1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 #include "mtdcore.h" 35 36 /* Our partition linked list */ 37 static LIST_HEAD(mtd_partitions); 38 static DEFINE_MUTEX(mtd_partitions_mutex); 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure with this macro. 51 */ 52 #define PART(x) ((struct mtd_part *)(x)) 53 54 55 /* 56 * MTD methods which simply translate the effective address and pass through 57 * to the _real_ device. 58 */ 59 60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 61 size_t *retlen, u_char *buf) 62 { 63 struct mtd_part *part = PART(mtd); 64 struct mtd_ecc_stats stats; 65 int res; 66 67 stats = part->master->ecc_stats; 68 res = part->master->_read(part->master, from + part->offset, len, 69 retlen, buf); 70 if (unlikely(mtd_is_eccerr(res))) 71 mtd->ecc_stats.failed += 72 part->master->ecc_stats.failed - stats.failed; 73 else 74 mtd->ecc_stats.corrected += 75 part->master->ecc_stats.corrected - stats.corrected; 76 return res; 77 } 78 79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 80 size_t *retlen, void **virt, resource_size_t *phys) 81 { 82 struct mtd_part *part = PART(mtd); 83 84 return part->master->_point(part->master, from + part->offset, len, 85 retlen, virt, phys); 86 } 87 88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 89 { 90 struct mtd_part *part = PART(mtd); 91 92 return part->master->_unpoint(part->master, from + part->offset, len); 93 } 94 95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 96 unsigned long len, 97 unsigned long offset, 98 unsigned long flags) 99 { 100 struct mtd_part *part = PART(mtd); 101 102 offset += part->offset; 103 return part->master->_get_unmapped_area(part->master, len, offset, 104 flags); 105 } 106 107 static int part_read_oob(struct mtd_info *mtd, loff_t from, 108 struct mtd_oob_ops *ops) 109 { 110 struct mtd_part *part = PART(mtd); 111 int res; 112 113 if (from >= mtd->size) 114 return -EINVAL; 115 if (ops->datbuf && from + ops->len > mtd->size) 116 return -EINVAL; 117 118 /* 119 * If OOB is also requested, make sure that we do not read past the end 120 * of this partition. 121 */ 122 if (ops->oobbuf) { 123 size_t len, pages; 124 125 if (ops->mode == MTD_OPS_AUTO_OOB) 126 len = mtd->oobavail; 127 else 128 len = mtd->oobsize; 129 pages = mtd_div_by_ws(mtd->size, mtd); 130 pages -= mtd_div_by_ws(from, mtd); 131 if (ops->ooboffs + ops->ooblen > pages * len) 132 return -EINVAL; 133 } 134 135 res = part->master->_read_oob(part->master, from + part->offset, ops); 136 if (unlikely(res)) { 137 if (mtd_is_bitflip(res)) 138 mtd->ecc_stats.corrected++; 139 if (mtd_is_eccerr(res)) 140 mtd->ecc_stats.failed++; 141 } 142 return res; 143 } 144 145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 146 size_t len, size_t *retlen, u_char *buf) 147 { 148 struct mtd_part *part = PART(mtd); 149 return part->master->_read_user_prot_reg(part->master, from, len, 150 retlen, buf); 151 } 152 153 static int part_get_user_prot_info(struct mtd_info *mtd, 154 struct otp_info *buf, size_t len) 155 { 156 struct mtd_part *part = PART(mtd); 157 return part->master->_get_user_prot_info(part->master, buf, len); 158 } 159 160 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 161 size_t len, size_t *retlen, u_char *buf) 162 { 163 struct mtd_part *part = PART(mtd); 164 return part->master->_read_fact_prot_reg(part->master, from, len, 165 retlen, buf); 166 } 167 168 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 169 size_t len) 170 { 171 struct mtd_part *part = PART(mtd); 172 return part->master->_get_fact_prot_info(part->master, buf, len); 173 } 174 175 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 176 size_t *retlen, const u_char *buf) 177 { 178 struct mtd_part *part = PART(mtd); 179 return part->master->_write(part->master, to + part->offset, len, 180 retlen, buf); 181 } 182 183 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 184 size_t *retlen, const u_char *buf) 185 { 186 struct mtd_part *part = PART(mtd); 187 return part->master->_panic_write(part->master, to + part->offset, len, 188 retlen, buf); 189 } 190 191 static int part_write_oob(struct mtd_info *mtd, loff_t to, 192 struct mtd_oob_ops *ops) 193 { 194 struct mtd_part *part = PART(mtd); 195 196 if (to >= mtd->size) 197 return -EINVAL; 198 if (ops->datbuf && to + ops->len > mtd->size) 199 return -EINVAL; 200 return part->master->_write_oob(part->master, to + part->offset, ops); 201 } 202 203 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 204 size_t len, size_t *retlen, u_char *buf) 205 { 206 struct mtd_part *part = PART(mtd); 207 return part->master->_write_user_prot_reg(part->master, from, len, 208 retlen, buf); 209 } 210 211 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 212 size_t len) 213 { 214 struct mtd_part *part = PART(mtd); 215 return part->master->_lock_user_prot_reg(part->master, from, len); 216 } 217 218 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 219 unsigned long count, loff_t to, size_t *retlen) 220 { 221 struct mtd_part *part = PART(mtd); 222 return part->master->_writev(part->master, vecs, count, 223 to + part->offset, retlen); 224 } 225 226 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 227 { 228 struct mtd_part *part = PART(mtd); 229 int ret; 230 231 instr->addr += part->offset; 232 ret = part->master->_erase(part->master, instr); 233 if (ret) { 234 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 235 instr->fail_addr -= part->offset; 236 instr->addr -= part->offset; 237 } 238 return ret; 239 } 240 241 void mtd_erase_callback(struct erase_info *instr) 242 { 243 if (instr->mtd->_erase == part_erase) { 244 struct mtd_part *part = PART(instr->mtd); 245 246 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 247 instr->fail_addr -= part->offset; 248 instr->addr -= part->offset; 249 } 250 if (instr->callback) 251 instr->callback(instr); 252 } 253 EXPORT_SYMBOL_GPL(mtd_erase_callback); 254 255 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 256 { 257 struct mtd_part *part = PART(mtd); 258 return part->master->_lock(part->master, ofs + part->offset, len); 259 } 260 261 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 262 { 263 struct mtd_part *part = PART(mtd); 264 return part->master->_unlock(part->master, ofs + part->offset, len); 265 } 266 267 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 268 { 269 struct mtd_part *part = PART(mtd); 270 return part->master->_is_locked(part->master, ofs + part->offset, len); 271 } 272 273 static void part_sync(struct mtd_info *mtd) 274 { 275 struct mtd_part *part = PART(mtd); 276 part->master->_sync(part->master); 277 } 278 279 static int part_suspend(struct mtd_info *mtd) 280 { 281 struct mtd_part *part = PART(mtd); 282 return part->master->_suspend(part->master); 283 } 284 285 static void part_resume(struct mtd_info *mtd) 286 { 287 struct mtd_part *part = PART(mtd); 288 part->master->_resume(part->master); 289 } 290 291 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 292 { 293 struct mtd_part *part = PART(mtd); 294 ofs += part->offset; 295 return part->master->_block_isbad(part->master, ofs); 296 } 297 298 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 299 { 300 struct mtd_part *part = PART(mtd); 301 int res; 302 303 ofs += part->offset; 304 res = part->master->_block_markbad(part->master, ofs); 305 if (!res) 306 mtd->ecc_stats.badblocks++; 307 return res; 308 } 309 310 static inline void free_partition(struct mtd_part *p) 311 { 312 kfree(p->mtd.name); 313 kfree(p); 314 } 315 316 /* 317 * This function unregisters and destroy all slave MTD objects which are 318 * attached to the given master MTD object. 319 */ 320 321 int del_mtd_partitions(struct mtd_info *master) 322 { 323 struct mtd_part *slave, *next; 324 int ret, err = 0; 325 326 mutex_lock(&mtd_partitions_mutex); 327 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 328 if (slave->master == master) { 329 ret = del_mtd_device(&slave->mtd); 330 if (ret < 0) { 331 err = ret; 332 continue; 333 } 334 list_del(&slave->list); 335 free_partition(slave); 336 } 337 mutex_unlock(&mtd_partitions_mutex); 338 339 return err; 340 } 341 342 static struct mtd_part *allocate_partition(struct mtd_info *master, 343 const struct mtd_partition *part, int partno, 344 uint64_t cur_offset) 345 { 346 struct mtd_part *slave; 347 char *name; 348 349 /* allocate the partition structure */ 350 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 351 name = kstrdup(part->name, GFP_KERNEL); 352 if (!name || !slave) { 353 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 354 master->name); 355 kfree(name); 356 kfree(slave); 357 return ERR_PTR(-ENOMEM); 358 } 359 360 /* set up the MTD object for this partition */ 361 slave->mtd.type = master->type; 362 slave->mtd.flags = master->flags & ~part->mask_flags; 363 slave->mtd.size = part->size; 364 slave->mtd.writesize = master->writesize; 365 slave->mtd.writebufsize = master->writebufsize; 366 slave->mtd.oobsize = master->oobsize; 367 slave->mtd.oobavail = master->oobavail; 368 slave->mtd.subpage_sft = master->subpage_sft; 369 370 slave->mtd.name = name; 371 slave->mtd.owner = master->owner; 372 slave->mtd.backing_dev_info = master->backing_dev_info; 373 374 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 375 * to have the same data be in two different partitions. 376 */ 377 slave->mtd.dev.parent = master->dev.parent; 378 379 slave->mtd._read = part_read; 380 slave->mtd._write = part_write; 381 382 if (master->_panic_write) 383 slave->mtd._panic_write = part_panic_write; 384 385 if (master->_point && master->_unpoint) { 386 slave->mtd._point = part_point; 387 slave->mtd._unpoint = part_unpoint; 388 } 389 390 if (master->_get_unmapped_area) 391 slave->mtd._get_unmapped_area = part_get_unmapped_area; 392 if (master->_read_oob) 393 slave->mtd._read_oob = part_read_oob; 394 if (master->_write_oob) 395 slave->mtd._write_oob = part_write_oob; 396 if (master->_read_user_prot_reg) 397 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 398 if (master->_read_fact_prot_reg) 399 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 400 if (master->_write_user_prot_reg) 401 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 402 if (master->_lock_user_prot_reg) 403 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 404 if (master->_get_user_prot_info) 405 slave->mtd._get_user_prot_info = part_get_user_prot_info; 406 if (master->_get_fact_prot_info) 407 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 408 if (master->_sync) 409 slave->mtd._sync = part_sync; 410 if (!partno && !master->dev.class && master->_suspend && 411 master->_resume) { 412 slave->mtd._suspend = part_suspend; 413 slave->mtd._resume = part_resume; 414 } 415 if (master->_writev) 416 slave->mtd._writev = part_writev; 417 if (master->_lock) 418 slave->mtd._lock = part_lock; 419 if (master->_unlock) 420 slave->mtd._unlock = part_unlock; 421 if (master->_is_locked) 422 slave->mtd._is_locked = part_is_locked; 423 if (master->_block_isbad) 424 slave->mtd._block_isbad = part_block_isbad; 425 if (master->_block_markbad) 426 slave->mtd._block_markbad = part_block_markbad; 427 slave->mtd._erase = part_erase; 428 slave->master = master; 429 slave->offset = part->offset; 430 431 if (slave->offset == MTDPART_OFS_APPEND) 432 slave->offset = cur_offset; 433 if (slave->offset == MTDPART_OFS_NXTBLK) { 434 slave->offset = cur_offset; 435 if (mtd_mod_by_eb(cur_offset, master) != 0) { 436 /* Round up to next erasesize */ 437 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 438 printk(KERN_NOTICE "Moving partition %d: " 439 "0x%012llx -> 0x%012llx\n", partno, 440 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 441 } 442 } 443 if (slave->offset == MTDPART_OFS_RETAIN) { 444 slave->offset = cur_offset; 445 if (master->size - slave->offset >= slave->mtd.size) { 446 slave->mtd.size = master->size - slave->offset 447 - slave->mtd.size; 448 } else { 449 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 450 part->name, master->size - slave->offset, 451 slave->mtd.size); 452 /* register to preserve ordering */ 453 goto out_register; 454 } 455 } 456 if (slave->mtd.size == MTDPART_SIZ_FULL) 457 slave->mtd.size = master->size - slave->offset; 458 459 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 460 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 461 462 /* let's do some sanity checks */ 463 if (slave->offset >= master->size) { 464 /* let's register it anyway to preserve ordering */ 465 slave->offset = 0; 466 slave->mtd.size = 0; 467 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 468 part->name); 469 goto out_register; 470 } 471 if (slave->offset + slave->mtd.size > master->size) { 472 slave->mtd.size = master->size - slave->offset; 473 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 474 part->name, master->name, (unsigned long long)slave->mtd.size); 475 } 476 if (master->numeraseregions > 1) { 477 /* Deal with variable erase size stuff */ 478 int i, max = master->numeraseregions; 479 u64 end = slave->offset + slave->mtd.size; 480 struct mtd_erase_region_info *regions = master->eraseregions; 481 482 /* Find the first erase regions which is part of this 483 * partition. */ 484 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 485 ; 486 /* The loop searched for the region _behind_ the first one */ 487 if (i > 0) 488 i--; 489 490 /* Pick biggest erasesize */ 491 for (; i < max && regions[i].offset < end; i++) { 492 if (slave->mtd.erasesize < regions[i].erasesize) { 493 slave->mtd.erasesize = regions[i].erasesize; 494 } 495 } 496 BUG_ON(slave->mtd.erasesize == 0); 497 } else { 498 /* Single erase size */ 499 slave->mtd.erasesize = master->erasesize; 500 } 501 502 if ((slave->mtd.flags & MTD_WRITEABLE) && 503 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 504 /* Doesn't start on a boundary of major erase size */ 505 /* FIXME: Let it be writable if it is on a boundary of 506 * _minor_ erase size though */ 507 slave->mtd.flags &= ~MTD_WRITEABLE; 508 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 509 part->name); 510 } 511 if ((slave->mtd.flags & MTD_WRITEABLE) && 512 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 513 slave->mtd.flags &= ~MTD_WRITEABLE; 514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 515 part->name); 516 } 517 518 slave->mtd.ecclayout = master->ecclayout; 519 slave->mtd.ecc_step_size = master->ecc_step_size; 520 slave->mtd.ecc_strength = master->ecc_strength; 521 slave->mtd.bitflip_threshold = master->bitflip_threshold; 522 523 if (master->_block_isbad) { 524 uint64_t offs = 0; 525 526 while (offs < slave->mtd.size) { 527 if (mtd_block_isbad(master, offs + slave->offset)) 528 slave->mtd.ecc_stats.badblocks++; 529 offs += slave->mtd.erasesize; 530 } 531 } 532 533 out_register: 534 return slave; 535 } 536 537 int mtd_add_partition(struct mtd_info *master, char *name, 538 long long offset, long long length) 539 { 540 struct mtd_partition part; 541 struct mtd_part *p, *new; 542 uint64_t start, end; 543 int ret = 0; 544 545 /* the direct offset is expected */ 546 if (offset == MTDPART_OFS_APPEND || 547 offset == MTDPART_OFS_NXTBLK) 548 return -EINVAL; 549 550 if (length == MTDPART_SIZ_FULL) 551 length = master->size - offset; 552 553 if (length <= 0) 554 return -EINVAL; 555 556 part.name = name; 557 part.size = length; 558 part.offset = offset; 559 part.mask_flags = 0; 560 part.ecclayout = NULL; 561 562 new = allocate_partition(master, &part, -1, offset); 563 if (IS_ERR(new)) 564 return PTR_ERR(new); 565 566 start = offset; 567 end = offset + length; 568 569 mutex_lock(&mtd_partitions_mutex); 570 list_for_each_entry(p, &mtd_partitions, list) 571 if (p->master == master) { 572 if ((start >= p->offset) && 573 (start < (p->offset + p->mtd.size))) 574 goto err_inv; 575 576 if ((end >= p->offset) && 577 (end < (p->offset + p->mtd.size))) 578 goto err_inv; 579 } 580 581 list_add(&new->list, &mtd_partitions); 582 mutex_unlock(&mtd_partitions_mutex); 583 584 add_mtd_device(&new->mtd); 585 586 return ret; 587 err_inv: 588 mutex_unlock(&mtd_partitions_mutex); 589 free_partition(new); 590 return -EINVAL; 591 } 592 EXPORT_SYMBOL_GPL(mtd_add_partition); 593 594 int mtd_del_partition(struct mtd_info *master, int partno) 595 { 596 struct mtd_part *slave, *next; 597 int ret = -EINVAL; 598 599 mutex_lock(&mtd_partitions_mutex); 600 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 601 if ((slave->master == master) && 602 (slave->mtd.index == partno)) { 603 ret = del_mtd_device(&slave->mtd); 604 if (ret < 0) 605 break; 606 607 list_del(&slave->list); 608 free_partition(slave); 609 break; 610 } 611 mutex_unlock(&mtd_partitions_mutex); 612 613 return ret; 614 } 615 EXPORT_SYMBOL_GPL(mtd_del_partition); 616 617 /* 618 * This function, given a master MTD object and a partition table, creates 619 * and registers slave MTD objects which are bound to the master according to 620 * the partition definitions. 621 * 622 * We don't register the master, or expect the caller to have done so, 623 * for reasons of data integrity. 624 */ 625 626 int add_mtd_partitions(struct mtd_info *master, 627 const struct mtd_partition *parts, 628 int nbparts) 629 { 630 struct mtd_part *slave; 631 uint64_t cur_offset = 0; 632 int i; 633 634 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 635 636 for (i = 0; i < nbparts; i++) { 637 slave = allocate_partition(master, parts + i, i, cur_offset); 638 if (IS_ERR(slave)) 639 return PTR_ERR(slave); 640 641 mutex_lock(&mtd_partitions_mutex); 642 list_add(&slave->list, &mtd_partitions); 643 mutex_unlock(&mtd_partitions_mutex); 644 645 add_mtd_device(&slave->mtd); 646 647 cur_offset = slave->offset + slave->mtd.size; 648 } 649 650 return 0; 651 } 652 653 static DEFINE_SPINLOCK(part_parser_lock); 654 static LIST_HEAD(part_parsers); 655 656 static struct mtd_part_parser *get_partition_parser(const char *name) 657 { 658 struct mtd_part_parser *p, *ret = NULL; 659 660 spin_lock(&part_parser_lock); 661 662 list_for_each_entry(p, &part_parsers, list) 663 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 664 ret = p; 665 break; 666 } 667 668 spin_unlock(&part_parser_lock); 669 670 return ret; 671 } 672 673 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 674 675 int register_mtd_parser(struct mtd_part_parser *p) 676 { 677 spin_lock(&part_parser_lock); 678 list_add(&p->list, &part_parsers); 679 spin_unlock(&part_parser_lock); 680 681 return 0; 682 } 683 EXPORT_SYMBOL_GPL(register_mtd_parser); 684 685 int deregister_mtd_parser(struct mtd_part_parser *p) 686 { 687 spin_lock(&part_parser_lock); 688 list_del(&p->list); 689 spin_unlock(&part_parser_lock); 690 return 0; 691 } 692 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 693 694 /* 695 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 696 * are changing this array! 697 */ 698 static const char * const default_mtd_part_types[] = { 699 "cmdlinepart", 700 "ofpart", 701 NULL 702 }; 703 704 /** 705 * parse_mtd_partitions - parse MTD partitions 706 * @master: the master partition (describes whole MTD device) 707 * @types: names of partition parsers to try or %NULL 708 * @pparts: array of partitions found is returned here 709 * @data: MTD partition parser-specific data 710 * 711 * This function tries to find partition on MTD device @master. It uses MTD 712 * partition parsers, specified in @types. However, if @types is %NULL, then 713 * the default list of parsers is used. The default list contains only the 714 * "cmdlinepart" and "ofpart" parsers ATM. 715 * Note: If there are more then one parser in @types, the kernel only takes the 716 * partitions parsed out by the first parser. 717 * 718 * This function may return: 719 * o a negative error code in case of failure 720 * o zero if no partitions were found 721 * o a positive number of found partitions, in which case on exit @pparts will 722 * point to an array containing this number of &struct mtd_info objects. 723 */ 724 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 725 struct mtd_partition **pparts, 726 struct mtd_part_parser_data *data) 727 { 728 struct mtd_part_parser *parser; 729 int ret = 0; 730 731 if (!types) 732 types = default_mtd_part_types; 733 734 for ( ; ret <= 0 && *types; types++) { 735 parser = get_partition_parser(*types); 736 if (!parser && !request_module("%s", *types)) 737 parser = get_partition_parser(*types); 738 if (!parser) 739 continue; 740 ret = (*parser->parse_fn)(master, pparts, data); 741 put_partition_parser(parser); 742 if (ret > 0) { 743 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 744 ret, parser->name, master->name); 745 break; 746 } 747 } 748 return ret; 749 } 750 751 int mtd_is_partition(const struct mtd_info *mtd) 752 { 753 struct mtd_part *part; 754 int ispart = 0; 755 756 mutex_lock(&mtd_partitions_mutex); 757 list_for_each_entry(part, &mtd_partitions, list) 758 if (&part->mtd == mtd) { 759 ispart = 1; 760 break; 761 } 762 mutex_unlock(&mtd_partitions_mutex); 763 764 return ispart; 765 } 766 EXPORT_SYMBOL_GPL(mtd_is_partition); 767 768 /* Returns the size of the entire flash chip */ 769 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 770 { 771 if (!mtd_is_partition(mtd)) 772 return mtd->size; 773 774 return PART(mtd)->master->size; 775 } 776 EXPORT_SYMBOL_GPL(mtd_get_device_size); 777