1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright © 2005-2009 Samsung Electronics
4  *  Copyright © 2007 Nokia Corporation
5  *
6  *  Kyungmin Park <kyungmin.park@samsung.com>
7  *
8  *  Credits:
9  *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
10  *	auto-placement support, read-while load support, various fixes
11  *
12  *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13  *	Flex-OneNAND support
14  *	Amul Kumar Saha <amul.saha at samsung.com>
15  *	OTP support
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
29 
30 #include <asm/io.h>
31 
32 /*
33  * Multiblock erase if number of blocks to erase is 2 or more.
34  * Maximum number of blocks for simultaneous erase is 64.
35  */
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
38 
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41 
42 module_param_array(flex_bdry, int, NULL, 0400);
43 MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
44 				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 				"DIE_BDRY: SLC boundary of the die"
46 				"LOCK: Locking information for SLC boundary"
47 				"    : 0->Set boundary in unlocked status"
48 				"    : 1->Set boundary in locked status");
49 
50 /* Default OneNAND/Flex-OneNAND OTP options*/
51 static int otp;
52 
53 module_param(otp, int, 0400);
54 MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
55 			"Syntax : otp=LOCK_TYPE"
56 			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 			"	   : 0 -> Default (No Blocks Locked)"
58 			"	   : 1 -> OTP Block lock"
59 			"	   : 2 -> 1st Block lock"
60 			"	   : 3 -> BOTH OTP Block and 1st Block lock");
61 
62 /*
63  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64  * For now, we expose only 64 out of 80 ecc bytes
65  */
66 static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67 				     struct mtd_oob_region *oobregion)
68 {
69 	if (section > 7)
70 		return -ERANGE;
71 
72 	oobregion->offset = (section * 16) + 6;
73 	oobregion->length = 10;
74 
75 	return 0;
76 }
77 
78 static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79 				      struct mtd_oob_region *oobregion)
80 {
81 	if (section > 7)
82 		return -ERANGE;
83 
84 	oobregion->offset = (section * 16) + 2;
85 	oobregion->length = 4;
86 
87 	return 0;
88 }
89 
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91 	.ecc = flexonenand_ooblayout_ecc,
92 	.free = flexonenand_ooblayout_free,
93 };
94 
95 /*
96  * onenand_oob_128 - oob info for OneNAND with 4KB page
97  *
98  * Based on specification:
99  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100  *
101  */
102 static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103 				     struct mtd_oob_region *oobregion)
104 {
105 	if (section > 7)
106 		return -ERANGE;
107 
108 	oobregion->offset = (section * 16) + 7;
109 	oobregion->length = 9;
110 
111 	return 0;
112 }
113 
114 static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115 				      struct mtd_oob_region *oobregion)
116 {
117 	if (section >= 8)
118 		return -ERANGE;
119 
120 	/*
121 	 * free bytes are using the spare area fields marked as
122 	 * "Managed by internal ECC logic for Logical Sector Number area"
123 	 */
124 	oobregion->offset = (section * 16) + 2;
125 	oobregion->length = 3;
126 
127 	return 0;
128 }
129 
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131 	.ecc = onenand_ooblayout_128_ecc,
132 	.free = onenand_ooblayout_128_free,
133 };
134 
135 /**
136  * onenand_oob_32_64 - oob info for large (2KB) page
137  */
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139 				       struct mtd_oob_region *oobregion)
140 {
141 	if (section > 3)
142 		return -ERANGE;
143 
144 	oobregion->offset = (section * 16) + 8;
145 	oobregion->length = 5;
146 
147 	return 0;
148 }
149 
150 static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151 					struct mtd_oob_region *oobregion)
152 {
153 	int sections = (mtd->oobsize / 32) * 2;
154 
155 	if (section >= sections)
156 		return -ERANGE;
157 
158 	if (section & 1) {
159 		oobregion->offset = ((section - 1) * 16) + 14;
160 		oobregion->length = 2;
161 	} else  {
162 		oobregion->offset = (section * 16) + 2;
163 		oobregion->length = 3;
164 	}
165 
166 	return 0;
167 }
168 
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170 	.ecc = onenand_ooblayout_32_64_ecc,
171 	.free = onenand_ooblayout_32_64_free,
172 };
173 
174 static const unsigned char ffchars[] = {
175 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
177 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
179 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
181 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
183 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
185 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
187 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
189 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
191 };
192 
193 /**
194  * onenand_readw - [OneNAND Interface] Read OneNAND register
195  * @param addr		address to read
196  *
197  * Read OneNAND register
198  */
199 static unsigned short onenand_readw(void __iomem *addr)
200 {
201 	return readw(addr);
202 }
203 
204 /**
205  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206  * @param value		value to write
207  * @param addr		address to write
208  *
209  * Write OneNAND register with value
210  */
211 static void onenand_writew(unsigned short value, void __iomem *addr)
212 {
213 	writew(value, addr);
214 }
215 
216 /**
217  * onenand_block_address - [DEFAULT] Get block address
218  * @param this		onenand chip data structure
219  * @param block		the block
220  * @return		translated block address if DDP, otherwise same
221  *
222  * Setup Start Address 1 Register (F100h)
223  */
224 static int onenand_block_address(struct onenand_chip *this, int block)
225 {
226 	/* Device Flash Core select, NAND Flash Block Address */
227 	if (block & this->density_mask)
228 		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229 
230 	return block;
231 }
232 
233 /**
234  * onenand_bufferram_address - [DEFAULT] Get bufferram address
235  * @param this		onenand chip data structure
236  * @param block		the block
237  * @return		set DBS value if DDP, otherwise 0
238  *
239  * Setup Start Address 2 Register (F101h) for DDP
240  */
241 static int onenand_bufferram_address(struct onenand_chip *this, int block)
242 {
243 	/* Device BufferRAM Select */
244 	if (block & this->density_mask)
245 		return ONENAND_DDP_CHIP1;
246 
247 	return ONENAND_DDP_CHIP0;
248 }
249 
250 /**
251  * onenand_page_address - [DEFAULT] Get page address
252  * @param page		the page address
253  * @param sector	the sector address
254  * @return		combined page and sector address
255  *
256  * Setup Start Address 8 Register (F107h)
257  */
258 static int onenand_page_address(int page, int sector)
259 {
260 	/* Flash Page Address, Flash Sector Address */
261 	int fpa, fsa;
262 
263 	fpa = page & ONENAND_FPA_MASK;
264 	fsa = sector & ONENAND_FSA_MASK;
265 
266 	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267 }
268 
269 /**
270  * onenand_buffer_address - [DEFAULT] Get buffer address
271  * @param dataram1	DataRAM index
272  * @param sectors	the sector address
273  * @param count		the number of sectors
274  * @return		the start buffer value
275  *
276  * Setup Start Buffer Register (F200h)
277  */
278 static int onenand_buffer_address(int dataram1, int sectors, int count)
279 {
280 	int bsa, bsc;
281 
282 	/* BufferRAM Sector Address */
283 	bsa = sectors & ONENAND_BSA_MASK;
284 
285 	if (dataram1)
286 		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
287 	else
288 		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
289 
290 	/* BufferRAM Sector Count */
291 	bsc = count & ONENAND_BSC_MASK;
292 
293 	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294 }
295 
296 /**
297  * flexonenand_block- For given address return block number
298  * @param this         - OneNAND device structure
299  * @param addr		- Address for which block number is needed
300  */
301 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302 {
303 	unsigned boundary, blk, die = 0;
304 
305 	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306 		die = 1;
307 		addr -= this->diesize[0];
308 	}
309 
310 	boundary = this->boundary[die];
311 
312 	blk = addr >> (this->erase_shift - 1);
313 	if (blk > boundary)
314 		blk = (blk + boundary + 1) >> 1;
315 
316 	blk += die ? this->density_mask : 0;
317 	return blk;
318 }
319 
320 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321 {
322 	if (!FLEXONENAND(this))
323 		return addr >> this->erase_shift;
324 	return flexonenand_block(this, addr);
325 }
326 
327 /**
328  * flexonenand_addr - Return address of the block
329  * @this:		OneNAND device structure
330  * @block:		Block number on Flex-OneNAND
331  *
332  * Return address of the block
333  */
334 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335 {
336 	loff_t ofs = 0;
337 	int die = 0, boundary;
338 
339 	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340 		block -= this->density_mask;
341 		die = 1;
342 		ofs = this->diesize[0];
343 	}
344 
345 	boundary = this->boundary[die];
346 	ofs += (loff_t)block << (this->erase_shift - 1);
347 	if (block > (boundary + 1))
348 		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349 	return ofs;
350 }
351 
352 loff_t onenand_addr(struct onenand_chip *this, int block)
353 {
354 	if (!FLEXONENAND(this))
355 		return (loff_t)block << this->erase_shift;
356 	return flexonenand_addr(this, block);
357 }
358 EXPORT_SYMBOL(onenand_addr);
359 
360 /**
361  * onenand_get_density - [DEFAULT] Get OneNAND density
362  * @param dev_id	OneNAND device ID
363  *
364  * Get OneNAND density from device ID
365  */
366 static inline int onenand_get_density(int dev_id)
367 {
368 	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369 	return (density & ONENAND_DEVICE_DENSITY_MASK);
370 }
371 
372 /**
373  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374  * @param mtd		MTD device structure
375  * @param addr		address whose erase region needs to be identified
376  */
377 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378 {
379 	int i;
380 
381 	for (i = 0; i < mtd->numeraseregions; i++)
382 		if (addr < mtd->eraseregions[i].offset)
383 			break;
384 	return i - 1;
385 }
386 EXPORT_SYMBOL(flexonenand_region);
387 
388 /**
389  * onenand_command - [DEFAULT] Send command to OneNAND device
390  * @param mtd		MTD device structure
391  * @param cmd		the command to be sent
392  * @param addr		offset to read from or write to
393  * @param len		number of bytes to read or write
394  *
395  * Send command to OneNAND device. This function is used for middle/large page
396  * devices (1KB/2KB Bytes per page)
397  */
398 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399 {
400 	struct onenand_chip *this = mtd->priv;
401 	int value, block, page;
402 
403 	/* Address translation */
404 	switch (cmd) {
405 	case ONENAND_CMD_UNLOCK:
406 	case ONENAND_CMD_LOCK:
407 	case ONENAND_CMD_LOCK_TIGHT:
408 	case ONENAND_CMD_UNLOCK_ALL:
409 		block = -1;
410 		page = -1;
411 		break;
412 
413 	case FLEXONENAND_CMD_PI_ACCESS:
414 		/* addr contains die index */
415 		block = addr * this->density_mask;
416 		page = -1;
417 		break;
418 
419 	case ONENAND_CMD_ERASE:
420 	case ONENAND_CMD_MULTIBLOCK_ERASE:
421 	case ONENAND_CMD_ERASE_VERIFY:
422 	case ONENAND_CMD_BUFFERRAM:
423 	case ONENAND_CMD_OTP_ACCESS:
424 		block = onenand_block(this, addr);
425 		page = -1;
426 		break;
427 
428 	case FLEXONENAND_CMD_READ_PI:
429 		cmd = ONENAND_CMD_READ;
430 		block = addr * this->density_mask;
431 		page = 0;
432 		break;
433 
434 	default:
435 		block = onenand_block(this, addr);
436 		if (FLEXONENAND(this))
437 			page = (int) (addr - onenand_addr(this, block))>>\
438 				this->page_shift;
439 		else
440 			page = (int) (addr >> this->page_shift);
441 		if (ONENAND_IS_2PLANE(this)) {
442 			/* Make the even block number */
443 			block &= ~1;
444 			/* Is it the odd plane? */
445 			if (addr & this->writesize)
446 				block++;
447 			page >>= 1;
448 		}
449 		page &= this->page_mask;
450 		break;
451 	}
452 
453 	/* NOTE: The setting order of the registers is very important! */
454 	if (cmd == ONENAND_CMD_BUFFERRAM) {
455 		/* Select DataRAM for DDP */
456 		value = onenand_bufferram_address(this, block);
457 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458 
459 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 			/* It is always BufferRAM0 */
461 			ONENAND_SET_BUFFERRAM0(this);
462 		else
463 			/* Switch to the next data buffer */
464 			ONENAND_SET_NEXT_BUFFERRAM(this);
465 
466 		return 0;
467 	}
468 
469 	if (block != -1) {
470 		/* Write 'DFS, FBA' of Flash */
471 		value = onenand_block_address(this, block);
472 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473 
474 		/* Select DataRAM for DDP */
475 		value = onenand_bufferram_address(this, block);
476 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477 	}
478 
479 	if (page != -1) {
480 		/* Now we use page size operation */
481 		int sectors = 0, count = 0;
482 		int dataram;
483 
484 		switch (cmd) {
485 		case FLEXONENAND_CMD_RECOVER_LSB:
486 		case ONENAND_CMD_READ:
487 		case ONENAND_CMD_READOOB:
488 			if (ONENAND_IS_4KB_PAGE(this))
489 				/* It is always BufferRAM0 */
490 				dataram = ONENAND_SET_BUFFERRAM0(this);
491 			else
492 				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493 			break;
494 
495 		default:
496 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497 				cmd = ONENAND_CMD_2X_PROG;
498 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
499 			break;
500 		}
501 
502 		/* Write 'FPA, FSA' of Flash */
503 		value = onenand_page_address(page, sectors);
504 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505 
506 		/* Write 'BSA, BSC' of DataRAM */
507 		value = onenand_buffer_address(dataram, sectors, count);
508 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509 	}
510 
511 	/* Interrupt clear */
512 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513 
514 	/* Write command */
515 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516 
517 	return 0;
518 }
519 
520 /**
521  * onenand_read_ecc - return ecc status
522  * @param this		onenand chip structure
523  */
524 static inline int onenand_read_ecc(struct onenand_chip *this)
525 {
526 	int ecc, i, result = 0;
527 
528 	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530 
531 	for (i = 0; i < 4; i++) {
532 		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533 		if (likely(!ecc))
534 			continue;
535 		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536 			return ONENAND_ECC_2BIT_ALL;
537 		else
538 			result = ONENAND_ECC_1BIT_ALL;
539 	}
540 
541 	return result;
542 }
543 
544 /**
545  * onenand_wait - [DEFAULT] wait until the command is done
546  * @param mtd		MTD device structure
547  * @param state		state to select the max. timeout value
548  *
549  * Wait for command done. This applies to all OneNAND command
550  * Read can take up to 30us, erase up to 2ms and program up to 350us
551  * according to general OneNAND specs
552  */
553 static int onenand_wait(struct mtd_info *mtd, int state)
554 {
555 	struct onenand_chip * this = mtd->priv;
556 	unsigned long timeout;
557 	unsigned int flags = ONENAND_INT_MASTER;
558 	unsigned int interrupt = 0;
559 	unsigned int ctrl;
560 
561 	/* The 20 msec is enough */
562 	timeout = jiffies + msecs_to_jiffies(20);
563 	while (time_before(jiffies, timeout)) {
564 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565 
566 		if (interrupt & flags)
567 			break;
568 
569 		if (state != FL_READING && state != FL_PREPARING_ERASE)
570 			cond_resched();
571 	}
572 	/* To get correct interrupt status in timeout case */
573 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574 
575 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576 
577 	/*
578 	 * In the Spec. it checks the controller status first
579 	 * However if you get the correct information in case of
580 	 * power off recovery (POR) test, it should read ECC status first
581 	 */
582 	if (interrupt & ONENAND_INT_READ) {
583 		int ecc = onenand_read_ecc(this);
584 		if (ecc) {
585 			if (ecc & ONENAND_ECC_2BIT_ALL) {
586 				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587 					__func__, ecc);
588 				mtd->ecc_stats.failed++;
589 				return -EBADMSG;
590 			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
591 				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592 					__func__, ecc);
593 				mtd->ecc_stats.corrected++;
594 			}
595 		}
596 	} else if (state == FL_READING) {
597 		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 			__func__, ctrl, interrupt);
599 		return -EIO;
600 	}
601 
602 	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603 		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 		       __func__, ctrl, interrupt);
605 		return -EIO;
606 	}
607 
608 	if (!(interrupt & ONENAND_INT_MASTER)) {
609 		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 		       __func__, ctrl, interrupt);
611 		return -EIO;
612 	}
613 
614 	/* If there's controller error, it's a real error */
615 	if (ctrl & ONENAND_CTRL_ERROR) {
616 		printk(KERN_ERR "%s: controller error = 0x%04x\n",
617 			__func__, ctrl);
618 		if (ctrl & ONENAND_CTRL_LOCK)
619 			printk(KERN_ERR "%s: it's locked error.\n", __func__);
620 		return -EIO;
621 	}
622 
623 	return 0;
624 }
625 
626 /*
627  * onenand_interrupt - [DEFAULT] onenand interrupt handler
628  * @param irq		onenand interrupt number
629  * @param dev_id	interrupt data
630  *
631  * complete the work
632  */
633 static irqreturn_t onenand_interrupt(int irq, void *data)
634 {
635 	struct onenand_chip *this = data;
636 
637 	/* To handle shared interrupt */
638 	if (!this->complete.done)
639 		complete(&this->complete);
640 
641 	return IRQ_HANDLED;
642 }
643 
644 /*
645  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646  * @param mtd		MTD device structure
647  * @param state		state to select the max. timeout value
648  *
649  * Wait for command done.
650  */
651 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652 {
653 	struct onenand_chip *this = mtd->priv;
654 
655 	wait_for_completion(&this->complete);
656 
657 	return onenand_wait(mtd, state);
658 }
659 
660 /*
661  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662  * @param mtd		MTD device structure
663  * @param state		state to select the max. timeout value
664  *
665  * Try interrupt based wait (It is used one-time)
666  */
667 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668 {
669 	struct onenand_chip *this = mtd->priv;
670 	unsigned long remain, timeout;
671 
672 	/* We use interrupt wait first */
673 	this->wait = onenand_interrupt_wait;
674 
675 	timeout = msecs_to_jiffies(100);
676 	remain = wait_for_completion_timeout(&this->complete, timeout);
677 	if (!remain) {
678 		printk(KERN_INFO "OneNAND: There's no interrupt. "
679 				"We use the normal wait\n");
680 
681 		/* Release the irq */
682 		free_irq(this->irq, this);
683 
684 		this->wait = onenand_wait;
685 	}
686 
687 	return onenand_wait(mtd, state);
688 }
689 
690 /*
691  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692  * @param mtd		MTD device structure
693  *
694  * There's two method to wait onenand work
695  * 1. polling - read interrupt status register
696  * 2. interrupt - use the kernel interrupt method
697  */
698 static void onenand_setup_wait(struct mtd_info *mtd)
699 {
700 	struct onenand_chip *this = mtd->priv;
701 	int syscfg;
702 
703 	init_completion(&this->complete);
704 
705 	if (this->irq <= 0) {
706 		this->wait = onenand_wait;
707 		return;
708 	}
709 
710 	if (request_irq(this->irq, &onenand_interrupt,
711 				IRQF_SHARED, "onenand", this)) {
712 		/* If we can't get irq, use the normal wait */
713 		this->wait = onenand_wait;
714 		return;
715 	}
716 
717 	/* Enable interrupt */
718 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719 	syscfg |= ONENAND_SYS_CFG1_IOBE;
720 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721 
722 	this->wait = onenand_try_interrupt_wait;
723 }
724 
725 /**
726  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727  * @param mtd		MTD data structure
728  * @param area		BufferRAM area
729  * @return		offset given area
730  *
731  * Return BufferRAM offset given area
732  */
733 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734 {
735 	struct onenand_chip *this = mtd->priv;
736 
737 	if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 		/* Note: the 'this->writesize' is a real page size */
739 		if (area == ONENAND_DATARAM)
740 			return this->writesize;
741 		if (area == ONENAND_SPARERAM)
742 			return mtd->oobsize;
743 	}
744 
745 	return 0;
746 }
747 
748 /**
749  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750  * @param mtd		MTD data structure
751  * @param area		BufferRAM area
752  * @param buffer	the databuffer to put/get data
753  * @param offset	offset to read from or write to
754  * @param count		number of bytes to read/write
755  *
756  * Read the BufferRAM area
757  */
758 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759 		unsigned char *buffer, int offset, size_t count)
760 {
761 	struct onenand_chip *this = mtd->priv;
762 	void __iomem *bufferram;
763 
764 	bufferram = this->base + area;
765 
766 	bufferram += onenand_bufferram_offset(mtd, area);
767 
768 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769 		unsigned short word;
770 
771 		/* Align with word(16-bit) size */
772 		count--;
773 
774 		/* Read word and save byte */
775 		word = this->read_word(bufferram + offset + count);
776 		buffer[count] = (word & 0xff);
777 	}
778 
779 	memcpy(buffer, bufferram + offset, count);
780 
781 	return 0;
782 }
783 
784 /**
785  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786  * @param mtd		MTD data structure
787  * @param area		BufferRAM area
788  * @param buffer	the databuffer to put/get data
789  * @param offset	offset to read from or write to
790  * @param count		number of bytes to read/write
791  *
792  * Read the BufferRAM area with Sync. Burst Mode
793  */
794 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795 		unsigned char *buffer, int offset, size_t count)
796 {
797 	struct onenand_chip *this = mtd->priv;
798 	void __iomem *bufferram;
799 
800 	bufferram = this->base + area;
801 
802 	bufferram += onenand_bufferram_offset(mtd, area);
803 
804 	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805 
806 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807 		unsigned short word;
808 
809 		/* Align with word(16-bit) size */
810 		count--;
811 
812 		/* Read word and save byte */
813 		word = this->read_word(bufferram + offset + count);
814 		buffer[count] = (word & 0xff);
815 	}
816 
817 	memcpy(buffer, bufferram + offset, count);
818 
819 	this->mmcontrol(mtd, 0);
820 
821 	return 0;
822 }
823 
824 /**
825  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826  * @param mtd		MTD data structure
827  * @param area		BufferRAM area
828  * @param buffer	the databuffer to put/get data
829  * @param offset	offset to read from or write to
830  * @param count		number of bytes to read/write
831  *
832  * Write the BufferRAM area
833  */
834 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835 		const unsigned char *buffer, int offset, size_t count)
836 {
837 	struct onenand_chip *this = mtd->priv;
838 	void __iomem *bufferram;
839 
840 	bufferram = this->base + area;
841 
842 	bufferram += onenand_bufferram_offset(mtd, area);
843 
844 	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845 		unsigned short word;
846 		int byte_offset;
847 
848 		/* Align with word(16-bit) size */
849 		count--;
850 
851 		/* Calculate byte access offset */
852 		byte_offset = offset + count;
853 
854 		/* Read word and save byte */
855 		word = this->read_word(bufferram + byte_offset);
856 		word = (word & ~0xff) | buffer[count];
857 		this->write_word(word, bufferram + byte_offset);
858 	}
859 
860 	memcpy(bufferram + offset, buffer, count);
861 
862 	return 0;
863 }
864 
865 /**
866  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867  * @param mtd		MTD data structure
868  * @param addr		address to check
869  * @return		blockpage address
870  *
871  * Get blockpage address at 2x program mode
872  */
873 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874 {
875 	struct onenand_chip *this = mtd->priv;
876 	int blockpage, block, page;
877 
878 	/* Calculate the even block number */
879 	block = (int) (addr >> this->erase_shift) & ~1;
880 	/* Is it the odd plane? */
881 	if (addr & this->writesize)
882 		block++;
883 	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884 	blockpage = (block << 7) | page;
885 
886 	return blockpage;
887 }
888 
889 /**
890  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891  * @param mtd		MTD data structure
892  * @param addr		address to check
893  * @return		1 if there are valid data, otherwise 0
894  *
895  * Check bufferram if there is data we required
896  */
897 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898 {
899 	struct onenand_chip *this = mtd->priv;
900 	int blockpage, found = 0;
901 	unsigned int i;
902 
903 	if (ONENAND_IS_2PLANE(this))
904 		blockpage = onenand_get_2x_blockpage(mtd, addr);
905 	else
906 		blockpage = (int) (addr >> this->page_shift);
907 
908 	/* Is there valid data? */
909 	i = ONENAND_CURRENT_BUFFERRAM(this);
910 	if (this->bufferram[i].blockpage == blockpage)
911 		found = 1;
912 	else {
913 		/* Check another BufferRAM */
914 		i = ONENAND_NEXT_BUFFERRAM(this);
915 		if (this->bufferram[i].blockpage == blockpage) {
916 			ONENAND_SET_NEXT_BUFFERRAM(this);
917 			found = 1;
918 		}
919 	}
920 
921 	if (found && ONENAND_IS_DDP(this)) {
922 		/* Select DataRAM for DDP */
923 		int block = onenand_block(this, addr);
924 		int value = onenand_bufferram_address(this, block);
925 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926 	}
927 
928 	return found;
929 }
930 
931 /**
932  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933  * @param mtd		MTD data structure
934  * @param addr		address to update
935  * @param valid		valid flag
936  *
937  * Update BufferRAM information
938  */
939 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940 		int valid)
941 {
942 	struct onenand_chip *this = mtd->priv;
943 	int blockpage;
944 	unsigned int i;
945 
946 	if (ONENAND_IS_2PLANE(this))
947 		blockpage = onenand_get_2x_blockpage(mtd, addr);
948 	else
949 		blockpage = (int) (addr >> this->page_shift);
950 
951 	/* Invalidate another BufferRAM */
952 	i = ONENAND_NEXT_BUFFERRAM(this);
953 	if (this->bufferram[i].blockpage == blockpage)
954 		this->bufferram[i].blockpage = -1;
955 
956 	/* Update BufferRAM */
957 	i = ONENAND_CURRENT_BUFFERRAM(this);
958 	if (valid)
959 		this->bufferram[i].blockpage = blockpage;
960 	else
961 		this->bufferram[i].blockpage = -1;
962 }
963 
964 /**
965  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966  * @param mtd		MTD data structure
967  * @param addr		start address to invalidate
968  * @param len		length to invalidate
969  *
970  * Invalidate BufferRAM information
971  */
972 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973 		unsigned int len)
974 {
975 	struct onenand_chip *this = mtd->priv;
976 	int i;
977 	loff_t end_addr = addr + len;
978 
979 	/* Invalidate BufferRAM */
980 	for (i = 0; i < MAX_BUFFERRAM; i++) {
981 		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982 		if (buf_addr >= addr && buf_addr < end_addr)
983 			this->bufferram[i].blockpage = -1;
984 	}
985 }
986 
987 /**
988  * onenand_get_device - [GENERIC] Get chip for selected access
989  * @param mtd		MTD device structure
990  * @param new_state	the state which is requested
991  *
992  * Get the device and lock it for exclusive access
993  */
994 static int onenand_get_device(struct mtd_info *mtd, int new_state)
995 {
996 	struct onenand_chip *this = mtd->priv;
997 	DECLARE_WAITQUEUE(wait, current);
998 
999 	/*
1000 	 * Grab the lock and see if the device is available
1001 	 */
1002 	while (1) {
1003 		spin_lock(&this->chip_lock);
1004 		if (this->state == FL_READY) {
1005 			this->state = new_state;
1006 			spin_unlock(&this->chip_lock);
1007 			if (new_state != FL_PM_SUSPENDED && this->enable)
1008 				this->enable(mtd);
1009 			break;
1010 		}
1011 		if (new_state == FL_PM_SUSPENDED) {
1012 			spin_unlock(&this->chip_lock);
1013 			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014 		}
1015 		set_current_state(TASK_UNINTERRUPTIBLE);
1016 		add_wait_queue(&this->wq, &wait);
1017 		spin_unlock(&this->chip_lock);
1018 		schedule();
1019 		remove_wait_queue(&this->wq, &wait);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 /**
1026  * onenand_release_device - [GENERIC] release chip
1027  * @param mtd		MTD device structure
1028  *
1029  * Deselect, release chip lock and wake up anyone waiting on the device
1030  */
1031 static void onenand_release_device(struct mtd_info *mtd)
1032 {
1033 	struct onenand_chip *this = mtd->priv;
1034 
1035 	if (this->state != FL_PM_SUSPENDED && this->disable)
1036 		this->disable(mtd);
1037 	/* Release the chip */
1038 	spin_lock(&this->chip_lock);
1039 	this->state = FL_READY;
1040 	wake_up(&this->wq);
1041 	spin_unlock(&this->chip_lock);
1042 }
1043 
1044 /**
1045  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046  * @param mtd		MTD device structure
1047  * @param buf		destination address
1048  * @param column	oob offset to read from
1049  * @param thislen	oob length to read
1050  */
1051 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052 				int thislen)
1053 {
1054 	struct onenand_chip *this = mtd->priv;
1055 
1056 	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057 			     mtd->oobsize);
1058 	return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059 					   column, thislen);
1060 }
1061 
1062 /**
1063  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064  * @param mtd		MTD device structure
1065  * @param addr		address to recover
1066  * @param status	return value from onenand_wait / onenand_bbt_wait
1067  *
1068  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069  * lower page address and MSB page has higher page address in paired pages.
1070  * If power off occurs during MSB page program, the paired LSB page data can
1071  * become corrupt. LSB page recovery read is a way to read LSB page though page
1072  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073  * read after power up, issue LSB page recovery read.
1074  */
1075 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076 {
1077 	struct onenand_chip *this = mtd->priv;
1078 	int i;
1079 
1080 	/* Recovery is only for Flex-OneNAND */
1081 	if (!FLEXONENAND(this))
1082 		return status;
1083 
1084 	/* check if we failed due to uncorrectable error */
1085 	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086 		return status;
1087 
1088 	/* check if address lies in MLC region */
1089 	i = flexonenand_region(mtd, addr);
1090 	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091 		return status;
1092 
1093 	/* We are attempting to reread, so decrement stats.failed
1094 	 * which was incremented by onenand_wait due to read failure
1095 	 */
1096 	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097 		__func__);
1098 	mtd->ecc_stats.failed--;
1099 
1100 	/* Issue the LSB page recovery command */
1101 	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102 	return this->wait(mtd, FL_READING);
1103 }
1104 
1105 /**
1106  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107  * @param mtd		MTD device structure
1108  * @param from		offset to read from
1109  * @param ops:		oob operation description structure
1110  *
1111  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112  * So, read-while-load is not present.
1113  */
1114 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115 				struct mtd_oob_ops *ops)
1116 {
1117 	struct onenand_chip *this = mtd->priv;
1118 	struct mtd_ecc_stats stats;
1119 	size_t len = ops->len;
1120 	size_t ooblen = ops->ooblen;
1121 	u_char *buf = ops->datbuf;
1122 	u_char *oobbuf = ops->oobbuf;
1123 	int read = 0, column, thislen;
1124 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1125 	int ret = 0;
1126 	int writesize = this->writesize;
1127 
1128 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129 			(int)len);
1130 
1131 	oobsize = mtd_oobavail(mtd, ops);
1132 	oobcolumn = from & (mtd->oobsize - 1);
1133 
1134 	/* Do not allow reads past end of device */
1135 	if (from + len > mtd->size) {
1136 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137 			__func__);
1138 		ops->retlen = 0;
1139 		ops->oobretlen = 0;
1140 		return -EINVAL;
1141 	}
1142 
1143 	stats = mtd->ecc_stats;
1144 
1145 	while (read < len) {
1146 		cond_resched();
1147 
1148 		thislen = min_t(int, writesize, len - read);
1149 
1150 		column = from & (writesize - 1);
1151 		if (column + thislen > writesize)
1152 			thislen = writesize - column;
1153 
1154 		if (!onenand_check_bufferram(mtd, from)) {
1155 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156 
1157 			ret = this->wait(mtd, FL_READING);
1158 			if (unlikely(ret))
1159 				ret = onenand_recover_lsb(mtd, from, ret);
1160 			onenand_update_bufferram(mtd, from, !ret);
1161 			if (mtd_is_eccerr(ret))
1162 				ret = 0;
1163 			if (ret)
1164 				break;
1165 		}
1166 
1167 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168 		if (oobbuf) {
1169 			thisooblen = oobsize - oobcolumn;
1170 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171 
1172 			if (ops->mode == MTD_OPS_AUTO_OOB)
1173 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174 			else
1175 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176 			oobread += thisooblen;
1177 			oobbuf += thisooblen;
1178 			oobcolumn = 0;
1179 		}
1180 
1181 		read += thislen;
1182 		if (read == len)
1183 			break;
1184 
1185 		from += thislen;
1186 		buf += thislen;
1187 	}
1188 
1189 	/*
1190 	 * Return success, if no ECC failures, else -EBADMSG
1191 	 * fs driver will take care of that, because
1192 	 * retlen == desired len and result == -EBADMSG
1193 	 */
1194 	ops->retlen = read;
1195 	ops->oobretlen = oobread;
1196 
1197 	if (ret)
1198 		return ret;
1199 
1200 	if (mtd->ecc_stats.failed - stats.failed)
1201 		return -EBADMSG;
1202 
1203 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205 }
1206 
1207 /**
1208  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209  * @param mtd		MTD device structure
1210  * @param from		offset to read from
1211  * @param ops:		oob operation description structure
1212  *
1213  * OneNAND read main and/or out-of-band data
1214  */
1215 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 				struct mtd_oob_ops *ops)
1217 {
1218 	struct onenand_chip *this = mtd->priv;
1219 	struct mtd_ecc_stats stats;
1220 	size_t len = ops->len;
1221 	size_t ooblen = ops->ooblen;
1222 	u_char *buf = ops->datbuf;
1223 	u_char *oobbuf = ops->oobbuf;
1224 	int read = 0, column, thislen;
1225 	int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 	int ret = 0, boundary = 0;
1227 	int writesize = this->writesize;
1228 
1229 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230 			(int)len);
1231 
1232 	oobsize = mtd_oobavail(mtd, ops);
1233 	oobcolumn = from & (mtd->oobsize - 1);
1234 
1235 	/* Do not allow reads past end of device */
1236 	if ((from + len) > mtd->size) {
1237 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238 			__func__);
1239 		ops->retlen = 0;
1240 		ops->oobretlen = 0;
1241 		return -EINVAL;
1242 	}
1243 
1244 	stats = mtd->ecc_stats;
1245 
1246 	/* Read-while-load method */
1247 
1248 	/* Do first load to bufferRAM */
1249 	if (read < len) {
1250 		if (!onenand_check_bufferram(mtd, from)) {
1251 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252 			ret = this->wait(mtd, FL_READING);
1253 			onenand_update_bufferram(mtd, from, !ret);
1254 			if (mtd_is_eccerr(ret))
1255 				ret = 0;
1256 		}
1257 	}
1258 
1259 	thislen = min_t(int, writesize, len - read);
1260 	column = from & (writesize - 1);
1261 	if (column + thislen > writesize)
1262 		thislen = writesize - column;
1263 
1264 	while (!ret) {
1265 		/* If there is more to load then start next load */
1266 		from += thislen;
1267 		if (read + thislen < len) {
1268 			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269 			/*
1270 			 * Chip boundary handling in DDP
1271 			 * Now we issued chip 1 read and pointed chip 1
1272 			 * bufferram so we have to point chip 0 bufferram.
1273 			 */
1274 			if (ONENAND_IS_DDP(this) &&
1275 			    unlikely(from == (this->chipsize >> 1))) {
1276 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277 				boundary = 1;
1278 			} else
1279 				boundary = 0;
1280 			ONENAND_SET_PREV_BUFFERRAM(this);
1281 		}
1282 		/* While load is going, read from last bufferRAM */
1283 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284 
1285 		/* Read oob area if needed */
1286 		if (oobbuf) {
1287 			thisooblen = oobsize - oobcolumn;
1288 			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289 
1290 			if (ops->mode == MTD_OPS_AUTO_OOB)
1291 				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292 			else
1293 				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294 			oobread += thisooblen;
1295 			oobbuf += thisooblen;
1296 			oobcolumn = 0;
1297 		}
1298 
1299 		/* See if we are done */
1300 		read += thislen;
1301 		if (read == len)
1302 			break;
1303 		/* Set up for next read from bufferRAM */
1304 		if (unlikely(boundary))
1305 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306 		ONENAND_SET_NEXT_BUFFERRAM(this);
1307 		buf += thislen;
1308 		thislen = min_t(int, writesize, len - read);
1309 		column = 0;
1310 		cond_resched();
1311 		/* Now wait for load */
1312 		ret = this->wait(mtd, FL_READING);
1313 		onenand_update_bufferram(mtd, from, !ret);
1314 		if (mtd_is_eccerr(ret))
1315 			ret = 0;
1316 	}
1317 
1318 	/*
1319 	 * Return success, if no ECC failures, else -EBADMSG
1320 	 * fs driver will take care of that, because
1321 	 * retlen == desired len and result == -EBADMSG
1322 	 */
1323 	ops->retlen = read;
1324 	ops->oobretlen = oobread;
1325 
1326 	if (ret)
1327 		return ret;
1328 
1329 	if (mtd->ecc_stats.failed - stats.failed)
1330 		return -EBADMSG;
1331 
1332 	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333 	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334 }
1335 
1336 /**
1337  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338  * @param mtd		MTD device structure
1339  * @param from		offset to read from
1340  * @param ops:		oob operation description structure
1341  *
1342  * OneNAND read out-of-band data from the spare area
1343  */
1344 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345 			struct mtd_oob_ops *ops)
1346 {
1347 	struct onenand_chip *this = mtd->priv;
1348 	struct mtd_ecc_stats stats;
1349 	int read = 0, thislen, column, oobsize;
1350 	size_t len = ops->ooblen;
1351 	unsigned int mode = ops->mode;
1352 	u_char *buf = ops->oobbuf;
1353 	int ret = 0, readcmd;
1354 
1355 	from += ops->ooboffs;
1356 
1357 	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358 			(int)len);
1359 
1360 	/* Initialize return length value */
1361 	ops->oobretlen = 0;
1362 
1363 	if (mode == MTD_OPS_AUTO_OOB)
1364 		oobsize = mtd->oobavail;
1365 	else
1366 		oobsize = mtd->oobsize;
1367 
1368 	column = from & (mtd->oobsize - 1);
1369 
1370 	if (unlikely(column >= oobsize)) {
1371 		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372 			__func__);
1373 		return -EINVAL;
1374 	}
1375 
1376 	stats = mtd->ecc_stats;
1377 
1378 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379 
1380 	while (read < len) {
1381 		cond_resched();
1382 
1383 		thislen = oobsize - column;
1384 		thislen = min_t(int, thislen, len);
1385 
1386 		this->command(mtd, readcmd, from, mtd->oobsize);
1387 
1388 		onenand_update_bufferram(mtd, from, 0);
1389 
1390 		ret = this->wait(mtd, FL_READING);
1391 		if (unlikely(ret))
1392 			ret = onenand_recover_lsb(mtd, from, ret);
1393 
1394 		if (ret && !mtd_is_eccerr(ret)) {
1395 			printk(KERN_ERR "%s: read failed = 0x%x\n",
1396 				__func__, ret);
1397 			break;
1398 		}
1399 
1400 		if (mode == MTD_OPS_AUTO_OOB)
1401 			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402 		else
1403 			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404 
1405 		read += thislen;
1406 
1407 		if (read == len)
1408 			break;
1409 
1410 		buf += thislen;
1411 
1412 		/* Read more? */
1413 		if (read < len) {
1414 			/* Page size */
1415 			from += mtd->writesize;
1416 			column = 0;
1417 		}
1418 	}
1419 
1420 	ops->oobretlen = read;
1421 
1422 	if (ret)
1423 		return ret;
1424 
1425 	if (mtd->ecc_stats.failed - stats.failed)
1426 		return -EBADMSG;
1427 
1428 	return 0;
1429 }
1430 
1431 /**
1432  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433  * @param mtd:		MTD device structure
1434  * @param from:		offset to read from
1435  * @param ops:		oob operation description structure
1436 
1437  * Read main and/or out-of-band
1438  */
1439 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440 			    struct mtd_oob_ops *ops)
1441 {
1442 	struct onenand_chip *this = mtd->priv;
1443 	int ret;
1444 
1445 	switch (ops->mode) {
1446 	case MTD_OPS_PLACE_OOB:
1447 	case MTD_OPS_AUTO_OOB:
1448 		break;
1449 	case MTD_OPS_RAW:
1450 		/* Not implemented yet */
1451 	default:
1452 		return -EINVAL;
1453 	}
1454 
1455 	onenand_get_device(mtd, FL_READING);
1456 	if (ops->datbuf)
1457 		ret = ONENAND_IS_4KB_PAGE(this) ?
1458 			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1459 			onenand_read_ops_nolock(mtd, from, ops);
1460 	else
1461 		ret = onenand_read_oob_nolock(mtd, from, ops);
1462 	onenand_release_device(mtd);
1463 
1464 	return ret;
1465 }
1466 
1467 /**
1468  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469  * @param mtd		MTD device structure
1470  * @param state		state to select the max. timeout value
1471  *
1472  * Wait for command done.
1473  */
1474 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1475 {
1476 	struct onenand_chip *this = mtd->priv;
1477 	unsigned long timeout;
1478 	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1479 
1480 	/* The 20 msec is enough */
1481 	timeout = jiffies + msecs_to_jiffies(20);
1482 	while (time_before(jiffies, timeout)) {
1483 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1484 		if (interrupt & ONENAND_INT_MASTER)
1485 			break;
1486 	}
1487 	/* To get correct interrupt status in timeout case */
1488 	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1489 	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1490 	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1491 	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1492 
1493 	if (interrupt & ONENAND_INT_READ) {
1494 		ecc = onenand_read_ecc(this);
1495 		if (ecc & ONENAND_ECC_2BIT_ALL) {
1496 			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1497 			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1498 			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1499 			return ONENAND_BBT_READ_ECC_ERROR;
1500 		}
1501 	} else {
1502 		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1503 		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1504 		       __func__, ctrl, interrupt, addr1, addr8);
1505 		return ONENAND_BBT_READ_FATAL_ERROR;
1506 	}
1507 
1508 	/* Initial bad block case: 0x2400 or 0x0400 */
1509 	if (ctrl & ONENAND_CTRL_ERROR) {
1510 		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511 		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1512 		return ONENAND_BBT_READ_ERROR;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520  * @param mtd		MTD device structure
1521  * @param from		offset to read from
1522  * @param ops		oob operation description structure
1523  *
1524  * OneNAND read out-of-band data from the spare area for bbt scan
1525  */
1526 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1527 			    struct mtd_oob_ops *ops)
1528 {
1529 	struct onenand_chip *this = mtd->priv;
1530 	int read = 0, thislen, column;
1531 	int ret = 0, readcmd;
1532 	size_t len = ops->ooblen;
1533 	u_char *buf = ops->oobbuf;
1534 
1535 	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1536 			len);
1537 
1538 	/* Initialize return value */
1539 	ops->oobretlen = 0;
1540 
1541 	/* Do not allow reads past end of device */
1542 	if (unlikely((from + len) > mtd->size)) {
1543 		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1544 			__func__);
1545 		return ONENAND_BBT_READ_FATAL_ERROR;
1546 	}
1547 
1548 	/* Grab the lock and see if the device is available */
1549 	onenand_get_device(mtd, FL_READING);
1550 
1551 	column = from & (mtd->oobsize - 1);
1552 
1553 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1554 
1555 	while (read < len) {
1556 		cond_resched();
1557 
1558 		thislen = mtd->oobsize - column;
1559 		thislen = min_t(int, thislen, len);
1560 
1561 		this->command(mtd, readcmd, from, mtd->oobsize);
1562 
1563 		onenand_update_bufferram(mtd, from, 0);
1564 
1565 		ret = this->bbt_wait(mtd, FL_READING);
1566 		if (unlikely(ret))
1567 			ret = onenand_recover_lsb(mtd, from, ret);
1568 
1569 		if (ret)
1570 			break;
1571 
1572 		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1573 		read += thislen;
1574 		if (read == len)
1575 			break;
1576 
1577 		buf += thislen;
1578 
1579 		/* Read more? */
1580 		if (read < len) {
1581 			/* Update Page size */
1582 			from += this->writesize;
1583 			column = 0;
1584 		}
1585 	}
1586 
1587 	/* Deselect and wake up anyone waiting on the device */
1588 	onenand_release_device(mtd);
1589 
1590 	ops->oobretlen = read;
1591 	return ret;
1592 }
1593 
1594 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1595 /**
1596  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597  * @param mtd		MTD device structure
1598  * @param buf		the databuffer to verify
1599  * @param to		offset to read from
1600  */
1601 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1602 {
1603 	struct onenand_chip *this = mtd->priv;
1604 	u_char *oob_buf = this->oob_buf;
1605 	int status, i, readcmd;
1606 
1607 	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1608 
1609 	this->command(mtd, readcmd, to, mtd->oobsize);
1610 	onenand_update_bufferram(mtd, to, 0);
1611 	status = this->wait(mtd, FL_READING);
1612 	if (status)
1613 		return status;
1614 
1615 	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1616 	for (i = 0; i < mtd->oobsize; i++)
1617 		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1618 			return -EBADMSG;
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * onenand_verify - [GENERIC] verify the chip contents after a write
1625  * @param mtd          MTD device structure
1626  * @param buf          the databuffer to verify
1627  * @param addr         offset to read from
1628  * @param len          number of bytes to read and compare
1629  */
1630 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1631 {
1632 	struct onenand_chip *this = mtd->priv;
1633 	int ret = 0;
1634 	int thislen, column;
1635 
1636 	column = addr & (this->writesize - 1);
1637 
1638 	while (len != 0) {
1639 		thislen = min_t(int, this->writesize - column, len);
1640 
1641 		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1642 
1643 		onenand_update_bufferram(mtd, addr, 0);
1644 
1645 		ret = this->wait(mtd, FL_READING);
1646 		if (ret)
1647 			return ret;
1648 
1649 		onenand_update_bufferram(mtd, addr, 1);
1650 
1651 		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1652 
1653 		if (memcmp(buf, this->verify_buf + column, thislen))
1654 			return -EBADMSG;
1655 
1656 		len -= thislen;
1657 		buf += thislen;
1658 		addr += thislen;
1659 		column = 0;
1660 	}
1661 
1662 	return 0;
1663 }
1664 #else
1665 #define onenand_verify(...)		(0)
1666 #define onenand_verify_oob(...)		(0)
1667 #endif
1668 
1669 #define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1670 
1671 static void onenand_panic_wait(struct mtd_info *mtd)
1672 {
1673 	struct onenand_chip *this = mtd->priv;
1674 	unsigned int interrupt;
1675 	int i;
1676 
1677 	for (i = 0; i < 2000; i++) {
1678 		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1679 		if (interrupt & ONENAND_INT_MASTER)
1680 			break;
1681 		udelay(10);
1682 	}
1683 }
1684 
1685 /**
1686  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687  * @param mtd		MTD device structure
1688  * @param to		offset to write to
1689  * @param len		number of bytes to write
1690  * @param retlen	pointer to variable to store the number of written bytes
1691  * @param buf		the data to write
1692  *
1693  * Write with ECC
1694  */
1695 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1696 			 size_t *retlen, const u_char *buf)
1697 {
1698 	struct onenand_chip *this = mtd->priv;
1699 	int column, subpage;
1700 	int written = 0;
1701 
1702 	if (this->state == FL_PM_SUSPENDED)
1703 		return -EBUSY;
1704 
1705 	/* Wait for any existing operation to clear */
1706 	onenand_panic_wait(mtd);
1707 
1708 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1709 			(int)len);
1710 
1711 	/* Reject writes, which are not page aligned */
1712         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1713 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1714 			__func__);
1715                 return -EINVAL;
1716         }
1717 
1718 	column = to & (mtd->writesize - 1);
1719 
1720 	/* Loop until all data write */
1721 	while (written < len) {
1722 		int thislen = min_t(int, mtd->writesize - column, len - written);
1723 		u_char *wbuf = (u_char *) buf;
1724 
1725 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1726 
1727 		/* Partial page write */
1728 		subpage = thislen < mtd->writesize;
1729 		if (subpage) {
1730 			memset(this->page_buf, 0xff, mtd->writesize);
1731 			memcpy(this->page_buf + column, buf, thislen);
1732 			wbuf = this->page_buf;
1733 		}
1734 
1735 		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1736 		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1737 
1738 		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1739 
1740 		onenand_panic_wait(mtd);
1741 
1742 		/* In partial page write we don't update bufferram */
1743 		onenand_update_bufferram(mtd, to, !subpage);
1744 		if (ONENAND_IS_2PLANE(this)) {
1745 			ONENAND_SET_BUFFERRAM1(this);
1746 			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1747 		}
1748 
1749 		written += thislen;
1750 
1751 		if (written == len)
1752 			break;
1753 
1754 		column = 0;
1755 		to += thislen;
1756 		buf += thislen;
1757 	}
1758 
1759 	*retlen = written;
1760 	return 0;
1761 }
1762 
1763 /**
1764  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765  * @param mtd		MTD device structure
1766  * @param oob_buf	oob buffer
1767  * @param buf		source address
1768  * @param column	oob offset to write to
1769  * @param thislen	oob length to write
1770  */
1771 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1772 				  const u_char *buf, int column, int thislen)
1773 {
1774 	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1775 }
1776 
1777 /**
1778  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779  * @param mtd		MTD device structure
1780  * @param to		offset to write to
1781  * @param ops		oob operation description structure
1782  *
1783  * Write main and/or oob with ECC
1784  */
1785 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1786 				struct mtd_oob_ops *ops)
1787 {
1788 	struct onenand_chip *this = mtd->priv;
1789 	int written = 0, column, thislen = 0, subpage = 0;
1790 	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1791 	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1792 	size_t len = ops->len;
1793 	size_t ooblen = ops->ooblen;
1794 	const u_char *buf = ops->datbuf;
1795 	const u_char *oob = ops->oobbuf;
1796 	u_char *oobbuf;
1797 	int ret = 0, cmd;
1798 
1799 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1800 			(int)len);
1801 
1802 	/* Initialize retlen, in case of early exit */
1803 	ops->retlen = 0;
1804 	ops->oobretlen = 0;
1805 
1806 	/* Reject writes, which are not page aligned */
1807         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1808 		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1809 			__func__);
1810                 return -EINVAL;
1811         }
1812 
1813 	/* Check zero length */
1814 	if (!len)
1815 		return 0;
1816 	oobsize = mtd_oobavail(mtd, ops);
1817 	oobcolumn = to & (mtd->oobsize - 1);
1818 
1819 	column = to & (mtd->writesize - 1);
1820 
1821 	/* Loop until all data write */
1822 	while (1) {
1823 		if (written < len) {
1824 			u_char *wbuf = (u_char *) buf;
1825 
1826 			thislen = min_t(int, mtd->writesize - column, len - written);
1827 			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1828 
1829 			cond_resched();
1830 
1831 			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1832 
1833 			/* Partial page write */
1834 			subpage = thislen < mtd->writesize;
1835 			if (subpage) {
1836 				memset(this->page_buf, 0xff, mtd->writesize);
1837 				memcpy(this->page_buf + column, buf, thislen);
1838 				wbuf = this->page_buf;
1839 			}
1840 
1841 			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1842 
1843 			if (oob) {
1844 				oobbuf = this->oob_buf;
1845 
1846 				/* We send data to spare ram with oobsize
1847 				 * to prevent byte access */
1848 				memset(oobbuf, 0xff, mtd->oobsize);
1849 				if (ops->mode == MTD_OPS_AUTO_OOB)
1850 					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1851 				else
1852 					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1853 
1854 				oobwritten += thisooblen;
1855 				oob += thisooblen;
1856 				oobcolumn = 0;
1857 			} else
1858 				oobbuf = (u_char *) ffchars;
1859 
1860 			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1861 		} else
1862 			ONENAND_SET_NEXT_BUFFERRAM(this);
1863 
1864 		/*
1865 		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1866 		 * write-while-program feature.
1867 		 */
1868 		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1869 			ONENAND_SET_PREV_BUFFERRAM(this);
1870 
1871 			ret = this->wait(mtd, FL_WRITING);
1872 
1873 			/* In partial page write we don't update bufferram */
1874 			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1875 			if (ret) {
1876 				written -= prevlen;
1877 				printk(KERN_ERR "%s: write failed %d\n",
1878 					__func__, ret);
1879 				break;
1880 			}
1881 
1882 			if (written == len) {
1883 				/* Only check verify write turn on */
1884 				ret = onenand_verify(mtd, buf - len, to - len, len);
1885 				if (ret)
1886 					printk(KERN_ERR "%s: verify failed %d\n",
1887 						__func__, ret);
1888 				break;
1889 			}
1890 
1891 			ONENAND_SET_NEXT_BUFFERRAM(this);
1892 		}
1893 
1894 		this->ongoing = 0;
1895 		cmd = ONENAND_CMD_PROG;
1896 
1897 		/* Exclude 1st OTP and OTP blocks for cache program feature */
1898 		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899 		    likely(onenand_block(this, to) != 0) &&
1900 		    ONENAND_IS_4KB_PAGE(this) &&
1901 		    ((written + thislen) < len)) {
1902 			cmd = ONENAND_CMD_2X_CACHE_PROG;
1903 			this->ongoing = 1;
1904 		}
1905 
1906 		this->command(mtd, cmd, to, mtd->writesize);
1907 
1908 		/*
1909 		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1910 		 */
1911 		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912 			ret = this->wait(mtd, FL_WRITING);
1913 
1914 			/* In partial page write we don't update bufferram */
1915 			onenand_update_bufferram(mtd, to, !ret && !subpage);
1916 			if (ret) {
1917 				printk(KERN_ERR "%s: write failed %d\n",
1918 					__func__, ret);
1919 				break;
1920 			}
1921 
1922 			/* Only check verify write turn on */
1923 			ret = onenand_verify(mtd, buf, to, thislen);
1924 			if (ret) {
1925 				printk(KERN_ERR "%s: verify failed %d\n",
1926 					__func__, ret);
1927 				break;
1928 			}
1929 
1930 			written += thislen;
1931 
1932 			if (written == len)
1933 				break;
1934 
1935 		} else
1936 			written += thislen;
1937 
1938 		column = 0;
1939 		prev_subpage = subpage;
1940 		prev = to;
1941 		prevlen = thislen;
1942 		to += thislen;
1943 		buf += thislen;
1944 		first = 0;
1945 	}
1946 
1947 	/* In error case, clear all bufferrams */
1948 	if (written != len)
1949 		onenand_invalidate_bufferram(mtd, 0, -1);
1950 
1951 	ops->retlen = written;
1952 	ops->oobretlen = oobwritten;
1953 
1954 	return ret;
1955 }
1956 
1957 
1958 /**
1959  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960  * @param mtd		MTD device structure
1961  * @param to		offset to write to
1962  * @param len		number of bytes to write
1963  * @param retlen	pointer to variable to store the number of written bytes
1964  * @param buf		the data to write
1965  * @param mode		operation mode
1966  *
1967  * OneNAND write out-of-band
1968  */
1969 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1970 				    struct mtd_oob_ops *ops)
1971 {
1972 	struct onenand_chip *this = mtd->priv;
1973 	int column, ret = 0, oobsize;
1974 	int written = 0, oobcmd;
1975 	u_char *oobbuf;
1976 	size_t len = ops->ooblen;
1977 	const u_char *buf = ops->oobbuf;
1978 	unsigned int mode = ops->mode;
1979 
1980 	to += ops->ooboffs;
1981 
1982 	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1983 			(int)len);
1984 
1985 	/* Initialize retlen, in case of early exit */
1986 	ops->oobretlen = 0;
1987 
1988 	if (mode == MTD_OPS_AUTO_OOB)
1989 		oobsize = mtd->oobavail;
1990 	else
1991 		oobsize = mtd->oobsize;
1992 
1993 	column = to & (mtd->oobsize - 1);
1994 
1995 	if (unlikely(column >= oobsize)) {
1996 		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
1997 			__func__);
1998 		return -EINVAL;
1999 	}
2000 
2001 	/* For compatibility with NAND: Do not allow write past end of page */
2002 	if (unlikely(column + len > oobsize)) {
2003 		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2004 			__func__);
2005 		return -EINVAL;
2006 	}
2007 
2008 	oobbuf = this->oob_buf;
2009 
2010 	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2011 
2012 	/* Loop until all data write */
2013 	while (written < len) {
2014 		int thislen = min_t(int, oobsize, len - written);
2015 
2016 		cond_resched();
2017 
2018 		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2019 
2020 		/* We send data to spare ram with oobsize
2021 		 * to prevent byte access */
2022 		memset(oobbuf, 0xff, mtd->oobsize);
2023 		if (mode == MTD_OPS_AUTO_OOB)
2024 			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2025 		else
2026 			memcpy(oobbuf + column, buf, thislen);
2027 		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2028 
2029 		if (ONENAND_IS_4KB_PAGE(this)) {
2030 			/* Set main area of DataRAM to 0xff*/
2031 			memset(this->page_buf, 0xff, mtd->writesize);
2032 			this->write_bufferram(mtd, ONENAND_DATARAM,
2033 					 this->page_buf, 0, mtd->writesize);
2034 		}
2035 
2036 		this->command(mtd, oobcmd, to, mtd->oobsize);
2037 
2038 		onenand_update_bufferram(mtd, to, 0);
2039 		if (ONENAND_IS_2PLANE(this)) {
2040 			ONENAND_SET_BUFFERRAM1(this);
2041 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2042 		}
2043 
2044 		ret = this->wait(mtd, FL_WRITING);
2045 		if (ret) {
2046 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2047 			break;
2048 		}
2049 
2050 		ret = onenand_verify_oob(mtd, oobbuf, to);
2051 		if (ret) {
2052 			printk(KERN_ERR "%s: verify failed %d\n",
2053 				__func__, ret);
2054 			break;
2055 		}
2056 
2057 		written += thislen;
2058 		if (written == len)
2059 			break;
2060 
2061 		to += mtd->writesize;
2062 		buf += thislen;
2063 		column = 0;
2064 	}
2065 
2066 	ops->oobretlen = written;
2067 
2068 	return ret;
2069 }
2070 
2071 /**
2072  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2073  * @param mtd:		MTD device structure
2074  * @param to:		offset to write
2075  * @param ops:		oob operation description structure
2076  */
2077 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2078 			     struct mtd_oob_ops *ops)
2079 {
2080 	int ret;
2081 
2082 	switch (ops->mode) {
2083 	case MTD_OPS_PLACE_OOB:
2084 	case MTD_OPS_AUTO_OOB:
2085 		break;
2086 	case MTD_OPS_RAW:
2087 		/* Not implemented yet */
2088 	default:
2089 		return -EINVAL;
2090 	}
2091 
2092 	onenand_get_device(mtd, FL_WRITING);
2093 	if (ops->datbuf)
2094 		ret = onenand_write_ops_nolock(mtd, to, ops);
2095 	else
2096 		ret = onenand_write_oob_nolock(mtd, to, ops);
2097 	onenand_release_device(mtd);
2098 
2099 	return ret;
2100 }
2101 
2102 /**
2103  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2104  * @param mtd		MTD device structure
2105  * @param ofs		offset from device start
2106  * @param allowbbt	1, if its allowed to access the bbt area
2107  *
2108  * Check, if the block is bad. Either by reading the bad block table or
2109  * calling of the scan function.
2110  */
2111 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2112 {
2113 	struct onenand_chip *this = mtd->priv;
2114 	struct bbm_info *bbm = this->bbm;
2115 
2116 	/* Return info from the table */
2117 	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2118 }
2119 
2120 
2121 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2122 					   struct erase_info *instr)
2123 {
2124 	struct onenand_chip *this = mtd->priv;
2125 	loff_t addr = instr->addr;
2126 	int len = instr->len;
2127 	unsigned int block_size = (1 << this->erase_shift);
2128 	int ret = 0;
2129 
2130 	while (len) {
2131 		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2132 		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2133 		if (ret) {
2134 			printk(KERN_ERR "%s: Failed verify, block %d\n",
2135 			       __func__, onenand_block(this, addr));
2136 			instr->fail_addr = addr;
2137 			return -1;
2138 		}
2139 		len -= block_size;
2140 		addr += block_size;
2141 	}
2142 	return 0;
2143 }
2144 
2145 /**
2146  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2147  * @param mtd		MTD device structure
2148  * @param instr		erase instruction
2149  * @param region	erase region
2150  *
2151  * Erase one or more blocks up to 64 block at a time
2152  */
2153 static int onenand_multiblock_erase(struct mtd_info *mtd,
2154 				    struct erase_info *instr,
2155 				    unsigned int block_size)
2156 {
2157 	struct onenand_chip *this = mtd->priv;
2158 	loff_t addr = instr->addr;
2159 	int len = instr->len;
2160 	int eb_count = 0;
2161 	int ret = 0;
2162 	int bdry_block = 0;
2163 
2164 	if (ONENAND_IS_DDP(this)) {
2165 		loff_t bdry_addr = this->chipsize >> 1;
2166 		if (addr < bdry_addr && (addr + len) > bdry_addr)
2167 			bdry_block = bdry_addr >> this->erase_shift;
2168 	}
2169 
2170 	/* Pre-check bbs */
2171 	while (len) {
2172 		/* Check if we have a bad block, we do not erase bad blocks */
2173 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2174 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2175 			       "at addr 0x%012llx\n",
2176 			       __func__, (unsigned long long) addr);
2177 			return -EIO;
2178 		}
2179 		len -= block_size;
2180 		addr += block_size;
2181 	}
2182 
2183 	len = instr->len;
2184 	addr = instr->addr;
2185 
2186 	/* loop over 64 eb batches */
2187 	while (len) {
2188 		struct erase_info verify_instr = *instr;
2189 		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2190 
2191 		verify_instr.addr = addr;
2192 		verify_instr.len = 0;
2193 
2194 		/* do not cross chip boundary */
2195 		if (bdry_block) {
2196 			int this_block = (addr >> this->erase_shift);
2197 
2198 			if (this_block < bdry_block) {
2199 				max_eb_count = min(max_eb_count,
2200 						   (bdry_block - this_block));
2201 			}
2202 		}
2203 
2204 		eb_count = 0;
2205 
2206 		while (len > block_size && eb_count < (max_eb_count - 1)) {
2207 			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2208 				      addr, block_size);
2209 			onenand_invalidate_bufferram(mtd, addr, block_size);
2210 
2211 			ret = this->wait(mtd, FL_PREPARING_ERASE);
2212 			if (ret) {
2213 				printk(KERN_ERR "%s: Failed multiblock erase, "
2214 				       "block %d\n", __func__,
2215 				       onenand_block(this, addr));
2216 				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2217 				return -EIO;
2218 			}
2219 
2220 			len -= block_size;
2221 			addr += block_size;
2222 			eb_count++;
2223 		}
2224 
2225 		/* last block of 64-eb series */
2226 		cond_resched();
2227 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2228 		onenand_invalidate_bufferram(mtd, addr, block_size);
2229 
2230 		ret = this->wait(mtd, FL_ERASING);
2231 		/* Check if it is write protected */
2232 		if (ret) {
2233 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2234 			       __func__, onenand_block(this, addr));
2235 			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2236 			return -EIO;
2237 		}
2238 
2239 		len -= block_size;
2240 		addr += block_size;
2241 		eb_count++;
2242 
2243 		/* verify */
2244 		verify_instr.len = eb_count * block_size;
2245 		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2246 			instr->fail_addr = verify_instr.fail_addr;
2247 			return -EIO;
2248 		}
2249 
2250 	}
2251 	return 0;
2252 }
2253 
2254 
2255 /**
2256  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2257  * @param mtd		MTD device structure
2258  * @param instr		erase instruction
2259  * @param region	erase region
2260  * @param block_size	erase block size
2261  *
2262  * Erase one or more blocks one block at a time
2263  */
2264 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2265 					struct erase_info *instr,
2266 					struct mtd_erase_region_info *region,
2267 					unsigned int block_size)
2268 {
2269 	struct onenand_chip *this = mtd->priv;
2270 	loff_t addr = instr->addr;
2271 	int len = instr->len;
2272 	loff_t region_end = 0;
2273 	int ret = 0;
2274 
2275 	if (region) {
2276 		/* region is set for Flex-OneNAND */
2277 		region_end = region->offset + region->erasesize * region->numblocks;
2278 	}
2279 
2280 	/* Loop through the blocks */
2281 	while (len) {
2282 		cond_resched();
2283 
2284 		/* Check if we have a bad block, we do not erase bad blocks */
2285 		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2286 			printk(KERN_WARNING "%s: attempt to erase a bad block "
2287 					"at addr 0x%012llx\n",
2288 					__func__, (unsigned long long) addr);
2289 			return -EIO;
2290 		}
2291 
2292 		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2293 
2294 		onenand_invalidate_bufferram(mtd, addr, block_size);
2295 
2296 		ret = this->wait(mtd, FL_ERASING);
2297 		/* Check, if it is write protected */
2298 		if (ret) {
2299 			printk(KERN_ERR "%s: Failed erase, block %d\n",
2300 				__func__, onenand_block(this, addr));
2301 			instr->fail_addr = addr;
2302 			return -EIO;
2303 		}
2304 
2305 		len -= block_size;
2306 		addr += block_size;
2307 
2308 		if (region && addr == region_end) {
2309 			if (!len)
2310 				break;
2311 			region++;
2312 
2313 			block_size = region->erasesize;
2314 			region_end = region->offset + region->erasesize * region->numblocks;
2315 
2316 			if (len & (block_size - 1)) {
2317 				/* FIXME: This should be handled at MTD partitioning level. */
2318 				printk(KERN_ERR "%s: Unaligned address\n",
2319 					__func__);
2320 				return -EIO;
2321 			}
2322 		}
2323 	}
2324 	return 0;
2325 }
2326 
2327 /**
2328  * onenand_erase - [MTD Interface] erase block(s)
2329  * @param mtd		MTD device structure
2330  * @param instr		erase instruction
2331  *
2332  * Erase one or more blocks
2333  */
2334 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2335 {
2336 	struct onenand_chip *this = mtd->priv;
2337 	unsigned int block_size;
2338 	loff_t addr = instr->addr;
2339 	loff_t len = instr->len;
2340 	int ret = 0;
2341 	struct mtd_erase_region_info *region = NULL;
2342 	loff_t region_offset = 0;
2343 
2344 	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2345 			(unsigned long long)instr->addr,
2346 			(unsigned long long)instr->len);
2347 
2348 	if (FLEXONENAND(this)) {
2349 		/* Find the eraseregion of this address */
2350 		int i = flexonenand_region(mtd, addr);
2351 
2352 		region = &mtd->eraseregions[i];
2353 		block_size = region->erasesize;
2354 
2355 		/* Start address within region must align on block boundary.
2356 		 * Erase region's start offset is always block start address.
2357 		 */
2358 		region_offset = region->offset;
2359 	} else
2360 		block_size = 1 << this->erase_shift;
2361 
2362 	/* Start address must align on block boundary */
2363 	if (unlikely((addr - region_offset) & (block_size - 1))) {
2364 		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2365 		return -EINVAL;
2366 	}
2367 
2368 	/* Length must align on block boundary */
2369 	if (unlikely(len & (block_size - 1))) {
2370 		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2371 		return -EINVAL;
2372 	}
2373 
2374 	/* Grab the lock and see if the device is available */
2375 	onenand_get_device(mtd, FL_ERASING);
2376 
2377 	if (ONENAND_IS_4KB_PAGE(this) || region ||
2378 	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2379 		/* region is set for Flex-OneNAND (no mb erase) */
2380 		ret = onenand_block_by_block_erase(mtd, instr,
2381 						   region, block_size);
2382 	} else {
2383 		ret = onenand_multiblock_erase(mtd, instr, block_size);
2384 	}
2385 
2386 	/* Deselect and wake up anyone waiting on the device */
2387 	onenand_release_device(mtd);
2388 
2389 	return ret;
2390 }
2391 
2392 /**
2393  * onenand_sync - [MTD Interface] sync
2394  * @param mtd		MTD device structure
2395  *
2396  * Sync is actually a wait for chip ready function
2397  */
2398 static void onenand_sync(struct mtd_info *mtd)
2399 {
2400 	pr_debug("%s: called\n", __func__);
2401 
2402 	/* Grab the lock and see if the device is available */
2403 	onenand_get_device(mtd, FL_SYNCING);
2404 
2405 	/* Release it and go back */
2406 	onenand_release_device(mtd);
2407 }
2408 
2409 /**
2410  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2411  * @param mtd		MTD device structure
2412  * @param ofs		offset relative to mtd start
2413  *
2414  * Check whether the block is bad
2415  */
2416 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2417 {
2418 	int ret;
2419 
2420 	onenand_get_device(mtd, FL_READING);
2421 	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2422 	onenand_release_device(mtd);
2423 	return ret;
2424 }
2425 
2426 /**
2427  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2428  * @param mtd		MTD device structure
2429  * @param ofs		offset from device start
2430  *
2431  * This is the default implementation, which can be overridden by
2432  * a hardware specific driver.
2433  */
2434 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2435 {
2436 	struct onenand_chip *this = mtd->priv;
2437 	struct bbm_info *bbm = this->bbm;
2438 	u_char buf[2] = {0, 0};
2439 	struct mtd_oob_ops ops = {
2440 		.mode = MTD_OPS_PLACE_OOB,
2441 		.ooblen = 2,
2442 		.oobbuf = buf,
2443 		.ooboffs = 0,
2444 	};
2445 	int block;
2446 
2447 	/* Get block number */
2448 	block = onenand_block(this, ofs);
2449         if (bbm->bbt)
2450                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2451 
2452         /* We write two bytes, so we don't have to mess with 16-bit access */
2453         ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2454 	/* FIXME : What to do when marking SLC block in partition
2455 	 * 	   with MLC erasesize? For now, it is not advisable to
2456 	 *	   create partitions containing both SLC and MLC regions.
2457 	 */
2458 	return onenand_write_oob_nolock(mtd, ofs, &ops);
2459 }
2460 
2461 /**
2462  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2463  * @param mtd		MTD device structure
2464  * @param ofs		offset relative to mtd start
2465  *
2466  * Mark the block as bad
2467  */
2468 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2469 {
2470 	struct onenand_chip *this = mtd->priv;
2471 	int ret;
2472 
2473 	ret = onenand_block_isbad(mtd, ofs);
2474 	if (ret) {
2475 		/* If it was bad already, return success and do nothing */
2476 		if (ret > 0)
2477 			return 0;
2478 		return ret;
2479 	}
2480 
2481 	onenand_get_device(mtd, FL_WRITING);
2482 	ret = this->block_markbad(mtd, ofs);
2483 	onenand_release_device(mtd);
2484 	return ret;
2485 }
2486 
2487 /**
2488  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2489  * @param mtd		MTD device structure
2490  * @param ofs		offset relative to mtd start
2491  * @param len		number of bytes to lock or unlock
2492  * @param cmd		lock or unlock command
2493  *
2494  * Lock or unlock one or more blocks
2495  */
2496 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2497 {
2498 	struct onenand_chip *this = mtd->priv;
2499 	int start, end, block, value, status;
2500 	int wp_status_mask;
2501 
2502 	start = onenand_block(this, ofs);
2503 	end = onenand_block(this, ofs + len) - 1;
2504 
2505 	if (cmd == ONENAND_CMD_LOCK)
2506 		wp_status_mask = ONENAND_WP_LS;
2507 	else
2508 		wp_status_mask = ONENAND_WP_US;
2509 
2510 	/* Continuous lock scheme */
2511 	if (this->options & ONENAND_HAS_CONT_LOCK) {
2512 		/* Set start block address */
2513 		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2514 		/* Set end block address */
2515 		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2516 		/* Write lock command */
2517 		this->command(mtd, cmd, 0, 0);
2518 
2519 		/* There's no return value */
2520 		this->wait(mtd, FL_LOCKING);
2521 
2522 		/* Sanity check */
2523 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2524 		    & ONENAND_CTRL_ONGO)
2525 			continue;
2526 
2527 		/* Check lock status */
2528 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2529 		if (!(status & wp_status_mask))
2530 			printk(KERN_ERR "%s: wp status = 0x%x\n",
2531 				__func__, status);
2532 
2533 		return 0;
2534 	}
2535 
2536 	/* Block lock scheme */
2537 	for (block = start; block < end + 1; block++) {
2538 		/* Set block address */
2539 		value = onenand_block_address(this, block);
2540 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2541 		/* Select DataRAM for DDP */
2542 		value = onenand_bufferram_address(this, block);
2543 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2544 		/* Set start block address */
2545 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2546 		/* Write lock command */
2547 		this->command(mtd, cmd, 0, 0);
2548 
2549 		/* There's no return value */
2550 		this->wait(mtd, FL_LOCKING);
2551 
2552 		/* Sanity check */
2553 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2554 		    & ONENAND_CTRL_ONGO)
2555 			continue;
2556 
2557 		/* Check lock status */
2558 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2559 		if (!(status & wp_status_mask))
2560 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2561 				__func__, block, status);
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 /**
2568  * onenand_lock - [MTD Interface] Lock block(s)
2569  * @param mtd		MTD device structure
2570  * @param ofs		offset relative to mtd start
2571  * @param len		number of bytes to unlock
2572  *
2573  * Lock one or more blocks
2574  */
2575 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2576 {
2577 	int ret;
2578 
2579 	onenand_get_device(mtd, FL_LOCKING);
2580 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2581 	onenand_release_device(mtd);
2582 	return ret;
2583 }
2584 
2585 /**
2586  * onenand_unlock - [MTD Interface] Unlock block(s)
2587  * @param mtd		MTD device structure
2588  * @param ofs		offset relative to mtd start
2589  * @param len		number of bytes to unlock
2590  *
2591  * Unlock one or more blocks
2592  */
2593 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2594 {
2595 	int ret;
2596 
2597 	onenand_get_device(mtd, FL_LOCKING);
2598 	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2599 	onenand_release_device(mtd);
2600 	return ret;
2601 }
2602 
2603 /**
2604  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2605  * @param this		onenand chip data structure
2606  *
2607  * Check lock status
2608  */
2609 static int onenand_check_lock_status(struct onenand_chip *this)
2610 {
2611 	unsigned int value, block, status;
2612 	unsigned int end;
2613 
2614 	end = this->chipsize >> this->erase_shift;
2615 	for (block = 0; block < end; block++) {
2616 		/* Set block address */
2617 		value = onenand_block_address(this, block);
2618 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2619 		/* Select DataRAM for DDP */
2620 		value = onenand_bufferram_address(this, block);
2621 		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2622 		/* Set start block address */
2623 		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2624 
2625 		/* Check lock status */
2626 		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2627 		if (!(status & ONENAND_WP_US)) {
2628 			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2629 				__func__, block, status);
2630 			return 0;
2631 		}
2632 	}
2633 
2634 	return 1;
2635 }
2636 
2637 /**
2638  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2639  * @param mtd		MTD device structure
2640  *
2641  * Unlock all blocks
2642  */
2643 static void onenand_unlock_all(struct mtd_info *mtd)
2644 {
2645 	struct onenand_chip *this = mtd->priv;
2646 	loff_t ofs = 0;
2647 	loff_t len = mtd->size;
2648 
2649 	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2650 		/* Set start block address */
2651 		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2652 		/* Write unlock command */
2653 		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2654 
2655 		/* There's no return value */
2656 		this->wait(mtd, FL_LOCKING);
2657 
2658 		/* Sanity check */
2659 		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2660 		    & ONENAND_CTRL_ONGO)
2661 			continue;
2662 
2663 		/* Don't check lock status */
2664 		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2665 			return;
2666 
2667 		/* Check lock status */
2668 		if (onenand_check_lock_status(this))
2669 			return;
2670 
2671 		/* Workaround for all block unlock in DDP */
2672 		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2673 			/* All blocks on another chip */
2674 			ofs = this->chipsize >> 1;
2675 			len = this->chipsize >> 1;
2676 		}
2677 	}
2678 
2679 	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2680 }
2681 
2682 #ifdef CONFIG_MTD_ONENAND_OTP
2683 
2684 /**
2685  * onenand_otp_command - Send OTP specific command to OneNAND device
2686  * @param mtd	 MTD device structure
2687  * @param cmd	 the command to be sent
2688  * @param addr	 offset to read from or write to
2689  * @param len	 number of bytes to read or write
2690  */
2691 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2692 				size_t len)
2693 {
2694 	struct onenand_chip *this = mtd->priv;
2695 	int value, block, page;
2696 
2697 	/* Address translation */
2698 	switch (cmd) {
2699 	case ONENAND_CMD_OTP_ACCESS:
2700 		block = (int) (addr >> this->erase_shift);
2701 		page = -1;
2702 		break;
2703 
2704 	default:
2705 		block = (int) (addr >> this->erase_shift);
2706 		page = (int) (addr >> this->page_shift);
2707 
2708 		if (ONENAND_IS_2PLANE(this)) {
2709 			/* Make the even block number */
2710 			block &= ~1;
2711 			/* Is it the odd plane? */
2712 			if (addr & this->writesize)
2713 				block++;
2714 			page >>= 1;
2715 		}
2716 		page &= this->page_mask;
2717 		break;
2718 	}
2719 
2720 	if (block != -1) {
2721 		/* Write 'DFS, FBA' of Flash */
2722 		value = onenand_block_address(this, block);
2723 		this->write_word(value, this->base +
2724 				ONENAND_REG_START_ADDRESS1);
2725 	}
2726 
2727 	if (page != -1) {
2728 		/* Now we use page size operation */
2729 		int sectors = 4, count = 4;
2730 		int dataram;
2731 
2732 		switch (cmd) {
2733 		default:
2734 			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2735 				cmd = ONENAND_CMD_2X_PROG;
2736 			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2737 			break;
2738 		}
2739 
2740 		/* Write 'FPA, FSA' of Flash */
2741 		value = onenand_page_address(page, sectors);
2742 		this->write_word(value, this->base +
2743 				ONENAND_REG_START_ADDRESS8);
2744 
2745 		/* Write 'BSA, BSC' of DataRAM */
2746 		value = onenand_buffer_address(dataram, sectors, count);
2747 		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2748 	}
2749 
2750 	/* Interrupt clear */
2751 	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2752 
2753 	/* Write command */
2754 	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2761  * @param mtd		MTD device structure
2762  * @param to		offset to write to
2763  * @param len		number of bytes to write
2764  * @param retlen	pointer to variable to store the number of written bytes
2765  * @param buf		the data to write
2766  *
2767  * OneNAND write out-of-band only for OTP
2768  */
2769 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2770 				    struct mtd_oob_ops *ops)
2771 {
2772 	struct onenand_chip *this = mtd->priv;
2773 	int column, ret = 0, oobsize;
2774 	int written = 0;
2775 	u_char *oobbuf;
2776 	size_t len = ops->ooblen;
2777 	const u_char *buf = ops->oobbuf;
2778 	int block, value, status;
2779 
2780 	to += ops->ooboffs;
2781 
2782 	/* Initialize retlen, in case of early exit */
2783 	ops->oobretlen = 0;
2784 
2785 	oobsize = mtd->oobsize;
2786 
2787 	column = to & (mtd->oobsize - 1);
2788 
2789 	oobbuf = this->oob_buf;
2790 
2791 	/* Loop until all data write */
2792 	while (written < len) {
2793 		int thislen = min_t(int, oobsize, len - written);
2794 
2795 		cond_resched();
2796 
2797 		block = (int) (to >> this->erase_shift);
2798 		/*
2799 		 * Write 'DFS, FBA' of Flash
2800 		 * Add: F100h DQ=DFS, FBA
2801 		 */
2802 
2803 		value = onenand_block_address(this, block);
2804 		this->write_word(value, this->base +
2805 				ONENAND_REG_START_ADDRESS1);
2806 
2807 		/*
2808 		 * Select DataRAM for DDP
2809 		 * Add: F101h DQ=DBS
2810 		 */
2811 
2812 		value = onenand_bufferram_address(this, block);
2813 		this->write_word(value, this->base +
2814 				ONENAND_REG_START_ADDRESS2);
2815 		ONENAND_SET_NEXT_BUFFERRAM(this);
2816 
2817 		/*
2818 		 * Enter OTP access mode
2819 		 */
2820 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2821 		this->wait(mtd, FL_OTPING);
2822 
2823 		/* We send data to spare ram with oobsize
2824 		 * to prevent byte access */
2825 		memcpy(oobbuf + column, buf, thislen);
2826 
2827 		/*
2828 		 * Write Data into DataRAM
2829 		 * Add: 8th Word
2830 		 * in sector0/spare/page0
2831 		 * DQ=XXFCh
2832 		 */
2833 		this->write_bufferram(mtd, ONENAND_SPARERAM,
2834 					oobbuf, 0, mtd->oobsize);
2835 
2836 		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2837 		onenand_update_bufferram(mtd, to, 0);
2838 		if (ONENAND_IS_2PLANE(this)) {
2839 			ONENAND_SET_BUFFERRAM1(this);
2840 			onenand_update_bufferram(mtd, to + this->writesize, 0);
2841 		}
2842 
2843 		ret = this->wait(mtd, FL_WRITING);
2844 		if (ret) {
2845 			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2846 			break;
2847 		}
2848 
2849 		/* Exit OTP access mode */
2850 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2851 		this->wait(mtd, FL_RESETTING);
2852 
2853 		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2854 		status &= 0x60;
2855 
2856 		if (status == 0x60) {
2857 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2858 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2859 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2860 		} else if (status == 0x20) {
2861 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2862 			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2863 			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2864 		} else if (status == 0x40) {
2865 			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2866 			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2867 			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2868 		} else {
2869 			printk(KERN_DEBUG "Reboot to check\n");
2870 		}
2871 
2872 		written += thislen;
2873 		if (written == len)
2874 			break;
2875 
2876 		to += mtd->writesize;
2877 		buf += thislen;
2878 		column = 0;
2879 	}
2880 
2881 	ops->oobretlen = written;
2882 
2883 	return ret;
2884 }
2885 
2886 /* Internal OTP operation */
2887 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2888 		size_t *retlen, u_char *buf);
2889 
2890 /**
2891  * do_otp_read - [DEFAULT] Read OTP block area
2892  * @param mtd		MTD device structure
2893  * @param from		The offset to read
2894  * @param len		number of bytes to read
2895  * @param retlen	pointer to variable to store the number of readbytes
2896  * @param buf		the databuffer to put/get data
2897  *
2898  * Read OTP block area.
2899  */
2900 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2901 		size_t *retlen, u_char *buf)
2902 {
2903 	struct onenand_chip *this = mtd->priv;
2904 	struct mtd_oob_ops ops = {
2905 		.len	= len,
2906 		.ooblen	= 0,
2907 		.datbuf	= buf,
2908 		.oobbuf	= NULL,
2909 	};
2910 	int ret;
2911 
2912 	/* Enter OTP access mode */
2913 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2914 	this->wait(mtd, FL_OTPING);
2915 
2916 	ret = ONENAND_IS_4KB_PAGE(this) ?
2917 		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2918 		onenand_read_ops_nolock(mtd, from, &ops);
2919 
2920 	/* Exit OTP access mode */
2921 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2922 	this->wait(mtd, FL_RESETTING);
2923 
2924 	return ret;
2925 }
2926 
2927 /**
2928  * do_otp_write - [DEFAULT] Write OTP block area
2929  * @param mtd		MTD device structure
2930  * @param to		The offset to write
2931  * @param len		number of bytes to write
2932  * @param retlen	pointer to variable to store the number of write bytes
2933  * @param buf		the databuffer to put/get data
2934  *
2935  * Write OTP block area.
2936  */
2937 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2938 		size_t *retlen, u_char *buf)
2939 {
2940 	struct onenand_chip *this = mtd->priv;
2941 	unsigned char *pbuf = buf;
2942 	int ret;
2943 	struct mtd_oob_ops ops;
2944 
2945 	/* Force buffer page aligned */
2946 	if (len < mtd->writesize) {
2947 		memcpy(this->page_buf, buf, len);
2948 		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2949 		pbuf = this->page_buf;
2950 		len = mtd->writesize;
2951 	}
2952 
2953 	/* Enter OTP access mode */
2954 	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2955 	this->wait(mtd, FL_OTPING);
2956 
2957 	ops.len = len;
2958 	ops.ooblen = 0;
2959 	ops.datbuf = pbuf;
2960 	ops.oobbuf = NULL;
2961 	ret = onenand_write_ops_nolock(mtd, to, &ops);
2962 	*retlen = ops.retlen;
2963 
2964 	/* Exit OTP access mode */
2965 	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2966 	this->wait(mtd, FL_RESETTING);
2967 
2968 	return ret;
2969 }
2970 
2971 /**
2972  * do_otp_lock - [DEFAULT] Lock OTP block area
2973  * @param mtd		MTD device structure
2974  * @param from		The offset to lock
2975  * @param len		number of bytes to lock
2976  * @param retlen	pointer to variable to store the number of lock bytes
2977  * @param buf		the databuffer to put/get data
2978  *
2979  * Lock OTP block area.
2980  */
2981 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2982 		size_t *retlen, u_char *buf)
2983 {
2984 	struct onenand_chip *this = mtd->priv;
2985 	struct mtd_oob_ops ops;
2986 	int ret;
2987 
2988 	if (FLEXONENAND(this)) {
2989 
2990 		/* Enter OTP access mode */
2991 		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2992 		this->wait(mtd, FL_OTPING);
2993 		/*
2994 		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2995 		 * main area of page 49.
2996 		 */
2997 		ops.len = mtd->writesize;
2998 		ops.ooblen = 0;
2999 		ops.datbuf = buf;
3000 		ops.oobbuf = NULL;
3001 		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3002 		*retlen = ops.retlen;
3003 
3004 		/* Exit OTP access mode */
3005 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3006 		this->wait(mtd, FL_RESETTING);
3007 	} else {
3008 		ops.mode = MTD_OPS_PLACE_OOB;
3009 		ops.ooblen = len;
3010 		ops.oobbuf = buf;
3011 		ops.ooboffs = 0;
3012 		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3013 		*retlen = ops.oobretlen;
3014 	}
3015 
3016 	return ret;
3017 }
3018 
3019 /**
3020  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3021  * @param mtd		MTD device structure
3022  * @param from		The offset to read/write
3023  * @param len		number of bytes to read/write
3024  * @param retlen	pointer to variable to store the number of read bytes
3025  * @param buf		the databuffer to put/get data
3026  * @param action	do given action
3027  * @param mode		specify user and factory
3028  *
3029  * Handle OTP operation.
3030  */
3031 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3032 			size_t *retlen, u_char *buf,
3033 			otp_op_t action, int mode)
3034 {
3035 	struct onenand_chip *this = mtd->priv;
3036 	int otp_pages;
3037 	int density;
3038 	int ret = 0;
3039 
3040 	*retlen = 0;
3041 
3042 	density = onenand_get_density(this->device_id);
3043 	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3044 		otp_pages = 20;
3045 	else
3046 		otp_pages = 50;
3047 
3048 	if (mode == MTD_OTP_FACTORY) {
3049 		from += mtd->writesize * otp_pages;
3050 		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3051 	}
3052 
3053 	/* Check User/Factory boundary */
3054 	if (mode == MTD_OTP_USER) {
3055 		if (mtd->writesize * otp_pages < from + len)
3056 			return 0;
3057 	} else {
3058 		if (mtd->writesize * otp_pages <  len)
3059 			return 0;
3060 	}
3061 
3062 	onenand_get_device(mtd, FL_OTPING);
3063 	while (len > 0 && otp_pages > 0) {
3064 		if (!action) {	/* OTP Info functions */
3065 			struct otp_info *otpinfo;
3066 
3067 			len -= sizeof(struct otp_info);
3068 			if (len <= 0) {
3069 				ret = -ENOSPC;
3070 				break;
3071 			}
3072 
3073 			otpinfo = (struct otp_info *) buf;
3074 			otpinfo->start = from;
3075 			otpinfo->length = mtd->writesize;
3076 			otpinfo->locked = 0;
3077 
3078 			from += mtd->writesize;
3079 			buf += sizeof(struct otp_info);
3080 			*retlen += sizeof(struct otp_info);
3081 		} else {
3082 			size_t tmp_retlen;
3083 
3084 			ret = action(mtd, from, len, &tmp_retlen, buf);
3085 			if (ret)
3086 				break;
3087 
3088 			buf += tmp_retlen;
3089 			len -= tmp_retlen;
3090 			*retlen += tmp_retlen;
3091 
3092 		}
3093 		otp_pages--;
3094 	}
3095 	onenand_release_device(mtd);
3096 
3097 	return ret;
3098 }
3099 
3100 /**
3101  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3102  * @param mtd		MTD device structure
3103  * @param len		number of bytes to read
3104  * @param retlen	pointer to variable to store the number of read bytes
3105  * @param buf		the databuffer to put/get data
3106  *
3107  * Read factory OTP info.
3108  */
3109 static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3110 				      size_t *retlen, struct otp_info *buf)
3111 {
3112 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3113 				MTD_OTP_FACTORY);
3114 }
3115 
3116 /**
3117  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3118  * @param mtd		MTD device structure
3119  * @param from		The offset to read
3120  * @param len		number of bytes to read
3121  * @param retlen	pointer to variable to store the number of read bytes
3122  * @param buf		the databuffer to put/get data
3123  *
3124  * Read factory OTP area.
3125  */
3126 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3127 			size_t len, size_t *retlen, u_char *buf)
3128 {
3129 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3130 }
3131 
3132 /**
3133  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3134  * @param mtd		MTD device structure
3135  * @param retlen	pointer to variable to store the number of read bytes
3136  * @param len		number of bytes to read
3137  * @param buf		the databuffer to put/get data
3138  *
3139  * Read user OTP info.
3140  */
3141 static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3142 				      size_t *retlen, struct otp_info *buf)
3143 {
3144 	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3145 				MTD_OTP_USER);
3146 }
3147 
3148 /**
3149  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3150  * @param mtd		MTD device structure
3151  * @param from		The offset to read
3152  * @param len		number of bytes to read
3153  * @param retlen	pointer to variable to store the number of read bytes
3154  * @param buf		the databuffer to put/get data
3155  *
3156  * Read user OTP area.
3157  */
3158 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3159 			size_t len, size_t *retlen, u_char *buf)
3160 {
3161 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3162 }
3163 
3164 /**
3165  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3166  * @param mtd		MTD device structure
3167  * @param from		The offset to write
3168  * @param len		number of bytes to write
3169  * @param retlen	pointer to variable to store the number of write bytes
3170  * @param buf		the databuffer to put/get data
3171  *
3172  * Write user OTP area.
3173  */
3174 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3175 			size_t len, size_t *retlen, u_char *buf)
3176 {
3177 	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3178 }
3179 
3180 /**
3181  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3182  * @param mtd		MTD device structure
3183  * @param from		The offset to lock
3184  * @param len		number of bytes to unlock
3185  *
3186  * Write lock mark on spare area in page 0 in OTP block
3187  */
3188 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3189 			size_t len)
3190 {
3191 	struct onenand_chip *this = mtd->priv;
3192 	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3193 	size_t retlen;
3194 	int ret;
3195 	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3196 
3197 	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3198 						 : mtd->oobsize);
3199 	/*
3200 	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3201 	 * We write 16 bytes spare area instead of 2 bytes.
3202 	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3203 	 * main area of page 49.
3204 	 */
3205 
3206 	from = 0;
3207 	len = FLEXONENAND(this) ? mtd->writesize : 16;
3208 
3209 	/*
3210 	 * Note: OTP lock operation
3211 	 *       OTP block : 0xXXFC			XX 1111 1100
3212 	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3213 	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3214 	 */
3215 	if (FLEXONENAND(this))
3216 		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3217 
3218 	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3219 	if (otp == 1)
3220 		buf[otp_lock_offset] = 0xFC;
3221 	else if (otp == 2)
3222 		buf[otp_lock_offset] = 0xF3;
3223 	else if (otp == 3)
3224 		buf[otp_lock_offset] = 0xF0;
3225 	else if (otp != 0)
3226 		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3227 
3228 	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3229 
3230 	return ret ? : retlen;
3231 }
3232 
3233 #endif	/* CONFIG_MTD_ONENAND_OTP */
3234 
3235 /**
3236  * onenand_check_features - Check and set OneNAND features
3237  * @param mtd		MTD data structure
3238  *
3239  * Check and set OneNAND features
3240  * - lock scheme
3241  * - two plane
3242  */
3243 static void onenand_check_features(struct mtd_info *mtd)
3244 {
3245 	struct onenand_chip *this = mtd->priv;
3246 	unsigned int density, process, numbufs;
3247 
3248 	/* Lock scheme depends on density and process */
3249 	density = onenand_get_density(this->device_id);
3250 	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3251 	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3252 
3253 	/* Lock scheme */
3254 	switch (density) {
3255 	case ONENAND_DEVICE_DENSITY_8Gb:
3256 		this->options |= ONENAND_HAS_NOP_1;
3257 		fallthrough;
3258 	case ONENAND_DEVICE_DENSITY_4Gb:
3259 		if (ONENAND_IS_DDP(this))
3260 			this->options |= ONENAND_HAS_2PLANE;
3261 		else if (numbufs == 1) {
3262 			this->options |= ONENAND_HAS_4KB_PAGE;
3263 			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3264 			/*
3265 			 * There are two different 4KiB pagesize chips
3266 			 * and no way to detect it by H/W config values.
3267 			 *
3268 			 * To detect the correct NOP for each chips,
3269 			 * It should check the version ID as workaround.
3270 			 *
3271 			 * Now it has as following
3272 			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3273 			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3274 			 */
3275 			if ((this->version_id & 0xf) == 0xe)
3276 				this->options |= ONENAND_HAS_NOP_1;
3277 		}
3278 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3279 		break;
3280 
3281 	case ONENAND_DEVICE_DENSITY_2Gb:
3282 		/* 2Gb DDP does not have 2 plane */
3283 		if (!ONENAND_IS_DDP(this))
3284 			this->options |= ONENAND_HAS_2PLANE;
3285 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3286 		break;
3287 
3288 	case ONENAND_DEVICE_DENSITY_1Gb:
3289 		/* A-Die has all block unlock */
3290 		if (process)
3291 			this->options |= ONENAND_HAS_UNLOCK_ALL;
3292 		break;
3293 
3294 	default:
3295 		/* Some OneNAND has continuous lock scheme */
3296 		if (!process)
3297 			this->options |= ONENAND_HAS_CONT_LOCK;
3298 		break;
3299 	}
3300 
3301 	/* The MLC has 4KiB pagesize. */
3302 	if (ONENAND_IS_MLC(this))
3303 		this->options |= ONENAND_HAS_4KB_PAGE;
3304 
3305 	if (ONENAND_IS_4KB_PAGE(this))
3306 		this->options &= ~ONENAND_HAS_2PLANE;
3307 
3308 	if (FLEXONENAND(this)) {
3309 		this->options &= ~ONENAND_HAS_CONT_LOCK;
3310 		this->options |= ONENAND_HAS_UNLOCK_ALL;
3311 	}
3312 
3313 	if (this->options & ONENAND_HAS_CONT_LOCK)
3314 		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3315 	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3316 		printk(KERN_DEBUG "Chip support all block unlock\n");
3317 	if (this->options & ONENAND_HAS_2PLANE)
3318 		printk(KERN_DEBUG "Chip has 2 plane\n");
3319 	if (this->options & ONENAND_HAS_4KB_PAGE)
3320 		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3321 	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3322 		printk(KERN_DEBUG "Chip has cache program feature\n");
3323 }
3324 
3325 /**
3326  * onenand_print_device_info - Print device & version ID
3327  * @param device        device ID
3328  * @param version	version ID
3329  *
3330  * Print device & version ID
3331  */
3332 static void onenand_print_device_info(int device, int version)
3333 {
3334 	int vcc, demuxed, ddp, density, flexonenand;
3335 
3336         vcc = device & ONENAND_DEVICE_VCC_MASK;
3337         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3338         ddp = device & ONENAND_DEVICE_IS_DDP;
3339         density = onenand_get_density(device);
3340 	flexonenand = device & DEVICE_IS_FLEXONENAND;
3341 	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3342 		demuxed ? "" : "Muxed ",
3343 		flexonenand ? "Flex-" : "",
3344                 ddp ? "(DDP)" : "",
3345                 (16 << density),
3346                 vcc ? "2.65/3.3" : "1.8",
3347                 device);
3348 	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3349 }
3350 
3351 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3352         {ONENAND_MFR_SAMSUNG, "Samsung"},
3353 	{ONENAND_MFR_NUMONYX, "Numonyx"},
3354 };
3355 
3356 /**
3357  * onenand_check_maf - Check manufacturer ID
3358  * @param manuf         manufacturer ID
3359  *
3360  * Check manufacturer ID
3361  */
3362 static int onenand_check_maf(int manuf)
3363 {
3364 	int size = ARRAY_SIZE(onenand_manuf_ids);
3365 	char *name;
3366         int i;
3367 
3368 	for (i = 0; i < size; i++)
3369                 if (manuf == onenand_manuf_ids[i].id)
3370                         break;
3371 
3372 	if (i < size)
3373 		name = onenand_manuf_ids[i].name;
3374 	else
3375 		name = "Unknown";
3376 
3377 	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3378 
3379 	return (i == size);
3380 }
3381 
3382 /**
3383 * flexonenand_get_boundary	- Reads the SLC boundary
3384 * @param onenand_info		- onenand info structure
3385 **/
3386 static int flexonenand_get_boundary(struct mtd_info *mtd)
3387 {
3388 	struct onenand_chip *this = mtd->priv;
3389 	unsigned die, bdry;
3390 	int syscfg, locked;
3391 
3392 	/* Disable ECC */
3393 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3394 	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3395 
3396 	for (die = 0; die < this->dies; die++) {
3397 		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3398 		this->wait(mtd, FL_SYNCING);
3399 
3400 		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3401 		this->wait(mtd, FL_READING);
3402 
3403 		bdry = this->read_word(this->base + ONENAND_DATARAM);
3404 		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3405 			locked = 0;
3406 		else
3407 			locked = 1;
3408 		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3409 
3410 		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3411 		this->wait(mtd, FL_RESETTING);
3412 
3413 		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3414 		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3415 	}
3416 
3417 	/* Enable ECC */
3418 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3419 	return 0;
3420 }
3421 
3422 /**
3423  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3424  * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3425  * @param mtd		- MTD device structure
3426  */
3427 static void flexonenand_get_size(struct mtd_info *mtd)
3428 {
3429 	struct onenand_chip *this = mtd->priv;
3430 	int die, i, eraseshift, density;
3431 	int blksperdie, maxbdry;
3432 	loff_t ofs;
3433 
3434 	density = onenand_get_density(this->device_id);
3435 	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3436 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3437 	maxbdry = blksperdie - 1;
3438 	eraseshift = this->erase_shift - 1;
3439 
3440 	mtd->numeraseregions = this->dies << 1;
3441 
3442 	/* This fills up the device boundary */
3443 	flexonenand_get_boundary(mtd);
3444 	die = ofs = 0;
3445 	i = -1;
3446 	for (; die < this->dies; die++) {
3447 		if (!die || this->boundary[die-1] != maxbdry) {
3448 			i++;
3449 			mtd->eraseregions[i].offset = ofs;
3450 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3451 			mtd->eraseregions[i].numblocks =
3452 							this->boundary[die] + 1;
3453 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3454 			eraseshift++;
3455 		} else {
3456 			mtd->numeraseregions -= 1;
3457 			mtd->eraseregions[i].numblocks +=
3458 							this->boundary[die] + 1;
3459 			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3460 		}
3461 		if (this->boundary[die] != maxbdry) {
3462 			i++;
3463 			mtd->eraseregions[i].offset = ofs;
3464 			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3465 			mtd->eraseregions[i].numblocks = maxbdry ^
3466 							 this->boundary[die];
3467 			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3468 			eraseshift--;
3469 		} else
3470 			mtd->numeraseregions -= 1;
3471 	}
3472 
3473 	/* Expose MLC erase size except when all blocks are SLC */
3474 	mtd->erasesize = 1 << this->erase_shift;
3475 	if (mtd->numeraseregions == 1)
3476 		mtd->erasesize >>= 1;
3477 
3478 	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3479 	for (i = 0; i < mtd->numeraseregions; i++)
3480 		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3481 			" numblocks: %04u]\n",
3482 			(unsigned int) mtd->eraseregions[i].offset,
3483 			mtd->eraseregions[i].erasesize,
3484 			mtd->eraseregions[i].numblocks);
3485 
3486 	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3487 		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3488 		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3489 						 << (this->erase_shift - 1);
3490 		mtd->size += this->diesize[die];
3491 	}
3492 }
3493 
3494 /**
3495  * flexonenand_check_blocks_erased - Check if blocks are erased
3496  * @param mtd_info	- mtd info structure
3497  * @param start		- first erase block to check
3498  * @param end		- last erase block to check
3499  *
3500  * Converting an unerased block from MLC to SLC
3501  * causes byte values to change. Since both data and its ECC
3502  * have changed, reads on the block give uncorrectable error.
3503  * This might lead to the block being detected as bad.
3504  *
3505  * Avoid this by ensuring that the block to be converted is
3506  * erased.
3507  */
3508 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3509 {
3510 	struct onenand_chip *this = mtd->priv;
3511 	int i, ret;
3512 	int block;
3513 	struct mtd_oob_ops ops = {
3514 		.mode = MTD_OPS_PLACE_OOB,
3515 		.ooboffs = 0,
3516 		.ooblen	= mtd->oobsize,
3517 		.datbuf	= NULL,
3518 		.oobbuf	= this->oob_buf,
3519 	};
3520 	loff_t addr;
3521 
3522 	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3523 
3524 	for (block = start; block <= end; block++) {
3525 		addr = flexonenand_addr(this, block);
3526 		if (onenand_block_isbad_nolock(mtd, addr, 0))
3527 			continue;
3528 
3529 		/*
3530 		 * Since main area write results in ECC write to spare,
3531 		 * it is sufficient to check only ECC bytes for change.
3532 		 */
3533 		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3534 		if (ret)
3535 			return ret;
3536 
3537 		for (i = 0; i < mtd->oobsize; i++)
3538 			if (this->oob_buf[i] != 0xff)
3539 				break;
3540 
3541 		if (i != mtd->oobsize) {
3542 			printk(KERN_WARNING "%s: Block %d not erased.\n",
3543 				__func__, block);
3544 			return 1;
3545 		}
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  * flexonenand_set_boundary	- Writes the SLC boundary
3553  * @param mtd			- mtd info structure
3554  */
3555 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3556 				    int boundary, int lock)
3557 {
3558 	struct onenand_chip *this = mtd->priv;
3559 	int ret, density, blksperdie, old, new, thisboundary;
3560 	loff_t addr;
3561 
3562 	/* Change only once for SDP Flex-OneNAND */
3563 	if (die && (!ONENAND_IS_DDP(this)))
3564 		return 0;
3565 
3566 	/* boundary value of -1 indicates no required change */
3567 	if (boundary < 0 || boundary == this->boundary[die])
3568 		return 0;
3569 
3570 	density = onenand_get_density(this->device_id);
3571 	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3572 	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3573 
3574 	if (boundary >= blksperdie) {
3575 		printk(KERN_ERR "%s: Invalid boundary value. "
3576 				"Boundary not changed.\n", __func__);
3577 		return -EINVAL;
3578 	}
3579 
3580 	/* Check if converting blocks are erased */
3581 	old = this->boundary[die] + (die * this->density_mask);
3582 	new = boundary + (die * this->density_mask);
3583 	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3584 	if (ret) {
3585 		printk(KERN_ERR "%s: Please erase blocks "
3586 				"before boundary change\n", __func__);
3587 		return ret;
3588 	}
3589 
3590 	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3591 	this->wait(mtd, FL_SYNCING);
3592 
3593 	/* Check is boundary is locked */
3594 	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3595 	this->wait(mtd, FL_READING);
3596 
3597 	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3598 	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3599 		printk(KERN_ERR "%s: boundary locked\n", __func__);
3600 		ret = 1;
3601 		goto out;
3602 	}
3603 
3604 	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3605 			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3606 
3607 	addr = die ? this->diesize[0] : 0;
3608 
3609 	boundary &= FLEXONENAND_PI_MASK;
3610 	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3611 
3612 	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3613 	ret = this->wait(mtd, FL_ERASING);
3614 	if (ret) {
3615 		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3616 		       __func__, die);
3617 		goto out;
3618 	}
3619 
3620 	this->write_word(boundary, this->base + ONENAND_DATARAM);
3621 	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3622 	ret = this->wait(mtd, FL_WRITING);
3623 	if (ret) {
3624 		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3625 			__func__, die);
3626 		goto out;
3627 	}
3628 
3629 	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3630 	ret = this->wait(mtd, FL_WRITING);
3631 out:
3632 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3633 	this->wait(mtd, FL_RESETTING);
3634 	if (!ret)
3635 		/* Recalculate device size on boundary change*/
3636 		flexonenand_get_size(mtd);
3637 
3638 	return ret;
3639 }
3640 
3641 /**
3642  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3643  * @param mtd		MTD device structure
3644  *
3645  * OneNAND detection method:
3646  *   Compare the values from command with ones from register
3647  */
3648 static int onenand_chip_probe(struct mtd_info *mtd)
3649 {
3650 	struct onenand_chip *this = mtd->priv;
3651 	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3652 	int syscfg;
3653 
3654 	/* Save system configuration 1 */
3655 	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3656 	/* Clear Sync. Burst Read mode to read BootRAM */
3657 	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3658 
3659 	/* Send the command for reading device ID from BootRAM */
3660 	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3661 
3662 	/* Read manufacturer and device IDs from BootRAM */
3663 	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3664 	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3665 
3666 	/* Reset OneNAND to read default register values */
3667 	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3668 	/* Wait reset */
3669 	this->wait(mtd, FL_RESETTING);
3670 
3671 	/* Restore system configuration 1 */
3672 	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3673 
3674 	/* Check manufacturer ID */
3675 	if (onenand_check_maf(bram_maf_id))
3676 		return -ENXIO;
3677 
3678 	/* Read manufacturer and device IDs from Register */
3679 	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3680 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3681 
3682 	/* Check OneNAND device */
3683 	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3684 		return -ENXIO;
3685 
3686 	return 0;
3687 }
3688 
3689 /**
3690  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3691  * @param mtd		MTD device structure
3692  */
3693 static int onenand_probe(struct mtd_info *mtd)
3694 {
3695 	struct onenand_chip *this = mtd->priv;
3696 	int dev_id, ver_id;
3697 	int density;
3698 	int ret;
3699 
3700 	ret = this->chip_probe(mtd);
3701 	if (ret)
3702 		return ret;
3703 
3704 	/* Device and version IDs from Register */
3705 	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3706 	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3707 	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3708 
3709 	/* Flash device information */
3710 	onenand_print_device_info(dev_id, ver_id);
3711 	this->device_id = dev_id;
3712 	this->version_id = ver_id;
3713 
3714 	/* Check OneNAND features */
3715 	onenand_check_features(mtd);
3716 
3717 	density = onenand_get_density(dev_id);
3718 	if (FLEXONENAND(this)) {
3719 		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3720 		/* Maximum possible erase regions */
3721 		mtd->numeraseregions = this->dies << 1;
3722 		mtd->eraseregions =
3723 			kcalloc(this->dies << 1,
3724 				sizeof(struct mtd_erase_region_info),
3725 				GFP_KERNEL);
3726 		if (!mtd->eraseregions)
3727 			return -ENOMEM;
3728 	}
3729 
3730 	/*
3731 	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3732 	 * mtd->size represents the actual device size.
3733 	 */
3734 	this->chipsize = (16 << density) << 20;
3735 
3736 	/* OneNAND page size & block size */
3737 	/* The data buffer size is equal to page size */
3738 	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3739 	/* We use the full BufferRAM */
3740 	if (ONENAND_IS_4KB_PAGE(this))
3741 		mtd->writesize <<= 1;
3742 
3743 	mtd->oobsize = mtd->writesize >> 5;
3744 	/* Pages per a block are always 64 in OneNAND */
3745 	mtd->erasesize = mtd->writesize << 6;
3746 	/*
3747 	 * Flex-OneNAND SLC area has 64 pages per block.
3748 	 * Flex-OneNAND MLC area has 128 pages per block.
3749 	 * Expose MLC erase size to find erase_shift and page_mask.
3750 	 */
3751 	if (FLEXONENAND(this))
3752 		mtd->erasesize <<= 1;
3753 
3754 	this->erase_shift = ffs(mtd->erasesize) - 1;
3755 	this->page_shift = ffs(mtd->writesize) - 1;
3756 	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3757 	/* Set density mask. it is used for DDP */
3758 	if (ONENAND_IS_DDP(this))
3759 		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3760 	/* It's real page size */
3761 	this->writesize = mtd->writesize;
3762 
3763 	/* REVISIT: Multichip handling */
3764 
3765 	if (FLEXONENAND(this))
3766 		flexonenand_get_size(mtd);
3767 	else
3768 		mtd->size = this->chipsize;
3769 
3770 	/*
3771 	 * We emulate the 4KiB page and 256KiB erase block size
3772 	 * But oobsize is still 64 bytes.
3773 	 * It is only valid if you turn on 2X program support,
3774 	 * Otherwise it will be ignored by compiler.
3775 	 */
3776 	if (ONENAND_IS_2PLANE(this)) {
3777 		mtd->writesize <<= 1;
3778 		mtd->erasesize <<= 1;
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 /**
3785  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3786  * @param mtd		MTD device structure
3787  */
3788 static int onenand_suspend(struct mtd_info *mtd)
3789 {
3790 	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3791 }
3792 
3793 /**
3794  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3795  * @param mtd		MTD device structure
3796  */
3797 static void onenand_resume(struct mtd_info *mtd)
3798 {
3799 	struct onenand_chip *this = mtd->priv;
3800 
3801 	if (this->state == FL_PM_SUSPENDED)
3802 		onenand_release_device(mtd);
3803 	else
3804 		printk(KERN_ERR "%s: resume() called for the chip which is not "
3805 				"in suspended state\n", __func__);
3806 }
3807 
3808 /**
3809  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3810  * @param mtd		MTD device structure
3811  * @param maxchips	Number of chips to scan for
3812  *
3813  * This fills out all the not initialized function pointers
3814  * with the defaults.
3815  * The flash ID is read and the mtd/chip structures are
3816  * filled with the appropriate values.
3817  */
3818 int onenand_scan(struct mtd_info *mtd, int maxchips)
3819 {
3820 	int i, ret;
3821 	struct onenand_chip *this = mtd->priv;
3822 
3823 	if (!this->read_word)
3824 		this->read_word = onenand_readw;
3825 	if (!this->write_word)
3826 		this->write_word = onenand_writew;
3827 
3828 	if (!this->command)
3829 		this->command = onenand_command;
3830 	if (!this->wait)
3831 		onenand_setup_wait(mtd);
3832 	if (!this->bbt_wait)
3833 		this->bbt_wait = onenand_bbt_wait;
3834 	if (!this->unlock_all)
3835 		this->unlock_all = onenand_unlock_all;
3836 
3837 	if (!this->chip_probe)
3838 		this->chip_probe = onenand_chip_probe;
3839 
3840 	if (!this->read_bufferram)
3841 		this->read_bufferram = onenand_read_bufferram;
3842 	if (!this->write_bufferram)
3843 		this->write_bufferram = onenand_write_bufferram;
3844 
3845 	if (!this->block_markbad)
3846 		this->block_markbad = onenand_default_block_markbad;
3847 	if (!this->scan_bbt)
3848 		this->scan_bbt = onenand_default_bbt;
3849 
3850 	if (onenand_probe(mtd))
3851 		return -ENXIO;
3852 
3853 	/* Set Sync. Burst Read after probing */
3854 	if (this->mmcontrol) {
3855 		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3856 		this->read_bufferram = onenand_sync_read_bufferram;
3857 	}
3858 
3859 	/* Allocate buffers, if necessary */
3860 	if (!this->page_buf) {
3861 		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3862 		if (!this->page_buf)
3863 			return -ENOMEM;
3864 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3865 		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3866 		if (!this->verify_buf) {
3867 			kfree(this->page_buf);
3868 			return -ENOMEM;
3869 		}
3870 #endif
3871 		this->options |= ONENAND_PAGEBUF_ALLOC;
3872 	}
3873 	if (!this->oob_buf) {
3874 		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3875 		if (!this->oob_buf) {
3876 			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3877 				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3878 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3879 				kfree(this->verify_buf);
3880 #endif
3881 				kfree(this->page_buf);
3882 			}
3883 			return -ENOMEM;
3884 		}
3885 		this->options |= ONENAND_OOBBUF_ALLOC;
3886 	}
3887 
3888 	this->state = FL_READY;
3889 	init_waitqueue_head(&this->wq);
3890 	spin_lock_init(&this->chip_lock);
3891 
3892 	/*
3893 	 * Allow subpage writes up to oobsize.
3894 	 */
3895 	switch (mtd->oobsize) {
3896 	case 128:
3897 		if (FLEXONENAND(this)) {
3898 			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3899 			mtd->subpage_sft = 0;
3900 		} else {
3901 			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3902 			mtd->subpage_sft = 2;
3903 		}
3904 		if (ONENAND_IS_NOP_1(this))
3905 			mtd->subpage_sft = 0;
3906 		break;
3907 	case 64:
3908 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3909 		mtd->subpage_sft = 2;
3910 		break;
3911 
3912 	case 32:
3913 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3914 		mtd->subpage_sft = 1;
3915 		break;
3916 
3917 	default:
3918 		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3919 			__func__, mtd->oobsize);
3920 		mtd->subpage_sft = 0;
3921 		/* To prevent kernel oops */
3922 		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3923 		break;
3924 	}
3925 
3926 	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3927 
3928 	/*
3929 	 * The number of bytes available for a client to place data into
3930 	 * the out of band area
3931 	 */
3932 	ret = mtd_ooblayout_count_freebytes(mtd);
3933 	if (ret < 0)
3934 		ret = 0;
3935 
3936 	mtd->oobavail = ret;
3937 
3938 	mtd->ecc_strength = 1;
3939 
3940 	/* Fill in remaining MTD driver data */
3941 	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3942 	mtd->flags = MTD_CAP_NANDFLASH;
3943 	mtd->_erase = onenand_erase;
3944 	mtd->_point = NULL;
3945 	mtd->_unpoint = NULL;
3946 	mtd->_read_oob = onenand_read_oob;
3947 	mtd->_write_oob = onenand_write_oob;
3948 	mtd->_panic_write = onenand_panic_write;
3949 #ifdef CONFIG_MTD_ONENAND_OTP
3950 	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3951 	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3952 	mtd->_get_user_prot_info = onenand_get_user_prot_info;
3953 	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3954 	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3955 	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3956 #endif
3957 	mtd->_sync = onenand_sync;
3958 	mtd->_lock = onenand_lock;
3959 	mtd->_unlock = onenand_unlock;
3960 	mtd->_suspend = onenand_suspend;
3961 	mtd->_resume = onenand_resume;
3962 	mtd->_block_isbad = onenand_block_isbad;
3963 	mtd->_block_markbad = onenand_block_markbad;
3964 	mtd->owner = THIS_MODULE;
3965 	mtd->writebufsize = mtd->writesize;
3966 
3967 	/* Unlock whole block */
3968 	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3969 		this->unlock_all(mtd);
3970 
3971 	/* Set the bad block marker position */
3972 	this->badblockpos = ONENAND_BADBLOCK_POS;
3973 
3974 	ret = this->scan_bbt(mtd);
3975 	if ((!FLEXONENAND(this)) || ret)
3976 		return ret;
3977 
3978 	/* Change Flex-OneNAND boundaries if required */
3979 	for (i = 0; i < MAX_DIES; i++)
3980 		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3981 						 flex_bdry[(2 * i) + 1]);
3982 
3983 	return 0;
3984 }
3985 
3986 /**
3987  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3988  * @param mtd		MTD device structure
3989  */
3990 void onenand_release(struct mtd_info *mtd)
3991 {
3992 	struct onenand_chip *this = mtd->priv;
3993 
3994 	/* Deregister partitions */
3995 	mtd_device_unregister(mtd);
3996 
3997 	/* Free bad block table memory, if allocated */
3998 	if (this->bbm) {
3999 		struct bbm_info *bbm = this->bbm;
4000 		kfree(bbm->bbt);
4001 		kfree(this->bbm);
4002 	}
4003 	/* Buffers allocated by onenand_scan */
4004 	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4005 		kfree(this->page_buf);
4006 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4007 		kfree(this->verify_buf);
4008 #endif
4009 	}
4010 	if (this->options & ONENAND_OOBBUF_ALLOC)
4011 		kfree(this->oob_buf);
4012 	kfree(mtd->eraseregions);
4013 }
4014 
4015 EXPORT_SYMBOL_GPL(onenand_scan);
4016 EXPORT_SYMBOL_GPL(onenand_release);
4017 
4018 MODULE_LICENSE("GPL");
4019 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4020 MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4021