xref: /openbmc/linux/drivers/mtd/nand/ecc-mxic.c (revision 8dd3cdea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Support for Macronix external hardware ECC engine for NAND devices, also
4  * called DPE for Data Processing Engine.
5  *
6  * Copyright © 2019 Macronix
7  * Author: Miquel Raynal <miquel.raynal@bootlin.com>
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/nand-ecc-mxic.h>
20 #include <linux/mutex.h>
21 #include <linux/of_device.h>
22 #include <linux/of_platform.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 
26 /* DPE Configuration */
27 #define DP_CONFIG 0x00
28 #define   ECC_EN BIT(0)
29 #define   ECC_TYP(idx) (((idx) << 3) & GENMASK(6, 3))
30 /* DPE Interrupt Status */
31 #define INTRPT_STS 0x04
32 #define   TRANS_CMPLT BIT(0)
33 #define   SDMA_MAIN BIT(1)
34 #define   SDMA_SPARE BIT(2)
35 #define   ECC_ERR BIT(3)
36 #define   TO_SPARE BIT(4)
37 #define   TO_MAIN BIT(5)
38 /* DPE Interrupt Status Enable */
39 #define INTRPT_STS_EN 0x08
40 /* DPE Interrupt Signal Enable */
41 #define INTRPT_SIG_EN 0x0C
42 /* Host Controller Configuration */
43 #define HC_CONFIG 0x10
44 #define   DEV2MEM 0 /* TRANS_TYP_DMA in the spec */
45 #define   MEM2MEM BIT(4) /* TRANS_TYP_IO in the spec */
46 #define   MAPPING BIT(5) /* TRANS_TYP_MAPPING in the spec */
47 #define   ECC_PACKED 0 /* LAYOUT_TYP_INTEGRATED in the spec */
48 #define   ECC_INTERLEAVED BIT(2) /* LAYOUT_TYP_DISTRIBUTED in the spec */
49 #define   BURST_TYP_FIXED 0
50 #define   BURST_TYP_INCREASING BIT(0)
51 /* Host Controller Slave Address */
52 #define HC_SLV_ADDR 0x14
53 /* ECC Chunk Size */
54 #define CHUNK_SIZE 0x20
55 /* Main Data Size */
56 #define MAIN_SIZE 0x24
57 /* Spare Data Size */
58 #define SPARE_SIZE 0x28
59 #define   META_SZ(reg) ((reg) & GENMASK(7, 0))
60 #define   PARITY_SZ(reg) (((reg) & GENMASK(15, 8)) >> 8)
61 #define   RSV_SZ(reg) (((reg) & GENMASK(23, 16)) >> 16)
62 #define   SPARE_SZ(reg) ((reg) >> 24)
63 /* ECC Chunk Count */
64 #define CHUNK_CNT 0x30
65 /* SDMA Control */
66 #define SDMA_CTRL 0x40
67 #define   WRITE_NAND 0
68 #define   READ_NAND BIT(1)
69 #define   CONT_NAND BIT(29)
70 #define   CONT_SYSM BIT(30) /* Continue System Memory? */
71 #define   SDMA_STRT BIT(31)
72 /* SDMA Address of Main Data */
73 #define SDMA_MAIN_ADDR 0x44
74 /* SDMA Address of Spare Data */
75 #define SDMA_SPARE_ADDR 0x48
76 /* DPE Version Number */
77 #define DP_VER 0xD0
78 #define   DP_VER_OFFSET 16
79 
80 /* Status bytes between each chunk of spare data */
81 #define STAT_BYTES 4
82 #define   NO_ERR 0x00
83 #define   MAX_CORR_ERR 0x28
84 #define   UNCORR_ERR 0xFE
85 #define   ERASED_CHUNK 0xFF
86 
87 struct mxic_ecc_engine {
88 	struct device *dev;
89 	void __iomem *regs;
90 	int irq;
91 	struct completion complete;
92 	struct nand_ecc_engine external_engine;
93 	struct nand_ecc_engine pipelined_engine;
94 	struct mutex lock;
95 };
96 
97 struct mxic_ecc_ctx {
98 	/* ECC machinery */
99 	unsigned int data_step_sz;
100 	unsigned int oob_step_sz;
101 	unsigned int parity_sz;
102 	unsigned int meta_sz;
103 	u8 *status;
104 	int steps;
105 
106 	/* DMA boilerplate */
107 	struct nand_ecc_req_tweak_ctx req_ctx;
108 	u8 *oobwithstat;
109 	struct scatterlist sg[2];
110 	struct nand_page_io_req *req;
111 	unsigned int pageoffs;
112 };
113 
114 static struct mxic_ecc_engine *ext_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
115 {
116 	return container_of(eng, struct mxic_ecc_engine, external_engine);
117 }
118 
119 static struct mxic_ecc_engine *pip_ecc_eng_to_mxic(struct nand_ecc_engine *eng)
120 {
121 	return container_of(eng, struct mxic_ecc_engine, pipelined_engine);
122 }
123 
124 static struct mxic_ecc_engine *nand_to_mxic(struct nand_device *nand)
125 {
126 	struct nand_ecc_engine *eng = nand->ecc.engine;
127 
128 	if (eng->integration == NAND_ECC_ENGINE_INTEGRATION_EXTERNAL)
129 		return ext_ecc_eng_to_mxic(eng);
130 	else
131 		return pip_ecc_eng_to_mxic(eng);
132 }
133 
134 static int mxic_ecc_ooblayout_ecc(struct mtd_info *mtd, int section,
135 				  struct mtd_oob_region *oobregion)
136 {
137 	struct nand_device *nand = mtd_to_nanddev(mtd);
138 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
139 
140 	if (section < 0 || section >= ctx->steps)
141 		return -ERANGE;
142 
143 	oobregion->offset = (section * ctx->oob_step_sz) + ctx->meta_sz;
144 	oobregion->length = ctx->parity_sz;
145 
146 	return 0;
147 }
148 
149 static int mxic_ecc_ooblayout_free(struct mtd_info *mtd, int section,
150 				   struct mtd_oob_region *oobregion)
151 {
152 	struct nand_device *nand = mtd_to_nanddev(mtd);
153 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
154 
155 	if (section < 0 || section >= ctx->steps)
156 		return -ERANGE;
157 
158 	if (!section) {
159 		oobregion->offset = 2;
160 		oobregion->length = ctx->meta_sz - 2;
161 	} else {
162 		oobregion->offset = section * ctx->oob_step_sz;
163 		oobregion->length = ctx->meta_sz;
164 	}
165 
166 	return 0;
167 }
168 
169 static const struct mtd_ooblayout_ops mxic_ecc_ooblayout_ops = {
170 	.ecc = mxic_ecc_ooblayout_ecc,
171 	.free = mxic_ecc_ooblayout_free,
172 };
173 
174 static void mxic_ecc_disable_engine(struct mxic_ecc_engine *mxic)
175 {
176 	u32 reg;
177 
178 	reg = readl(mxic->regs + DP_CONFIG);
179 	reg &= ~ECC_EN;
180 	writel(reg, mxic->regs + DP_CONFIG);
181 }
182 
183 static void mxic_ecc_enable_engine(struct mxic_ecc_engine *mxic)
184 {
185 	u32 reg;
186 
187 	reg = readl(mxic->regs + DP_CONFIG);
188 	reg |= ECC_EN;
189 	writel(reg, mxic->regs + DP_CONFIG);
190 }
191 
192 static void mxic_ecc_disable_int(struct mxic_ecc_engine *mxic)
193 {
194 	writel(0, mxic->regs + INTRPT_SIG_EN);
195 }
196 
197 static void mxic_ecc_enable_int(struct mxic_ecc_engine *mxic)
198 {
199 	writel(TRANS_CMPLT, mxic->regs + INTRPT_SIG_EN);
200 }
201 
202 static irqreturn_t mxic_ecc_isr(int irq, void *dev_id)
203 {
204 	struct mxic_ecc_engine *mxic = dev_id;
205 	u32 sts;
206 
207 	sts = readl(mxic->regs + INTRPT_STS);
208 	if (!sts)
209 		return IRQ_NONE;
210 
211 	if (sts & TRANS_CMPLT)
212 		complete(&mxic->complete);
213 
214 	writel(sts, mxic->regs + INTRPT_STS);
215 
216 	return IRQ_HANDLED;
217 }
218 
219 static int mxic_ecc_init_ctx(struct nand_device *nand, struct device *dev)
220 {
221 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
222 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
223 	struct nand_ecc_props *reqs = &nand->ecc.requirements;
224 	struct nand_ecc_props *user = &nand->ecc.user_conf;
225 	struct mtd_info *mtd = nanddev_to_mtd(nand);
226 	int step_size = 0, strength = 0, desired_correction = 0, steps, idx;
227 	static const int possible_strength[] = {4, 8, 40, 48};
228 	static const int spare_size[] = {32, 32, 96, 96};
229 	struct mxic_ecc_ctx *ctx;
230 	u32 spare_reg;
231 	int ret;
232 
233 	ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
234 	if (!ctx)
235 		return -ENOMEM;
236 
237 	nand->ecc.ctx.priv = ctx;
238 
239 	/* Only large page NAND chips may use BCH */
240 	if (mtd->oobsize < 64) {
241 		pr_err("BCH cannot be used with small page NAND chips\n");
242 		return -EINVAL;
243 	}
244 
245 	mtd_set_ooblayout(mtd, &mxic_ecc_ooblayout_ops);
246 
247 	/* Enable all status bits */
248 	writel(TRANS_CMPLT | SDMA_MAIN | SDMA_SPARE | ECC_ERR |
249 	       TO_SPARE | TO_MAIN, mxic->regs + INTRPT_STS_EN);
250 
251 	/* Configure the correction depending on the NAND device topology */
252 	if (user->step_size && user->strength) {
253 		step_size = user->step_size;
254 		strength = user->strength;
255 	} else if (reqs->step_size && reqs->strength) {
256 		step_size = reqs->step_size;
257 		strength = reqs->strength;
258 	}
259 
260 	if (step_size && strength) {
261 		steps = mtd->writesize / step_size;
262 		desired_correction = steps * strength;
263 	}
264 
265 	/* Step size is fixed to 1kiB, strength may vary (4 possible values) */
266 	conf->step_size = SZ_1K;
267 	steps = mtd->writesize / conf->step_size;
268 
269 	ctx->status = devm_kzalloc(dev, steps * sizeof(u8), GFP_KERNEL);
270 	if (!ctx->status)
271 		return -ENOMEM;
272 
273 	if (desired_correction) {
274 		strength = desired_correction / steps;
275 
276 		for (idx = 0; idx < ARRAY_SIZE(possible_strength); idx++)
277 			if (possible_strength[idx] >= strength)
278 				break;
279 
280 		idx = min_t(unsigned int, idx,
281 			    ARRAY_SIZE(possible_strength) - 1);
282 	} else {
283 		/* Missing data, maximize the correction */
284 		idx = ARRAY_SIZE(possible_strength) - 1;
285 	}
286 
287 	/* Tune the selected strength until it fits in the OOB area */
288 	for (; idx >= 0; idx--) {
289 		if (spare_size[idx] * steps <= mtd->oobsize)
290 			break;
291 	}
292 
293 	/* This engine cannot be used with this NAND device */
294 	if (idx < 0)
295 		return -EINVAL;
296 
297 	/* Configure the engine for the desired strength */
298 	writel(ECC_TYP(idx), mxic->regs + DP_CONFIG);
299 	conf->strength = possible_strength[idx];
300 	spare_reg = readl(mxic->regs + SPARE_SIZE);
301 
302 	ctx->steps = steps;
303 	ctx->data_step_sz = mtd->writesize / steps;
304 	ctx->oob_step_sz = mtd->oobsize / steps;
305 	ctx->parity_sz = PARITY_SZ(spare_reg);
306 	ctx->meta_sz = META_SZ(spare_reg);
307 
308 	/* Ensure buffers will contain enough bytes to store the STAT_BYTES */
309 	ctx->req_ctx.oob_buffer_size = nanddev_per_page_oobsize(nand) +
310 					(ctx->steps * STAT_BYTES);
311 	ret = nand_ecc_init_req_tweaking(&ctx->req_ctx, nand);
312 	if (ret)
313 		return ret;
314 
315 	ctx->oobwithstat = kmalloc(mtd->oobsize + (ctx->steps * STAT_BYTES),
316 				   GFP_KERNEL);
317 	if (!ctx->oobwithstat) {
318 		ret = -ENOMEM;
319 		goto cleanup_req_tweak;
320 	}
321 
322 	sg_init_table(ctx->sg, 2);
323 
324 	/* Configuration dump and sanity checks */
325 	dev_err(dev, "DPE version number: %d\n",
326 		readl(mxic->regs + DP_VER) >> DP_VER_OFFSET);
327 	dev_err(dev, "Chunk size: %d\n", readl(mxic->regs + CHUNK_SIZE));
328 	dev_err(dev, "Main size: %d\n", readl(mxic->regs + MAIN_SIZE));
329 	dev_err(dev, "Spare size: %d\n", SPARE_SZ(spare_reg));
330 	dev_err(dev, "Rsv size: %ld\n", RSV_SZ(spare_reg));
331 	dev_err(dev, "Parity size: %d\n", ctx->parity_sz);
332 	dev_err(dev, "Meta size: %d\n", ctx->meta_sz);
333 
334 	if ((ctx->meta_sz + ctx->parity_sz + RSV_SZ(spare_reg)) !=
335 	    SPARE_SZ(spare_reg)) {
336 		dev_err(dev, "Wrong OOB configuration: %d + %d + %ld != %d\n",
337 			ctx->meta_sz, ctx->parity_sz, RSV_SZ(spare_reg),
338 			SPARE_SZ(spare_reg));
339 		ret = -EINVAL;
340 		goto free_oobwithstat;
341 	}
342 
343 	if (ctx->oob_step_sz != SPARE_SZ(spare_reg)) {
344 		dev_err(dev, "Wrong OOB configuration: %d != %d\n",
345 			ctx->oob_step_sz, SPARE_SZ(spare_reg));
346 		ret = -EINVAL;
347 		goto free_oobwithstat;
348 	}
349 
350 	return 0;
351 
352 free_oobwithstat:
353 	kfree(ctx->oobwithstat);
354 cleanup_req_tweak:
355 	nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
356 
357 	return ret;
358 }
359 
360 static int mxic_ecc_init_ctx_external(struct nand_device *nand)
361 {
362 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
363 	struct device *dev = nand->ecc.engine->dev;
364 	int ret;
365 
366 	dev_info(dev, "Macronix ECC engine in external mode\n");
367 
368 	ret = mxic_ecc_init_ctx(nand, dev);
369 	if (ret)
370 		return ret;
371 
372 	/* Trigger each step manually */
373 	writel(1, mxic->regs + CHUNK_CNT);
374 	writel(BURST_TYP_INCREASING | ECC_PACKED | MEM2MEM,
375 	       mxic->regs + HC_CONFIG);
376 
377 	return 0;
378 }
379 
380 static int mxic_ecc_init_ctx_pipelined(struct nand_device *nand)
381 {
382 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
383 	struct mxic_ecc_ctx *ctx;
384 	struct device *dev;
385 	int ret;
386 
387 	dev = nand_ecc_get_engine_dev(nand->ecc.engine->dev);
388 	if (!dev)
389 		return -EINVAL;
390 
391 	dev_info(dev, "Macronix ECC engine in pipelined/mapping mode\n");
392 
393 	ret = mxic_ecc_init_ctx(nand, dev);
394 	if (ret)
395 		return ret;
396 
397 	ctx = nand_to_ecc_ctx(nand);
398 
399 	/* All steps should be handled in one go directly by the internal DMA */
400 	writel(ctx->steps, mxic->regs + CHUNK_CNT);
401 
402 	/*
403 	 * Interleaved ECC scheme cannot be used otherwise factory bad block
404 	 * markers would be lost. A packed layout is mandatory.
405 	 */
406 	writel(BURST_TYP_INCREASING | ECC_PACKED | MAPPING,
407 	       mxic->regs + HC_CONFIG);
408 
409 	return 0;
410 }
411 
412 static void mxic_ecc_cleanup_ctx(struct nand_device *nand)
413 {
414 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
415 
416 	if (ctx) {
417 		nand_ecc_cleanup_req_tweaking(&ctx->req_ctx);
418 		kfree(ctx->oobwithstat);
419 	}
420 }
421 
422 static int mxic_ecc_data_xfer_wait_for_completion(struct mxic_ecc_engine *mxic)
423 {
424 	u32 val;
425 	int ret;
426 
427 	if (mxic->irq) {
428 		reinit_completion(&mxic->complete);
429 		mxic_ecc_enable_int(mxic);
430 		ret = wait_for_completion_timeout(&mxic->complete,
431 						  msecs_to_jiffies(1000));
432 		mxic_ecc_disable_int(mxic);
433 	} else {
434 		ret = readl_poll_timeout(mxic->regs + INTRPT_STS, val,
435 					 val & TRANS_CMPLT, 10, USEC_PER_SEC);
436 		writel(val, mxic->regs + INTRPT_STS);
437 	}
438 
439 	if (ret) {
440 		dev_err(mxic->dev, "Timeout on data xfer completion\n");
441 		return -ETIMEDOUT;
442 	}
443 
444 	return 0;
445 }
446 
447 static int mxic_ecc_process_data(struct mxic_ecc_engine *mxic,
448 				 unsigned int direction)
449 {
450 	unsigned int dir = (direction == NAND_PAGE_READ) ?
451 			   READ_NAND : WRITE_NAND;
452 	int ret;
453 
454 	mxic_ecc_enable_engine(mxic);
455 
456 	/* Trigger processing */
457 	writel(SDMA_STRT | dir, mxic->regs + SDMA_CTRL);
458 
459 	/* Wait for completion */
460 	ret = mxic_ecc_data_xfer_wait_for_completion(mxic);
461 
462 	mxic_ecc_disable_engine(mxic);
463 
464 	return ret;
465 }
466 
467 int mxic_ecc_process_data_pipelined(struct nand_ecc_engine *eng,
468 				    unsigned int direction, dma_addr_t dirmap)
469 {
470 	struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
471 
472 	if (dirmap)
473 		writel(dirmap, mxic->regs + HC_SLV_ADDR);
474 
475 	return mxic_ecc_process_data(mxic, direction);
476 }
477 EXPORT_SYMBOL_GPL(mxic_ecc_process_data_pipelined);
478 
479 static void mxic_ecc_extract_status_bytes(struct mxic_ecc_ctx *ctx)
480 {
481 	u8 *buf = ctx->oobwithstat;
482 	int next_stat_pos;
483 	int step;
484 
485 	/* Extract the ECC status */
486 	for (step = 0; step < ctx->steps; step++) {
487 		next_stat_pos = ctx->oob_step_sz +
488 				((STAT_BYTES + ctx->oob_step_sz) * step);
489 
490 		ctx->status[step] = buf[next_stat_pos];
491 	}
492 }
493 
494 static void mxic_ecc_reconstruct_oobbuf(struct mxic_ecc_ctx *ctx,
495 					u8 *dst, const u8 *src)
496 {
497 	int step;
498 
499 	/* Reconstruct the OOB buffer linearly (without the ECC status bytes) */
500 	for (step = 0; step < ctx->steps; step++)
501 		memcpy(dst + (step * ctx->oob_step_sz),
502 		       src + (step * (ctx->oob_step_sz + STAT_BYTES)),
503 		       ctx->oob_step_sz);
504 }
505 
506 static void mxic_ecc_add_room_in_oobbuf(struct mxic_ecc_ctx *ctx,
507 					u8 *dst, const u8 *src)
508 {
509 	int step;
510 
511 	/* Add some space in the OOB buffer for the status bytes */
512 	for (step = 0; step < ctx->steps; step++)
513 		memcpy(dst + (step * (ctx->oob_step_sz + STAT_BYTES)),
514 		       src + (step * ctx->oob_step_sz),
515 		       ctx->oob_step_sz);
516 }
517 
518 static int mxic_ecc_count_biterrs(struct mxic_ecc_engine *mxic,
519 				  struct nand_device *nand)
520 {
521 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
522 	struct mtd_info *mtd = nanddev_to_mtd(nand);
523 	struct device *dev = mxic->dev;
524 	unsigned int max_bf = 0;
525 	bool failure = false;
526 	int step;
527 
528 	for (step = 0; step < ctx->steps; step++) {
529 		u8 stat = ctx->status[step];
530 
531 		if (stat == NO_ERR) {
532 			dev_dbg(dev, "ECC step %d: no error\n", step);
533 		} else if (stat == ERASED_CHUNK) {
534 			dev_dbg(dev, "ECC step %d: erased\n", step);
535 		} else if (stat == UNCORR_ERR || stat > MAX_CORR_ERR) {
536 			dev_dbg(dev, "ECC step %d: uncorrectable\n", step);
537 			mtd->ecc_stats.failed++;
538 			failure = true;
539 		} else {
540 			dev_dbg(dev, "ECC step %d: %d bits corrected\n",
541 				step, stat);
542 			max_bf = max_t(unsigned int, max_bf, stat);
543 			mtd->ecc_stats.corrected += stat;
544 		}
545 	}
546 
547 	return failure ? -EBADMSG : max_bf;
548 }
549 
550 /* External ECC engine helpers */
551 static int mxic_ecc_prepare_io_req_external(struct nand_device *nand,
552 					    struct nand_page_io_req *req)
553 {
554 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
555 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
556 	struct mtd_info *mtd = nanddev_to_mtd(nand);
557 	int offset, nents, step, ret;
558 
559 	if (req->mode == MTD_OPS_RAW)
560 		return 0;
561 
562 	nand_ecc_tweak_req(&ctx->req_ctx, req);
563 	ctx->req = req;
564 
565 	if (req->type == NAND_PAGE_READ)
566 		return 0;
567 
568 	mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat,
569 				    ctx->req->oobbuf.out);
570 
571 	sg_set_buf(&ctx->sg[0], req->databuf.out, req->datalen);
572 	sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
573 		   req->ooblen + (ctx->steps * STAT_BYTES));
574 
575 	nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
576 	if (!nents)
577 		return -EINVAL;
578 
579 	mutex_lock(&mxic->lock);
580 
581 	for (step = 0; step < ctx->steps; step++) {
582 		writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
583 		       mxic->regs + SDMA_MAIN_ADDR);
584 		writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
585 		       mxic->regs + SDMA_SPARE_ADDR);
586 		ret = mxic_ecc_process_data(mxic, ctx->req->type);
587 		if (ret)
588 			break;
589 	}
590 
591 	mutex_unlock(&mxic->lock);
592 
593 	dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
594 
595 	if (ret)
596 		return ret;
597 
598 	/* Retrieve the calculated ECC bytes */
599 	for (step = 0; step < ctx->steps; step++) {
600 		offset = ctx->meta_sz + (step * ctx->oob_step_sz);
601 		mtd_ooblayout_get_eccbytes(mtd,
602 					   (u8 *)ctx->req->oobbuf.out + offset,
603 					   ctx->oobwithstat + (step * STAT_BYTES),
604 					   step * ctx->parity_sz,
605 					   ctx->parity_sz);
606 	}
607 
608 	return 0;
609 }
610 
611 static int mxic_ecc_finish_io_req_external(struct nand_device *nand,
612 					   struct nand_page_io_req *req)
613 {
614 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
615 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
616 	int nents, step, ret;
617 
618 	if (req->mode == MTD_OPS_RAW)
619 		return 0;
620 
621 	if (req->type == NAND_PAGE_WRITE) {
622 		nand_ecc_restore_req(&ctx->req_ctx, req);
623 		return 0;
624 	}
625 
626 	/* Copy the OOB buffer and add room for the ECC engine status bytes */
627 	mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
628 
629 	sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
630 	sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
631 		   req->ooblen + (ctx->steps * STAT_BYTES));
632 	nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
633 	if (!nents)
634 		return -EINVAL;
635 
636 	mutex_lock(&mxic->lock);
637 
638 	for (step = 0; step < ctx->steps; step++) {
639 		writel(sg_dma_address(&ctx->sg[0]) + (step * ctx->data_step_sz),
640 		       mxic->regs + SDMA_MAIN_ADDR);
641 		writel(sg_dma_address(&ctx->sg[1]) + (step * (ctx->oob_step_sz + STAT_BYTES)),
642 		       mxic->regs + SDMA_SPARE_ADDR);
643 		ret = mxic_ecc_process_data(mxic, ctx->req->type);
644 		if (ret)
645 			break;
646 	}
647 
648 	mutex_unlock(&mxic->lock);
649 
650 	dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
651 
652 	if (ret) {
653 		nand_ecc_restore_req(&ctx->req_ctx, req);
654 		return ret;
655 	}
656 
657 	/* Extract the status bytes and reconstruct the buffer */
658 	mxic_ecc_extract_status_bytes(ctx);
659 	mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in, ctx->oobwithstat);
660 
661 	nand_ecc_restore_req(&ctx->req_ctx, req);
662 
663 	return mxic_ecc_count_biterrs(mxic, nand);
664 }
665 
666 /* Pipelined ECC engine helpers */
667 static int mxic_ecc_prepare_io_req_pipelined(struct nand_device *nand,
668 					     struct nand_page_io_req *req)
669 {
670 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
671 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
672 	int nents;
673 
674 	if (req->mode == MTD_OPS_RAW)
675 		return 0;
676 
677 	nand_ecc_tweak_req(&ctx->req_ctx, req);
678 	ctx->req = req;
679 
680 	/* Copy the OOB buffer and add room for the ECC engine status bytes */
681 	mxic_ecc_add_room_in_oobbuf(ctx, ctx->oobwithstat, ctx->req->oobbuf.in);
682 
683 	sg_set_buf(&ctx->sg[0], req->databuf.in, req->datalen);
684 	sg_set_buf(&ctx->sg[1], ctx->oobwithstat,
685 		   req->ooblen + (ctx->steps * STAT_BYTES));
686 
687 	nents = dma_map_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
688 	if (!nents)
689 		return -EINVAL;
690 
691 	mutex_lock(&mxic->lock);
692 
693 	writel(sg_dma_address(&ctx->sg[0]), mxic->regs + SDMA_MAIN_ADDR);
694 	writel(sg_dma_address(&ctx->sg[1]), mxic->regs + SDMA_SPARE_ADDR);
695 
696 	return 0;
697 }
698 
699 static int mxic_ecc_finish_io_req_pipelined(struct nand_device *nand,
700 					    struct nand_page_io_req *req)
701 {
702 	struct mxic_ecc_engine *mxic = nand_to_mxic(nand);
703 	struct mxic_ecc_ctx *ctx = nand_to_ecc_ctx(nand);
704 	int ret = 0;
705 
706 	if (req->mode == MTD_OPS_RAW)
707 		return 0;
708 
709 	mutex_unlock(&mxic->lock);
710 
711 	dma_unmap_sg(mxic->dev, ctx->sg, 2, DMA_BIDIRECTIONAL);
712 
713 	if (req->type == NAND_PAGE_READ) {
714 		mxic_ecc_extract_status_bytes(ctx);
715 		mxic_ecc_reconstruct_oobbuf(ctx, ctx->req->oobbuf.in,
716 					    ctx->oobwithstat);
717 		ret = mxic_ecc_count_biterrs(mxic, nand);
718 	}
719 
720 	nand_ecc_restore_req(&ctx->req_ctx, req);
721 
722 	return ret;
723 }
724 
725 static struct nand_ecc_engine_ops mxic_ecc_engine_external_ops = {
726 	.init_ctx = mxic_ecc_init_ctx_external,
727 	.cleanup_ctx = mxic_ecc_cleanup_ctx,
728 	.prepare_io_req = mxic_ecc_prepare_io_req_external,
729 	.finish_io_req = mxic_ecc_finish_io_req_external,
730 };
731 
732 static struct nand_ecc_engine_ops mxic_ecc_engine_pipelined_ops = {
733 	.init_ctx = mxic_ecc_init_ctx_pipelined,
734 	.cleanup_ctx = mxic_ecc_cleanup_ctx,
735 	.prepare_io_req = mxic_ecc_prepare_io_req_pipelined,
736 	.finish_io_req = mxic_ecc_finish_io_req_pipelined,
737 };
738 
739 struct nand_ecc_engine_ops *mxic_ecc_get_pipelined_ops(void)
740 {
741 	return &mxic_ecc_engine_pipelined_ops;
742 }
743 EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_ops);
744 
745 static struct platform_device *
746 mxic_ecc_get_pdev(struct platform_device *spi_pdev)
747 {
748 	struct platform_device *eng_pdev;
749 	struct device_node *np;
750 
751 	/* Retrieve the nand-ecc-engine phandle */
752 	np = of_parse_phandle(spi_pdev->dev.of_node, "nand-ecc-engine", 0);
753 	if (!np)
754 		return NULL;
755 
756 	/* Jump to the engine's device node */
757 	eng_pdev = of_find_device_by_node(np);
758 	of_node_put(np);
759 
760 	return eng_pdev;
761 }
762 
763 void mxic_ecc_put_pipelined_engine(struct nand_ecc_engine *eng)
764 {
765 	struct mxic_ecc_engine *mxic = pip_ecc_eng_to_mxic(eng);
766 
767 	platform_device_put(to_platform_device(mxic->dev));
768 }
769 EXPORT_SYMBOL_GPL(mxic_ecc_put_pipelined_engine);
770 
771 struct nand_ecc_engine *
772 mxic_ecc_get_pipelined_engine(struct platform_device *spi_pdev)
773 {
774 	struct platform_device *eng_pdev;
775 	struct mxic_ecc_engine *mxic;
776 
777 	eng_pdev = mxic_ecc_get_pdev(spi_pdev);
778 	if (!eng_pdev)
779 		return ERR_PTR(-ENODEV);
780 
781 	mxic = platform_get_drvdata(eng_pdev);
782 	if (!mxic) {
783 		platform_device_put(eng_pdev);
784 		return ERR_PTR(-EPROBE_DEFER);
785 	}
786 
787 	return &mxic->pipelined_engine;
788 }
789 EXPORT_SYMBOL_GPL(mxic_ecc_get_pipelined_engine);
790 
791 /*
792  * Only the external ECC engine is exported as the pipelined is SoC specific, so
793  * it is registered directly by the drivers that wrap it.
794  */
795 static int mxic_ecc_probe(struct platform_device *pdev)
796 {
797 	struct device *dev = &pdev->dev;
798 	struct mxic_ecc_engine *mxic;
799 	int ret;
800 
801 	mxic = devm_kzalloc(&pdev->dev, sizeof(*mxic), GFP_KERNEL);
802 	if (!mxic)
803 		return -ENOMEM;
804 
805 	mxic->dev = &pdev->dev;
806 
807 	/*
808 	 * Both memory regions for the ECC engine itself and the AXI slave
809 	 * address are mandatory.
810 	 */
811 	mxic->regs = devm_platform_ioremap_resource(pdev, 0);
812 	if (IS_ERR(mxic->regs)) {
813 		dev_err(&pdev->dev, "Missing memory region\n");
814 		return PTR_ERR(mxic->regs);
815 	}
816 
817 	mxic_ecc_disable_engine(mxic);
818 	mxic_ecc_disable_int(mxic);
819 
820 	/* IRQ is optional yet much more efficient */
821 	mxic->irq = platform_get_irq_byname_optional(pdev, "ecc-engine");
822 	if (mxic->irq > 0) {
823 		ret = devm_request_irq(&pdev->dev, mxic->irq, mxic_ecc_isr, 0,
824 				       "mxic-ecc", mxic);
825 		if (ret)
826 			return ret;
827 	} else {
828 		dev_info(dev, "Invalid or missing IRQ, fallback to polling\n");
829 		mxic->irq = 0;
830 	}
831 
832 	mutex_init(&mxic->lock);
833 
834 	/*
835 	 * In external mode, the device is the ECC engine. In pipelined mode,
836 	 * the device is the host controller. The device is used to match the
837 	 * right ECC engine based on the DT properties.
838 	 */
839 	mxic->external_engine.dev = &pdev->dev;
840 	mxic->external_engine.integration = NAND_ECC_ENGINE_INTEGRATION_EXTERNAL;
841 	mxic->external_engine.ops = &mxic_ecc_engine_external_ops;
842 
843 	nand_ecc_register_on_host_hw_engine(&mxic->external_engine);
844 
845 	platform_set_drvdata(pdev, mxic);
846 
847 	return 0;
848 }
849 
850 static int mxic_ecc_remove(struct platform_device *pdev)
851 {
852 	struct mxic_ecc_engine *mxic = platform_get_drvdata(pdev);
853 
854 	nand_ecc_unregister_on_host_hw_engine(&mxic->external_engine);
855 
856 	return 0;
857 }
858 
859 static const struct of_device_id mxic_ecc_of_ids[] = {
860 	{
861 		.compatible = "mxicy,nand-ecc-engine-rev3",
862 	},
863 	{ /* sentinel */ },
864 };
865 MODULE_DEVICE_TABLE(of, mxic_ecc_of_ids);
866 
867 static struct platform_driver mxic_ecc_driver = {
868 	.driver	= {
869 		.name = "mxic-nand-ecc-engine",
870 		.of_match_table = mxic_ecc_of_ids,
871 	},
872 	.probe = mxic_ecc_probe,
873 	.remove	= mxic_ecc_remove,
874 };
875 module_platform_driver(mxic_ecc_driver);
876 
877 MODULE_LICENSE("GPL");
878 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
879 MODULE_DESCRIPTION("Macronix NAND hardware ECC controller");
880