xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 /* Our partition linked list */
35 static LIST_HEAD(mtd_partitions);
36 static DEFINE_MUTEX(mtd_partitions_mutex);
37 
38 /* Our partition node structure */
39 struct mtd_part {
40 	struct mtd_info mtd;
41 	struct mtd_info *master;
42 	uint64_t offset;
43 	struct list_head list;
44 };
45 
46 /*
47  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
48  * the pointer to that structure with this macro.
49  */
50 #define PART(x)  ((struct mtd_part *)(x))
51 
52 
53 /*
54  * MTD methods which simply translate the effective address and pass through
55  * to the _real_ device.
56  */
57 
58 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
59 		size_t *retlen, u_char *buf)
60 {
61 	struct mtd_part *part = PART(mtd);
62 	struct mtd_ecc_stats stats;
63 	int res;
64 
65 	stats = part->master->ecc_stats;
66 
67 	if (from >= mtd->size)
68 		len = 0;
69 	else if (from + len > mtd->size)
70 		len = mtd->size - from;
71 	res = part->master->read(part->master, from + part->offset,
72 				   len, retlen, buf);
73 	if (unlikely(res)) {
74 		if (res == -EUCLEAN)
75 			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
76 		if (res == -EBADMSG)
77 			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
78 	}
79 	return res;
80 }
81 
82 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
83 		size_t *retlen, void **virt, resource_size_t *phys)
84 {
85 	struct mtd_part *part = PART(mtd);
86 	if (from >= mtd->size)
87 		len = 0;
88 	else if (from + len > mtd->size)
89 		len = mtd->size - from;
90 	return part->master->point (part->master, from + part->offset,
91 				    len, retlen, virt, phys);
92 }
93 
94 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
95 {
96 	struct mtd_part *part = PART(mtd);
97 
98 	part->master->unpoint(part->master, from + part->offset, len);
99 }
100 
101 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
102 					    unsigned long len,
103 					    unsigned long offset,
104 					    unsigned long flags)
105 {
106 	struct mtd_part *part = PART(mtd);
107 
108 	offset += part->offset;
109 	return part->master->get_unmapped_area(part->master, len, offset,
110 					       flags);
111 }
112 
113 static int part_read_oob(struct mtd_info *mtd, loff_t from,
114 		struct mtd_oob_ops *ops)
115 {
116 	struct mtd_part *part = PART(mtd);
117 	int res;
118 
119 	if (from >= mtd->size)
120 		return -EINVAL;
121 	if (ops->datbuf && from + ops->len > mtd->size)
122 		return -EINVAL;
123 
124 	/*
125 	 * If OOB is also requested, make sure that we do not read past the end
126 	 * of this partition.
127 	 */
128 	if (ops->oobbuf) {
129 		size_t len, pages;
130 
131 		if (ops->mode == MTD_OOB_AUTO)
132 			len = mtd->oobavail;
133 		else
134 			len = mtd->oobsize;
135 		pages = mtd_div_by_ws(mtd->size, mtd);
136 		pages -= mtd_div_by_ws(from, mtd);
137 		if (ops->ooboffs + ops->ooblen > pages * len)
138 			return -EINVAL;
139 	}
140 
141 	res = part->master->read_oob(part->master, from + part->offset, ops);
142 	if (unlikely(res)) {
143 		if (res == -EUCLEAN)
144 			mtd->ecc_stats.corrected++;
145 		if (res == -EBADMSG)
146 			mtd->ecc_stats.failed++;
147 	}
148 	return res;
149 }
150 
151 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
152 		size_t len, size_t *retlen, u_char *buf)
153 {
154 	struct mtd_part *part = PART(mtd);
155 	return part->master->read_user_prot_reg(part->master, from,
156 					len, retlen, buf);
157 }
158 
159 static int part_get_user_prot_info(struct mtd_info *mtd,
160 		struct otp_info *buf, size_t len)
161 {
162 	struct mtd_part *part = PART(mtd);
163 	return part->master->get_user_prot_info(part->master, buf, len);
164 }
165 
166 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
167 		size_t len, size_t *retlen, u_char *buf)
168 {
169 	struct mtd_part *part = PART(mtd);
170 	return part->master->read_fact_prot_reg(part->master, from,
171 					len, retlen, buf);
172 }
173 
174 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
175 		size_t len)
176 {
177 	struct mtd_part *part = PART(mtd);
178 	return part->master->get_fact_prot_info(part->master, buf, len);
179 }
180 
181 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
182 		size_t *retlen, const u_char *buf)
183 {
184 	struct mtd_part *part = PART(mtd);
185 	if (!(mtd->flags & MTD_WRITEABLE))
186 		return -EROFS;
187 	if (to >= mtd->size)
188 		len = 0;
189 	else if (to + len > mtd->size)
190 		len = mtd->size - to;
191 	return part->master->write(part->master, to + part->offset,
192 				    len, retlen, buf);
193 }
194 
195 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
196 		size_t *retlen, const u_char *buf)
197 {
198 	struct mtd_part *part = PART(mtd);
199 	if (!(mtd->flags & MTD_WRITEABLE))
200 		return -EROFS;
201 	if (to >= mtd->size)
202 		len = 0;
203 	else if (to + len > mtd->size)
204 		len = mtd->size - to;
205 	return part->master->panic_write(part->master, to + part->offset,
206 				    len, retlen, buf);
207 }
208 
209 static int part_write_oob(struct mtd_info *mtd, loff_t to,
210 		struct mtd_oob_ops *ops)
211 {
212 	struct mtd_part *part = PART(mtd);
213 
214 	if (!(mtd->flags & MTD_WRITEABLE))
215 		return -EROFS;
216 
217 	if (to >= mtd->size)
218 		return -EINVAL;
219 	if (ops->datbuf && to + ops->len > mtd->size)
220 		return -EINVAL;
221 	return part->master->write_oob(part->master, to + part->offset, ops);
222 }
223 
224 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
225 		size_t len, size_t *retlen, u_char *buf)
226 {
227 	struct mtd_part *part = PART(mtd);
228 	return part->master->write_user_prot_reg(part->master, from,
229 					len, retlen, buf);
230 }
231 
232 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
233 		size_t len)
234 {
235 	struct mtd_part *part = PART(mtd);
236 	return part->master->lock_user_prot_reg(part->master, from, len);
237 }
238 
239 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
240 		unsigned long count, loff_t to, size_t *retlen)
241 {
242 	struct mtd_part *part = PART(mtd);
243 	if (!(mtd->flags & MTD_WRITEABLE))
244 		return -EROFS;
245 	return part->master->writev(part->master, vecs, count,
246 					to + part->offset, retlen);
247 }
248 
249 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
250 {
251 	struct mtd_part *part = PART(mtd);
252 	int ret;
253 	if (!(mtd->flags & MTD_WRITEABLE))
254 		return -EROFS;
255 	if (instr->addr >= mtd->size)
256 		return -EINVAL;
257 	instr->addr += part->offset;
258 	ret = part->master->erase(part->master, instr);
259 	if (ret) {
260 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
261 			instr->fail_addr -= part->offset;
262 		instr->addr -= part->offset;
263 	}
264 	return ret;
265 }
266 
267 void mtd_erase_callback(struct erase_info *instr)
268 {
269 	if (instr->mtd->erase == part_erase) {
270 		struct mtd_part *part = PART(instr->mtd);
271 
272 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
273 			instr->fail_addr -= part->offset;
274 		instr->addr -= part->offset;
275 	}
276 	if (instr->callback)
277 		instr->callback(instr);
278 }
279 EXPORT_SYMBOL_GPL(mtd_erase_callback);
280 
281 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
282 {
283 	struct mtd_part *part = PART(mtd);
284 	if ((len + ofs) > mtd->size)
285 		return -EINVAL;
286 	return part->master->lock(part->master, ofs + part->offset, len);
287 }
288 
289 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
290 {
291 	struct mtd_part *part = PART(mtd);
292 	if ((len + ofs) > mtd->size)
293 		return -EINVAL;
294 	return part->master->unlock(part->master, ofs + part->offset, len);
295 }
296 
297 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
298 {
299 	struct mtd_part *part = PART(mtd);
300 	if ((len + ofs) > mtd->size)
301 		return -EINVAL;
302 	return part->master->is_locked(part->master, ofs + part->offset, len);
303 }
304 
305 static void part_sync(struct mtd_info *mtd)
306 {
307 	struct mtd_part *part = PART(mtd);
308 	part->master->sync(part->master);
309 }
310 
311 static int part_suspend(struct mtd_info *mtd)
312 {
313 	struct mtd_part *part = PART(mtd);
314 	return part->master->suspend(part->master);
315 }
316 
317 static void part_resume(struct mtd_info *mtd)
318 {
319 	struct mtd_part *part = PART(mtd);
320 	part->master->resume(part->master);
321 }
322 
323 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
324 {
325 	struct mtd_part *part = PART(mtd);
326 	if (ofs >= mtd->size)
327 		return -EINVAL;
328 	ofs += part->offset;
329 	return part->master->block_isbad(part->master, ofs);
330 }
331 
332 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
333 {
334 	struct mtd_part *part = PART(mtd);
335 	int res;
336 
337 	if (!(mtd->flags & MTD_WRITEABLE))
338 		return -EROFS;
339 	if (ofs >= mtd->size)
340 		return -EINVAL;
341 	ofs += part->offset;
342 	res = part->master->block_markbad(part->master, ofs);
343 	if (!res)
344 		mtd->ecc_stats.badblocks++;
345 	return res;
346 }
347 
348 static inline void free_partition(struct mtd_part *p)
349 {
350 	kfree(p->mtd.name);
351 	kfree(p);
352 }
353 
354 /*
355  * This function unregisters and destroy all slave MTD objects which are
356  * attached to the given master MTD object.
357  */
358 
359 int del_mtd_partitions(struct mtd_info *master)
360 {
361 	struct mtd_part *slave, *next;
362 	int ret, err = 0;
363 
364 	mutex_lock(&mtd_partitions_mutex);
365 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
366 		if (slave->master == master) {
367 			ret = del_mtd_device(&slave->mtd);
368 			if (ret < 0) {
369 				err = ret;
370 				continue;
371 			}
372 			list_del(&slave->list);
373 			free_partition(slave);
374 		}
375 	mutex_unlock(&mtd_partitions_mutex);
376 
377 	return err;
378 }
379 EXPORT_SYMBOL(del_mtd_partitions);
380 
381 static struct mtd_part *allocate_partition(struct mtd_info *master,
382 			const struct mtd_partition *part, int partno,
383 			uint64_t cur_offset)
384 {
385 	struct mtd_part *slave;
386 	char *name;
387 
388 	/* allocate the partition structure */
389 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
390 	name = kstrdup(part->name, GFP_KERNEL);
391 	if (!name || !slave) {
392 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
393 		       master->name);
394 		kfree(name);
395 		kfree(slave);
396 		return ERR_PTR(-ENOMEM);
397 	}
398 
399 	/* set up the MTD object for this partition */
400 	slave->mtd.type = master->type;
401 	slave->mtd.flags = master->flags & ~part->mask_flags;
402 	slave->mtd.size = part->size;
403 	slave->mtd.writesize = master->writesize;
404 	slave->mtd.writebufsize = master->writebufsize;
405 	slave->mtd.oobsize = master->oobsize;
406 	slave->mtd.oobavail = master->oobavail;
407 	slave->mtd.subpage_sft = master->subpage_sft;
408 
409 	slave->mtd.name = name;
410 	slave->mtd.owner = master->owner;
411 	slave->mtd.backing_dev_info = master->backing_dev_info;
412 
413 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
414 	 * to have the same data be in two different partitions.
415 	 */
416 	slave->mtd.dev.parent = master->dev.parent;
417 
418 	slave->mtd.read = part_read;
419 	slave->mtd.write = part_write;
420 
421 	if (master->panic_write)
422 		slave->mtd.panic_write = part_panic_write;
423 
424 	if (master->point && master->unpoint) {
425 		slave->mtd.point = part_point;
426 		slave->mtd.unpoint = part_unpoint;
427 	}
428 
429 	if (master->get_unmapped_area)
430 		slave->mtd.get_unmapped_area = part_get_unmapped_area;
431 	if (master->read_oob)
432 		slave->mtd.read_oob = part_read_oob;
433 	if (master->write_oob)
434 		slave->mtd.write_oob = part_write_oob;
435 	if (master->read_user_prot_reg)
436 		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
437 	if (master->read_fact_prot_reg)
438 		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
439 	if (master->write_user_prot_reg)
440 		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
441 	if (master->lock_user_prot_reg)
442 		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
443 	if (master->get_user_prot_info)
444 		slave->mtd.get_user_prot_info = part_get_user_prot_info;
445 	if (master->get_fact_prot_info)
446 		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
447 	if (master->sync)
448 		slave->mtd.sync = part_sync;
449 	if (!partno && !master->dev.class && master->suspend && master->resume) {
450 			slave->mtd.suspend = part_suspend;
451 			slave->mtd.resume = part_resume;
452 	}
453 	if (master->writev)
454 		slave->mtd.writev = part_writev;
455 	if (master->lock)
456 		slave->mtd.lock = part_lock;
457 	if (master->unlock)
458 		slave->mtd.unlock = part_unlock;
459 	if (master->is_locked)
460 		slave->mtd.is_locked = part_is_locked;
461 	if (master->block_isbad)
462 		slave->mtd.block_isbad = part_block_isbad;
463 	if (master->block_markbad)
464 		slave->mtd.block_markbad = part_block_markbad;
465 	slave->mtd.erase = part_erase;
466 	slave->master = master;
467 	slave->offset = part->offset;
468 
469 	if (slave->offset == MTDPART_OFS_APPEND)
470 		slave->offset = cur_offset;
471 	if (slave->offset == MTDPART_OFS_NXTBLK) {
472 		slave->offset = cur_offset;
473 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
474 			/* Round up to next erasesize */
475 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
476 			printk(KERN_NOTICE "Moving partition %d: "
477 			       "0x%012llx -> 0x%012llx\n", partno,
478 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
479 		}
480 	}
481 	if (slave->mtd.size == MTDPART_SIZ_FULL)
482 		slave->mtd.size = master->size - slave->offset;
483 
484 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
485 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
486 
487 	/* let's do some sanity checks */
488 	if (slave->offset >= master->size) {
489 		/* let's register it anyway to preserve ordering */
490 		slave->offset = 0;
491 		slave->mtd.size = 0;
492 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
493 			part->name);
494 		goto out_register;
495 	}
496 	if (slave->offset + slave->mtd.size > master->size) {
497 		slave->mtd.size = master->size - slave->offset;
498 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
499 			part->name, master->name, (unsigned long long)slave->mtd.size);
500 	}
501 	if (master->numeraseregions > 1) {
502 		/* Deal with variable erase size stuff */
503 		int i, max = master->numeraseregions;
504 		u64 end = slave->offset + slave->mtd.size;
505 		struct mtd_erase_region_info *regions = master->eraseregions;
506 
507 		/* Find the first erase regions which is part of this
508 		 * partition. */
509 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
510 			;
511 		/* The loop searched for the region _behind_ the first one */
512 		if (i > 0)
513 			i--;
514 
515 		/* Pick biggest erasesize */
516 		for (; i < max && regions[i].offset < end; i++) {
517 			if (slave->mtd.erasesize < regions[i].erasesize) {
518 				slave->mtd.erasesize = regions[i].erasesize;
519 			}
520 		}
521 		BUG_ON(slave->mtd.erasesize == 0);
522 	} else {
523 		/* Single erase size */
524 		slave->mtd.erasesize = master->erasesize;
525 	}
526 
527 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
528 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
529 		/* Doesn't start on a boundary of major erase size */
530 		/* FIXME: Let it be writable if it is on a boundary of
531 		 * _minor_ erase size though */
532 		slave->mtd.flags &= ~MTD_WRITEABLE;
533 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
534 			part->name);
535 	}
536 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
537 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
538 		slave->mtd.flags &= ~MTD_WRITEABLE;
539 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
540 			part->name);
541 	}
542 
543 	slave->mtd.ecclayout = master->ecclayout;
544 	if (master->block_isbad) {
545 		uint64_t offs = 0;
546 
547 		while (offs < slave->mtd.size) {
548 			if (master->block_isbad(master,
549 						offs + slave->offset))
550 				slave->mtd.ecc_stats.badblocks++;
551 			offs += slave->mtd.erasesize;
552 		}
553 	}
554 
555 out_register:
556 	return slave;
557 }
558 
559 int mtd_add_partition(struct mtd_info *master, char *name,
560 		      long long offset, long long length)
561 {
562 	struct mtd_partition part;
563 	struct mtd_part *p, *new;
564 	uint64_t start, end;
565 	int ret = 0;
566 
567 	/* the direct offset is expected */
568 	if (offset == MTDPART_OFS_APPEND ||
569 	    offset == MTDPART_OFS_NXTBLK)
570 		return -EINVAL;
571 
572 	if (length == MTDPART_SIZ_FULL)
573 		length = master->size - offset;
574 
575 	if (length <= 0)
576 		return -EINVAL;
577 
578 	part.name = name;
579 	part.size = length;
580 	part.offset = offset;
581 	part.mask_flags = 0;
582 	part.ecclayout = NULL;
583 
584 	new = allocate_partition(master, &part, -1, offset);
585 	if (IS_ERR(new))
586 		return PTR_ERR(new);
587 
588 	start = offset;
589 	end = offset + length;
590 
591 	mutex_lock(&mtd_partitions_mutex);
592 	list_for_each_entry(p, &mtd_partitions, list)
593 		if (p->master == master) {
594 			if ((start >= p->offset) &&
595 			    (start < (p->offset + p->mtd.size)))
596 				goto err_inv;
597 
598 			if ((end >= p->offset) &&
599 			    (end < (p->offset + p->mtd.size)))
600 				goto err_inv;
601 		}
602 
603 	list_add(&new->list, &mtd_partitions);
604 	mutex_unlock(&mtd_partitions_mutex);
605 
606 	add_mtd_device(&new->mtd);
607 
608 	return ret;
609 err_inv:
610 	mutex_unlock(&mtd_partitions_mutex);
611 	free_partition(new);
612 	return -EINVAL;
613 }
614 EXPORT_SYMBOL_GPL(mtd_add_partition);
615 
616 int mtd_del_partition(struct mtd_info *master, int partno)
617 {
618 	struct mtd_part *slave, *next;
619 	int ret = -EINVAL;
620 
621 	mutex_lock(&mtd_partitions_mutex);
622 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
623 		if ((slave->master == master) &&
624 		    (slave->mtd.index == partno)) {
625 			ret = del_mtd_device(&slave->mtd);
626 			if (ret < 0)
627 				break;
628 
629 			list_del(&slave->list);
630 			free_partition(slave);
631 			break;
632 		}
633 	mutex_unlock(&mtd_partitions_mutex);
634 
635 	return ret;
636 }
637 EXPORT_SYMBOL_GPL(mtd_del_partition);
638 
639 /*
640  * This function, given a master MTD object and a partition table, creates
641  * and registers slave MTD objects which are bound to the master according to
642  * the partition definitions.
643  *
644  * We don't register the master, or expect the caller to have done so,
645  * for reasons of data integrity.
646  */
647 
648 int add_mtd_partitions(struct mtd_info *master,
649 		       const struct mtd_partition *parts,
650 		       int nbparts)
651 {
652 	struct mtd_part *slave;
653 	uint64_t cur_offset = 0;
654 	int i;
655 
656 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
657 
658 	for (i = 0; i < nbparts; i++) {
659 		slave = allocate_partition(master, parts + i, i, cur_offset);
660 		if (IS_ERR(slave))
661 			return PTR_ERR(slave);
662 
663 		mutex_lock(&mtd_partitions_mutex);
664 		list_add(&slave->list, &mtd_partitions);
665 		mutex_unlock(&mtd_partitions_mutex);
666 
667 		add_mtd_device(&slave->mtd);
668 
669 		cur_offset = slave->offset + slave->mtd.size;
670 	}
671 
672 	return 0;
673 }
674 EXPORT_SYMBOL(add_mtd_partitions);
675 
676 static DEFINE_SPINLOCK(part_parser_lock);
677 static LIST_HEAD(part_parsers);
678 
679 static struct mtd_part_parser *get_partition_parser(const char *name)
680 {
681 	struct mtd_part_parser *p, *ret = NULL;
682 
683 	spin_lock(&part_parser_lock);
684 
685 	list_for_each_entry(p, &part_parsers, list)
686 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
687 			ret = p;
688 			break;
689 		}
690 
691 	spin_unlock(&part_parser_lock);
692 
693 	return ret;
694 }
695 
696 int register_mtd_parser(struct mtd_part_parser *p)
697 {
698 	spin_lock(&part_parser_lock);
699 	list_add(&p->list, &part_parsers);
700 	spin_unlock(&part_parser_lock);
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(register_mtd_parser);
705 
706 int deregister_mtd_parser(struct mtd_part_parser *p)
707 {
708 	spin_lock(&part_parser_lock);
709 	list_del(&p->list);
710 	spin_unlock(&part_parser_lock);
711 	return 0;
712 }
713 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
714 
715 int parse_mtd_partitions(struct mtd_info *master, const char **types,
716 			 struct mtd_partition **pparts, unsigned long origin)
717 {
718 	struct mtd_part_parser *parser;
719 	int ret = 0;
720 
721 	for ( ; ret <= 0 && *types; types++) {
722 		parser = get_partition_parser(*types);
723 		if (!parser && !request_module("%s", *types))
724 				parser = get_partition_parser(*types);
725 		if (!parser) {
726 			printk(KERN_NOTICE "%s partition parsing not available\n",
727 			       *types);
728 			continue;
729 		}
730 		ret = (*parser->parse_fn)(master, pparts, origin);
731 		if (ret > 0) {
732 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
733 			       ret, parser->name, master->name);
734 		}
735 		put_partition_parser(parser);
736 	}
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
740 
741 int mtd_is_partition(struct mtd_info *mtd)
742 {
743 	struct mtd_part *part;
744 	int ispart = 0;
745 
746 	mutex_lock(&mtd_partitions_mutex);
747 	list_for_each_entry(part, &mtd_partitions, list)
748 		if (&part->mtd == mtd) {
749 			ispart = 1;
750 			break;
751 		}
752 	mutex_unlock(&mtd_partitions_mutex);
753 
754 	return ispart;
755 }
756 EXPORT_SYMBOL_GPL(mtd_is_partition);
757