xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * 	02-21-2002	Thomas Gleixner <gleixner@autronix.de>
9  *			added support for read_oob, write_oob
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/kmod.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/compatmac.h>
21 
22 /* Our partition linked list */
23 static LIST_HEAD(mtd_partitions);
24 
25 /* Our partition node structure */
26 struct mtd_part {
27 	struct mtd_info mtd;
28 	struct mtd_info *master;
29 	u_int32_t offset;
30 	int index;
31 	struct list_head list;
32 	int registered;
33 };
34 
35 /*
36  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
37  * the pointer to that structure with this macro.
38  */
39 #define PART(x)  ((struct mtd_part *)(x))
40 
41 
42 /*
43  * MTD methods which simply translate the effective address and pass through
44  * to the _real_ device.
45  */
46 
47 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
48 		size_t *retlen, u_char *buf)
49 {
50 	struct mtd_part *part = PART(mtd);
51 	int res;
52 
53 	if (from >= mtd->size)
54 		len = 0;
55 	else if (from + len > mtd->size)
56 		len = mtd->size - from;
57 	res = part->master->read(part->master, from + part->offset,
58 				   len, retlen, buf);
59 	if (unlikely(res)) {
60 		if (res == -EUCLEAN)
61 			mtd->ecc_stats.corrected++;
62 		if (res == -EBADMSG)
63 			mtd->ecc_stats.failed++;
64 	}
65 	return res;
66 }
67 
68 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
69 		size_t *retlen, void **virt, resource_size_t *phys)
70 {
71 	struct mtd_part *part = PART(mtd);
72 	if (from >= mtd->size)
73 		len = 0;
74 	else if (from + len > mtd->size)
75 		len = mtd->size - from;
76 	return part->master->point (part->master, from + part->offset,
77 				    len, retlen, virt, phys);
78 }
79 
80 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
81 {
82 	struct mtd_part *part = PART(mtd);
83 
84 	part->master->unpoint(part->master, from + part->offset, len);
85 }
86 
87 static int part_read_oob(struct mtd_info *mtd, loff_t from,
88 		struct mtd_oob_ops *ops)
89 {
90 	struct mtd_part *part = PART(mtd);
91 	int res;
92 
93 	if (from >= mtd->size)
94 		return -EINVAL;
95 	if (ops->datbuf && from + ops->len > mtd->size)
96 		return -EINVAL;
97 	res = part->master->read_oob(part->master, from + part->offset, ops);
98 
99 	if (unlikely(res)) {
100 		if (res == -EUCLEAN)
101 			mtd->ecc_stats.corrected++;
102 		if (res == -EBADMSG)
103 			mtd->ecc_stats.failed++;
104 	}
105 	return res;
106 }
107 
108 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
109 		size_t len, size_t *retlen, u_char *buf)
110 {
111 	struct mtd_part *part = PART(mtd);
112 	return part->master->read_user_prot_reg(part->master, from,
113 					len, retlen, buf);
114 }
115 
116 static int part_get_user_prot_info(struct mtd_info *mtd,
117 		struct otp_info *buf, size_t len)
118 {
119 	struct mtd_part *part = PART(mtd);
120 	return part->master->get_user_prot_info(part->master, buf, len);
121 }
122 
123 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
124 		size_t len, size_t *retlen, u_char *buf)
125 {
126 	struct mtd_part *part = PART(mtd);
127 	return part->master->read_fact_prot_reg(part->master, from,
128 					len, retlen, buf);
129 }
130 
131 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
132 		size_t len)
133 {
134 	struct mtd_part *part = PART(mtd);
135 	return part->master->get_fact_prot_info(part->master, buf, len);
136 }
137 
138 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
139 		size_t *retlen, const u_char *buf)
140 {
141 	struct mtd_part *part = PART(mtd);
142 	if (!(mtd->flags & MTD_WRITEABLE))
143 		return -EROFS;
144 	if (to >= mtd->size)
145 		len = 0;
146 	else if (to + len > mtd->size)
147 		len = mtd->size - to;
148 	return part->master->write(part->master, to + part->offset,
149 				    len, retlen, buf);
150 }
151 
152 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
153 		size_t *retlen, const u_char *buf)
154 {
155 	struct mtd_part *part = PART(mtd);
156 	if (!(mtd->flags & MTD_WRITEABLE))
157 		return -EROFS;
158 	if (to >= mtd->size)
159 		len = 0;
160 	else if (to + len > mtd->size)
161 		len = mtd->size - to;
162 	return part->master->panic_write(part->master, to + part->offset,
163 				    len, retlen, buf);
164 }
165 
166 static int part_write_oob(struct mtd_info *mtd, loff_t to,
167 		struct mtd_oob_ops *ops)
168 {
169 	struct mtd_part *part = PART(mtd);
170 
171 	if (!(mtd->flags & MTD_WRITEABLE))
172 		return -EROFS;
173 
174 	if (to >= mtd->size)
175 		return -EINVAL;
176 	if (ops->datbuf && to + ops->len > mtd->size)
177 		return -EINVAL;
178 	return part->master->write_oob(part->master, to + part->offset, ops);
179 }
180 
181 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
182 		size_t len, size_t *retlen, u_char *buf)
183 {
184 	struct mtd_part *part = PART(mtd);
185 	return part->master->write_user_prot_reg(part->master, from,
186 					len, retlen, buf);
187 }
188 
189 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
190 		size_t len)
191 {
192 	struct mtd_part *part = PART(mtd);
193 	return part->master->lock_user_prot_reg(part->master, from, len);
194 }
195 
196 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
197 		unsigned long count, loff_t to, size_t *retlen)
198 {
199 	struct mtd_part *part = PART(mtd);
200 	if (!(mtd->flags & MTD_WRITEABLE))
201 		return -EROFS;
202 	return part->master->writev(part->master, vecs, count,
203 					to + part->offset, retlen);
204 }
205 
206 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
207 {
208 	struct mtd_part *part = PART(mtd);
209 	int ret;
210 	if (!(mtd->flags & MTD_WRITEABLE))
211 		return -EROFS;
212 	if (instr->addr >= mtd->size)
213 		return -EINVAL;
214 	instr->addr += part->offset;
215 	ret = part->master->erase(part->master, instr);
216 	if (ret) {
217 		if (instr->fail_addr != 0xffffffff)
218 			instr->fail_addr -= part->offset;
219 		instr->addr -= part->offset;
220 	}
221 	return ret;
222 }
223 
224 void mtd_erase_callback(struct erase_info *instr)
225 {
226 	if (instr->mtd->erase == part_erase) {
227 		struct mtd_part *part = PART(instr->mtd);
228 
229 		if (instr->fail_addr != 0xffffffff)
230 			instr->fail_addr -= part->offset;
231 		instr->addr -= part->offset;
232 	}
233 	if (instr->callback)
234 		instr->callback(instr);
235 }
236 EXPORT_SYMBOL_GPL(mtd_erase_callback);
237 
238 static int part_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
239 {
240 	struct mtd_part *part = PART(mtd);
241 	if ((len + ofs) > mtd->size)
242 		return -EINVAL;
243 	return part->master->lock(part->master, ofs + part->offset, len);
244 }
245 
246 static int part_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
247 {
248 	struct mtd_part *part = PART(mtd);
249 	if ((len + ofs) > mtd->size)
250 		return -EINVAL;
251 	return part->master->unlock(part->master, ofs + part->offset, len);
252 }
253 
254 static void part_sync(struct mtd_info *mtd)
255 {
256 	struct mtd_part *part = PART(mtd);
257 	part->master->sync(part->master);
258 }
259 
260 static int part_suspend(struct mtd_info *mtd)
261 {
262 	struct mtd_part *part = PART(mtd);
263 	return part->master->suspend(part->master);
264 }
265 
266 static void part_resume(struct mtd_info *mtd)
267 {
268 	struct mtd_part *part = PART(mtd);
269 	part->master->resume(part->master);
270 }
271 
272 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
273 {
274 	struct mtd_part *part = PART(mtd);
275 	if (ofs >= mtd->size)
276 		return -EINVAL;
277 	ofs += part->offset;
278 	return part->master->block_isbad(part->master, ofs);
279 }
280 
281 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
282 {
283 	struct mtd_part *part = PART(mtd);
284 	int res;
285 
286 	if (!(mtd->flags & MTD_WRITEABLE))
287 		return -EROFS;
288 	if (ofs >= mtd->size)
289 		return -EINVAL;
290 	ofs += part->offset;
291 	res = part->master->block_markbad(part->master, ofs);
292 	if (!res)
293 		mtd->ecc_stats.badblocks++;
294 	return res;
295 }
296 
297 /*
298  * This function unregisters and destroy all slave MTD objects which are
299  * attached to the given master MTD object.
300  */
301 
302 int del_mtd_partitions(struct mtd_info *master)
303 {
304 	struct mtd_part *slave, *next;
305 
306 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
307 		if (slave->master == master) {
308 			list_del(&slave->list);
309 			if (slave->registered)
310 				del_mtd_device(&slave->mtd);
311 			kfree(slave);
312 		}
313 
314 	return 0;
315 }
316 EXPORT_SYMBOL(del_mtd_partitions);
317 
318 static struct mtd_part *add_one_partition(struct mtd_info *master,
319 		const struct mtd_partition *part, int partno,
320 		u_int32_t cur_offset)
321 {
322 	struct mtd_part *slave;
323 
324 	/* allocate the partition structure */
325 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
326 	if (!slave) {
327 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
328 			master->name);
329 		del_mtd_partitions(master);
330 		return NULL;
331 	}
332 	list_add(&slave->list, &mtd_partitions);
333 
334 	/* set up the MTD object for this partition */
335 	slave->mtd.type = master->type;
336 	slave->mtd.flags = master->flags & ~part->mask_flags;
337 	slave->mtd.size = part->size;
338 	slave->mtd.writesize = master->writesize;
339 	slave->mtd.oobsize = master->oobsize;
340 	slave->mtd.oobavail = master->oobavail;
341 	slave->mtd.subpage_sft = master->subpage_sft;
342 
343 	slave->mtd.name = part->name;
344 	slave->mtd.owner = master->owner;
345 
346 	slave->mtd.read = part_read;
347 	slave->mtd.write = part_write;
348 
349 	if (master->panic_write)
350 		slave->mtd.panic_write = part_panic_write;
351 
352 	if (master->point && master->unpoint) {
353 		slave->mtd.point = part_point;
354 		slave->mtd.unpoint = part_unpoint;
355 	}
356 
357 	if (master->read_oob)
358 		slave->mtd.read_oob = part_read_oob;
359 	if (master->write_oob)
360 		slave->mtd.write_oob = part_write_oob;
361 	if (master->read_user_prot_reg)
362 		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
363 	if (master->read_fact_prot_reg)
364 		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
365 	if (master->write_user_prot_reg)
366 		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
367 	if (master->lock_user_prot_reg)
368 		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
369 	if (master->get_user_prot_info)
370 		slave->mtd.get_user_prot_info = part_get_user_prot_info;
371 	if (master->get_fact_prot_info)
372 		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
373 	if (master->sync)
374 		slave->mtd.sync = part_sync;
375 	if (!partno && master->suspend && master->resume) {
376 			slave->mtd.suspend = part_suspend;
377 			slave->mtd.resume = part_resume;
378 	}
379 	if (master->writev)
380 		slave->mtd.writev = part_writev;
381 	if (master->lock)
382 		slave->mtd.lock = part_lock;
383 	if (master->unlock)
384 		slave->mtd.unlock = part_unlock;
385 	if (master->block_isbad)
386 		slave->mtd.block_isbad = part_block_isbad;
387 	if (master->block_markbad)
388 		slave->mtd.block_markbad = part_block_markbad;
389 	slave->mtd.erase = part_erase;
390 	slave->master = master;
391 	slave->offset = part->offset;
392 	slave->index = partno;
393 
394 	if (slave->offset == MTDPART_OFS_APPEND)
395 		slave->offset = cur_offset;
396 	if (slave->offset == MTDPART_OFS_NXTBLK) {
397 		slave->offset = cur_offset;
398 		if ((cur_offset % master->erasesize) != 0) {
399 			/* Round up to next erasesize */
400 			slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
401 			printk(KERN_NOTICE "Moving partition %d: "
402 			       "0x%08x -> 0x%08x\n", partno,
403 			       cur_offset, slave->offset);
404 		}
405 	}
406 	if (slave->mtd.size == MTDPART_SIZ_FULL)
407 		slave->mtd.size = master->size - slave->offset;
408 
409 	printk(KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
410 		slave->offset + slave->mtd.size, slave->mtd.name);
411 
412 	/* let's do some sanity checks */
413 	if (slave->offset >= master->size) {
414 		/* let's register it anyway to preserve ordering */
415 		slave->offset = 0;
416 		slave->mtd.size = 0;
417 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
418 			part->name);
419 		goto out_register;
420 	}
421 	if (slave->offset + slave->mtd.size > master->size) {
422 		slave->mtd.size = master->size - slave->offset;
423 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
424 			part->name, master->name, slave->mtd.size);
425 	}
426 	if (master->numeraseregions > 1) {
427 		/* Deal with variable erase size stuff */
428 		int i, max = master->numeraseregions;
429 		u32 end = slave->offset + slave->mtd.size;
430 		struct mtd_erase_region_info *regions = master->eraseregions;
431 
432 		/* Find the first erase regions which is part of this
433 		 * partition. */
434 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
435 			;
436 		/* The loop searched for the region _behind_ the first one */
437 		i--;
438 
439 		/* Pick biggest erasesize */
440 		for (; i < max && regions[i].offset < end; i++) {
441 			if (slave->mtd.erasesize < regions[i].erasesize) {
442 				slave->mtd.erasesize = regions[i].erasesize;
443 			}
444 		}
445 		BUG_ON(slave->mtd.erasesize == 0);
446 	} else {
447 		/* Single erase size */
448 		slave->mtd.erasesize = master->erasesize;
449 	}
450 
451 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
452 	    (slave->offset % slave->mtd.erasesize)) {
453 		/* Doesn't start on a boundary of major erase size */
454 		/* FIXME: Let it be writable if it is on a boundary of
455 		 * _minor_ erase size though */
456 		slave->mtd.flags &= ~MTD_WRITEABLE;
457 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
458 			part->name);
459 	}
460 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
461 	    (slave->mtd.size % slave->mtd.erasesize)) {
462 		slave->mtd.flags &= ~MTD_WRITEABLE;
463 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
464 			part->name);
465 	}
466 
467 	slave->mtd.ecclayout = master->ecclayout;
468 	if (master->block_isbad) {
469 		uint32_t offs = 0;
470 
471 		while (offs < slave->mtd.size) {
472 			if (master->block_isbad(master,
473 						offs + slave->offset))
474 				slave->mtd.ecc_stats.badblocks++;
475 			offs += slave->mtd.erasesize;
476 		}
477 	}
478 
479 out_register:
480 	if (part->mtdp) {
481 		/* store the object pointer (caller may or may not register it*/
482 		*part->mtdp = &slave->mtd;
483 		slave->registered = 0;
484 	} else {
485 		/* register our partition */
486 		add_mtd_device(&slave->mtd);
487 		slave->registered = 1;
488 	}
489 	return slave;
490 }
491 
492 /*
493  * This function, given a master MTD object and a partition table, creates
494  * and registers slave MTD objects which are bound to the master according to
495  * the partition definitions.
496  * (Q: should we register the master MTD object as well?)
497  */
498 
499 int add_mtd_partitions(struct mtd_info *master,
500 		       const struct mtd_partition *parts,
501 		       int nbparts)
502 {
503 	struct mtd_part *slave;
504 	u_int32_t cur_offset = 0;
505 	int i;
506 
507 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
508 
509 	for (i = 0; i < nbparts; i++) {
510 		slave = add_one_partition(master, parts + i, i, cur_offset);
511 		if (!slave)
512 			return -ENOMEM;
513 		cur_offset = slave->offset + slave->mtd.size;
514 	}
515 
516 	return 0;
517 }
518 EXPORT_SYMBOL(add_mtd_partitions);
519 
520 static DEFINE_SPINLOCK(part_parser_lock);
521 static LIST_HEAD(part_parsers);
522 
523 static struct mtd_part_parser *get_partition_parser(const char *name)
524 {
525 	struct mtd_part_parser *p, *ret = NULL;
526 
527 	spin_lock(&part_parser_lock);
528 
529 	list_for_each_entry(p, &part_parsers, list)
530 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
531 			ret = p;
532 			break;
533 		}
534 
535 	spin_unlock(&part_parser_lock);
536 
537 	return ret;
538 }
539 
540 int register_mtd_parser(struct mtd_part_parser *p)
541 {
542 	spin_lock(&part_parser_lock);
543 	list_add(&p->list, &part_parsers);
544 	spin_unlock(&part_parser_lock);
545 
546 	return 0;
547 }
548 EXPORT_SYMBOL_GPL(register_mtd_parser);
549 
550 int deregister_mtd_parser(struct mtd_part_parser *p)
551 {
552 	spin_lock(&part_parser_lock);
553 	list_del(&p->list);
554 	spin_unlock(&part_parser_lock);
555 	return 0;
556 }
557 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
558 
559 int parse_mtd_partitions(struct mtd_info *master, const char **types,
560 			 struct mtd_partition **pparts, unsigned long origin)
561 {
562 	struct mtd_part_parser *parser;
563 	int ret = 0;
564 
565 	for ( ; ret <= 0 && *types; types++) {
566 		parser = get_partition_parser(*types);
567 #ifdef CONFIG_KMOD
568 		if (!parser && !request_module("%s", *types))
569 				parser = get_partition_parser(*types);
570 #endif
571 		if (!parser) {
572 			printk(KERN_NOTICE "%s partition parsing not available\n",
573 			       *types);
574 			continue;
575 		}
576 		ret = (*parser->parse_fn)(master, pparts, origin);
577 		if (ret > 0) {
578 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
579 			       ret, parser->name, master->name);
580 		}
581 		put_partition_parser(parser);
582 	}
583 	return ret;
584 }
585 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
586