xref: /openbmc/linux/drivers/mtd/nand/ecc.c (revision 2208f39c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Generic Error-Correcting Code (ECC) engine
4  *
5  * Copyright (C) 2019 Macronix
6  * Author:
7  *     Miquèl RAYNAL <miquel.raynal@bootlin.com>
8  *
9  *
10  * This file describes the abstraction of any NAND ECC engine. It has been
11  * designed to fit most cases, including parallel NANDs and SPI-NANDs.
12  *
13  * There are three main situations where instantiating this ECC engine makes
14  * sense:
15  *   - external: The ECC engine is outside the NAND pipeline, typically this
16  *               is a software ECC engine, or an hardware engine that is
17  *               outside the NAND controller pipeline.
18  *   - pipelined: The ECC engine is inside the NAND pipeline, ie. on the
19  *                controller's side. This is the case of most of the raw NAND
20  *                controllers. In the pipeline case, the ECC bytes are
21  *                generated/data corrected on the fly when a page is
22  *                written/read.
23  *   - ondie: The ECC engine is inside the NAND pipeline, on the chip's side.
24  *            Some NAND chips can correct themselves the data.
25  *
26  * Besides the initial setup and final cleanups, the interfaces are rather
27  * simple:
28  *   - prepare: Prepare an I/O request. Enable/disable the ECC engine based on
29  *              the I/O request type. In case of software correction or external
30  *              engine, this step may involve to derive the ECC bytes and place
31  *              them in the OOB area before a write.
32  *   - finish: Finish an I/O request. Correct the data in case of a read
33  *             request and report the number of corrected bits/uncorrectable
34  *             errors. Most likely empty for write operations, unless you have
35  *             hardware specific stuff to do, like shutting down the engine to
36  *             save power.
37  *
38  * The I/O request should be enclosed in a prepare()/finish() pair of calls
39  * and will behave differently depending on the requested I/O type:
40  *   - raw: Correction disabled
41  *   - ecc: Correction enabled
42  *
43  * The request direction is impacting the logic as well:
44  *   - read: Load data from the NAND chip
45  *   - write: Store data in the NAND chip
46  *
47  * Mixing all this combinations together gives the following behavior.
48  * Those are just examples, drivers are free to add custom steps in their
49  * prepare/finish hook.
50  *
51  * [external ECC engine]
52  *   - external + prepare + raw + read: do nothing
53  *   - external + finish  + raw + read: do nothing
54  *   - external + prepare + raw + write: do nothing
55  *   - external + finish  + raw + write: do nothing
56  *   - external + prepare + ecc + read: do nothing
57  *   - external + finish  + ecc + read: calculate expected ECC bytes, extract
58  *                                      ECC bytes from OOB buffer, correct
59  *                                      and report any bitflip/error
60  *   - external + prepare + ecc + write: calculate ECC bytes and store them at
61  *                                       the right place in the OOB buffer based
62  *                                       on the OOB layout
63  *   - external + finish  + ecc + write: do nothing
64  *
65  * [pipelined ECC engine]
66  *   - pipelined + prepare + raw + read: disable the controller's ECC engine if
67  *                                       activated
68  *   - pipelined + finish  + raw + read: do nothing
69  *   - pipelined + prepare + raw + write: disable the controller's ECC engine if
70  *                                        activated
71  *   - pipelined + finish  + raw + write: do nothing
72  *   - pipelined + prepare + ecc + read: enable the controller's ECC engine if
73  *                                       deactivated
74  *   - pipelined + finish  + ecc + read: check the status, report any
75  *                                       error/bitflip
76  *   - pipelined + prepare + ecc + write: enable the controller's ECC engine if
77  *                                        deactivated
78  *   - pipelined + finish  + ecc + write: do nothing
79  *
80  * [ondie ECC engine]
81  *   - ondie + prepare + raw + read: send commands to disable the on-chip ECC
82  *                                   engine if activated
83  *   - ondie + finish  + raw + read: do nothing
84  *   - ondie + prepare + raw + write: send commands to disable the on-chip ECC
85  *                                    engine if activated
86  *   - ondie + finish  + raw + write: do nothing
87  *   - ondie + prepare + ecc + read: send commands to enable the on-chip ECC
88  *                                   engine if deactivated
89  *   - ondie + finish  + ecc + read: send commands to check the status, report
90  *                                   any error/bitflip
91  *   - ondie + prepare + ecc + write: send commands to enable the on-chip ECC
92  *                                    engine if deactivated
93  *   - ondie + finish  + ecc + write: do nothing
94  */
95 
96 #include <linux/module.h>
97 #include <linux/mtd/nand.h>
98 
99 /**
100  * nand_ecc_init_ctx - Init the ECC engine context
101  * @nand: the NAND device
102  *
103  * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx().
104  */
105 int nand_ecc_init_ctx(struct nand_device *nand)
106 {
107 	if (!nand->ecc.engine->ops->init_ctx)
108 		return 0;
109 
110 	return nand->ecc.engine->ops->init_ctx(nand);
111 }
112 EXPORT_SYMBOL(nand_ecc_init_ctx);
113 
114 /**
115  * nand_ecc_cleanup_ctx - Cleanup the ECC engine context
116  * @nand: the NAND device
117  */
118 void nand_ecc_cleanup_ctx(struct nand_device *nand)
119 {
120 	if (nand->ecc.engine->ops->cleanup_ctx)
121 		nand->ecc.engine->ops->cleanup_ctx(nand);
122 }
123 EXPORT_SYMBOL(nand_ecc_cleanup_ctx);
124 
125 /**
126  * nand_ecc_prepare_io_req - Prepare an I/O request
127  * @nand: the NAND device
128  * @req: the I/O request
129  */
130 int nand_ecc_prepare_io_req(struct nand_device *nand,
131 			    struct nand_page_io_req *req)
132 {
133 	if (!nand->ecc.engine->ops->prepare_io_req)
134 		return 0;
135 
136 	return nand->ecc.engine->ops->prepare_io_req(nand, req);
137 }
138 EXPORT_SYMBOL(nand_ecc_prepare_io_req);
139 
140 /**
141  * nand_ecc_finish_io_req - Finish an I/O request
142  * @nand: the NAND device
143  * @req: the I/O request
144  */
145 int nand_ecc_finish_io_req(struct nand_device *nand,
146 			   struct nand_page_io_req *req)
147 {
148 	if (!nand->ecc.engine->ops->finish_io_req)
149 		return 0;
150 
151 	return nand->ecc.engine->ops->finish_io_req(nand, req);
152 }
153 EXPORT_SYMBOL(nand_ecc_finish_io_req);
154 
155 /* Define default OOB placement schemes for large and small page devices */
156 static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
157 				 struct mtd_oob_region *oobregion)
158 {
159 	struct nand_device *nand = mtd_to_nanddev(mtd);
160 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
161 
162 	if (section > 1)
163 		return -ERANGE;
164 
165 	if (!section) {
166 		oobregion->offset = 0;
167 		if (mtd->oobsize == 16)
168 			oobregion->length = 4;
169 		else
170 			oobregion->length = 3;
171 	} else {
172 		if (mtd->oobsize == 8)
173 			return -ERANGE;
174 
175 		oobregion->offset = 6;
176 		oobregion->length = total_ecc_bytes - 4;
177 	}
178 
179 	return 0;
180 }
181 
182 static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
183 				  struct mtd_oob_region *oobregion)
184 {
185 	if (section > 1)
186 		return -ERANGE;
187 
188 	if (mtd->oobsize == 16) {
189 		if (section)
190 			return -ERANGE;
191 
192 		oobregion->length = 8;
193 		oobregion->offset = 8;
194 	} else {
195 		oobregion->length = 2;
196 		if (!section)
197 			oobregion->offset = 3;
198 		else
199 			oobregion->offset = 6;
200 	}
201 
202 	return 0;
203 }
204 
205 static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
206 	.ecc = nand_ooblayout_ecc_sp,
207 	.free = nand_ooblayout_free_sp,
208 };
209 
210 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void)
211 {
212 	return &nand_ooblayout_sp_ops;
213 }
214 EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout);
215 
216 static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
217 				 struct mtd_oob_region *oobregion)
218 {
219 	struct nand_device *nand = mtd_to_nanddev(mtd);
220 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
221 
222 	if (section || !total_ecc_bytes)
223 		return -ERANGE;
224 
225 	oobregion->length = total_ecc_bytes;
226 	oobregion->offset = mtd->oobsize - oobregion->length;
227 
228 	return 0;
229 }
230 
231 static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
232 				  struct mtd_oob_region *oobregion)
233 {
234 	struct nand_device *nand = mtd_to_nanddev(mtd);
235 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
236 
237 	if (section)
238 		return -ERANGE;
239 
240 	oobregion->length = mtd->oobsize - total_ecc_bytes - 2;
241 	oobregion->offset = 2;
242 
243 	return 0;
244 }
245 
246 static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
247 	.ecc = nand_ooblayout_ecc_lp,
248 	.free = nand_ooblayout_free_lp,
249 };
250 
251 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void)
252 {
253 	return &nand_ooblayout_lp_ops;
254 }
255 EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout);
256 
257 /*
258  * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
259  * are placed at a fixed offset.
260  */
261 static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
262 					 struct mtd_oob_region *oobregion)
263 {
264 	struct nand_device *nand = mtd_to_nanddev(mtd);
265 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
266 
267 	if (section)
268 		return -ERANGE;
269 
270 	switch (mtd->oobsize) {
271 	case 64:
272 		oobregion->offset = 40;
273 		break;
274 	case 128:
275 		oobregion->offset = 80;
276 		break;
277 	default:
278 		return -EINVAL;
279 	}
280 
281 	oobregion->length = total_ecc_bytes;
282 	if (oobregion->offset + oobregion->length > mtd->oobsize)
283 		return -ERANGE;
284 
285 	return 0;
286 }
287 
288 static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
289 					  struct mtd_oob_region *oobregion)
290 {
291 	struct nand_device *nand = mtd_to_nanddev(mtd);
292 	unsigned int total_ecc_bytes = nand->ecc.ctx.total;
293 	int ecc_offset = 0;
294 
295 	if (section < 0 || section > 1)
296 		return -ERANGE;
297 
298 	switch (mtd->oobsize) {
299 	case 64:
300 		ecc_offset = 40;
301 		break;
302 	case 128:
303 		ecc_offset = 80;
304 		break;
305 	default:
306 		return -EINVAL;
307 	}
308 
309 	if (section == 0) {
310 		oobregion->offset = 2;
311 		oobregion->length = ecc_offset - 2;
312 	} else {
313 		oobregion->offset = ecc_offset + total_ecc_bytes;
314 		oobregion->length = mtd->oobsize - oobregion->offset;
315 	}
316 
317 	return 0;
318 }
319 
320 static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
321 	.ecc = nand_ooblayout_ecc_lp_hamming,
322 	.free = nand_ooblayout_free_lp_hamming,
323 };
324 
325 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void)
326 {
327 	return &nand_ooblayout_lp_hamming_ops;
328 }
329 EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout);
330 
331 static enum nand_ecc_engine_type
332 of_get_nand_ecc_engine_type(struct device_node *np)
333 {
334 	struct device_node *eng_np;
335 
336 	if (of_property_read_bool(np, "nand-no-ecc-engine"))
337 		return NAND_ECC_ENGINE_TYPE_NONE;
338 
339 	if (of_property_read_bool(np, "nand-use-soft-ecc-engine"))
340 		return NAND_ECC_ENGINE_TYPE_SOFT;
341 
342 	eng_np = of_parse_phandle(np, "nand-ecc-engine", 0);
343 	of_node_put(eng_np);
344 
345 	if (eng_np) {
346 		if (eng_np == np)
347 			return NAND_ECC_ENGINE_TYPE_ON_DIE;
348 		else
349 			return NAND_ECC_ENGINE_TYPE_ON_HOST;
350 	}
351 
352 	return NAND_ECC_ENGINE_TYPE_INVALID;
353 }
354 
355 static const char * const nand_ecc_placement[] = {
356 	[NAND_ECC_PLACEMENT_OOB] = "oob",
357 	[NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved",
358 };
359 
360 static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np)
361 {
362 	enum nand_ecc_placement placement;
363 	const char *pm;
364 	int err;
365 
366 	err = of_property_read_string(np, "nand-ecc-placement", &pm);
367 	if (!err) {
368 		for (placement = NAND_ECC_PLACEMENT_OOB;
369 		     placement < ARRAY_SIZE(nand_ecc_placement); placement++) {
370 			if (!strcasecmp(pm, nand_ecc_placement[placement]))
371 				return placement;
372 		}
373 	}
374 
375 	return NAND_ECC_PLACEMENT_UNKNOWN;
376 }
377 
378 static const char * const nand_ecc_algos[] = {
379 	[NAND_ECC_ALGO_HAMMING] = "hamming",
380 	[NAND_ECC_ALGO_BCH] = "bch",
381 	[NAND_ECC_ALGO_RS] = "rs",
382 };
383 
384 static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
385 {
386 	enum nand_ecc_algo ecc_algo;
387 	const char *pm;
388 	int err;
389 
390 	err = of_property_read_string(np, "nand-ecc-algo", &pm);
391 	if (!err) {
392 		for (ecc_algo = NAND_ECC_ALGO_HAMMING;
393 		     ecc_algo < ARRAY_SIZE(nand_ecc_algos);
394 		     ecc_algo++) {
395 			if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
396 				return ecc_algo;
397 		}
398 	}
399 
400 	return NAND_ECC_ALGO_UNKNOWN;
401 }
402 
403 static int of_get_nand_ecc_step_size(struct device_node *np)
404 {
405 	int ret;
406 	u32 val;
407 
408 	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
409 	return ret ? ret : val;
410 }
411 
412 static int of_get_nand_ecc_strength(struct device_node *np)
413 {
414 	int ret;
415 	u32 val;
416 
417 	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
418 	return ret ? ret : val;
419 }
420 
421 void of_get_nand_ecc_user_config(struct nand_device *nand)
422 {
423 	struct device_node *dn = nanddev_get_of_node(nand);
424 	int strength, size;
425 
426 	nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn);
427 	nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn);
428 	nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn);
429 
430 	strength = of_get_nand_ecc_strength(dn);
431 	if (strength >= 0)
432 		nand->ecc.user_conf.strength = strength;
433 
434 	size = of_get_nand_ecc_step_size(dn);
435 	if (size >= 0)
436 		nand->ecc.user_conf.step_size = size;
437 
438 	if (of_property_read_bool(dn, "nand-ecc-maximize"))
439 		nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH;
440 }
441 EXPORT_SYMBOL(of_get_nand_ecc_user_config);
442 
443 /**
444  * nand_ecc_is_strong_enough - Check if the chip configuration meets the
445  *                             datasheet requirements.
446  *
447  * @nand: Device to check
448  *
449  * If our configuration corrects A bits per B bytes and the minimum
450  * required correction level is X bits per Y bytes, then we must ensure
451  * both of the following are true:
452  *
453  * (1) A / B >= X / Y
454  * (2) A >= X
455  *
456  * Requirement (1) ensures we can correct for the required bitflip density.
457  * Requirement (2) ensures we can correct even when all bitflips are clumped
458  * in the same sector.
459  */
460 bool nand_ecc_is_strong_enough(struct nand_device *nand)
461 {
462 	const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand);
463 	const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand);
464 	struct mtd_info *mtd = nanddev_to_mtd(nand);
465 	int corr, ds_corr;
466 
467 	if (conf->step_size == 0 || reqs->step_size == 0)
468 		/* Not enough information */
469 		return true;
470 
471 	/*
472 	 * We get the number of corrected bits per page to compare
473 	 * the correction density.
474 	 */
475 	corr = (mtd->writesize * conf->strength) / conf->step_size;
476 	ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size;
477 
478 	return corr >= ds_corr && conf->strength >= reqs->strength;
479 }
480 EXPORT_SYMBOL(nand_ecc_is_strong_enough);
481 
482 MODULE_LICENSE("GPL");
483 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
484 MODULE_DESCRIPTION("Generic ECC engine");
485