xref: /openbmc/linux/drivers/mtd/nand/ecc.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Generic Error-Correcting Code (ECC) engine
4  *
5  * Copyright (C) 2019 Macronix
6  * Author:
7  *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8  *
9  *
10  * This file describes the abstraction of any NAND ECC engine. It has been
11  * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12  *
13  * There are three main situations where instantiating this ECC engine makes
14  * sense:
15  *   - external: The ECC engine is outside the NAND pipeline, typically this
16  *               is a software ECC engine, or an hardware engine that is
17  *               outside the NAND controller pipeline.
18  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19  *                controller's side. This is the case of most of the raw NAND
20  *                controllers. In the pipeline case, the ECC bytes are
21  *                generated/data corrected on the fly when a page is
22  *                written/read.
23  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24  *            Some NAND chips can correct themselves the data.
25  *
26  * Besides the initial setup and final cleanups, the interfaces are rather
27  * simple:
28  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29  *              the I/O request type. In case of software correction or external
30  *              engine, this step may involve to derive the ECC bytes and place
31  *              them in the OOB area before a write.
32  *   - finish: Finish an I/O request. Correct the data in case of a read
33  *             request and report the number of corrected bits/uncorrectable
34  *             errors. Most likely empty for write operations, unless you have
35  *             hardware specific stuff to do, like shutting down the engine to
36  *             save power.
37  *
38  * The I/O request should be enclosed in a prepare()/finish() pair of calls
39  * and will behave differently depending on the requested I/O type:
40  *   - raw: Correction disabled
41  *   - ecc: Correction enabled
42  *
43  * The request direction is impacting the logic as well:
44  *   - read: Load data from the NAND chip
45  *   - write: Store data in the NAND chip
46  *
47  * Mixing all this combinations together gives the following behavior.
48  * Those are just examples, drivers are free to add custom steps in their
49  * prepare/finish hook.
50  *
51  * [external ECC engine]
52  *   - external + prepare + raw + read: do nothing
53  *   - external + finish  + raw + read: do nothing
54  *   - external + prepare + raw + write: do nothing
55  *   - external + finish  + raw + write: do nothing
56  *   - external + prepare + ecc + read: do nothing
57  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58  *                                      ECC bytes from OOB buffer, correct
59  *                                      and report any bitflip/error
60  *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61  *                                       the right place in the OOB buffer based
62  *                                       on the OOB layout
63  *   - external + finish  + ecc + write: do nothing
64  *
65  * [pipelined ECC engine]
66  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67  *                                       activated
68  *   - pipelined + finish  + raw + read: do nothing
69  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70  *                                        activated
71  *   - pipelined + finish  + raw + write: do nothing
72  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73  *                                       deactivated
74  *   - pipelined + finish  + ecc + read: check the status, report any
75  *                                       error/bitflip
76  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77  *                                        deactivated
78  *   - pipelined + finish  + ecc + write: do nothing
79  *
80  * [ondie ECC engine]
81  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82  *                                   engine if activated
83  *   - ondie + finish  + raw + read: do nothing
84  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85  *                                    engine if activated
86  *   - ondie + finish  + raw + write: do nothing
87  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88  *                                   engine if deactivated
89  *   - ondie + finish  + ecc + read: send commands to check the status, report
90  *                                   any error/bitflip
91  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92  *                                    engine if deactivated
93  *   - ondie + finish  + ecc + write: do nothing
94  */
95 
96 #include <linux/module.h>
97 #include <linux/mtd/nand.h>
98 #include <linux/slab.h>
99 
100 /**
101  * nand_ecc_init_ctx - Init the ECC engine context
102  * @nand: the NAND device
103  *
104  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
105  */
106 int nand_ecc_init_ctx(struct nand_device *nand)
107 {
108 	if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx)
109 		return 0;
110 
111 	return nand->ecc.engine->ops->init_ctx(nand);
112 }
113 EXPORT_SYMBOL(nand_ecc_init_ctx);
114 
115 /**
116  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
117  * @nand: the NAND device
118  */
119 void nand_ecc_cleanup_ctx(struct nand_device *nand)
120 {
121 	if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx)
122 		nand->ecc.engine->ops->cleanup_ctx(nand);
123 }
124 EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
125 
126 /**
127  * nand_ecc_prepare_io_req - Prepare an I/O request
128  * @nand: the NAND device
129  * @req: the I/O request
130  */
131 int nand_ecc_prepare_io_req(struct nand_device *nand,
132 			    struct nand_page_io_req *req)
133 {
134 	if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req)
135 		return 0;
136 
137 	return nand->ecc.engine->ops->prepare_io_req(nand, req);
138 }
139 EXPORT_SYMBOL(nand_ecc_prepare_io_req);
140 
141 /**
142  * nand_ecc_finish_io_req - Finish an I/O request
143  * @nand: the NAND device
144  * @req: the I/O request
145  */
146 int nand_ecc_finish_io_req(struct nand_device *nand,
147 			   struct nand_page_io_req *req)
148 {
149 	if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req)
150 		return 0;
151 
152 	return nand->ecc.engine->ops->finish_io_req(nand, req);
153 }
154 EXPORT_SYMBOL(nand_ecc_finish_io_req);
155 
156 /* Define default OOB placement schemes for large and small page devices */
157 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
158 				 struct mtd_oob_region *oobregion)
159 {
160 	struct nand_device *nand = mtd_to_nanddev(mtd);
161 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
162 
163 	if (section > 1)
164 		return -ERANGE;
165 
166 	if (!section) {
167 		oobregion->offset = 0;
168 		if (mtd->oobsize == 16)
169 			oobregion->length = 4;
170 		else
171 			oobregion->length = 3;
172 	} else {
173 		if (mtd->oobsize == 8)
174 			return -ERANGE;
175 
176 		oobregion->offset = 6;
177 		oobregion->length = total_ecc_bytes - 4;
178 	}
179 
180 	return 0;
181 }
182 
183 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
184 				  struct mtd_oob_region *oobregion)
185 {
186 	if (section > 1)
187 		return -ERANGE;
188 
189 	if (mtd->oobsize == 16) {
190 		if (section)
191 			return -ERANGE;
192 
193 		oobregion->length = 8;
194 		oobregion->offset = 8;
195 	} else {
196 		oobregion->length = 2;
197 		if (!section)
198 			oobregion->offset = 3;
199 		else
200 			oobregion->offset = 6;
201 	}
202 
203 	return 0;
204 }
205 
206 static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
207 	.ecc = nand_ooblayout_ecc_sp,
208 	.free = nand_ooblayout_free_sp,
209 };
210 
211 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
212 {
213 	return &nand_ooblayout_sp_ops;
214 }
215 EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
216 
217 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
218 				 struct mtd_oob_region *oobregion)
219 {
220 	struct nand_device *nand = mtd_to_nanddev(mtd);
221 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
222 
223 	if (section || !total_ecc_bytes)
224 		return -ERANGE;
225 
226 	oobregion->length = total_ecc_bytes;
227 	oobregion->offset = mtd->oobsize - oobregion->length;
228 
229 	return 0;
230 }
231 
232 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
233 				  struct mtd_oob_region *oobregion)
234 {
235 	struct nand_device *nand = mtd_to_nanddev(mtd);
236 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
237 
238 	if (section)
239 		return -ERANGE;
240 
241 	oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
242 	oobregion->offset = 2;
243 
244 	return 0;
245 }
246 
247 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
248 	.ecc = nand_ooblayout_ecc_lp,
249 	.free = nand_ooblayout_free_lp,
250 };
251 
252 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
253 {
254 	return &nand_ooblayout_lp_ops;
255 }
256 EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
257 
258 /*
259  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
260  * are placed at a fixed offset.
261  */
262 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
263 					 struct mtd_oob_region *oobregion)
264 {
265 	struct nand_device *nand = mtd_to_nanddev(mtd);
266 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
267 
268 	if (section)
269 		return -ERANGE;
270 
271 	switch (mtd->oobsize) {
272 	case 64:
273 		oobregion->offset = 40;
274 		break;
275 	case 128:
276 		oobregion->offset = 80;
277 		break;
278 	default:
279 		return -EINVAL;
280 	}
281 
282 	oobregion->length = total_ecc_bytes;
283 	if (oobregion->offset + oobregion->length > mtd->oobsize)
284 		return -ERANGE;
285 
286 	return 0;
287 }
288 
289 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
290 					  struct mtd_oob_region *oobregion)
291 {
292 	struct nand_device *nand = mtd_to_nanddev(mtd);
293 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
294 	int ecc_offset = 0;
295 
296 	if (section < 0 || section > 1)
297 		return -ERANGE;
298 
299 	switch (mtd->oobsize) {
300 	case 64:
301 		ecc_offset = 40;
302 		break;
303 	case 128:
304 		ecc_offset = 80;
305 		break;
306 	default:
307 		return -EINVAL;
308 	}
309 
310 	if (section == 0) {
311 		oobregion->offset = 2;
312 		oobregion->length = ecc_offset - 2;
313 	} else {
314 		oobregion->offset = ecc_offset + total_ecc_bytes;
315 		oobregion->length = mtd->oobsize - oobregion->offset;
316 	}
317 
318 	return 0;
319 }
320 
321 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
322 	.ecc = nand_ooblayout_ecc_lp_hamming,
323 	.free = nand_ooblayout_free_lp_hamming,
324 };
325 
326 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
327 {
328 	return &nand_ooblayout_lp_hamming_ops;
329 }
330 EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
331 
332 static enum nand_ecc_engine_type
333 of_get_nand_ecc_engine_type(struct device_node *np)
334 {
335 	struct device_node *eng_np;
336 
337 	if (of_property_read_bool(np, "nand-no-ecc-engine"))
338 		return NAND_ECC_ENGINE_TYPE_NONE;
339 
340 	if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
341 		return NAND_ECC_ENGINE_TYPE_SOFT;
342 
343 	eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
344 	of_node_put(eng_np);
345 
346 	if (eng_np) {
347 		if (eng_np == np)
348 			return NAND_ECC_ENGINE_TYPE_ON_DIE;
349 		else
350 			return NAND_ECC_ENGINE_TYPE_ON_HOST;
351 	}
352 
353 	return NAND_ECC_ENGINE_TYPE_INVALID;
354 }
355 
356 static const char * const nand_ecc_placement[] = {
357 	[NAND_ECC_PLACEMENT_OOB] = "oob",
358 	[NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
359 };
360 
361 static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
362 {
363 	enum nand_ecc_placement placement;
364 	const char *pm;
365 	int err;
366 
367 	err = of_property_read_string(np, "nand-ecc-placement", &pm);
368 	if (!err) {
369 		for (placement = NAND_ECC_PLACEMENT_OOB;
370 		     placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
371 			if (!strcasecmp(pm, nand_ecc_placement[placement]))
372 				return placement;
373 		}
374 	}
375 
376 	return NAND_ECC_PLACEMENT_UNKNOWN;
377 }
378 
379 static const char * const nand_ecc_algos[] = {
380 	[NAND_ECC_ALGO_HAMMING] = "hamming",
381 	[NAND_ECC_ALGO_BCH] = "bch",
382 	[NAND_ECC_ALGO_RS] = "rs",
383 };
384 
385 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
386 {
387 	enum nand_ecc_algo ecc_algo;
388 	const char *pm;
389 	int err;
390 
391 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
392 	if (!err) {
393 		for (ecc_algo = NAND_ECC_ALGO_HAMMING;
394 		     ecc_algo < ARRAY_SIZE(nand_ecc_algos);
395 		     ecc_algo++) {
396 			if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
397 				return ecc_algo;
398 		}
399 	}
400 
401 	return NAND_ECC_ALGO_UNKNOWN;
402 }
403 
404 static int of_get_nand_ecc_step_size(struct device_node *np)
405 {
406 	int ret;
407 	u32 val;
408 
409 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
410 	return ret ? ret : val;
411 }
412 
413 static int of_get_nand_ecc_strength(struct device_node *np)
414 {
415 	int ret;
416 	u32 val;
417 
418 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
419 	return ret ? ret : val;
420 }
421 
422 void of_get_nand_ecc_user_config(struct nand_device *nand)
423 {
424 	struct device_node *dn = nanddev_get_of_node(nand);
425 	int strength, size;
426 
427 	nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
428 	nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
429 	nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
430 
431 	strength = of_get_nand_ecc_strength(dn);
432 	if (strength >= 0)
433 		nand->ecc.user_conf.strength = strength;
434 
435 	size = of_get_nand_ecc_step_size(dn);
436 	if (size >= 0)
437 		nand->ecc.user_conf.step_size = size;
438 
439 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
440 		nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
441 }
442 EXPORT_SYMBOL(of_get_nand_ecc_user_config);
443 
444 /**
445  * nand_ecc_is_strong_enough - Check if the chip configuration meets the
446  *                             datasheet requirements.
447  *
448  * @nand: Device to check
449  *
450  * If our configuration corrects A bits per B bytes and the minimum
451  * required correction level is X bits per Y bytes, then we must ensure
452  * both of the following are true:
453  *
454  * (1) A / B >= X / Y
455  * (2) A >= X
456  *
457  * Requirement (1) ensures we can correct for the required bitflip density.
458  * Requirement (2) ensures we can correct even when all bitflips are clumped
459  * in the same sector.
460  */
461 bool nand_ecc_is_strong_enough(struct nand_device *nand)
462 {
463 	const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
464 	const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
465 	struct mtd_info *mtd = nanddev_to_mtd(nand);
466 	int corr, ds_corr;
467 
468 	if (conf->step_size == 0 || reqs->step_size == 0)
469 		/* Not enough information */
470 		return true;
471 
472 	/*
473 	 * We get the number of corrected bits per page to compare
474 	 * the correction density.
475 	 */
476 	corr = (mtd->writesize * conf->strength) / conf->step_size;
477 	ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
478 
479 	return corr >= ds_corr && conf->strength >= reqs->strength;
480 }
481 EXPORT_SYMBOL(nand_ecc_is_strong_enough);
482 
483 /* ECC engine driver internal helpers */
484 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
485 			       struct nand_device *nand)
486 {
487 	unsigned int total_buffer_size;
488 
489 	ctx->nand = nand;
490 
491 	/* Let the user decide the exact length of each buffer */
492 	if (!ctx->page_buffer_size)
493 		ctx->page_buffer_size = nanddev_page_size(nand);
494 	if (!ctx->oob_buffer_size)
495 		ctx->oob_buffer_size = nanddev_per_page_oobsize(nand);
496 
497 	total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size;
498 
499 	ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL);
500 	if (!ctx->spare_databuf)
501 		return -ENOMEM;
502 
503 	ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size;
504 
505 	return 0;
506 }
507 EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking);
508 
509 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx)
510 {
511 	kfree(ctx->spare_databuf);
512 }
513 EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking);
514 
515 /*
516  * Ensure data and OOB area is fully read/written otherwise the correction might
517  * not work as expected.
518  */
519 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
520 			struct nand_page_io_req *req)
521 {
522 	struct nand_device *nand = ctx->nand;
523 	struct nand_page_io_req *orig, *tweak;
524 
525 	/* Save the original request */
526 	ctx->orig_req = *req;
527 	ctx->bounce_data = false;
528 	ctx->bounce_oob = false;
529 	orig = &ctx->orig_req;
530 	tweak = req;
531 
532 	/* Ensure the request covers the entire page */
533 	if (orig->datalen < nanddev_page_size(nand)) {
534 		ctx->bounce_data = true;
535 		tweak->dataoffs = 0;
536 		tweak->datalen = nanddev_page_size(nand);
537 		tweak->databuf.in = ctx->spare_databuf;
538 		memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size);
539 	}
540 
541 	if (orig->ooblen < nanddev_per_page_oobsize(nand)) {
542 		ctx->bounce_oob = true;
543 		tweak->ooboffs = 0;
544 		tweak->ooblen = nanddev_per_page_oobsize(nand);
545 		tweak->oobbuf.in = ctx->spare_oobbuf;
546 		memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size);
547 	}
548 
549 	/* Copy the data that must be writen in the bounce buffers, if needed */
550 	if (orig->type == NAND_PAGE_WRITE) {
551 		if (ctx->bounce_data)
552 			memcpy((void *)tweak->databuf.out + orig->dataoffs,
553 			       orig->databuf.out, orig->datalen);
554 
555 		if (ctx->bounce_oob)
556 			memcpy((void *)tweak->oobbuf.out + orig->ooboffs,
557 			       orig->oobbuf.out, orig->ooblen);
558 	}
559 }
560 EXPORT_SYMBOL_GPL(nand_ecc_tweak_req);
561 
562 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
563 			  struct nand_page_io_req *req)
564 {
565 	struct nand_page_io_req *orig, *tweak;
566 
567 	orig = &ctx->orig_req;
568 	tweak = req;
569 
570 	/* Restore the data read from the bounce buffers, if needed */
571 	if (orig->type == NAND_PAGE_READ) {
572 		if (ctx->bounce_data)
573 			memcpy(orig->databuf.in,
574 			       tweak->databuf.in + orig->dataoffs,
575 			       orig->datalen);
576 
577 		if (ctx->bounce_oob)
578 			memcpy(orig->oobbuf.in,
579 			       tweak->oobbuf.in + orig->ooboffs,
580 			       orig->ooblen);
581 	}
582 
583 	/* Ensure the original request is restored */
584 	*req = *orig;
585 }
586 EXPORT_SYMBOL_GPL(nand_ecc_restore_req);
587 
588 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand)
589 {
590 	unsigned int algo = nand->ecc.user_conf.algo;
591 
592 	if (algo == NAND_ECC_ALGO_UNKNOWN)
593 		algo = nand->ecc.defaults.algo;
594 
595 	switch (algo) {
596 	case NAND_ECC_ALGO_HAMMING:
597 		return nand_ecc_sw_hamming_get_engine();
598 	case NAND_ECC_ALGO_BCH:
599 		return nand_ecc_sw_bch_get_engine();
600 	default:
601 		break;
602 	}
603 
604 	return NULL;
605 }
606 EXPORT_SYMBOL(nand_ecc_get_sw_engine);
607 
608 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand)
609 {
610 	return nand->ecc.ondie_engine;
611 }
612 EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine);
613 
614 MODULE_LICENSE("GPL");
615 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
616 MODULE_DESCRIPTION("Generic ECC engine");
617