1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@fluxnic.net> 5 * 6 * This code is GPL 7 * 8 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 9 * added support for read_oob, write_oob 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/list.h> 17 #include <linux/kmod.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/mtd/partitions.h> 20 #include <linux/mtd/compatmac.h> 21 22 /* Our partition linked list */ 23 static LIST_HEAD(mtd_partitions); 24 25 /* Our partition node structure */ 26 struct mtd_part { 27 struct mtd_info mtd; 28 struct mtd_info *master; 29 uint64_t offset; 30 struct list_head list; 31 }; 32 33 /* 34 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 35 * the pointer to that structure with this macro. 36 */ 37 #define PART(x) ((struct mtd_part *)(x)) 38 39 40 /* 41 * MTD methods which simply translate the effective address and pass through 42 * to the _real_ device. 43 */ 44 45 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 46 size_t *retlen, u_char *buf) 47 { 48 struct mtd_part *part = PART(mtd); 49 struct mtd_ecc_stats stats; 50 int res; 51 52 stats = part->master->ecc_stats; 53 54 if (from >= mtd->size) 55 len = 0; 56 else if (from + len > mtd->size) 57 len = mtd->size - from; 58 res = part->master->read(part->master, from + part->offset, 59 len, retlen, buf); 60 if (unlikely(res)) { 61 if (res == -EUCLEAN) 62 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 63 if (res == -EBADMSG) 64 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; 65 } 66 return res; 67 } 68 69 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 70 size_t *retlen, void **virt, resource_size_t *phys) 71 { 72 struct mtd_part *part = PART(mtd); 73 if (from >= mtd->size) 74 len = 0; 75 else if (from + len > mtd->size) 76 len = mtd->size - from; 77 return part->master->point (part->master, from + part->offset, 78 len, retlen, virt, phys); 79 } 80 81 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 82 { 83 struct mtd_part *part = PART(mtd); 84 85 part->master->unpoint(part->master, from + part->offset, len); 86 } 87 88 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 89 unsigned long len, 90 unsigned long offset, 91 unsigned long flags) 92 { 93 struct mtd_part *part = PART(mtd); 94 95 offset += part->offset; 96 return part->master->get_unmapped_area(part->master, len, offset, 97 flags); 98 } 99 100 static int part_read_oob(struct mtd_info *mtd, loff_t from, 101 struct mtd_oob_ops *ops) 102 { 103 struct mtd_part *part = PART(mtd); 104 int res; 105 106 if (from >= mtd->size) 107 return -EINVAL; 108 if (ops->datbuf && from + ops->len > mtd->size) 109 return -EINVAL; 110 res = part->master->read_oob(part->master, from + part->offset, ops); 111 112 if (unlikely(res)) { 113 if (res == -EUCLEAN) 114 mtd->ecc_stats.corrected++; 115 if (res == -EBADMSG) 116 mtd->ecc_stats.failed++; 117 } 118 return res; 119 } 120 121 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 122 size_t len, size_t *retlen, u_char *buf) 123 { 124 struct mtd_part *part = PART(mtd); 125 return part->master->read_user_prot_reg(part->master, from, 126 len, retlen, buf); 127 } 128 129 static int part_get_user_prot_info(struct mtd_info *mtd, 130 struct otp_info *buf, size_t len) 131 { 132 struct mtd_part *part = PART(mtd); 133 return part->master->get_user_prot_info(part->master, buf, len); 134 } 135 136 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 137 size_t len, size_t *retlen, u_char *buf) 138 { 139 struct mtd_part *part = PART(mtd); 140 return part->master->read_fact_prot_reg(part->master, from, 141 len, retlen, buf); 142 } 143 144 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 145 size_t len) 146 { 147 struct mtd_part *part = PART(mtd); 148 return part->master->get_fact_prot_info(part->master, buf, len); 149 } 150 151 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 152 size_t *retlen, const u_char *buf) 153 { 154 struct mtd_part *part = PART(mtd); 155 if (!(mtd->flags & MTD_WRITEABLE)) 156 return -EROFS; 157 if (to >= mtd->size) 158 len = 0; 159 else if (to + len > mtd->size) 160 len = mtd->size - to; 161 return part->master->write(part->master, to + part->offset, 162 len, retlen, buf); 163 } 164 165 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 166 size_t *retlen, const u_char *buf) 167 { 168 struct mtd_part *part = PART(mtd); 169 if (!(mtd->flags & MTD_WRITEABLE)) 170 return -EROFS; 171 if (to >= mtd->size) 172 len = 0; 173 else if (to + len > mtd->size) 174 len = mtd->size - to; 175 return part->master->panic_write(part->master, to + part->offset, 176 len, retlen, buf); 177 } 178 179 static int part_write_oob(struct mtd_info *mtd, loff_t to, 180 struct mtd_oob_ops *ops) 181 { 182 struct mtd_part *part = PART(mtd); 183 184 if (!(mtd->flags & MTD_WRITEABLE)) 185 return -EROFS; 186 187 if (to >= mtd->size) 188 return -EINVAL; 189 if (ops->datbuf && to + ops->len > mtd->size) 190 return -EINVAL; 191 return part->master->write_oob(part->master, to + part->offset, ops); 192 } 193 194 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 195 size_t len, size_t *retlen, u_char *buf) 196 { 197 struct mtd_part *part = PART(mtd); 198 return part->master->write_user_prot_reg(part->master, from, 199 len, retlen, buf); 200 } 201 202 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 203 size_t len) 204 { 205 struct mtd_part *part = PART(mtd); 206 return part->master->lock_user_prot_reg(part->master, from, len); 207 } 208 209 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 210 unsigned long count, loff_t to, size_t *retlen) 211 { 212 struct mtd_part *part = PART(mtd); 213 if (!(mtd->flags & MTD_WRITEABLE)) 214 return -EROFS; 215 return part->master->writev(part->master, vecs, count, 216 to + part->offset, retlen); 217 } 218 219 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 220 { 221 struct mtd_part *part = PART(mtd); 222 int ret; 223 if (!(mtd->flags & MTD_WRITEABLE)) 224 return -EROFS; 225 if (instr->addr >= mtd->size) 226 return -EINVAL; 227 instr->addr += part->offset; 228 ret = part->master->erase(part->master, instr); 229 if (ret) { 230 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 231 instr->fail_addr -= part->offset; 232 instr->addr -= part->offset; 233 } 234 return ret; 235 } 236 237 void mtd_erase_callback(struct erase_info *instr) 238 { 239 if (instr->mtd->erase == part_erase) { 240 struct mtd_part *part = PART(instr->mtd); 241 242 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 243 instr->fail_addr -= part->offset; 244 instr->addr -= part->offset; 245 } 246 if (instr->callback) 247 instr->callback(instr); 248 } 249 EXPORT_SYMBOL_GPL(mtd_erase_callback); 250 251 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 252 { 253 struct mtd_part *part = PART(mtd); 254 if ((len + ofs) > mtd->size) 255 return -EINVAL; 256 return part->master->lock(part->master, ofs + part->offset, len); 257 } 258 259 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 260 { 261 struct mtd_part *part = PART(mtd); 262 if ((len + ofs) > mtd->size) 263 return -EINVAL; 264 return part->master->unlock(part->master, ofs + part->offset, len); 265 } 266 267 static void part_sync(struct mtd_info *mtd) 268 { 269 struct mtd_part *part = PART(mtd); 270 part->master->sync(part->master); 271 } 272 273 static int part_suspend(struct mtd_info *mtd) 274 { 275 struct mtd_part *part = PART(mtd); 276 return part->master->suspend(part->master); 277 } 278 279 static void part_resume(struct mtd_info *mtd) 280 { 281 struct mtd_part *part = PART(mtd); 282 part->master->resume(part->master); 283 } 284 285 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 286 { 287 struct mtd_part *part = PART(mtd); 288 if (ofs >= mtd->size) 289 return -EINVAL; 290 ofs += part->offset; 291 return part->master->block_isbad(part->master, ofs); 292 } 293 294 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 295 { 296 struct mtd_part *part = PART(mtd); 297 int res; 298 299 if (!(mtd->flags & MTD_WRITEABLE)) 300 return -EROFS; 301 if (ofs >= mtd->size) 302 return -EINVAL; 303 ofs += part->offset; 304 res = part->master->block_markbad(part->master, ofs); 305 if (!res) 306 mtd->ecc_stats.badblocks++; 307 return res; 308 } 309 310 /* 311 * This function unregisters and destroy all slave MTD objects which are 312 * attached to the given master MTD object. 313 */ 314 315 int del_mtd_partitions(struct mtd_info *master) 316 { 317 struct mtd_part *slave, *next; 318 319 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 320 if (slave->master == master) { 321 list_del(&slave->list); 322 del_mtd_device(&slave->mtd); 323 kfree(slave); 324 } 325 326 return 0; 327 } 328 EXPORT_SYMBOL(del_mtd_partitions); 329 330 static struct mtd_part *add_one_partition(struct mtd_info *master, 331 const struct mtd_partition *part, int partno, 332 uint64_t cur_offset) 333 { 334 struct mtd_part *slave; 335 336 /* allocate the partition structure */ 337 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 338 if (!slave) { 339 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 340 master->name); 341 del_mtd_partitions(master); 342 return NULL; 343 } 344 list_add(&slave->list, &mtd_partitions); 345 346 /* set up the MTD object for this partition */ 347 slave->mtd.type = master->type; 348 slave->mtd.flags = master->flags & ~part->mask_flags; 349 slave->mtd.size = part->size; 350 slave->mtd.writesize = master->writesize; 351 slave->mtd.oobsize = master->oobsize; 352 slave->mtd.oobavail = master->oobavail; 353 slave->mtd.subpage_sft = master->subpage_sft; 354 355 slave->mtd.name = part->name; 356 slave->mtd.owner = master->owner; 357 slave->mtd.backing_dev_info = master->backing_dev_info; 358 359 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 360 * to have the same data be in two different partitions. 361 */ 362 slave->mtd.dev.parent = master->dev.parent; 363 364 slave->mtd.read = part_read; 365 slave->mtd.write = part_write; 366 367 if (master->panic_write) 368 slave->mtd.panic_write = part_panic_write; 369 370 if (master->point && master->unpoint) { 371 slave->mtd.point = part_point; 372 slave->mtd.unpoint = part_unpoint; 373 } 374 375 if (master->get_unmapped_area) 376 slave->mtd.get_unmapped_area = part_get_unmapped_area; 377 if (master->read_oob) 378 slave->mtd.read_oob = part_read_oob; 379 if (master->write_oob) 380 slave->mtd.write_oob = part_write_oob; 381 if (master->read_user_prot_reg) 382 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 383 if (master->read_fact_prot_reg) 384 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 385 if (master->write_user_prot_reg) 386 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 387 if (master->lock_user_prot_reg) 388 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 389 if (master->get_user_prot_info) 390 slave->mtd.get_user_prot_info = part_get_user_prot_info; 391 if (master->get_fact_prot_info) 392 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 393 if (master->sync) 394 slave->mtd.sync = part_sync; 395 if (!partno && !master->dev.class && master->suspend && master->resume) { 396 slave->mtd.suspend = part_suspend; 397 slave->mtd.resume = part_resume; 398 } 399 if (master->writev) 400 slave->mtd.writev = part_writev; 401 if (master->lock) 402 slave->mtd.lock = part_lock; 403 if (master->unlock) 404 slave->mtd.unlock = part_unlock; 405 if (master->block_isbad) 406 slave->mtd.block_isbad = part_block_isbad; 407 if (master->block_markbad) 408 slave->mtd.block_markbad = part_block_markbad; 409 slave->mtd.erase = part_erase; 410 slave->master = master; 411 slave->offset = part->offset; 412 413 if (slave->offset == MTDPART_OFS_APPEND) 414 slave->offset = cur_offset; 415 if (slave->offset == MTDPART_OFS_NXTBLK) { 416 slave->offset = cur_offset; 417 if (mtd_mod_by_eb(cur_offset, master) != 0) { 418 /* Round up to next erasesize */ 419 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 420 printk(KERN_NOTICE "Moving partition %d: " 421 "0x%012llx -> 0x%012llx\n", partno, 422 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 423 } 424 } 425 if (slave->mtd.size == MTDPART_SIZ_FULL) 426 slave->mtd.size = master->size - slave->offset; 427 428 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 429 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 430 431 /* let's do some sanity checks */ 432 if (slave->offset >= master->size) { 433 /* let's register it anyway to preserve ordering */ 434 slave->offset = 0; 435 slave->mtd.size = 0; 436 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 437 part->name); 438 goto out_register; 439 } 440 if (slave->offset + slave->mtd.size > master->size) { 441 slave->mtd.size = master->size - slave->offset; 442 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 443 part->name, master->name, (unsigned long long)slave->mtd.size); 444 } 445 if (master->numeraseregions > 1) { 446 /* Deal with variable erase size stuff */ 447 int i, max = master->numeraseregions; 448 u64 end = slave->offset + slave->mtd.size; 449 struct mtd_erase_region_info *regions = master->eraseregions; 450 451 /* Find the first erase regions which is part of this 452 * partition. */ 453 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 454 ; 455 /* The loop searched for the region _behind_ the first one */ 456 i--; 457 458 /* Pick biggest erasesize */ 459 for (; i < max && regions[i].offset < end; i++) { 460 if (slave->mtd.erasesize < regions[i].erasesize) { 461 slave->mtd.erasesize = regions[i].erasesize; 462 } 463 } 464 BUG_ON(slave->mtd.erasesize == 0); 465 } else { 466 /* Single erase size */ 467 slave->mtd.erasesize = master->erasesize; 468 } 469 470 if ((slave->mtd.flags & MTD_WRITEABLE) && 471 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 472 /* Doesn't start on a boundary of major erase size */ 473 /* FIXME: Let it be writable if it is on a boundary of 474 * _minor_ erase size though */ 475 slave->mtd.flags &= ~MTD_WRITEABLE; 476 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 477 part->name); 478 } 479 if ((slave->mtd.flags & MTD_WRITEABLE) && 480 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 481 slave->mtd.flags &= ~MTD_WRITEABLE; 482 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 483 part->name); 484 } 485 486 slave->mtd.ecclayout = master->ecclayout; 487 if (master->block_isbad) { 488 uint64_t offs = 0; 489 490 while (offs < slave->mtd.size) { 491 if (master->block_isbad(master, 492 offs + slave->offset)) 493 slave->mtd.ecc_stats.badblocks++; 494 offs += slave->mtd.erasesize; 495 } 496 } 497 498 out_register: 499 /* register our partition */ 500 add_mtd_device(&slave->mtd); 501 502 return slave; 503 } 504 505 /* 506 * This function, given a master MTD object and a partition table, creates 507 * and registers slave MTD objects which are bound to the master according to 508 * the partition definitions. 509 * 510 * We don't register the master, or expect the caller to have done so, 511 * for reasons of data integrity. 512 */ 513 514 int add_mtd_partitions(struct mtd_info *master, 515 const struct mtd_partition *parts, 516 int nbparts) 517 { 518 struct mtd_part *slave; 519 uint64_t cur_offset = 0; 520 int i; 521 522 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 523 524 for (i = 0; i < nbparts; i++) { 525 slave = add_one_partition(master, parts + i, i, cur_offset); 526 if (!slave) 527 return -ENOMEM; 528 cur_offset = slave->offset + slave->mtd.size; 529 } 530 531 return 0; 532 } 533 EXPORT_SYMBOL(add_mtd_partitions); 534 535 static DEFINE_SPINLOCK(part_parser_lock); 536 static LIST_HEAD(part_parsers); 537 538 static struct mtd_part_parser *get_partition_parser(const char *name) 539 { 540 struct mtd_part_parser *p, *ret = NULL; 541 542 spin_lock(&part_parser_lock); 543 544 list_for_each_entry(p, &part_parsers, list) 545 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 546 ret = p; 547 break; 548 } 549 550 spin_unlock(&part_parser_lock); 551 552 return ret; 553 } 554 555 int register_mtd_parser(struct mtd_part_parser *p) 556 { 557 spin_lock(&part_parser_lock); 558 list_add(&p->list, &part_parsers); 559 spin_unlock(&part_parser_lock); 560 561 return 0; 562 } 563 EXPORT_SYMBOL_GPL(register_mtd_parser); 564 565 int deregister_mtd_parser(struct mtd_part_parser *p) 566 { 567 spin_lock(&part_parser_lock); 568 list_del(&p->list); 569 spin_unlock(&part_parser_lock); 570 return 0; 571 } 572 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 573 574 int parse_mtd_partitions(struct mtd_info *master, const char **types, 575 struct mtd_partition **pparts, unsigned long origin) 576 { 577 struct mtd_part_parser *parser; 578 int ret = 0; 579 580 for ( ; ret <= 0 && *types; types++) { 581 parser = get_partition_parser(*types); 582 if (!parser && !request_module("%s", *types)) 583 parser = get_partition_parser(*types); 584 if (!parser) { 585 printk(KERN_NOTICE "%s partition parsing not available\n", 586 *types); 587 continue; 588 } 589 ret = (*parser->parse_fn)(master, pparts, origin); 590 if (ret > 0) { 591 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 592 ret, parser->name, master->name); 593 } 594 put_partition_parser(parser); 595 } 596 return ret; 597 } 598 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 599