);
1037 	/* Release the chip */
1038 	spin_lock(&this->chip_lock);
1039 	this->state = FL_READY;
1040 	wake_up(&this->wq);
1041 	spin_unlock(&this->chip_lock);
1042 }
1043 
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @param mtd		MTD device structure
1047  * @param buf		destination address
1048  * @param column	oob offset to read from
1049  * @param thislen	oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052 				int thislen)
1053 {
1054 	struct onenand_chip *this = mtd->priv;
1055 	int ret;
1056 
1057 	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1058 			     mtd->oobsize);
1059 	ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1060 					  column, thislen);
1061 	if (ret)
1062 		return ret;
1063 
1064 	return 0;
1065 }
1066 
1067 /**
1068  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1069  * @param mtd		MTD device structure
1070  * @param addr		address to recover
1071  * @param status	return value from onenand_wait / onenand_bbt_wait
1072  *
1073  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1074  * lower page address and MSB page has higher page address in paired pages.
1075  * If power off occurs during MSB page program, the paired LSB page data can
1076  * become corrupt. LSB page recovery read is a way to read LSB page though page
1077  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1078  * read after power up, issue LSB page recovery read.
1079  */
1080 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1081 {
1082 	struct onenand_chip *this = mtd->priv;
1083 	int i;
1084 
1085 	/* Recovery is only for Flex-OneNAND */
1086 	if (!FLEXONENAND(this))
1087 		return status;
1088 
1089 	/* check if we failed due to uncorrectable error */
1090 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1091 		return status;
1092 
1093 	/* check if address lies in MLC region */
1094 	i = flexonenand_region(mtd, addr);
1095 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1096 		return status;
1097 
1098 	/* We are attempting to reread, so decrement stats.failed
1099 	 * which was incremented by onenand_wait due to read failure
1100 	 */
1101 	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1102 		__func__);
1103 	mtd->ecc_stats.failed--;
1104 
1105 	/* Issue the LSB page recovery command */
1106 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1107 	return this->wait(mtd, FL_READING);
1108 }
1109 
1110 /**
1111  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1112  * @param mtd		MTD device structure
1113  * @param from		offset to read from
1114  * @param ops:		oob operation description structure
1115  *
1116  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1117  * So, read-while-load is not present.
1118  */
1119 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1120 				struct mtd_oob_ops *ops)
1121 {
1122 	struct onenand_chip *this = mtd->priv;
1123 	struct mtd_ecc_stats stats;
1124 	size_t len = ops->len;
1125 	size_t ooblen = ops->ooblen;
1126 	u_char *buf = ops->datbuf;
1127 	u_char *oobbuf = ops->oobbuf;
1128 	int read = 0, column, thislen;
1129 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1130 	int ret = 0;
1131 	int writesize = this->writesize;
1132 
1133 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1134 			(int)len);
1135 
1136 	oobsize = mtd_oobavail(mtd, ops);
1137 	oobcolumn = from & (mtd->oobsize - 1);
1138 
1139 	/* Do not allow reads past end of device */
1140 	if (from + len > mtd->size) {
1141 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1142 			__func__);
1143 		ops->retlen = 0;
1144 		ops->oobretlen = 0;
1145 		return -EINVAL;
1146 	}
1147 
1148 	stats = mtd->ecc_stats;
1149 
1150 	while (read < len) {
1151 		cond_resched();
1152 
1153 		thislen = min_t(int, writesize, len - read);
1154 
1155 		column = from & (writesize - 1);
1156 		if (column + thislen > writesize)
1157 			thislen = writesize - column;
1158 
1159 		if (!onenand_check_bufferram(mtd, from)) {
1160 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1161 
1162 			ret = this->wait(mtd, FL_READING);
1163 			if (unlikely(ret))
1164 				ret = onenand_recover_lsb(mtd, from, ret);
1165 			onenand_update_bufferram(mtd, from, !ret);
1166 			if (mtd_is_eccerr(ret))
1167 				ret = 0;
1168 			if (ret)
1169 				break;
1170 		}
1171 
1172 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1173 		if (oobbuf) {
1174 			thisooblen = oobsize - oobcolumn;
1175 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1176 
1177 			if (ops->mode == MTD_OPS_AUTO_OOB)
1178 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1179 			else
1180 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1181 			oobread += thisooblen;
1182 			oobbuf += thisooblen;
1183 			oobcolumn = 0;
1184 		}
1185 
1186 		read += thislen;
1187 		if (read == len)
1188 			break;
1189 
1190 		from += thislen;
1191 		buf += thislen;
1192 	}
1193 
1194 	/*
1195 	 * Return success, if no ECC failures, else -EBADMSG
1196 	 * fs driver will take care of that, because
1197 	 * retlen == desired len and result == -EBADMSG
1198 	 */
1199 	ops->retlen = read;
1200 	ops->oobretlen = oobread;
1201 
1202 	if (ret)
1203 		return ret;
1204 
1205 	if (mtd->ecc_stats.failed - stats.failed)
1206 		return -EBADMSG;
1207 
1208 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1209 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1210 }
1211 
1212 /**
1213  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1214  * @param mtd		MTD device structure
1215  * @param from		offset to read from
1216  * @param ops:		oob operation description structure
1217  *
1218  * OneNAND read main and/or out-of-band data
1219  */
1220 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1221 				struct mtd_oob_ops *ops)
1222 {
1223 	struct onenand_chip *this = mtd->priv;
1224 	struct mtd_ecc_stats stats;
1225 	size_t len = ops->len;
1226 	size_t ooblen = ops->ooblen;
1227 	u_char *buf = ops->datbuf;
1228 	u_char *oobbuf = ops->oobbuf;
1229 	int read = 0, column, thislen;
1230 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1231 	int ret = 0, boundary = 0;
1232 	int writesize = this->writesize;
1233 
1234 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1235 			(int)len);
1236 
1237 	oobsize = mtd_oobavail(mtd, ops);
1238 	oobcolumn = from & (mtd->oobsize - 1);
1239 
1240 	/* Do not allow reads past end of device */
1241 	if ((from + len) > mtd->size) {
1242 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1243 			__func__);
1244 		ops->retlen = 0;
1245 		ops->oobretlen = 0;
1246 		return -EINVAL;
1247 	}
1248 
1249 	stats = mtd->ecc_stats;
1250 
1251  	/* Read-while-load method */
1252 
1253  	/* Do first load to bufferRAM */
1254  	if (read < len) {
1255  		if (!onenand_check_bufferram(mtd, from)) {
1256 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1257  			ret = this->wait(mtd, FL_READING);
1258  			onenand_update_bufferram(mtd, from, !ret);
1259 			if (mtd_is_eccerr(ret))
1260 				ret = 0;
1261  		}
1262  	}
1263 
1264 	thislen = min_t(int, writesize, len - read);
1265 	column = from & (writesize - 1);
1266 	if (column + thislen > writesize)
1267 		thislen = writesize - column;
1268 
1269  	while (!ret) {
1270  		/* If there is more to load then start next load */
1271  		from += thislen;
1272  		if (read + thislen < len) {
1273 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1274  			/*
1275  			 * Chip boundary handling in DDP
1276  			 * Now we issued chip 1 read and pointed chip 1
1277 			 * bufferram so we have to point chip 0 bufferram.
1278  			 */
1279  			if (ONENAND_IS_DDP(this) &&
1280  			    unlikely(from == (this->chipsize >> 1))) {
1281  				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1282  				boundary = 1;
1283  			} else
1284  				boundary = 0;
1285  			ONENAND_SET_PREV_BUFFERRAM(this);
1286  		}
1287  		/* While load is going, read from last bufferRAM */
1288  		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1289 
1290 		/* Read oob area if needed */
1291 		if (oobbuf) {
1292 			thisooblen = oobsize - oobcolumn;
1293 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1294 
1295 			if (ops->mode == MTD_OPS_AUTO_OOB)
1296 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1297 			else
1298 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1299 			oobread += thisooblen;
1300 			oobbuf += thisooblen;
1301 			oobcolumn = 0;
1302 		}
1303 
1304  		/* See if we are done */
1305  		read += thislen;
1306  		if (read == len)
1307  			break;
1308  		/* Set up for next read from bufferRAM */
1309  		if (unlikely(boundary))
1310  			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1311  		ONENAND_SET_NEXT_BUFFERRAM(this);
1312  		buf += thislen;
1313 		thislen = min_t(int, writesize, len - read);
1314  		column = 0;
1315  		cond_resched();
1316  		/* Now wait for load */
1317  		ret = this->wait(mtd, FL_READING);
1318  		onenand_update_bufferram(mtd, from, !ret);
1319 		if (mtd_is_eccerr(ret))
1320 			ret = 0;
1321  	}
1322 
1323 	/*
1324 	 * Return success, if no ECC failures, else -EBADMSG
1325 	 * fs driver will take care of that, because
1326 	 * retlen == desired len and result == -EBADMSG
1327 	 */
1328 	ops->retlen = read;
1329 	ops->oobretlen = oobread;
1330 
1331 	if (ret)
1332 		return ret;
1333 
1334 	if (mtd->ecc_stats.failed - stats.failed)
1335 		return -EBADMSG;
1336 
1337 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1338 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1339 }
1340 
1341 /**
1342  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1343  * @param mtd		MTD device structure
1344  * @param from		offset to read from
1345  * @param ops:		oob operation description structure
1346  *
1347  * OneNAND read out-of-band data from the spare area
1348  */
1349 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1350 			struct mtd_oob_ops *ops)
1351 {
1352 	struct onenand_chip *this = mtd->priv;
1353 	struct mtd_ecc_stats stats;
1354 	int read = 0, thislen, column, oobsize;
1355 	size_t len = ops->ooblen;
1356 	unsigned int mode = ops->mode;
1357 	u_char *buf = ops->oobbuf;
1358 	int ret = 0, readcmd;
1359 
1360 	from += ops->ooboffs;
1361 
1362 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1363 			(int)len);
1364 
1365 	/* Initialize return length value */
1366 	ops->oobretlen = 0;
1367 
1368 	if (mode == MTD_OPS_AUTO_OOB)
1369 		oobsize = mtd->oobavail;
1370 	else
1371 		oobsize = mtd->oobsize;
1372 
1373 	column = from & (mtd->oobsize - 1);
1374 
1375 	if (unlikely(column >= oobsize)) {
1376 		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1377 			__func__);
1378 		return -EINVAL;
1379 	}
1380 
1381 	stats = mtd->ecc_stats;
1382 
1383 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1384 
1385 	while (read < len) {
1386 		cond_resched();
1387 
1388 		thislen = oobsize - column;
1389 		thislen = min_t(int, thislen, len);
1390 
1391 		this->command(mtd, readcmd, from, mtd->oobsize);
1392 
1393 		onenand_update_bufferram(mtd, from, 0);
1394 
1395 		ret = this->wait(mtd, FL_READING);
1396 		if (unlikely(ret))
1397 			ret = onenand_recover_lsb(mtd, from, ret);
1398 
1399 		if (ret && !mtd_is_eccerr(ret)) {
1400 			printk(KERN_ERR "%s: read failed = 0x%x\n",
1401 				__func__, ret);
1402 			break;
1403 		}
1404 
1405 		if (mode == MTD_OPS_AUTO_OOB)
1406 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1407 		else
1408 			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1409 
1410 		read += thislen;
1411 
1412 		if (read == len)
1413 			break;
1414 
1415 		buf += thislen;
1416 
1417 		/* Read more? */
1418 		if (read < len) {
1419 			/* Page size */
1420 			from += mtd->writesize;
1421 			column = 0;
1422 		}
1423 	}
1424 
1425 	ops->oobretlen = read;
1426 
1427 	if (ret)
1428 		return ret;
1429 
1430 	if (mtd->ecc_stats.failed - stats.failed)
1431 		return -EBADMSG;
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1438  * @param mtd:		MTD device structure
1439  * @param from:		offset to read from
1440  * @param ops:		oob operation description structure
1441 
1442  * Read main and/or out-of-band
1443  */
1444 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1445 			    struct mtd_oob_ops *ops)
1446 {
1447 	struct onenand_chip *this = mtd->priv;
1448 	int ret;
1449 
1450 	switch (ops->mode) {
1451 	case MTD_OPS_PLACE_OOB:
1452 	case MTD_OPS_AUTO_OOB:
1453 		break;
1454 	case MTD_OPS_RAW:
1455 		/* Not implemented yet */
1456 	default:
1457 		return -EINVAL;
1458 	}
1459 
1460 	onenand_get_device(mtd, FL_READING);
1461 	if (ops->datbuf)
1462 		ret = ONENAND_IS_4KB_PAGE(this) ?
1463 			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1464 			onenand_read_ops_nolock(mtd, from, ops);
1465 	else
1466 		ret = onenand_read_oob_nolock(mtd, from, ops);
1467 	onenand_release_device(mtd);
1468 
1469 	return ret;
1470 }
1471 
1472 /**
1473  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1474  * @param mtd		MTD device structure
1475  * @param state		state to select the max. timeout value
1476  *
1477  * Wait for command done.
1478  */
1479 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1480 {
1481 	struct onenand_chip *this = mtd->priv;
1482 	unsigned long timeout;
1483 	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1484 
1485 	/* The 20 msec is enough */
1486 	timeout = jiffies + msecs_to_jiffies(20);
1487 	while (time_before(jiffies, timeout)) {
1488 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489 		if (interrupt & ONENAND_INT_MASTER)
1490 			break;
1491 	}
1492 	/* To get correct interrupt status in timeout case */
1493 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1494 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1495 	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1496 	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1497 
1498 	if (interrupt & ONENAND_INT_READ) {
1499 		ecc = onenand_read_ecc(this);
1500 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1501 			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1502 			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1503 			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1504 			return ONENAND_BBT_READ_ECC_ERROR;
1505 		}
1506 	} else {
1507 		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1508 		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1509 		       __func__, ctrl, interrupt, addr1, addr8);
1510 		return ONENAND_BBT_READ_FATAL_ERROR;
1511 	}
1512 
1513 	/* Initial bad block case: 0x2400 or 0x0400 */
1514 	if (ctrl & ONENAND_CTRL_ERROR) {
1515 		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1516 		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1517 		return ONENAND_BBT_READ_ERROR;
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 /**
1524  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1525  * @param mtd		MTD device structure
1526  * @param from		offset to read from
1527  * @param ops		oob operation description structure
1528  *
1529  * OneNAND read out-of-band data from the spare area for bbt scan
1530  */
1531 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1532 			    struct mtd_oob_ops *ops)
1533 {
1534 	struct onenand_chip *this = mtd->priv;
1535 	int read = 0, thislen, column;
1536 	int ret = 0, readcmd;
1537 	size_t len = ops->ooblen;
1538 	u_char *buf = ops->oobbuf;
1539 
1540 	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1541 			len);
1542 
1543 	/* Initialize return value */
1544 	ops->oobretlen = 0;
1545 
1546 	/* Do not allow reads past end of device */
1547 	if (unlikely((from + len) > mtd->size)) {
1548 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1549 			__func__);
1550 		return ONENAND_BBT_READ_FATAL_ERROR;
1551 	}
1552 
1553 	/* Grab the lock and see if the device is available */
1554 	onenand_get_device(mtd, FL_READING);
1555 
1556 	column = from & (mtd->oobsize - 1);
1557 
1558 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1559 
1560 	while (read < len) {
1561 		cond_resched();
1562 
1563 		thislen = mtd->oobsize - column;
1564 		thislen = min_t(int, thislen, len);
1565 
1566 		this->command(mtd, readcmd, from, mtd->oobsize);
1567 
1568 		onenand_update_bufferram(mtd, from, 0);
1569 
1570 		ret = this->bbt_wait(mtd, FL_READING);
1571 		if (unlikely(ret))
1572 			ret = onenand_recover_lsb(mtd, from, ret);
1573 
1574 		if (ret)
1575 			break;
1576 
1577 		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1578 		read += thislen;
1579 		if (read == len)
1580 			break;
1581 
1582 		buf += thislen;
1583 
1584 		/* Read more? */
1585 		if (read < len) {
1586 			/* Update Page size */
1587 			from += this->writesize;
1588 			column = 0;
1589 		}
1590 	}
1591 
1592 	/* Deselect and wake up anyone waiting on the device */
1593 	onenand_release_device(mtd);
1594 
1595 	ops->oobretlen = read;
1596 	return ret;
1597 }
1598 
1599 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1600 /**
1601  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1602  * @param mtd		MTD device structure
1603  * @param buf		the databuffer to verify
1604  * @param to		offset to read from
1605  */
1606 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1607 {
1608 	struct onenand_chip *this = mtd->priv;
1609 	u_char *oob_buf = this->oob_buf;
1610 	int status, i, readcmd;
1611 
1612 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1613 
1614 	this->command(mtd, readcmd, to, mtd->oobsize);
1615 	onenand_update_bufferram(mtd, to, 0);
1616 	status = this->wait(mtd, FL_READING);
1617 	if (status)
1618 		return status;
1619 
1620 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1621 	for (i = 0; i < mtd->oobsize; i++)
1622 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1623 			return -EBADMSG;
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * onenand_verify - [GENERIC] verify the chip contents after a write
1630  * @param mtd          MTD device structure
1631  * @param buf          the databuffer to verify
1632  * @param addr         offset to read from
1633  * @param len          number of bytes to read and compare
1634  */
1635 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1636 {
1637 	struct onenand_chip *this = mtd->priv;
1638 	int ret = 0;
1639 	int thislen, column;
1640 
1641 	column = addr & (this->writesize - 1);
1642 
1643 	while (len != 0) {
1644 		thislen = min_t(int, this->writesize - column, len);
1645 
1646 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1647 
1648 		onenand_update_bufferram(mtd, addr, 0);
1649 
1650 		ret = this->wait(mtd, FL_READING);
1651 		if (ret)
1652 			return ret;
1653 
1654 		onenand_update_bufferram(mtd, addr, 1);
1655 
1656 		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1657 
1658 		if (memcmp(buf, this->verify_buf + column, thislen))
1659 			return -EBADMSG;
1660 
1661 		len -= thislen;
1662 		buf += thislen;
1663 		addr += thislen;
1664 		column = 0;
1665 	}
1666 
1667 	return 0;
1668 }
1669 #else
1670 #define onenand_verify(...)		(0)
1671 #define onenand_verify_oob(...)		(0)
1672 #endif
1673 
1674 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1675 
1676 static void onenand_panic_wait(struct mtd_info *mtd)
1677 {
1678 	struct onenand_chip *this = mtd->priv;
1679 	unsigned int interrupt;
1680 	int i;
1681 
1682 	for (i = 0; i < 2000; i++) {
1683 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1684 		if (interrupt & ONENAND_INT_MASTER)
1685 			break;
1686 		udelay(10);
1687 	}
1688 }
1689 
1690 /**
1691  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692  * @param mtd		MTD device structure
1693  * @param to		offset to write to
1694  * @param len		number of bytes to write
1695  * @param retlen	pointer to variable to store the number of written bytes
1696  * @param buf		the data to write
1697  *
1698  * Write with ECC
1699  */
1700 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1701 			 size_t *retlen, const u_char *buf)
1702 {
1703 	struct onenand_chip *this = mtd->priv;
1704 	int column, subpage;
1705 	int written = 0;
1706 
1707 	if (this->state == FL_PM_SUSPENDED)
1708 		return -EBUSY;
1709 
1710 	/* Wait for any existing operation to clear */
1711 	onenand_panic_wait(mtd);
1712 
1713 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1714 			(int)len);
1715 
1716 	/* Reject writes, which are not page aligned */
1717         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1718 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1719 			__func__);
1720                 return -EINVAL;
1721         }
1722 
1723 	column = to & (mtd->writesize - 1);
1724 
1725 	/* Loop until all data write */
1726 	while (written < len) {
1727 		int thislen = min_t(int, mtd->writesize - column, len - written);
1728 		u_char *wbuf = (u_char *) buf;
1729 
1730 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1731 
1732 		/* Partial page write */
1733 		subpage = thislen < mtd->writesize;
1734 		if (subpage) {
1735 			memset(this->page_buf, 0xff, mtd->writesize);
1736 			memcpy(this->page_buf + column, buf, thislen);
1737 			wbuf = this->page_buf;
1738 		}
1739 
1740 		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1741 		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1742 
1743 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1744 
1745 		onenand_panic_wait(mtd);
1746 
1747 		/* In partial page write we don't update bufferram */
1748 		onenand_update_bufferram(mtd, to, !subpage);
1749 		if (ONENAND_IS_2PLANE(this)) {
1750 			ONENAND_SET_BUFFERRAM1(this);
1751 			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1752 		}
1753 
1754 		written += thislen;
1755 
1756 		if (written == len)
1757 			break;
1758 
1759 		column = 0;
1760 		to += thislen;
1761 		buf += thislen;
1762 	}
1763 
1764 	*retlen = written;
1765 	return 0;
1766 }
1767 
1768 /**
1769  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1770  * @param mtd		MTD device structure
1771  * @param oob_buf	oob buffer
1772  * @param buf		source address
1773  * @param column	oob offset to write to
1774  * @param thislen	oob length to write
1775  */
1776 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1777 				  const u_char *buf, int column, int thislen)
1778 {
1779 	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1780 }
1781 
1782 /**
1783  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1784  * @param mtd		MTD device structure
1785  * @param to		offset to write to
1786  * @param ops		oob operation description structure
1787  *
1788  * Write main and/or oob with ECC
1789  */
1790 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1791 				struct mtd_oob_ops *ops)
1792 {
1793 	struct onenand_chip *this = mtd->priv;
1794 	int written = 0, column, thislen = 0, subpage = 0;
1795 	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1796 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1797 	size_t len = ops->len;
1798 	size_t ooblen = ops->ooblen;
1799 	const u_char *buf = ops->datbuf;
1800 	const u_char *oob = ops->oobbuf;
1801 	u_char *oobbuf;
1802 	int ret = 0, cmd;
1803 
1804 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1805 			(int)len);
1806 
1807 	/* Initialize retlen, in case of early exit */
1808 	ops->retlen = 0;
1809 	ops->oobretlen = 0;
1810 
1811 	/* Reject writes, which are not page aligned */
1812         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1813 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1814 			__func__);
1815                 return -EINVAL;
1816         }
1817 
1818 	/* Check zero length */
1819 	if (!len)
1820 		return 0;
1821 	oobsize = mtd_oobavail(mtd, ops);
1822 	oobcolumn = to & (mtd->oobsize - 1);
1823 
1824 	column = to & (mtd->writesize - 1);
1825 
1826 	/* Loop until all data write */
1827 	while (1) {
1828 		if (written < len) {
1829 			u_char *wbuf = (u_char *) buf;
1830 
1831 			thislen = min_t(int, mtd->writesize - column, len - written);
1832 			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1833 
1834 			cond_resched();
1835 
1836 			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1837 
1838 			/* Partial page write */
1839 			subpage = thislen < mtd->writesize;
1840 			if (subpage) {
1841 				memset(this->page_buf, 0xff, mtd->writesize);
1842 				memcpy(this->page_buf + column, buf, thislen);
1843 				wbuf = this->page_buf;
1844 			}
1845 
1846 			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1847 
1848 			if (oob) {
1849 				oobbuf = this->oob_buf;
1850 
1851 				/* We send data to spare ram with oobsize
1852 				 * to prevent byte access */
1853 				memset(oobbuf, 0xff, mtd->oobsize);
1854 				if (ops->mode == MTD_OPS_AUTO_OOB)
1855 					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1856 				else
1857 					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1858 
1859 				oobwritten += thisooblen;
1860 				oob += thisooblen;
1861 				oobcolumn = 0;
1862 			} else
1863 				oobbuf = (u_char *) ffchars;
1864 
1865 			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1866 		} else
1867 			ONENAND_SET_NEXT_BUFFERRAM(this);
1868 
1869 		/*
1870 		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1871 		 * write-while-program feature.
1872 		 */
1873 		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1874 			ONENAND_SET_PREV_BUFFERRAM(this);
1875 
1876 			ret = this->wait(mtd, FL_WRITING);
1877 
1878 			/* In partial page write we don't update bufferram */
1879 			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1880 			if (ret) {
1881 				written -= prevlen;
1882 				printk(KERN_ERR "%s: write failed %d\n",
1883 					__func__, ret);
1884 				break;
1885 			}
1886 
1887 			if (written == len) {
1888 				/* Only check verify write turn on */
1889 				ret = onenand_verify(mtd, buf - len, to - len, len);
1890 				if (ret)
1891 					printk(KERN_ERR "%s: verify failed %d\n",
1892 						__func__, ret);
1893 				break;
1894 			}
1895 
1896 			ONENAND_SET_NEXT_BUFFERRAM(this);
1897 		}
1898 
1899 		this->ongoing = 0;
1900 		cmd = ONENAND_CMD_PROG;
1901 
1902 		/* Exclude 1st OTP and OTP blocks for cache program feature */
1903 		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1904 		    likely(onenand_block(this, to) != 0) &&
1905 		    ONENAND_IS_4KB_PAGE(this) &&
1906 		    ((written + thislen) < len)) {
1907 			cmd = ONENAND_CMD_2X_CACHE_PROG;
1908 			this->ongoing = 1;
1909 		}
1910 
1911 		this->command(mtd, cmd, to, mtd->writesize);
1912 
1913 		/*
1914 		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1915 		 */
1916 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1917 			ret = this->wait(mtd, FL_WRITING);
1918 
1919 			/* In partial page write we don't update bufferram */
1920 			onenand_update_bufferram(mtd, to, !ret && !subpage);
1921 			if (ret) {
1922 				printk(KERN_ERR "%s: write failed %d\n",
1923 					__func__, ret);
1924 				break;
1925 			}
1926 
1927 			/* Only check verify write turn on */
1928 			ret = onenand_verify(mtd, buf, to, thislen);
1929 			if (ret) {
1930 				printk(KERN_ERR "%s: verify failed %d\n",
1931 					__func__, ret);
1932 				break;
1933 			}
1934 
1935 			written += thislen;
1936 
1937 			if (written == len)
1938 				break;
1939 
1940 		} else
1941 			written += thislen;
1942 
1943 		column = 0;
1944 		prev_subpage = subpage;
1945 		prev = to;
1946 		prevlen = thislen;
1947 		to += thislen;
1948 		buf += thislen;
1949 		first = 0;
1950 	}
1951 
1952 	/* In error case, clear all bufferrams */
1953 	if (written != len)
1954 		onenand_invalidate_bufferram(mtd, 0, -1);
1955 
1956 	ops->retlen = written;
1957 	ops->oobretlen = oobwritten;
1958 
1959 	return ret;
1960 }
1961 
1962 
1963 /**
1964  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1965  * @param mtd		MTD device structure
1966  * @param to		offset to write to
1967  * @param len		number of bytes to write
1968  * @param retlen	pointer to variable to store the number of written bytes
1969  * @param buf		the data to write
1970  * @param mode		operation mode
1971  *
1972  * OneNAND write out-of-band
1973  */
1974 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1975 				    struct mtd_oob_ops *ops)
1976 {
1977 	struct onenand_chip *this = mtd->priv;
1978 	int column, ret = 0, oobsize;
1979 	int written = 0, oobcmd;
1980 	u_char *oobbuf;
1981 	size_t len = ops->ooblen;
1982 	const u_char *buf = ops->oobbuf;
1983 	unsigned int mode = ops->mode;
1984 
1985 	to += ops->ooboffs;
1986 
1987 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1988 			(int)len);
1989 
1990 	/* Initialize retlen, in case of early exit */
1991 	ops->oobretlen = 0;
1992 
1993 	if (mode == MTD_OPS_AUTO_OOB)
1994 		oobsize = mtd->oobavail;
1995 	else
1996 		oobsize = mtd->oobsize;
1997 
1998 	column = to & (mtd->oobsize - 1);
1999 
2000 	if (unlikely(column >= oobsize)) {
2001 		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2002 			__func__);
2003 		return -EINVAL;
2004 	}
2005 
2006 	/* For compatibility with NAND: Do not allow write past end of page */
2007 	if (unlikely(column + len > oobsize)) {
2008 		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2009 			__func__);
2010 		return -EINVAL;
2011 	}
2012 
2013 	oobbuf = this->oob_buf;
2014 
2015 	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2016 
2017 	/* Loop until all data write */
2018 	while (written < len) {
2019 		int thislen = min_t(int, oobsize, len - written);
2020 
2021 		cond_resched();
2022 
2023 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2024 
2025 		/* We send data to spare ram with oobsize
2026 		 * to prevent byte access */
2027 		memset(oobbuf, 0xff, mtd->oobsize);
2028 		if (mode == MTD_OPS_AUTO_OOB)
2029 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2030 		else
2031 			memcpy(oobbuf + column, buf, thislen);
2032 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2033 
2034 		if (ONENAND_IS_4KB_PAGE(this)) {
2035 			/* Set main area of DataRAM to 0xff*/
2036 			memset(this->page_buf, 0xff, mtd->writesize);
2037 			this->write_bufferram(mtd, ONENAND_DATARAM,
2038 					 this->page_buf, 0, mtd->writesize);
2039 		}
2040 
2041 		this->command(mtd, oobcmd, to, mtd->oobsize);
2042 
2043 		onenand_update_bufferram(mtd, to, 0);
2044 		if (ONENAND_IS_2PLANE(this)) {
2045 			ONENAND_SET_BUFFERRAM1(this);
2046 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2047 		}
2048 
2049 		ret = this->wait(mtd, FL_WRITING);
2050 		if (ret) {
2051 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2052 			break;
2053 		}
2054 
2055 		ret = onenand_verify_oob(mtd, oobbuf, to);
2056 		if (ret) {
2057 			printk(KERN_ERR "%s: verify failed %d\n",
2058 				__func__, ret);
2059 			break;
2060 		}
2061 
2062 		written += thislen;
2063 		if (written == len)
2064 			break;
2065 
2066 		to += mtd->writesize;
2067 		buf += thislen;
2068 		column = 0;
2069 	}
2070 
2071 	ops->oobretlen = written;
2072 
2073 	return ret;
2074 }
2075 
2076 /**
2077  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2078  * @param mtd:		MTD device structure
2079  * @param to:		offset to write
2080  * @param ops:		oob operation description structure
2081  */
2082 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2083 			     struct mtd_oob_ops *ops)
2084 {
2085 	int ret;
2086 
2087 	switch (ops->mode) {
2088 	case MTD_OPS_PLACE_OOB:
2089 	case MTD_OPS_AUTO_OOB:
2090 		break;
2091 	case MTD_OPS_RAW:
2092 		/* Not implemented yet */
2093 	default:
2094 		return -EINVAL;
2095 	}
2096 
2097 	onenand_get_device(mtd, FL_WRITING);
2098 	if (ops->datbuf)
2099 		ret = onenand_write_ops_nolock(mtd, to, ops);
2100 	else
2101 		ret = onenand_write_oob_nolock(mtd, to, ops);
2102 	onenand_release_device(mtd);
2103 
2104 	return ret;
2105 }
2106 
2107 /**
2108  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2109  * @param mtd		MTD device structure
2110  * @param ofs		offset from device start
2111  * @param allowbbt	1, if its allowed to access the bbt area
2112  *
2113  * Check, if the block is bad. Either by reading the bad block table or
2114  * calling of the scan function.
2115  */
2116 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2117 {
2118 	struct onenand_chip *this = mtd->priv;
2119 	struct bbm_info *bbm = this->bbm;
2120 
2121 	/* Return info from the table */
2122 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2123 }
2124 
2125 
2126 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2127 					   struct erase_info *instr)
2128 {
2129 	struct onenand_chip *this = mtd->priv;
2130 	loff_t addr = instr->addr;
2131 	int len = instr->len;
2132 	unsigned int block_size = (1 << this->erase_shift);
2133 	int ret = 0;
2134 
2135 	while (len) {
2136 		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2137 		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2138 		if (ret) {
2139 			printk(KERN_ERR "%s: Failed verify, block %d\n",
2140 			       __func__, onenand_block(this, addr));
2141 			instr->fail_addr = addr;
2142 			return -1;
2143 		}
2144 		len -= block_size;
2145 		addr += block_size;
2146 	}
2147 	return 0;
2148 }
2149 
2150 /**
2151  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2152  * @param mtd		MTD device structure
2153  * @param instr		erase instruction
2154  * @param region	erase region
2155  *
2156  * Erase one or more blocks up to 64 block at a time
2157  */
2158 static int onenand_multiblock_erase(struct mtd_info *mtd,
2159 				    struct erase_info *instr,
2160 				    unsigned int block_size)
2161 {
2162 	struct onenand_chip *this = mtd->priv;
2163 	loff_t addr = instr->addr;
2164 	int len = instr->len;
2165 	int eb_count = 0;
2166 	int ret = 0;
2167 	int bdry_block = 0;
2168 
2169 	if (ONENAND_IS_DDP(this)) {
2170 		loff_t bdry_addr = this->chipsize >> 1;
2171 		if (addr < bdry_addr && (addr + len) > bdry_addr)
2172 			bdry_block = bdry_addr >> this->erase_shift;
2173 	}
2174 
2175 	/* Pre-check bbs */
2176 	while (len) {
2177 		/* Check if we have a bad block, we do not erase bad blocks */
2178 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2179 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2180 			       "at addr 0x%012llx\n",
2181 			       __func__, (unsigned long long) addr);
2182 			return -EIO;
2183 		}
2184 		len -= block_size;
2185 		addr += block_size;
2186 	}
2187 
2188 	len = instr->len;
2189 	addr = instr->addr;
2190 
2191 	/* loop over 64 eb batches */
2192 	while (len) {
2193 		struct erase_info verify_instr = *instr;
2194 		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2195 
2196 		verify_instr.addr = addr;
2197 		verify_instr.len = 0;
2198 
2199 		/* do not cross chip boundary */
2200 		if (bdry_block) {
2201 			int this_block = (addr >> this->erase_shift);
2202 
2203 			if (this_block < bdry_block) {
2204 				max_eb_count = min(max_eb_count,
2205 						   (bdry_block - this_block));
2206 			}
2207 		}
2208 
2209 		eb_count = 0;
2210 
2211 		while (len > block_size && eb_count < (max_eb_count - 1)) {
2212 			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2213 				      addr, block_size);
2214 			onenand_invalidate_bufferram(mtd, addr, block_size);
2215 
2216 			ret = this->wait(mtd, FL_PREPARING_ERASE);
2217 			if (ret) {
2218 				printk(KERN_ERR "%s: Failed multiblock erase, "
2219 				       "block %d\n", __func__,
2220 				       onenand_block(this, addr));
2221 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2222 				return -EIO;
2223 			}
2224 
2225 			len -= block_size;
2226 			addr += block_size;
2227 			eb_count++;
2228 		}
2229 
2230 		/* last block of 64-eb series */
2231 		cond_resched();
2232 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2233 		onenand_invalidate_bufferram(mtd, addr, block_size);
2234 
2235 		ret = this->wait(mtd, FL_ERASING);
2236 		/* Check if it is write protected */
2237 		if (ret) {
2238 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2239 			       __func__, onenand_block(this, addr));
2240 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2241 			return -EIO;
2242 		}
2243 
2244 		len -= block_size;
2245 		addr += block_size;
2246 		eb_count++;
2247 
2248 		/* verify */
2249 		verify_instr.len = eb_count * block_size;
2250 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2251 			instr->fail_addr = verify_instr.fail_addr;
2252 			return -EIO;
2253 		}
2254 
2255 	}
2256 	return 0;
2257 }
2258 
2259 
2260 /**
2261  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2262  * @param mtd		MTD device structure
2263  * @param instr		erase instruction
2264  * @param region	erase region
2265  * @param block_size	erase block size
2266  *
2267  * Erase one or more blocks one block at a time
2268  */
2269 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2270 					struct erase_info *instr,
2271 					struct mtd_erase_region_info *region,
2272 					unsigned int block_size)
2273 {
2274 	struct onenand_chip *this = mtd->priv;
2275 	loff_t addr = instr->addr;
2276 	int len = instr->len;
2277 	loff_t region_end = 0;
2278 	int ret = 0;
2279 
2280 	if (region) {
2281 		/* region is set for Flex-OneNAND */
2282 		region_end = region->offset + region->erasesize * region->numblocks;
2283 	}
2284 
2285 	/* Loop through the blocks */
2286 	while (len) {
2287 		cond_resched();
2288 
2289 		/* Check if we have a bad block, we do not erase bad blocks */
2290 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2291 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2292 					"at addr 0x%012llx\n",
2293 					__func__, (unsigned long long) addr);
2294 			return -EIO;
2295 		}
2296 
2297 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2298 
2299 		onenand_invalidate_bufferram(mtd, addr, block_size);
2300 
2301 		ret = this->wait(mtd, FL_ERASING);
2302 		/* Check, if it is write protected */
2303 		if (ret) {
2304 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2305 				__func__, onenand_block(this, addr));
2306 			instr->fail_addr = addr;
2307 			return -EIO;
2308 		}
2309 
2310 		len -= block_size;
2311 		addr += block_size;
2312 
2313 		if (region && addr == region_end) {
2314 			if (!len)
2315 				break;
2316 			region++;
2317 
2318 			block_size = region->erasesize;
2319 			region_end = region->offset + region->erasesize * region->numblocks;
2320 
2321 			if (len & (block_size - 1)) {
2322 				/* FIXME: This should be handled at MTD partitioning level. */
2323 				printk(KERN_ERR "%s: Unaligned address\n",
2324 					__func__);
2325 				return -EIO;
2326 			}
2327 		}
2328 	}
2329 	return 0;
2330 }
2331 
2332 /**
2333  * onenand_erase - [MTD Interface] erase block(s)
2334  * @param mtd		MTD device structure
2335  * @param instr		erase instruction
2336  *
2337  * Erase one or more blocks
2338  */
2339 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2340 {
2341 	struct onenand_chip *this = mtd->priv;
2342 	unsigned int block_size;
2343 	loff_t addr = instr->addr;
2344 	loff_t len = instr->len;
2345 	int ret = 0;
2346 	struct mtd_erase_region_info *region = NULL;
2347 	loff_t region_offset = 0;
2348 
2349 	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2350 			(unsigned long long)instr->addr,
2351 			(unsigned long long)instr->len);
2352 
2353 	if (FLEXONENAND(this)) {
2354 		/* Find the eraseregion of this address */
2355 		int i = flexonenand_region(mtd, addr);
2356 
2357 		region = &mtd->eraseregions[i];
2358 		block_size = region->erasesize;
2359 
2360 		/* Start address within region must align on block boundary.
2361 		 * Erase region's start offset is always block start address.
2362 		 */
2363 		region_offset = region->offset;
2364 	} else
2365 		block_size = 1 << this->erase_shift;
2366 
2367 	/* Start address must align on block boundary */
2368 	if (unlikely((addr - region_offset) & (block_size - 1))) {
2369 		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2370 		return -EINVAL;
2371 	}
2372 
2373 	/* Length must align on block boundary */
2374 	if (unlikely(len & (block_size - 1))) {
2375 		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2376 		return -EINVAL;
2377 	}
2378 
2379 	/* Grab the lock and see if the device is available */
2380 	onenand_get_device(mtd, FL_ERASING);
2381 
2382 	if (ONENAND_IS_4KB_PAGE(this) || region ||
2383 	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2384 		/* region is set for Flex-OneNAND (no mb erase) */
2385 		ret = onenand_block_by_block_erase(mtd, instr,
2386 						   region, block_size);
2387 	} else {
2388 		ret = onenand_multiblock_erase(mtd, instr, block_size);
2389 	}
2390 
2391 	/* Deselect and wake up anyone waiting on the device */
2392 	onenand_release_device(mtd);
2393 
2394 	return ret;
2395 }
2396 
2397 /**
2398  * onenand_sync - [MTD Interface] sync
2399  * @param mtd		MTD device structure
2400  *
2401  * Sync is actually a wait for chip ready function
2402  */
2403 static void onenand_sync(struct mtd_info *mtd)
2404 {
2405 	pr_debug("%s: called\n", __func__);
2406 
2407 	/* Grab the lock and see if the device is available */
2408 	onenand_get_device(mtd, FL_SYNCING);
2409 
2410 	/* Release it and go back */
2411 	onenand_release_device(mtd);
2412 }
2413 
2414 /**
2415  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2416  * @param mtd		MTD device structure
2417  * @param ofs		offset relative to mtd start
2418  *
2419  * Check whether the block is bad
2420  */
2421 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2422 {
2423 	int ret;
2424 
2425 	onenand_get_device(mtd, FL_READING);
2426 	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2427 	onenand_release_device(mtd);
2428 	return ret;
2429 }
2430 
2431 /**
2432  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2433  * @param mtd		MTD device structure
2434  * @param ofs		offset from device start
2435  *
2436  * This is the default implementation, which can be overridden by
2437  * a hardware specific driver.
2438  */
2439 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2440 {
2441 	struct onenand_chip *this = mtd->priv;
2442 	struct bbm_info *bbm = this->bbm;
2443 	u_char buf[2] = {0, 0};
2444 	struct mtd_oob_ops ops = {
2445 		.mode = MTD_OPS_PLACE_OOB,
2446 		.ooblen = 2,
2447 		.oobbuf = buf,
2448 		.ooboffs = 0,
2449 	};
2450 	int block;
2451 
2452 	/* Get block number */
2453 	block = onenand_block(this, ofs);
2454         if (bbm->bbt)
2455                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2456 
2457         /* We write two bytes, so we don't have to mess with 16-bit access */
2458         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2459 	/* FIXME : What to do when marking SLC block in partition
2460 	 * 	   with MLC erasesize? For now, it is not advisable to
2461 	 *	   create partitions containing both SLC and MLC regions.
2462 	 */
2463 	return onenand_write_oob_nolock(mtd, ofs, &ops);
2464 }
2465 
2466 /**
2467  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2468  * @param mtd		MTD device structure
2469  * @param ofs		offset relative to mtd start
2470  *
2471  * Mark the block as bad
2472  */
2473 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2474 {
2475 	struct onenand_chip *this = mtd->priv;
2476 	int ret;
2477 
2478 	ret = onenand_block_isbad(mtd, ofs);
2479 	if (ret) {
2480 		/* If it was bad already, return success and do nothing */
2481 		if (ret > 0)
2482 			return 0;
2483 		return ret;
2484 	}
2485 
2486 	onenand_get_device(mtd, FL_WRITING);
2487 	ret = this->block_markbad(mtd, ofs);
2488 	onenand_release_device(mtd);
2489 	return ret;
2490 }
2491 
2492 /**
2493  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2494  * @param mtd		MTD device structure
2495  * @param ofs		offset relative to mtd start
2496  * @param len		number of bytes to lock or unlock
2497  * @param cmd		lock or unlock command
2498  *
2499  * Lock or unlock one or more blocks
2500  */
2501 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2502 {
2503 	struct onenand_chip *this = mtd->priv;
2504 	int start, end, block, value, status;
2505 	int wp_status_mask;
2506 
2507 	start = onenand_block(this, ofs);
2508 	end = onenand_block(this, ofs + len) - 1;
2509 
2510 	if (cmd == ONENAND_CMD_LOCK)
2511 		wp_status_mask = ONENAND_WP_LS;
2512 	else
2513 		wp_status_mask = ONENAND_WP_US;
2514 
2515 	/* Continuous lock scheme */
2516 	if (this->options & ONENAND_HAS_CONT_LOCK) {
2517 		/* Set start block address */
2518 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2519 		/* Set end block address */
2520 		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2521 		/* Write lock command */
2522 		this->command(mtd, cmd, 0, 0);
2523 
2524 		/* There's no return value */
2525 		this->wait(mtd, FL_LOCKING);
2526 
2527 		/* Sanity check */
2528 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2529 		    & ONENAND_CTRL_ONGO)
2530 			continue;
2531 
2532 		/* Check lock status */
2533 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2534 		if (!(status & wp_status_mask))
2535 			printk(KERN_ERR "%s: wp status = 0x%x\n",
2536 				__func__, status);
2537 
2538 		return 0;
2539 	}
2540 
2541 	/* Block lock scheme */
2542 	for (block = start; block < end + 1; block++) {
2543 		/* Set block address */
2544 		value = onenand_block_address(this, block);
2545 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2546 		/* Select DataRAM for DDP */
2547 		value = onenand_bufferram_address(this, block);
2548 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2549 		/* Set start block address */
2550 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2551 		/* Write lock command */
2552 		this->command(mtd, cmd, 0, 0);
2553 
2554 		/* There's no return value */
2555 		this->wait(mtd, FL_LOCKING);
2556 
2557 		/* Sanity check */
2558 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2559 		    & ONENAND_CTRL_ONGO)
2560 			continue;
2561 
2562 		/* Check lock status */
2563 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2564 		if (!(status & wp_status_mask))
2565 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2566 				__func__, block, status);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * onenand_lock - [MTD Interface] Lock block(s)
2574  * @param mtd		MTD device structure
2575  * @param ofs		offset relative to mtd start
2576  * @param len		number of bytes to unlock
2577  *
2578  * Lock one or more blocks
2579  */
2580 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2581 {
2582 	int ret;
2583 
2584 	onenand_get_device(mtd, FL_LOCKING);
2585 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2586 	onenand_release_device(mtd);
2587 	return ret;
2588 }
2589 
2590 /**
2591  * onenand_unlock - [MTD Interface] Unlock block(s)
2592  * @param mtd		MTD device structure
2593  * @param ofs		offset relative to mtd start
2594  * @param len		number of bytes to unlock
2595  *
2596  * Unlock one or more blocks
2597  */
2598 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2599 {
2600 	int ret;
2601 
2602 	onenand_get_device(mtd, FL_LOCKING);
2603 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2604 	onenand_release_device(mtd);
2605 	return ret;
2606 }
2607 
2608 /**
2609  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2610  * @param this		onenand chip data structure
2611  *
2612  * Check lock status
2613  */
2614 static int onenand_check_lock_status(struct onenand_chip *this)
2615 {
2616 	unsigned int value, block, status;
2617 	unsigned int end;
2618 
2619 	end = this->chipsize >> this->erase_shift;
2620 	for (block = 0; block < end; block++) {
2621 		/* Set block address */
2622 		value = onenand_block_address(this, block);
2623 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2624 		/* Select DataRAM for DDP */
2625 		value = onenand_bufferram_address(this, block);
2626 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2627 		/* Set start block address */
2628 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2629 
2630 		/* Check lock status */
2631 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2632 		if (!(status & ONENAND_WP_US)) {
2633 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2634 				__func__, block, status);
2635 			return 0;
2636 		}
2637 	}
2638 
2639 	return 1;
2640 }
2641 
2642 /**
2643  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2644  * @param mtd		MTD device structure
2645  *
2646  * Unlock all blocks
2647  */
2648 static void onenand_unlock_all(struct mtd_info *mtd)
2649 {
2650 	struct onenand_chip *this = mtd->priv;
2651 	loff_t ofs = 0;
2652 	loff_t len = mtd->size;
2653 
2654 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2655 		/* Set start block address */
2656 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2657 		/* Write unlock command */
2658 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2659 
2660 		/* There's no return value */
2661 		this->wait(mtd, FL_LOCKING);
2662 
2663 		/* Sanity check */
2664 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2665 		    & ONENAND_CTRL_ONGO)
2666 			continue;
2667 
2668 		/* Don't check lock status */
2669 		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2670 			return;
2671 
2672 		/* Check lock status */
2673 		if (onenand_check_lock_status(this))
2674 			return;
2675 
2676 		/* Workaround for all block unlock in DDP */
2677 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2678 			/* All blocks on another chip */
2679 			ofs = this->chipsize >> 1;
2680 			len = this->chipsize >> 1;
2681 		}
2682 	}
2683 
2684 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2685 }
2686 
2687 #ifdef CONFIG_MTD_ONENAND_OTP
2688 
2689 /**
2690  * onenand_otp_command - Send OTP specific command to OneNAND device
2691  * @param mtd	 MTD device structure
2692  * @param cmd	 the command to be sent
2693  * @param addr	 offset to read from or write to
2694  * @param len	 number of bytes to read or write
2695  */
2696 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2697 				size_t len)
2698 {
2699 	struct onenand_chip *this = mtd->priv;
2700 	int value, block, page;
2701 
2702 	/* Address translation */
2703 	switch (cmd) {
2704 	case ONENAND_CMD_OTP_ACCESS:
2705 		block = (int) (addr >> this->erase_shift);
2706 		page = -1;
2707 		break;
2708 
2709 	default:
2710 		block = (int) (addr >> this->erase_shift);
2711 		page = (int) (addr >> this->page_shift);
2712 
2713 		if (ONENAND_IS_2PLANE(this)) {
2714 			/* Make the even block number */
2715 			block &= ~1;
2716 			/* Is it the odd plane? */
2717 			if (addr & this->writesize)
2718 				block++;
2719 			page >>= 1;
2720 		}
2721 		page &= this->page_mask;
2722 		break;
2723 	}
2724 
2725 	if (block != -1) {
2726 		/* Write 'DFS, FBA' of Flash */
2727 		value = onenand_block_address(this, block);
2728 		this->write_word(value, this->base +
2729 				ONENAND_REG_START_ADDRESS1);
2730 	}
2731 
2732 	if (page != -1) {
2733 		/* Now we use page size operation */
2734 		int sectors = 4, count = 4;
2735 		int dataram;
2736 
2737 		switch (cmd) {
2738 		default:
2739 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2740 				cmd = ONENAND_CMD_2X_PROG;
2741 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2742 			break;
2743 		}
2744 
2745 		/* Write 'FPA, FSA' of Flash */
2746 		value = onenand_page_address(page, sectors);
2747 		this->write_word(value, this->base +
2748 				ONENAND_REG_START_ADDRESS8);
2749 
2750 		/* Write 'BSA, BSC' of DataRAM */
2751 		value = onenand_buffer_address(dataram, sectors, count);
2752 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2753 	}
2754 
2755 	/* Interrupt clear */
2756 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2757 
2758 	/* Write command */
2759 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2760 
2761 	return 0;
2762 }
2763 
2764 /**
2765  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2766  * @param mtd		MTD device structure
2767  * @param to		offset to write to
2768  * @param len		number of bytes to write
2769  * @param retlen	pointer to variable to store the number of written bytes
2770  * @param buf		the data to write
2771  *
2772  * OneNAND write out-of-band only for OTP
2773  */
2774 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2775 				    struct mtd_oob_ops *ops)
2776 {
2777 	struct onenand_chip *this = mtd->priv;
2778 	int column, ret = 0, oobsize;
2779 	int written = 0;
2780 	u_char *oobbuf;
2781 	size_t len = ops->ooblen;
2782 	const u_char *buf = ops->oobbuf;
2783 	int block, value, status;
2784 
2785 	to += ops->ooboffs;
2786 
2787 	/* Initialize retlen, in case of early exit */
2788 	ops->oobretlen = 0;
2789 
2790 	oobsize = mtd->oobsize;
2791 
2792 	column = to & (mtd->oobsize - 1);
2793 
2794 	oobbuf = this->oob_buf;
2795 
2796 	/* Loop until all data write */
2797 	while (written < len) {
2798 		int thislen = min_t(int, oobsize, len - written);
2799 
2800 		cond_resched();
2801 
2802 		block = (int) (to >> this->erase_shift);
2803 		/*
2804 		 * Write 'DFS, FBA' of Flash
2805 		 * Add: F100h DQ=DFS, FBA
2806 		 */
2807 
2808 		value = onenand_block_address(this, block);
2809 		this->write_word(value, this->base +
2810 				ONENAND_REG_START_ADDRESS1);
2811 
2812 		/*
2813 		 * Select DataRAM for DDP
2814 		 * Add: F101h DQ=DBS
2815 		 */
2816 
2817 		value = onenand_bufferram_address(this, block);
2818 		this->write_word(value, this->base +
2819 				ONENAND_REG_START_ADDRESS2);
2820 		ONENAND_SET_NEXT_BUFFERRAM(this);
2821 
2822 		/*
2823 		 * Enter OTP access mode
2824 		 */
2825 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2826 		this->wait(mtd, FL_OTPING);
2827 
2828 		/* We send data to spare ram with oobsize
2829 		 * to prevent byte access */
2830 		memcpy(oobbuf + column, buf, thislen);
2831 
2832 		/*
2833 		 * Write Data into DataRAM
2834 		 * Add: 8th Word
2835 		 * in sector0/spare/page0
2836 		 * DQ=XXFCh
2837 		 */
2838 		this->write_bufferram(mtd, ONENAND_SPARERAM,
2839 					oobbuf, 0, mtd->oobsize);
2840 
2841 		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2842 		onenand_update_bufferram(mtd, to, 0);
2843 		if (ONENAND_IS_2PLANE(this)) {
2844 			ONENAND_SET_BUFFERRAM1(this);
2845 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2846 		}
2847 
2848 		ret = this->wait(mtd, FL_WRITING);
2849 		if (ret) {
2850 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2851 			break;
2852 		}
2853 
2854 		/* Exit OTP access mode */
2855 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2856 		this->wait(mtd, FL_RESETING);
2857 
2858 		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2859 		status &= 0x60;
2860 
2861 		if (status == 0x60) {
2862 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2863 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2864 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2865 		} else if (status == 0x20) {
2866 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2867 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2868 			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2869 		} else if (status == 0x40) {
2870 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2871 			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2872 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2873 		} else {
2874 			printk(KERN_DEBUG "Reboot to check\n");
2875 		}
2876 
2877 		written += thislen;
2878 		if (written == len)
2879 			break;
2880 
2881 		to += mtd->writesize;
2882 		buf += thislen;
2883 		column = 0;
2884 	}
2885 
2886 	ops->oobretlen = written;
2887 
2888 	return ret;
2889 }
2890 
2891 /* Internal OTP operation */
2892 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2893 		size_t *retlen, u_char *buf);
2894 
2895 /**
2896  * do_otp_read - [DEFAULT] Read OTP block area
2897  * @param mtd		MTD device structure
2898  * @param from		The offset to read
2899  * @param len		number of bytes to read
2900  * @param retlen	pointer to variable to store the number of readbytes
2901  * @param buf		the databuffer to put/get data
2902  *
2903  * Read OTP block area.
2904  */
2905 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2906 		size_t *retlen, u_char *buf)
2907 {
2908 	struct onenand_chip *this = mtd->priv;
2909 	struct mtd_oob_ops ops = {
2910 		.len	= len,
2911 		.ooblen	= 0,
2912 		.datbuf	= buf,
2913 		.oobbuf	= NULL,
2914 	};
2915 	int ret;
2916 
2917 	/* Enter OTP access mode */
2918 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2919 	this->wait(mtd, FL_OTPING);
2920 
2921 	ret = ONENAND_IS_4KB_PAGE(this) ?
2922 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2923 		onenand_read_ops_nolock(mtd, from, &ops);
2924 
2925 	/* Exit OTP access mode */
2926 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2927 	this->wait(mtd, FL_RESETING);
2928 
2929 	return ret;
2930 }
2931 
2932 /**
2933  * do_otp_write - [DEFAULT] Write OTP block area
2934  * @param mtd		MTD device structure
2935  * @param to		The offset to write
2936  * @param len		number of bytes to write
2937  * @param retlen	pointer to variable to store the number of write bytes
2938  * @param buf		the databuffer to put/get data
2939  *
2940  * Write OTP block area.
2941  */
2942 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2943 		size_t *retlen, u_char *buf)
2944 {
2945 	struct onenand_chip *this = mtd->priv;
2946 	unsigned char *pbuf = buf;
2947 	int ret;
2948 	struct mtd_oob_ops ops;
2949 
2950 	/* Force buffer page aligned */
2951 	if (len < mtd->writesize) {
2952 		memcpy(this->page_buf, buf, len);
2953 		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2954 		pbuf = this->page_buf;
2955 		len = mtd->writesize;
2956 	}
2957 
2958 	/* Enter OTP access mode */
2959 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2960 	this->wait(mtd, FL_OTPING);
2961 
2962 	ops.len = len;
2963 	ops.ooblen = 0;
2964 	ops.datbuf = pbuf;
2965 	ops.oobbuf = NULL;
2966 	ret = onenand_write_ops_nolock(mtd, to, &ops);
2967 	*retlen = ops.retlen;
2968 
2969 	/* Exit OTP access mode */
2970 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2971 	this->wait(mtd, FL_RESETING);
2972 
2973 	return ret;
2974 }
2975 
2976 /**
2977  * do_otp_lock - [DEFAULT] Lock OTP block area
2978  * @param mtd		MTD device structure
2979  * @param from		The offset to lock
2980  * @param len		number of bytes to lock
2981  * @param retlen	pointer to variable to store the number of lock bytes
2982  * @param buf		the databuffer to put/get data
2983  *
2984  * Lock OTP block area.
2985  */
2986 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2987 		size_t *retlen, u_char *buf)
2988 {
2989 	struct onenand_chip *this = mtd->priv;
2990 	struct mtd_oob_ops ops;
2991 	int ret;
2992 
2993 	if (FLEXONENAND(this)) {
2994 
2995 		/* Enter OTP access mode */
2996 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2997 		this->wait(mtd, FL_OTPING);
2998 		/*
2999 		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3000 		 * main area of page 49.
3001 		 */
3002 		ops.len = mtd->writesize;
3003 		ops.ooblen = 0;
3004 		ops.datbuf = buf;
3005 		ops.oobbuf = NULL;
3006 		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3007 		*retlen = ops.retlen;
3008 
3009 		/* Exit OTP access mode */
3010 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3011 		this->wait(mtd, FL_RESETING);
3012 	} else {
3013 		ops.mode = MTD_OPS_PLACE_OOB;
3014 		ops.ooblen = len;
3015 		ops.oobbuf = buf;
3016 		ops.ooboffs = 0;
3017 		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3018 		*retlen = ops.oobretlen;
3019 	}
3020 
3021 	return ret;
3022 }
3023 
3024 /**
3025  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3026  * @param mtd		MTD device structure
3027  * @param from		The offset to read/write
3028  * @param len		number of bytes to read/write
3029  * @param retlen	pointer to variable to store the number of read bytes
3030  * @param buf		the databuffer to put/get data
3031  * @param action	do given action
3032  * @param mode		specify user and factory
3033  *
3034  * Handle OTP operation.
3035  */
3036 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3037 			size_t *retlen, u_char *buf,
3038 			otp_op_t action, int mode)
3039 {
3040 	struct onenand_chip *this = mtd->priv;
3041 	int otp_pages;
3042 	int density;
3043 	int ret = 0;
3044 
3045 	*retlen = 0;
3046 
3047 	density = onenand_get_density(this->device_id);
3048 	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3049 		otp_pages = 20;
3050 	else
3051 		otp_pages = 50;
3052 
3053 	if (mode == MTD_OTP_FACTORY) {
3054 		from += mtd->writesize * otp_pages;
3055 		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3056 	}
3057 
3058 	/* Check User/Factory boundary */
3059 	if (mode == MTD_OTP_USER) {
3060 		if (mtd->writesize * otp_pages < from + len)
3061 			return 0;
3062 	} else {
3063 		if (mtd->writesize * otp_pages <  len)
3064 			return 0;
3065 	}
3066 
3067 	onenand_get_device(mtd, FL_OTPING);
3068 	while (len > 0 && otp_pages > 0) {
3069 		if (!action) {	/* OTP Info functions */
3070 			struct otp_info *otpinfo;
3071 
3072 			len -= sizeof(struct otp_info);
3073 			if (len <= 0) {
3074 				ret = -ENOSPC;
3075 				break;
3076 			}
3077 
3078 			otpinfo = (struct otp_info *) buf;
3079 			otpinfo->start = from;
3080 			otpinfo->length = mtd->writesize;
3081 			otpinfo->locked = 0;
3082 
3083 			from += mtd->writesize;
3084 			buf += sizeof(struct otp_info);
3085 			*retlen += sizeof(struct otp_info);
3086 		} else {
3087 			size_t tmp_retlen;
3088 
3089 			ret = action(mtd, from, len, &tmp_retlen, buf);
3090 			if (ret)
3091 				break;
3092 
3093 			buf += tmp_retlen;
3094 			len -= tmp_retlen;
3095 			*retlen += tmp_retlen;
3096 
3097 		}
3098 		otp_pages--;
3099 	}
3100 	onenand_release_device(mtd);
3101 
3102 	return ret;
3103 }
3104 
3105 /**
3106  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3107  * @param mtd		MTD device structure
3108  * @param len		number of bytes to read
3109  * @param retlen	pointer to variable to store the number of read bytes
3110  * @param buf		the databuffer to put/get data
3111  *
3112  * Read factory OTP info.
3113  */
3114 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3115 				      size_t *retlen, struct otp_info *buf)
3116 {
3117 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3118 				MTD_OTP_FACTORY);
3119 }
3120 
3121 /**
3122  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3123  * @param mtd		MTD device structure
3124  * @param from		The offset to read
3125  * @param len		number of bytes to read
3126  * @param retlen	pointer to variable to store the number of read bytes
3127  * @param buf		the databuffer to put/get data
3128  *
3129  * Read factory OTP area.
3130  */
3131 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3132 			size_t len, size_t *retlen, u_char *buf)
3133 {
3134 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3135 }
3136 
3137 /**
3138  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3139  * @param mtd		MTD device structure
3140  * @param retlen	pointer to variable to store the number of read bytes
3141  * @param len		number of bytes to read
3142  * @param buf		the databuffer to put/get data
3143  *
3144  * Read user OTP info.
3145  */
3146 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3147 				      size_t *retlen, struct otp_info *buf)
3148 {
3149 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3150 				MTD_OTP_USER);
3151 }
3152 
3153 /**
3154  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3155  * @param mtd		MTD device structure
3156  * @param from		The offset to read
3157  * @param len		number of bytes to read
3158  * @param retlen	pointer to variable to store the number of read bytes
3159  * @param buf		the databuffer to put/get data
3160  *
3161  * Read user OTP area.
3162  */
3163 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3164 			size_t len, size_t *retlen, u_char *buf)
3165 {
3166 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3167 }
3168 
3169 /**
3170  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3171  * @param mtd		MTD device structure
3172  * @param from		The offset to write
3173  * @param len		number of bytes to write
3174  * @param retlen	pointer to variable to store the number of write bytes
3175  * @param buf		the databuffer to put/get data
3176  *
3177  * Write user OTP area.
3178  */
3179 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3180 			size_t len, size_t *retlen, u_char *buf)
3181 {
3182 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3183 }
3184 
3185 /**
3186  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3187  * @param mtd		MTD device structure
3188  * @param from		The offset to lock
3189  * @param len		number of bytes to unlock
3190  *
3191  * Write lock mark on spare area in page 0 in OTP block
3192  */
3193 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3194 			size_t len)
3195 {
3196 	struct onenand_chip *this = mtd->priv;
3197 	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3198 	size_t retlen;
3199 	int ret;
3200 	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3201 
3202 	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3203 						 : mtd->oobsize);
3204 	/*
3205 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3206 	 * We write 16 bytes spare area instead of 2 bytes.
3207 	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3208 	 * main area of page 49.
3209 	 */
3210 
3211 	from = 0;
3212 	len = FLEXONENAND(this) ? mtd->writesize : 16;
3213 
3214 	/*
3215 	 * Note: OTP lock operation
3216 	 *       OTP block : 0xXXFC			XX 1111 1100
3217 	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3218 	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3219 	 */
3220 	if (FLEXONENAND(this))
3221 		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3222 
3223 	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3224 	if (otp == 1)
3225 		buf[otp_lock_offset] = 0xFC;
3226 	else if (otp == 2)
3227 		buf[otp_lock_offset] = 0xF3;
3228 	else if (otp == 3)
3229 		buf[otp_lock_offset] = 0xF0;
3230 	else if (otp != 0)
3231 		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3232 
3233 	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3234 
3235 	return ret ? : retlen;
3236 }
3237 
3238 #endif	/* CONFIG_MTD_ONENAND_OTP */
3239 
3240 /**
3241  * onenand_check_features - Check and set OneNAND features
3242  * @param mtd		MTD data structure
3243  *
3244  * Check and set OneNAND features
3245  * - lock scheme
3246  * - two plane
3247  */
3248 static void onenand_check_features(struct mtd_info *mtd)
3249 {
3250 	struct onenand_chip *this = mtd->priv;
3251 	unsigned int density, process, numbufs;
3252 
3253 	/* Lock scheme depends on density and process */
3254 	density = onenand_get_density(this->device_id);
3255 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3256 	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3257 
3258 	/* Lock scheme */
3259 	switch (density) {
3260 	case ONENAND_DEVICE_DENSITY_8Gb:
3261 		this->options |= ONENAND_HAS_NOP_1;
3262 	case ONENAND_DEVICE_DENSITY_4Gb:
3263 		if (ONENAND_IS_DDP(this))
3264 			this->options |= ONENAND_HAS_2PLANE;
3265 		else if (numbufs == 1) {
3266 			this->options |= ONENAND_HAS_4KB_PAGE;
3267 			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3268 			/*
3269 			 * There are two different 4KiB pagesize chips
3270 			 * and no way to detect it by H/W config values.
3271 			 *
3272 			 * To detect the correct NOP for each chips,
3273 			 * It should check the version ID as workaround.
3274 			 *
3275 			 * Now it has as following
3276 			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3277 			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3278 			 */
3279 			if ((this->version_id & 0xf) == 0xe)
3280 				this->options |= ONENAND_HAS_NOP_1;
3281 		}
3282 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3283 		break;
3284 
3285 	case ONENAND_DEVICE_DENSITY_2Gb:
3286 		/* 2Gb DDP does not have 2 plane */
3287 		if (!ONENAND_IS_DDP(this))
3288 			this->options |= ONENAND_HAS_2PLANE;
3289 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3290 		break;
3291 
3292 	case ONENAND_DEVICE_DENSITY_1Gb:
3293 		/* A-Die has all block unlock */
3294 		if (process)
3295 			this->options |= ONENAND_HAS_UNLOCK_ALL;
3296 		break;
3297 
3298 	default:
3299 		/* Some OneNAND has continuous lock scheme */
3300 		if (!process)
3301 			this->options |= ONENAND_HAS_CONT_LOCK;
3302 		break;
3303 	}
3304 
3305 	/* The MLC has 4KiB pagesize. */
3306 	if (ONENAND_IS_MLC(this))
3307 		this->options |= ONENAND_HAS_4KB_PAGE;
3308 
3309 	if (ONENAND_IS_4KB_PAGE(this))
3310 		this->options &= ~ONENAND_HAS_2PLANE;
3311 
3312 	if (FLEXONENAND(this)) {
3313 		this->options &= ~ONENAND_HAS_CONT_LOCK;
3314 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3315 	}
3316 
3317 	if (this->options & ONENAND_HAS_CONT_LOCK)
3318 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3319 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3320 		printk(KERN_DEBUG "Chip support all block unlock\n");
3321 	if (this->options & ONENAND_HAS_2PLANE)
3322 		printk(KERN_DEBUG "Chip has 2 plane\n");
3323 	if (this->options & ONENAND_HAS_4KB_PAGE)
3324 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3325 	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3326 		printk(KERN_DEBUG "Chip has cache program feature\n");
3327 }
3328 
3329 /**
3330  * onenand_print_device_info - Print device & version ID
3331  * @param device        device ID
3332  * @param version	version ID
3333  *
3334  * Print device & version ID
3335  */
3336 static void onenand_print_device_info(int device, int version)
3337 {
3338 	int vcc, demuxed, ddp, density, flexonenand;
3339 
3340         vcc = device & ONENAND_DEVICE_VCC_MASK;
3341         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3342         ddp = device & ONENAND_DEVICE_IS_DDP;
3343         density = onenand_get_density(device);
3344 	flexonenand = device & DEVICE_IS_FLEXONENAND;
3345 	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3346 		demuxed ? "" : "Muxed ",
3347 		flexonenand ? "Flex-" : "",
3348                 ddp ? "(DDP)" : "",
3349                 (16 << density),
3350                 vcc ? "2.65/3.3" : "1.8",
3351                 device);
3352 	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3353 }
3354 
3355 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3356         {ONENAND_MFR_SAMSUNG, "Samsung"},
3357 	{ONENAND_MFR_NUMONYX, "Numonyx"},
3358 };
3359 
3360 /**
3361  * onenand_check_maf - Check manufacturer ID
3362  * @param manuf         manufacturer ID
3363  *
3364  * Check manufacturer ID
3365  */
3366 static int onenand_check_maf(int manuf)
3367 {
3368 	int size = ARRAY_SIZE(onenand_manuf_ids);
3369 	char *name;
3370         int i;
3371 
3372 	for (i = 0; i < size; i++)
3373                 if (manuf == onenand_manuf_ids[i].id)
3374                         break;
3375 
3376 	if (i < size)
3377 		name = onenand_manuf_ids[i].name;
3378 	else
3379 		name = "Unknown";
3380 
3381 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3382 
3383 	return (i == size);
3384 }
3385 
3386 /**
3387 * flexonenand_get_boundary	- Reads the SLC boundary
3388 * @param onenand_info		- onenand info structure
3389 **/
3390 static int flexonenand_get_boundary(struct mtd_info *mtd)
3391 {
3392 	struct onenand_chip *this = mtd->priv;
3393 	unsigned die, bdry;
3394 	int syscfg, locked;
3395 
3396 	/* Disable ECC */
3397 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3398 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3399 
3400 	for (die = 0; die < this->dies; die++) {
3401 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3402 		this->wait(mtd, FL_SYNCING);
3403 
3404 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3405 		this->wait(mtd, FL_READING);
3406 
3407 		bdry = this->read_word(this->base + ONENAND_DATARAM);
3408 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3409 			locked = 0;
3410 		else
3411 			locked = 1;
3412 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3413 
3414 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3415 		this->wait(mtd, FL_RESETING);
3416 
3417 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3418 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3419 	}
3420 
3421 	/* Enable ECC */
3422 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3423 	return 0;
3424 }
3425 
3426 /**
3427  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3428  * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3429  * @param mtd		- MTD device structure
3430  */
3431 static void flexonenand_get_size(struct mtd_info *mtd)
3432 {
3433 	struct onenand_chip *this = mtd->priv;
3434 	int die, i, eraseshift, density;
3435 	int blksperdie, maxbdry;
3436 	loff_t ofs;
3437 
3438 	density = onenand_get_density(this->device_id);
3439 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3440 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3441 	maxbdry = blksperdie - 1;
3442 	eraseshift = this->erase_shift - 1;
3443 
3444 	mtd->numeraseregions = this->dies << 1;
3445 
3446 	/* This fills up the device boundary */
3447 	flexonenand_get_boundary(mtd);
3448 	die = ofs = 0;
3449 	i = -1;
3450 	for (; die < this->dies; die++) {
3451 		if (!die || this->boundary[die-1] != maxbdry) {
3452 			i++;
3453 			mtd->eraseregions[i].offset = ofs;
3454 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3455 			mtd->eraseregions[i].numblocks =
3456 							this->boundary[die] + 1;
3457 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3458 			eraseshift++;
3459 		} else {
3460 			mtd->numeraseregions -= 1;
3461 			mtd->eraseregions[i].numblocks +=
3462 							this->boundary[die] + 1;
3463 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3464 		}
3465 		if (this->boundary[die] != maxbdry) {
3466 			i++;
3467 			mtd->eraseregions[i].offset = ofs;
3468 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3469 			mtd->eraseregions[i].numblocks = maxbdry ^
3470 							 this->boundary[die];
3471 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3472 			eraseshift--;
3473 		} else
3474 			mtd->numeraseregions -= 1;
3475 	}
3476 
3477 	/* Expose MLC erase size except when all blocks are SLC */
3478 	mtd->erasesize = 1 << this->erase_shift;
3479 	if (mtd->numeraseregions == 1)
3480 		mtd->erasesize >>= 1;
3481 
3482 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3483 	for (i = 0; i < mtd->numeraseregions; i++)
3484 		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3485 			" numblocks: %04u]\n",
3486 			(unsigned int) mtd->eraseregions[i].offset,
3487 			mtd->eraseregions[i].erasesize,
3488 			mtd->eraseregions[i].numblocks);
3489 
3490 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3491 		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3492 		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3493 						 << (this->erase_shift - 1);
3494 		mtd->size += this->diesize[die];
3495 	}
3496 }
3497 
3498 /**
3499  * flexonenand_check_blocks_erased - Check if blocks are erased
3500  * @param mtd_info	- mtd info structure
3501  * @param start		- first erase block to check
3502  * @param end		- last erase block to check
3503  *
3504  * Converting an unerased block from MLC to SLC
3505  * causes byte values to change. Since both data and its ECC
3506  * have changed, reads on the block give uncorrectable error.
3507  * This might lead to the block being detected as bad.
3508  *
3509  * Avoid this by ensuring that the block to be converted is
3510  * erased.
3511  */
3512 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3513 {
3514 	struct onenand_chip *this = mtd->priv;
3515 	int i, ret;
3516 	int block;
3517 	struct mtd_oob_ops ops = {
3518 		.mode = MTD_OPS_PLACE_OOB,
3519 		.ooboffs = 0,
3520 		.ooblen	= mtd->oobsize,
3521 		.datbuf	= NULL,
3522 		.oobbuf	= this->oob_buf,
3523 	};
3524 	loff_t addr;
3525 
3526 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3527 
3528 	for (block = start; block <= end; block++) {
3529 		addr = flexonenand_addr(this, block);
3530 		if (onenand_block_isbad_nolock(mtd, addr, 0))
3531 			continue;
3532 
3533 		/*
3534 		 * Since main area write results in ECC write to spare,
3535 		 * it is sufficient to check only ECC bytes for change.
3536 		 */
3537 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3538 		if (ret)
3539 			return ret;
3540 
3541 		for (i = 0; i < mtd->oobsize; i++)
3542 			if (this->oob_buf[i] != 0xff)
3543 				break;
3544 
3545 		if (i != mtd->oobsize) {
3546 			printk(KERN_WARNING "%s: Block %d not erased.\n",
3547 				__func__, block);
3548 			return 1;
3549 		}
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 /**
3556  * flexonenand_set_boundary	- Writes the SLC boundary
3557  * @param mtd			- mtd info structure
3558  */
3559 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3560 				    int boundary, int lock)
3561 {
3562 	struct onenand_chip *this = mtd->priv;
3563 	int ret, density, blksperdie, old, new, thisboundary;
3564 	loff_t addr;
3565 
3566 	/* Change only once for SDP Flex-OneNAND */
3567 	if (die && (!ONENAND_IS_DDP(this)))
3568 		return 0;
3569 
3570 	/* boundary value of -1 indicates no required change */
3571 	if (boundary < 0 || boundary == this->boundary[die])
3572 		return 0;
3573 
3574 	density = onenand_get_density(this->device_id);
3575 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3576 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3577 
3578 	if (boundary >= blksperdie) {
3579 		printk(KERN_ERR "%s: Invalid boundary value. "
3580 				"Boundary not changed.\n", __func__);
3581 		return -EINVAL;
3582 	}
3583 
3584 	/* Check if converting blocks are erased */
3585 	old = this->boundary[die] + (die * this->density_mask);
3586 	new = boundary + (die * this->density_mask);
3587 	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3588 	if (ret) {
3589 		printk(KERN_ERR "%s: Please erase blocks "
3590 				"before boundary change\n", __func__);
3591 		return ret;
3592 	}
3593 
3594 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3595 	this->wait(mtd, FL_SYNCING);
3596 
3597 	/* Check is boundary is locked */
3598 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3599 	this->wait(mtd, FL_READING);
3600 
3601 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3602 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3603 		printk(KERN_ERR "%s: boundary locked\n", __func__);
3604 		ret = 1;
3605 		goto out;
3606 	}
3607 
3608 	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3609 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3610 
3611 	addr = die ? this->diesize[0] : 0;
3612 
3613 	boundary &= FLEXONENAND_PI_MASK;
3614 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3615 
3616 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3617 	ret = this->wait(mtd, FL_ERASING);
3618 	if (ret) {
3619 		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3620 		       __func__, die);
3621 		goto out;
3622 	}
3623 
3624 	this->write_word(boundary, this->base + ONENAND_DATARAM);
3625 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3626 	ret = this->wait(mtd, FL_WRITING);
3627 	if (ret) {
3628 		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3629 			__func__, die);
3630 		goto out;
3631 	}
3632 
3633 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3634 	ret = this->wait(mtd, FL_WRITING);
3635 out:
3636 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3637 	this->wait(mtd, FL_RESETING);
3638 	if (!ret)
3639 		/* Recalculate device size on boundary change*/
3640 		flexonenand_get_size(mtd);
3641 
3642 	return ret;
3643 }
3644 
3645 /**
3646  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3647  * @param mtd		MTD device structure
3648  *
3649  * OneNAND detection method:
3650  *   Compare the values from command with ones from register
3651  */
3652 static int onenand_chip_probe(struct mtd_info *mtd)
3653 {
3654 	struct onenand_chip *this = mtd->priv;
3655 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3656 	int syscfg;
3657 
3658 	/* Save system configuration 1 */
3659 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3660 	/* Clear Sync. Burst Read mode to read BootRAM */
3661 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3662 
3663 	/* Send the command for reading device ID from BootRAM */
3664 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3665 
3666 	/* Read manufacturer and device IDs from BootRAM */
3667 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3668 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3669 
3670 	/* Reset OneNAND to read default register values */
3671 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3672 	/* Wait reset */
3673 	this->wait(mtd, FL_RESETING);
3674 
3675 	/* Restore system configuration 1 */
3676 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3677 
3678 	/* Check manufacturer ID */
3679 	if (onenand_check_maf(bram_maf_id))
3680 		return -ENXIO;
3681 
3682 	/* Read manufacturer and device IDs from Register */
3683 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3684 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3685 
3686 	/* Check OneNAND device */
3687 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3688 		return -ENXIO;
3689 
3690 	return 0;
3691 }
3692 
3693 /**
3694  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3695  * @param mtd		MTD device structure
3696  */
3697 static int onenand_probe(struct mtd_info *mtd)
3698 {
3699 	struct onenand_chip *this = mtd->priv;
3700 	int dev_id, ver_id;
3701 	int density;
3702 	int ret;
3703 
3704 	ret = this->chip_probe(mtd);
3705 	if (ret)
3706 		return ret;
3707 
3708 	/* Device and version IDs from Register */
3709 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3710 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3711 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3712 
3713 	/* Flash device information */
3714 	onenand_print_device_info(dev_id, ver_id);
3715 	this->device_id = dev_id;
3716 	this->version_id = ver_id;
3717 
3718 	/* Check OneNAND features */
3719 	onenand_check_features(mtd);
3720 
3721 	density = onenand_get_density(dev_id);
3722 	if (FLEXONENAND(this)) {
3723 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3724 		/* Maximum possible erase regions */
3725 		mtd->numeraseregions = this->dies << 1;
3726 		mtd->eraseregions =
3727 			kcalloc(this->dies << 1,
3728 				sizeof(struct mtd_erase_region_info),
3729 				GFP_KERNEL);
3730 		if (!mtd->eraseregions)
3731 			return -ENOMEM;
3732 	}
3733 
3734 	/*
3735 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3736 	 * mtd->size represents the actual device size.
3737 	 */
3738 	this->chipsize = (16 << density) << 20;
3739 
3740 	/* OneNAND page size & block size */
3741 	/* The data buffer size is equal to page size */
3742 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3743 	/* We use the full BufferRAM */
3744 	if (ONENAND_IS_4KB_PAGE(this))
3745 		mtd->writesize <<= 1;
3746 
3747 	mtd->oobsize = mtd->writesize >> 5;
3748 	/* Pages per a block are always 64 in OneNAND */
3749 	mtd->erasesize = mtd->writesize << 6;
3750 	/*
3751 	 * Flex-OneNAND SLC area has 64 pages per block.
3752 	 * Flex-OneNAND MLC area has 128 pages per block.
3753 	 * Expose MLC erase size to find erase_shift and page_mask.
3754 	 */
3755 	if (FLEXONENAND(this))
3756 		mtd->erasesize <<= 1;
3757 
3758 	this->erase_shift = ffs(mtd->erasesize) - 1;
3759 	this->page_shift = ffs(mtd->writesize) - 1;
3760 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3761 	/* Set density mask. it is used for DDP */
3762 	if (ONENAND_IS_DDP(this))
3763 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3764 	/* It's real page size */
3765 	this->writesize = mtd->writesize;
3766 
3767 	/* REVISIT: Multichip handling */
3768 
3769 	if (FLEXONENAND(this))
3770 		flexonenand_get_size(mtd);
3771 	else
3772 		mtd->size = this->chipsize;
3773 
3774 	/*
3775 	 * We emulate the 4KiB page and 256KiB erase block size
3776 	 * But oobsize is still 64 bytes.
3777 	 * It is only valid if you turn on 2X program support,
3778 	 * Otherwise it will be ignored by compiler.
3779 	 */
3780 	if (ONENAND_IS_2PLANE(this)) {
3781 		mtd->writesize <<= 1;
3782 		mtd->erasesize <<= 1;
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 /**
3789  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3790  * @param mtd		MTD device structure
3791  */
3792 static int onenand_suspend(struct mtd_info *mtd)
3793 {
3794 	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3795 }
3796 
3797 /**
3798  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3799  * @param mtd		MTD device structure
3800  */
3801 static void onenand_resume(struct mtd_info *mtd)
3802 {
3803 	struct onenand_chip *this = mtd->priv;
3804 
3805 	if (this->state == FL_PM_SUSPENDED)
3806 		onenand_release_device(mtd);
3807 	else
3808 		printk(KERN_ERR "%s: resume() called for the chip which is not "
3809 				"in suspended state\n", __func__);
3810 }
3811 
3812 /**
3813  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3814  * @param mtd		MTD device structure
3815  * @param maxchips	Number of chips to scan for
3816  *
3817  * This fills out all the not initialized function pointers
3818  * with the defaults.
3819  * The flash ID is read and the mtd/chip structures are
3820  * filled with the appropriate values.
3821  */
3822 int onenand_scan(struct mtd_info *mtd, int maxchips)
3823 {
3824 	int i, ret;
3825 	struct onenand_chip *this = mtd->priv;
3826 
3827 	if (!this->read_word)
3828 		this->read_word = onenand_readw;
3829 	if (!this->write_word)
3830 		this->write_word = onenand_writew;
3831 
3832 	if (!this->command)
3833 		this->command = onenand_command;
3834 	if (!this->wait)
3835 		onenand_setup_wait(mtd);
3836 	if (!this->bbt_wait)
3837 		this->bbt_wait = onenand_bbt_wait;
3838 	if (!this->unlock_all)
3839 		this->unlock_all = onenand_unlock_all;
3840 
3841 	if (!this->chip_probe)
3842 		this->chip_probe = onenand_chip_probe;
3843 
3844 	if (!this->read_bufferram)
3845 		this->read_bufferram = onenand_read_bufferram;
3846 	if (!this->write_bufferram)
3847 		this->write_bufferram = onenand_write_bufferram;
3848 
3849 	if (!this->block_markbad)
3850 		this->block_markbad = onenand_default_block_markbad;
3851 	if (!this->scan_bbt)
3852 		this->scan_bbt = onenand_default_bbt;
3853 
3854 	if (onenand_probe(mtd))
3855 		return -ENXIO;
3856 
3857 	/* Set Sync. Burst Read after probing */
3858 	if (this->mmcontrol) {
3859 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3860 		this->read_bufferram = onenand_sync_read_bufferram;
3861 	}
3862 
3863 	/* Allocate buffers, if necessary */
3864 	if (!this->page_buf) {
3865 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3866 		if (!this->page_buf)
3867 			return -ENOMEM;
3868 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3869 		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3870 		if (!this->verify_buf) {
3871 			kfree(this->page_buf);
3872 			return -ENOMEM;
3873 		}
3874 #endif
3875 		this->options |= ONENAND_PAGEBUF_ALLOC;
3876 	}
3877 	if (!this->oob_buf) {
3878 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3879 		if (!this->oob_buf) {
3880 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3881 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3882 				kfree(this->page_buf);
3883 			}
3884 			return -ENOMEM;
3885 		}
3886 		this->options |= ONENAND_OOBBUF_ALLOC;
3887 	}
3888 
3889 	this->state = FL_READY;
3890 	init_waitqueue_head(&this->wq);
3891 	spin_lock_init(&this->chip_lock);
3892 
3893 	/*
3894 	 * Allow subpage writes up to oobsize.
3895 	 */
3896 	switch (mtd->oobsize) {
3897 	case 128:
3898 		if (FLEXONENAND(this)) {
3899 			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3900 			mtd->subpage_sft = 0;
3901 		} else {
3902 			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3903 			mtd->subpage_sft = 2;
3904 		}
3905 		if (ONENAND_IS_NOP_1(this))
3906 			mtd->subpage_sft = 0;
3907 		break;
3908 	case 64:
3909 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3910 		mtd->subpage_sft = 2;
3911 		break;
3912 
3913 	case 32:
3914 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3915 		mtd->subpage_sft = 1;
3916 		break;
3917 
3918 	default:
3919 		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3920 			__func__, mtd->oobsize);
3921 		mtd->subpage_sft = 0;
3922 		/* To prevent kernel oops */
3923 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3924 		break;
3925 	}
3926 
3927 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3928 
3929 	/*
3930 	 * The number of bytes available for a client to place data into
3931 	 * the out of band area
3932 	 */
3933 	ret = mtd_ooblayout_count_freebytes(mtd);
3934 	if (ret < 0)
3935 		ret = 0;
3936 
3937 	mtd->oobavail = ret;
3938 
3939 	mtd->ecc_strength = 1;
3940 
3941 	/* Fill in remaining MTD driver data */
3942 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3943 	mtd->flags = MTD_CAP_NANDFLASH;
3944 	mtd->_erase = onenand_erase;
3945 	mtd->_point = NULL;
3946 	mtd->_unpoint = NULL;
3947 	mtd->_read_oob = onenand_read_oob;
3948 	mtd->_write_oob = onenand_write_oob;
3949 	mtd->_panic_write = onenand_panic_write;
3950 #ifdef CONFIG_MTD_ONENAND_OTP
3951 	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3952 	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3953 	mtd->_get_user_prot_info = onenand_get_user_prot_info;
3954 	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3955 	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3956 	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3957 #endif
3958 	mtd->_sync = onenand_sync;
3959 	mtd->_lock = onenand_lock;
3960 	mtd->_unlock = onenand_unlock;
3961 	mtd->_suspend = onenand_suspend;
3962 	mtd->_resume = onenand_resume;
3963 	mtd->_block_isbad = onenand_block_isbad;
3964 	mtd->_block_markbad = onenand_block_markbad;
3965 	mtd->owner = THIS_MODULE;
3966 	mtd->writebufsize = mtd->writesize;
3967 
3968 	/* Unlock whole block */
3969 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3970 		this->unlock_all(mtd);
3971 
3972 	/* Set the bad block marker position */
3973 	this->badblockpos = ONENAND_BADBLOCK_POS;
3974 
3975 	ret = this->scan_bbt(mtd);
3976 	if ((!FLEXONENAND(this)) || ret)
3977 		return ret;
3978 
3979 	/* Change Flex-OneNAND boundaries if required */
3980 	for (i = 0; i < MAX_DIES; i++)
3981 		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3982 						 flex_bdry[(2 * i) + 1]);
3983 
3984 	return 0;
3985 }
3986 
3987 /**
3988  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3989  * @param mtd		MTD device structure
3990  */
3991 void onenand_release(struct mtd_info *mtd)
3992 {
3993 	struct onenand_chip *this = mtd->priv;
3994 
3995 	/* Deregister partitions */
3996 	mtd_device_unregister(mtd);
3997 
3998 	/* Free bad block table memory, if allocated */
3999 	if (this->bbm) {
4000 		struct bbm_info *bbm = this->bbm;
4001 		kfree(bbm->bbt);
4002 		kfree(this->bbm);
4003 	}
4004 	/* Buffers allocated by onenand_scan */
4005 	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4006 		kfree(this->page_buf);
4007 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4008 		kfree(this->verify_buf);
4009 #endif
4010 	}
4011 	if (this->options & ONENAND_OOBBUF_ALLOC)
4012 		kfree(this->oob_buf);
4013 	kfree(mtd->eraseregions);
4014 }
4015 
4016 EXPORT_SYMBOL_GPL(onenand_scan);
4017 EXPORT_SYMBOL_GPL(onenand_release);
4018 
4019 MODULE_LICENSE("GPL");
4020 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4021 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4022