xref: /openbmc/linux/drivers/mtd/nand/core.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017 Free Electrons
4  *
5  * Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #define pr_fmt(fmt)	"nand: " fmt
11 
12 #include <linux/module.h>
13 #include <linux/mtd/nand.h>
14 
15 /**
16  * nanddev_isbad() - Check if a block is bad
17  * @nand: NAND device
18  * @pos: position pointing to the block we want to check
19  *
20  * Return: true if the block is bad, false otherwise.
21  */
22 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
23 {
24 	if (nanddev_bbt_is_initialized(nand)) {
25 		unsigned int entry;
26 		int status;
27 
28 		entry = nanddev_bbt_pos_to_entry(nand, pos);
29 		status = nanddev_bbt_get_block_status(nand, entry);
30 		/* Lazy block status retrieval */
31 		if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
32 			if (nand->ops->isbad(nand, pos))
33 				status = NAND_BBT_BLOCK_FACTORY_BAD;
34 			else
35 				status = NAND_BBT_BLOCK_GOOD;
36 
37 			nanddev_bbt_set_block_status(nand, entry, status);
38 		}
39 
40 		if (status == NAND_BBT_BLOCK_WORN ||
41 		    status == NAND_BBT_BLOCK_FACTORY_BAD)
42 			return true;
43 
44 		return false;
45 	}
46 
47 	return nand->ops->isbad(nand, pos);
48 }
49 EXPORT_SYMBOL_GPL(nanddev_isbad);
50 
51 /**
52  * nanddev_markbad() - Mark a block as bad
53  * @nand: NAND device
54  * @pos: position of the block to mark bad
55  *
56  * Mark a block bad. This function is updating the BBT if available and
57  * calls the low-level markbad hook (nand->ops->markbad()).
58  *
59  * Return: 0 in case of success, a negative error code otherwise.
60  */
61 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
62 {
63 	struct mtd_info *mtd = nanddev_to_mtd(nand);
64 	unsigned int entry;
65 	int ret = 0;
66 
67 	if (nanddev_isbad(nand, pos))
68 		return 0;
69 
70 	ret = nand->ops->markbad(nand, pos);
71 	if (ret)
72 		pr_warn("failed to write BBM to block @%llx (err = %d)\n",
73 			nanddev_pos_to_offs(nand, pos), ret);
74 
75 	if (!nanddev_bbt_is_initialized(nand))
76 		goto out;
77 
78 	entry = nanddev_bbt_pos_to_entry(nand, pos);
79 	ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
80 	if (ret)
81 		goto out;
82 
83 	ret = nanddev_bbt_update(nand);
84 
85 out:
86 	if (!ret)
87 		mtd->ecc_stats.badblocks++;
88 
89 	return ret;
90 }
91 EXPORT_SYMBOL_GPL(nanddev_markbad);
92 
93 /**
94  * nanddev_isreserved() - Check whether an eraseblock is reserved or not
95  * @nand: NAND device
96  * @pos: NAND position to test
97  *
98  * Checks whether the eraseblock pointed by @pos is reserved or not.
99  *
100  * Return: true if the eraseblock is reserved, false otherwise.
101  */
102 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
103 {
104 	unsigned int entry;
105 	int status;
106 
107 	if (!nanddev_bbt_is_initialized(nand))
108 		return false;
109 
110 	/* Return info from the table */
111 	entry = nanddev_bbt_pos_to_entry(nand, pos);
112 	status = nanddev_bbt_get_block_status(nand, entry);
113 	return status == NAND_BBT_BLOCK_RESERVED;
114 }
115 EXPORT_SYMBOL_GPL(nanddev_isreserved);
116 
117 /**
118  * nanddev_erase() - Erase a NAND portion
119  * @nand: NAND device
120  * @pos: position of the block to erase
121  *
122  * Erases the block if it's not bad.
123  *
124  * Return: 0 in case of success, a negative error code otherwise.
125  */
126 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
127 {
128 	if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
129 		pr_warn("attempt to erase a bad/reserved block @%llx\n",
130 			nanddev_pos_to_offs(nand, pos));
131 		return -EIO;
132 	}
133 
134 	return nand->ops->erase(nand, pos);
135 }
136 EXPORT_SYMBOL_GPL(nanddev_erase);
137 
138 /**
139  * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
140  * @mtd: MTD device
141  * @einfo: erase request
142  *
143  * This is a simple mtd->_erase() implementation iterating over all blocks
144  * concerned by @einfo and calling nand->ops->erase() on each of them.
145  *
146  * Note that mtd->_erase should not be directly assigned to this helper,
147  * because there's no locking here. NAND specialized layers should instead
148  * implement there own wrapper around nanddev_mtd_erase() taking the
149  * appropriate lock before calling nanddev_mtd_erase().
150  *
151  * Return: 0 in case of success, a negative error code otherwise.
152  */
153 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
154 {
155 	struct nand_device *nand = mtd_to_nanddev(mtd);
156 	struct nand_pos pos, last;
157 	int ret;
158 
159 	nanddev_offs_to_pos(nand, einfo->addr, &pos);
160 	nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
161 	while (nanddev_pos_cmp(&pos, &last) <= 0) {
162 		ret = nanddev_erase(nand, &pos);
163 		if (ret) {
164 			einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
165 
166 			return ret;
167 		}
168 
169 		nanddev_pos_next_eraseblock(nand, &pos);
170 	}
171 
172 	return 0;
173 }
174 EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
175 
176 /**
177  * nanddev_mtd_max_bad_blocks() - Get the maximum number of bad eraseblock on
178  *				  a specific region of the NAND device
179  * @mtd: MTD device
180  * @offs: offset of the NAND region
181  * @len: length of the NAND region
182  *
183  * Default implementation for mtd->_max_bad_blocks(). Only works if
184  * nand->memorg.max_bad_eraseblocks_per_lun is > 0.
185  *
186  * Return: a positive number encoding the maximum number of eraseblocks on a
187  * portion of memory, a negative error code otherwise.
188  */
189 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len)
190 {
191 	struct nand_device *nand = mtd_to_nanddev(mtd);
192 	struct nand_pos pos, end;
193 	unsigned int max_bb = 0;
194 
195 	if (!nand->memorg.max_bad_eraseblocks_per_lun)
196 		return -ENOTSUPP;
197 
198 	nanddev_offs_to_pos(nand, offs, &pos);
199 	nanddev_offs_to_pos(nand, offs + len, &end);
200 
201 	for (nanddev_offs_to_pos(nand, offs, &pos);
202 	     nanddev_pos_cmp(&pos, &end) < 0;
203 	     nanddev_pos_next_lun(nand, &pos))
204 		max_bb += nand->memorg.max_bad_eraseblocks_per_lun;
205 
206 	return max_bb;
207 }
208 EXPORT_SYMBOL_GPL(nanddev_mtd_max_bad_blocks);
209 
210 /**
211  * nanddev_get_ecc_engine() - Find and get a suitable ECC engine
212  * @nand: NAND device
213  */
214 static int nanddev_get_ecc_engine(struct nand_device *nand)
215 {
216 	int engine_type;
217 
218 	/* Read the user desires in terms of ECC engine/configuration */
219 	of_get_nand_ecc_user_config(nand);
220 
221 	engine_type = nand->ecc.user_conf.engine_type;
222 	if (engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
223 		engine_type = nand->ecc.defaults.engine_type;
224 
225 	switch (engine_type) {
226 	case NAND_ECC_ENGINE_TYPE_NONE:
227 		return 0;
228 	case NAND_ECC_ENGINE_TYPE_SOFT:
229 		nand->ecc.engine = nand_ecc_get_sw_engine(nand);
230 		break;
231 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
232 		nand->ecc.engine = nand_ecc_get_on_die_hw_engine(nand);
233 		break;
234 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
235 		pr_err("On-host hardware ECC engines not supported yet\n");
236 		break;
237 	default:
238 		pr_err("Missing ECC engine type\n");
239 	}
240 
241 	if (!nand->ecc.engine)
242 		return  -EINVAL;
243 
244 	return 0;
245 }
246 
247 /**
248  * nanddev_put_ecc_engine() - Dettach and put the in-use ECC engine
249  * @nand: NAND device
250  */
251 static int nanddev_put_ecc_engine(struct nand_device *nand)
252 {
253 	switch (nand->ecc.ctx.conf.engine_type) {
254 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
255 		pr_err("On-host hardware ECC engines not supported yet\n");
256 		break;
257 	case NAND_ECC_ENGINE_TYPE_NONE:
258 	case NAND_ECC_ENGINE_TYPE_SOFT:
259 	case NAND_ECC_ENGINE_TYPE_ON_DIE:
260 	default:
261 		break;
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * nanddev_find_ecc_configuration() - Find a suitable ECC configuration
269  * @nand: NAND device
270  */
271 static int nanddev_find_ecc_configuration(struct nand_device *nand)
272 {
273 	int ret;
274 
275 	if (!nand->ecc.engine)
276 		return -ENOTSUPP;
277 
278 	ret = nand_ecc_init_ctx(nand);
279 	if (ret)
280 		return ret;
281 
282 	if (!nand_ecc_is_strong_enough(nand))
283 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
284 			nand->mtd.name);
285 
286 	return 0;
287 }
288 
289 /**
290  * nanddev_ecc_engine_init() - Initialize an ECC engine for the chip
291  * @nand: NAND device
292  */
293 int nanddev_ecc_engine_init(struct nand_device *nand)
294 {
295 	int ret;
296 
297 	/* Look for the ECC engine to use */
298 	ret = nanddev_get_ecc_engine(nand);
299 	if (ret) {
300 		pr_err("No ECC engine found\n");
301 		return ret;
302 	}
303 
304 	/* No ECC engine requested */
305 	if (!nand->ecc.engine)
306 		return 0;
307 
308 	/* Configure the engine: balance user input and chip requirements */
309 	ret = nanddev_find_ecc_configuration(nand);
310 	if (ret) {
311 		pr_err("No suitable ECC configuration\n");
312 		nanddev_put_ecc_engine(nand);
313 
314 		return ret;
315 	}
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL_GPL(nanddev_ecc_engine_init);
320 
321 /**
322  * nanddev_ecc_engine_cleanup() - Cleanup ECC engine initializations
323  * @nand: NAND device
324  */
325 void nanddev_ecc_engine_cleanup(struct nand_device *nand)
326 {
327 	if (nand->ecc.engine)
328 		nand_ecc_cleanup_ctx(nand);
329 
330 	nanddev_put_ecc_engine(nand);
331 }
332 EXPORT_SYMBOL_GPL(nanddev_ecc_engine_cleanup);
333 
334 /**
335  * nanddev_init() - Initialize a NAND device
336  * @nand: NAND device
337  * @ops: NAND device operations
338  * @owner: NAND device owner
339  *
340  * Initializes a NAND device object. Consistency checks are done on @ops and
341  * @nand->memorg. Also takes care of initializing the BBT.
342  *
343  * Return: 0 in case of success, a negative error code otherwise.
344  */
345 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
346 		 struct module *owner)
347 {
348 	struct mtd_info *mtd = nanddev_to_mtd(nand);
349 	struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
350 
351 	if (!nand || !ops)
352 		return -EINVAL;
353 
354 	if (!ops->erase || !ops->markbad || !ops->isbad)
355 		return -EINVAL;
356 
357 	if (!memorg->bits_per_cell || !memorg->pagesize ||
358 	    !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
359 	    !memorg->planes_per_lun || !memorg->luns_per_target ||
360 	    !memorg->ntargets)
361 		return -EINVAL;
362 
363 	nand->rowconv.eraseblock_addr_shift =
364 					fls(memorg->pages_per_eraseblock - 1);
365 	nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
366 				       nand->rowconv.eraseblock_addr_shift;
367 
368 	nand->ops = ops;
369 
370 	mtd->type = memorg->bits_per_cell == 1 ?
371 		    MTD_NANDFLASH : MTD_MLCNANDFLASH;
372 	mtd->flags = MTD_CAP_NANDFLASH;
373 	mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
374 	mtd->writesize = memorg->pagesize;
375 	mtd->writebufsize = memorg->pagesize;
376 	mtd->oobsize = memorg->oobsize;
377 	mtd->size = nanddev_size(nand);
378 	mtd->owner = owner;
379 
380 	return nanddev_bbt_init(nand);
381 }
382 EXPORT_SYMBOL_GPL(nanddev_init);
383 
384 /**
385  * nanddev_cleanup() - Release resources allocated in nanddev_init()
386  * @nand: NAND device
387  *
388  * Basically undoes what has been done in nanddev_init().
389  */
390 void nanddev_cleanup(struct nand_device *nand)
391 {
392 	if (nanddev_bbt_is_initialized(nand))
393 		nanddev_bbt_cleanup(nand);
394 }
395 EXPORT_SYMBOL_GPL(nanddev_cleanup);
396 
397 MODULE_DESCRIPTION("Generic NAND framework");
398 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
399 MODULE_LICENSE("GPL v2");
400