1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 #include "mtdcore.h" 35 36 /* Our partition linked list */ 37 static LIST_HEAD(mtd_partitions); 38 static DEFINE_MUTEX(mtd_partitions_mutex); 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure. 51 */ 52 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 53 { 54 return container_of(mtd, struct mtd_part, mtd); 55 } 56 57 58 /* 59 * MTD methods which simply translate the effective address and pass through 60 * to the _real_ device. 61 */ 62 63 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 64 size_t *retlen, u_char *buf) 65 { 66 struct mtd_part *part = mtd_to_part(mtd); 67 struct mtd_ecc_stats stats; 68 int res; 69 70 stats = part->master->ecc_stats; 71 res = part->master->_read(part->master, from + part->offset, len, 72 retlen, buf); 73 if (unlikely(mtd_is_eccerr(res))) 74 mtd->ecc_stats.failed += 75 part->master->ecc_stats.failed - stats.failed; 76 else 77 mtd->ecc_stats.corrected += 78 part->master->ecc_stats.corrected - stats.corrected; 79 return res; 80 } 81 82 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 83 size_t *retlen, void **virt, resource_size_t *phys) 84 { 85 struct mtd_part *part = mtd_to_part(mtd); 86 87 return part->master->_point(part->master, from + part->offset, len, 88 retlen, virt, phys); 89 } 90 91 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 92 { 93 struct mtd_part *part = mtd_to_part(mtd); 94 95 return part->master->_unpoint(part->master, from + part->offset, len); 96 } 97 98 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 99 unsigned long len, 100 unsigned long offset, 101 unsigned long flags) 102 { 103 struct mtd_part *part = mtd_to_part(mtd); 104 105 offset += part->offset; 106 return part->master->_get_unmapped_area(part->master, len, offset, 107 flags); 108 } 109 110 static int part_read_oob(struct mtd_info *mtd, loff_t from, 111 struct mtd_oob_ops *ops) 112 { 113 struct mtd_part *part = mtd_to_part(mtd); 114 int res; 115 116 if (from >= mtd->size) 117 return -EINVAL; 118 if (ops->datbuf && from + ops->len > mtd->size) 119 return -EINVAL; 120 121 /* 122 * If OOB is also requested, make sure that we do not read past the end 123 * of this partition. 124 */ 125 if (ops->oobbuf) { 126 size_t len, pages; 127 128 len = mtd_oobavail(mtd, ops); 129 pages = mtd_div_by_ws(mtd->size, mtd); 130 pages -= mtd_div_by_ws(from, mtd); 131 if (ops->ooboffs + ops->ooblen > pages * len) 132 return -EINVAL; 133 } 134 135 res = part->master->_read_oob(part->master, from + part->offset, ops); 136 if (unlikely(res)) { 137 if (mtd_is_bitflip(res)) 138 mtd->ecc_stats.corrected++; 139 if (mtd_is_eccerr(res)) 140 mtd->ecc_stats.failed++; 141 } 142 return res; 143 } 144 145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 146 size_t len, size_t *retlen, u_char *buf) 147 { 148 struct mtd_part *part = mtd_to_part(mtd); 149 return part->master->_read_user_prot_reg(part->master, from, len, 150 retlen, buf); 151 } 152 153 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 154 size_t *retlen, struct otp_info *buf) 155 { 156 struct mtd_part *part = mtd_to_part(mtd); 157 return part->master->_get_user_prot_info(part->master, len, retlen, 158 buf); 159 } 160 161 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 162 size_t len, size_t *retlen, u_char *buf) 163 { 164 struct mtd_part *part = mtd_to_part(mtd); 165 return part->master->_read_fact_prot_reg(part->master, from, len, 166 retlen, buf); 167 } 168 169 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 170 size_t *retlen, struct otp_info *buf) 171 { 172 struct mtd_part *part = mtd_to_part(mtd); 173 return part->master->_get_fact_prot_info(part->master, len, retlen, 174 buf); 175 } 176 177 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 178 size_t *retlen, const u_char *buf) 179 { 180 struct mtd_part *part = mtd_to_part(mtd); 181 return part->master->_write(part->master, to + part->offset, len, 182 retlen, buf); 183 } 184 185 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 186 size_t *retlen, const u_char *buf) 187 { 188 struct mtd_part *part = mtd_to_part(mtd); 189 return part->master->_panic_write(part->master, to + part->offset, len, 190 retlen, buf); 191 } 192 193 static int part_write_oob(struct mtd_info *mtd, loff_t to, 194 struct mtd_oob_ops *ops) 195 { 196 struct mtd_part *part = mtd_to_part(mtd); 197 198 if (to >= mtd->size) 199 return -EINVAL; 200 if (ops->datbuf && to + ops->len > mtd->size) 201 return -EINVAL; 202 return part->master->_write_oob(part->master, to + part->offset, ops); 203 } 204 205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 206 size_t len, size_t *retlen, u_char *buf) 207 { 208 struct mtd_part *part = mtd_to_part(mtd); 209 return part->master->_write_user_prot_reg(part->master, from, len, 210 retlen, buf); 211 } 212 213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 214 size_t len) 215 { 216 struct mtd_part *part = mtd_to_part(mtd); 217 return part->master->_lock_user_prot_reg(part->master, from, len); 218 } 219 220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 221 unsigned long count, loff_t to, size_t *retlen) 222 { 223 struct mtd_part *part = mtd_to_part(mtd); 224 return part->master->_writev(part->master, vecs, count, 225 to + part->offset, retlen); 226 } 227 228 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 229 { 230 struct mtd_part *part = mtd_to_part(mtd); 231 int ret; 232 233 instr->addr += part->offset; 234 ret = part->master->_erase(part->master, instr); 235 if (ret) { 236 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 237 instr->fail_addr -= part->offset; 238 instr->addr -= part->offset; 239 } 240 return ret; 241 } 242 243 void mtd_erase_callback(struct erase_info *instr) 244 { 245 if (instr->mtd->_erase == part_erase) { 246 struct mtd_part *part = mtd_to_part(instr->mtd); 247 248 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 249 instr->fail_addr -= part->offset; 250 instr->addr -= part->offset; 251 } 252 if (instr->callback) 253 instr->callback(instr); 254 } 255 EXPORT_SYMBOL_GPL(mtd_erase_callback); 256 257 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 258 { 259 struct mtd_part *part = mtd_to_part(mtd); 260 return part->master->_lock(part->master, ofs + part->offset, len); 261 } 262 263 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 264 { 265 struct mtd_part *part = mtd_to_part(mtd); 266 return part->master->_unlock(part->master, ofs + part->offset, len); 267 } 268 269 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 270 { 271 struct mtd_part *part = mtd_to_part(mtd); 272 return part->master->_is_locked(part->master, ofs + part->offset, len); 273 } 274 275 static void part_sync(struct mtd_info *mtd) 276 { 277 struct mtd_part *part = mtd_to_part(mtd); 278 part->master->_sync(part->master); 279 } 280 281 static int part_suspend(struct mtd_info *mtd) 282 { 283 struct mtd_part *part = mtd_to_part(mtd); 284 return part->master->_suspend(part->master); 285 } 286 287 static void part_resume(struct mtd_info *mtd) 288 { 289 struct mtd_part *part = mtd_to_part(mtd); 290 part->master->_resume(part->master); 291 } 292 293 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 294 { 295 struct mtd_part *part = mtd_to_part(mtd); 296 ofs += part->offset; 297 return part->master->_block_isreserved(part->master, ofs); 298 } 299 300 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 301 { 302 struct mtd_part *part = mtd_to_part(mtd); 303 ofs += part->offset; 304 return part->master->_block_isbad(part->master, ofs); 305 } 306 307 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 308 { 309 struct mtd_part *part = mtd_to_part(mtd); 310 int res; 311 312 ofs += part->offset; 313 res = part->master->_block_markbad(part->master, ofs); 314 if (!res) 315 mtd->ecc_stats.badblocks++; 316 return res; 317 } 318 319 static int part_get_device(struct mtd_info *mtd) 320 { 321 struct mtd_part *part = mtd_to_part(mtd); 322 return part->master->_get_device(part->master); 323 } 324 325 static void part_put_device(struct mtd_info *mtd) 326 { 327 struct mtd_part *part = mtd_to_part(mtd); 328 part->master->_put_device(part->master); 329 } 330 331 static int part_ooblayout_ecc(struct mtd_info *mtd, int section, 332 struct mtd_oob_region *oobregion) 333 { 334 struct mtd_part *part = mtd_to_part(mtd); 335 336 return mtd_ooblayout_ecc(part->master, section, oobregion); 337 } 338 339 static int part_ooblayout_free(struct mtd_info *mtd, int section, 340 struct mtd_oob_region *oobregion) 341 { 342 struct mtd_part *part = mtd_to_part(mtd); 343 344 return mtd_ooblayout_free(part->master, section, oobregion); 345 } 346 347 static const struct mtd_ooblayout_ops part_ooblayout_ops = { 348 .ecc = part_ooblayout_ecc, 349 .free = part_ooblayout_free, 350 }; 351 352 static inline void free_partition(struct mtd_part *p) 353 { 354 kfree(p->mtd.name); 355 kfree(p); 356 } 357 358 /* 359 * This function unregisters and destroy all slave MTD objects which are 360 * attached to the given master MTD object. 361 */ 362 363 int del_mtd_partitions(struct mtd_info *master) 364 { 365 struct mtd_part *slave, *next; 366 int ret, err = 0; 367 368 mutex_lock(&mtd_partitions_mutex); 369 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 370 if (slave->master == master) { 371 ret = del_mtd_device(&slave->mtd); 372 if (ret < 0) { 373 err = ret; 374 continue; 375 } 376 list_del(&slave->list); 377 free_partition(slave); 378 } 379 mutex_unlock(&mtd_partitions_mutex); 380 381 return err; 382 } 383 384 static struct mtd_part *allocate_partition(struct mtd_info *master, 385 const struct mtd_partition *part, int partno, 386 uint64_t cur_offset) 387 { 388 struct mtd_part *slave; 389 char *name; 390 391 /* allocate the partition structure */ 392 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 393 name = kstrdup(part->name, GFP_KERNEL); 394 if (!name || !slave) { 395 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 396 master->name); 397 kfree(name); 398 kfree(slave); 399 return ERR_PTR(-ENOMEM); 400 } 401 402 /* set up the MTD object for this partition */ 403 slave->mtd.type = master->type; 404 slave->mtd.flags = master->flags & ~part->mask_flags; 405 slave->mtd.size = part->size; 406 slave->mtd.writesize = master->writesize; 407 slave->mtd.writebufsize = master->writebufsize; 408 slave->mtd.oobsize = master->oobsize; 409 slave->mtd.oobavail = master->oobavail; 410 slave->mtd.subpage_sft = master->subpage_sft; 411 slave->mtd.pairing = master->pairing; 412 413 slave->mtd.name = name; 414 slave->mtd.owner = master->owner; 415 416 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 417 * concern for showing the same data in multiple partitions. 418 * However, it is very useful to have the master node present, 419 * so the MTD_PARTITIONED_MASTER option allows that. The master 420 * will have device nodes etc only if this is set, so make the 421 * parent conditional on that option. Note, this is a way to 422 * distinguish between the master and the partition in sysfs. 423 */ 424 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ? 425 &master->dev : 426 master->dev.parent; 427 428 slave->mtd._read = part_read; 429 slave->mtd._write = part_write; 430 431 if (master->_panic_write) 432 slave->mtd._panic_write = part_panic_write; 433 434 if (master->_point && master->_unpoint) { 435 slave->mtd._point = part_point; 436 slave->mtd._unpoint = part_unpoint; 437 } 438 439 if (master->_get_unmapped_area) 440 slave->mtd._get_unmapped_area = part_get_unmapped_area; 441 if (master->_read_oob) 442 slave->mtd._read_oob = part_read_oob; 443 if (master->_write_oob) 444 slave->mtd._write_oob = part_write_oob; 445 if (master->_read_user_prot_reg) 446 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 447 if (master->_read_fact_prot_reg) 448 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 449 if (master->_write_user_prot_reg) 450 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 451 if (master->_lock_user_prot_reg) 452 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 453 if (master->_get_user_prot_info) 454 slave->mtd._get_user_prot_info = part_get_user_prot_info; 455 if (master->_get_fact_prot_info) 456 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 457 if (master->_sync) 458 slave->mtd._sync = part_sync; 459 if (!partno && !master->dev.class && master->_suspend && 460 master->_resume) { 461 slave->mtd._suspend = part_suspend; 462 slave->mtd._resume = part_resume; 463 } 464 if (master->_writev) 465 slave->mtd._writev = part_writev; 466 if (master->_lock) 467 slave->mtd._lock = part_lock; 468 if (master->_unlock) 469 slave->mtd._unlock = part_unlock; 470 if (master->_is_locked) 471 slave->mtd._is_locked = part_is_locked; 472 if (master->_block_isreserved) 473 slave->mtd._block_isreserved = part_block_isreserved; 474 if (master->_block_isbad) 475 slave->mtd._block_isbad = part_block_isbad; 476 if (master->_block_markbad) 477 slave->mtd._block_markbad = part_block_markbad; 478 479 if (master->_get_device) 480 slave->mtd._get_device = part_get_device; 481 if (master->_put_device) 482 slave->mtd._put_device = part_put_device; 483 484 slave->mtd._erase = part_erase; 485 slave->master = master; 486 slave->offset = part->offset; 487 488 if (slave->offset == MTDPART_OFS_APPEND) 489 slave->offset = cur_offset; 490 if (slave->offset == MTDPART_OFS_NXTBLK) { 491 slave->offset = cur_offset; 492 if (mtd_mod_by_eb(cur_offset, master) != 0) { 493 /* Round up to next erasesize */ 494 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 495 printk(KERN_NOTICE "Moving partition %d: " 496 "0x%012llx -> 0x%012llx\n", partno, 497 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 498 } 499 } 500 if (slave->offset == MTDPART_OFS_RETAIN) { 501 slave->offset = cur_offset; 502 if (master->size - slave->offset >= slave->mtd.size) { 503 slave->mtd.size = master->size - slave->offset 504 - slave->mtd.size; 505 } else { 506 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 507 part->name, master->size - slave->offset, 508 slave->mtd.size); 509 /* register to preserve ordering */ 510 goto out_register; 511 } 512 } 513 if (slave->mtd.size == MTDPART_SIZ_FULL) 514 slave->mtd.size = master->size - slave->offset; 515 516 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 517 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 518 519 /* let's do some sanity checks */ 520 if (slave->offset >= master->size) { 521 /* let's register it anyway to preserve ordering */ 522 slave->offset = 0; 523 slave->mtd.size = 0; 524 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 525 part->name); 526 goto out_register; 527 } 528 if (slave->offset + slave->mtd.size > master->size) { 529 slave->mtd.size = master->size - slave->offset; 530 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 531 part->name, master->name, (unsigned long long)slave->mtd.size); 532 } 533 if (master->numeraseregions > 1) { 534 /* Deal with variable erase size stuff */ 535 int i, max = master->numeraseregions; 536 u64 end = slave->offset + slave->mtd.size; 537 struct mtd_erase_region_info *regions = master->eraseregions; 538 539 /* Find the first erase regions which is part of this 540 * partition. */ 541 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 542 ; 543 /* The loop searched for the region _behind_ the first one */ 544 if (i > 0) 545 i--; 546 547 /* Pick biggest erasesize */ 548 for (; i < max && regions[i].offset < end; i++) { 549 if (slave->mtd.erasesize < regions[i].erasesize) { 550 slave->mtd.erasesize = regions[i].erasesize; 551 } 552 } 553 BUG_ON(slave->mtd.erasesize == 0); 554 } else { 555 /* Single erase size */ 556 slave->mtd.erasesize = master->erasesize; 557 } 558 559 if ((slave->mtd.flags & MTD_WRITEABLE) && 560 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 561 /* Doesn't start on a boundary of major erase size */ 562 /* FIXME: Let it be writable if it is on a boundary of 563 * _minor_ erase size though */ 564 slave->mtd.flags &= ~MTD_WRITEABLE; 565 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 566 part->name); 567 } 568 if ((slave->mtd.flags & MTD_WRITEABLE) && 569 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 570 slave->mtd.flags &= ~MTD_WRITEABLE; 571 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 572 part->name); 573 } 574 575 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); 576 slave->mtd.ecc_step_size = master->ecc_step_size; 577 slave->mtd.ecc_strength = master->ecc_strength; 578 slave->mtd.bitflip_threshold = master->bitflip_threshold; 579 580 if (master->_block_isbad) { 581 uint64_t offs = 0; 582 583 while (offs < slave->mtd.size) { 584 if (mtd_block_isreserved(master, offs + slave->offset)) 585 slave->mtd.ecc_stats.bbtblocks++; 586 else if (mtd_block_isbad(master, offs + slave->offset)) 587 slave->mtd.ecc_stats.badblocks++; 588 offs += slave->mtd.erasesize; 589 } 590 } 591 592 out_register: 593 return slave; 594 } 595 596 static ssize_t mtd_partition_offset_show(struct device *dev, 597 struct device_attribute *attr, char *buf) 598 { 599 struct mtd_info *mtd = dev_get_drvdata(dev); 600 struct mtd_part *part = mtd_to_part(mtd); 601 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 602 } 603 604 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 605 606 static const struct attribute *mtd_partition_attrs[] = { 607 &dev_attr_offset.attr, 608 NULL 609 }; 610 611 static int mtd_add_partition_attrs(struct mtd_part *new) 612 { 613 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 614 if (ret) 615 printk(KERN_WARNING 616 "mtd: failed to create partition attrs, err=%d\n", ret); 617 return ret; 618 } 619 620 int mtd_add_partition(struct mtd_info *master, const char *name, 621 long long offset, long long length) 622 { 623 struct mtd_partition part; 624 struct mtd_part *new; 625 int ret = 0; 626 627 /* the direct offset is expected */ 628 if (offset == MTDPART_OFS_APPEND || 629 offset == MTDPART_OFS_NXTBLK) 630 return -EINVAL; 631 632 if (length == MTDPART_SIZ_FULL) 633 length = master->size - offset; 634 635 if (length <= 0) 636 return -EINVAL; 637 638 memset(&part, 0, sizeof(part)); 639 part.name = name; 640 part.size = length; 641 part.offset = offset; 642 643 new = allocate_partition(master, &part, -1, offset); 644 if (IS_ERR(new)) 645 return PTR_ERR(new); 646 647 mutex_lock(&mtd_partitions_mutex); 648 list_add(&new->list, &mtd_partitions); 649 mutex_unlock(&mtd_partitions_mutex); 650 651 add_mtd_device(&new->mtd); 652 653 mtd_add_partition_attrs(new); 654 655 return ret; 656 } 657 EXPORT_SYMBOL_GPL(mtd_add_partition); 658 659 int mtd_del_partition(struct mtd_info *master, int partno) 660 { 661 struct mtd_part *slave, *next; 662 int ret = -EINVAL; 663 664 mutex_lock(&mtd_partitions_mutex); 665 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 666 if ((slave->master == master) && 667 (slave->mtd.index == partno)) { 668 sysfs_remove_files(&slave->mtd.dev.kobj, 669 mtd_partition_attrs); 670 ret = del_mtd_device(&slave->mtd); 671 if (ret < 0) 672 break; 673 674 list_del(&slave->list); 675 free_partition(slave); 676 break; 677 } 678 mutex_unlock(&mtd_partitions_mutex); 679 680 return ret; 681 } 682 EXPORT_SYMBOL_GPL(mtd_del_partition); 683 684 /* 685 * This function, given a master MTD object and a partition table, creates 686 * and registers slave MTD objects which are bound to the master according to 687 * the partition definitions. 688 * 689 * For historical reasons, this function's caller only registers the master 690 * if the MTD_PARTITIONED_MASTER config option is set. 691 */ 692 693 int add_mtd_partitions(struct mtd_info *master, 694 const struct mtd_partition *parts, 695 int nbparts) 696 { 697 struct mtd_part *slave; 698 uint64_t cur_offset = 0; 699 int i; 700 701 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 702 703 for (i = 0; i < nbparts; i++) { 704 slave = allocate_partition(master, parts + i, i, cur_offset); 705 if (IS_ERR(slave)) { 706 del_mtd_partitions(master); 707 return PTR_ERR(slave); 708 } 709 710 mutex_lock(&mtd_partitions_mutex); 711 list_add(&slave->list, &mtd_partitions); 712 mutex_unlock(&mtd_partitions_mutex); 713 714 add_mtd_device(&slave->mtd); 715 mtd_add_partition_attrs(slave); 716 717 cur_offset = slave->offset + slave->mtd.size; 718 } 719 720 return 0; 721 } 722 723 static DEFINE_SPINLOCK(part_parser_lock); 724 static LIST_HEAD(part_parsers); 725 726 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 727 { 728 struct mtd_part_parser *p, *ret = NULL; 729 730 spin_lock(&part_parser_lock); 731 732 list_for_each_entry(p, &part_parsers, list) 733 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 734 ret = p; 735 break; 736 } 737 738 spin_unlock(&part_parser_lock); 739 740 return ret; 741 } 742 743 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 744 { 745 module_put(p->owner); 746 } 747 748 /* 749 * Many partition parsers just expected the core to kfree() all their data in 750 * one chunk. Do that by default. 751 */ 752 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 753 int nr_parts) 754 { 755 kfree(pparts); 756 } 757 758 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 759 { 760 p->owner = owner; 761 762 if (!p->cleanup) 763 p->cleanup = &mtd_part_parser_cleanup_default; 764 765 spin_lock(&part_parser_lock); 766 list_add(&p->list, &part_parsers); 767 spin_unlock(&part_parser_lock); 768 769 return 0; 770 } 771 EXPORT_SYMBOL_GPL(__register_mtd_parser); 772 773 void deregister_mtd_parser(struct mtd_part_parser *p) 774 { 775 spin_lock(&part_parser_lock); 776 list_del(&p->list); 777 spin_unlock(&part_parser_lock); 778 } 779 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 780 781 /* 782 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 783 * are changing this array! 784 */ 785 static const char * const default_mtd_part_types[] = { 786 "cmdlinepart", 787 "ofpart", 788 NULL 789 }; 790 791 /** 792 * parse_mtd_partitions - parse MTD partitions 793 * @master: the master partition (describes whole MTD device) 794 * @types: names of partition parsers to try or %NULL 795 * @pparts: info about partitions found is returned here 796 * @data: MTD partition parser-specific data 797 * 798 * This function tries to find partition on MTD device @master. It uses MTD 799 * partition parsers, specified in @types. However, if @types is %NULL, then 800 * the default list of parsers is used. The default list contains only the 801 * "cmdlinepart" and "ofpart" parsers ATM. 802 * Note: If there are more then one parser in @types, the kernel only takes the 803 * partitions parsed out by the first parser. 804 * 805 * This function may return: 806 * o a negative error code in case of failure 807 * o zero otherwise, and @pparts will describe the partitions, number of 808 * partitions, and the parser which parsed them. Caller must release 809 * resources with mtd_part_parser_cleanup() when finished with the returned 810 * data. 811 */ 812 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 813 struct mtd_partitions *pparts, 814 struct mtd_part_parser_data *data) 815 { 816 struct mtd_part_parser *parser; 817 int ret, err = 0; 818 819 if (!types) 820 types = default_mtd_part_types; 821 822 for ( ; *types; types++) { 823 pr_debug("%s: parsing partitions %s\n", master->name, *types); 824 parser = mtd_part_parser_get(*types); 825 if (!parser && !request_module("%s", *types)) 826 parser = mtd_part_parser_get(*types); 827 pr_debug("%s: got parser %s\n", master->name, 828 parser ? parser->name : NULL); 829 if (!parser) 830 continue; 831 ret = (*parser->parse_fn)(master, &pparts->parts, data); 832 pr_debug("%s: parser %s: %i\n", 833 master->name, parser->name, ret); 834 if (ret > 0) { 835 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 836 ret, parser->name, master->name); 837 pparts->nr_parts = ret; 838 pparts->parser = parser; 839 return 0; 840 } 841 mtd_part_parser_put(parser); 842 /* 843 * Stash the first error we see; only report it if no parser 844 * succeeds 845 */ 846 if (ret < 0 && !err) 847 err = ret; 848 } 849 return err; 850 } 851 852 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 853 { 854 const struct mtd_part_parser *parser; 855 856 if (!parts) 857 return; 858 859 parser = parts->parser; 860 if (parser) { 861 if (parser->cleanup) 862 parser->cleanup(parts->parts, parts->nr_parts); 863 864 mtd_part_parser_put(parser); 865 } 866 } 867 868 int mtd_is_partition(const struct mtd_info *mtd) 869 { 870 struct mtd_part *part; 871 int ispart = 0; 872 873 mutex_lock(&mtd_partitions_mutex); 874 list_for_each_entry(part, &mtd_partitions, list) 875 if (&part->mtd == mtd) { 876 ispart = 1; 877 break; 878 } 879 mutex_unlock(&mtd_partitions_mutex); 880 881 return ispart; 882 } 883 EXPORT_SYMBOL_GPL(mtd_is_partition); 884 885 /* Returns the size of the entire flash chip */ 886 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 887 { 888 if (!mtd_is_partition(mtd)) 889 return mtd->size; 890 891 return mtd_to_part(mtd)->master->size; 892 } 893 EXPORT_SYMBOL_GPL(mtd_get_device_size); 894