1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 #include "mtdcore.h" 35 36 /* Our partition linked list */ 37 static LIST_HEAD(mtd_partitions); 38 static DEFINE_MUTEX(mtd_partitions_mutex); 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure with this macro. 51 */ 52 #define PART(x) ((struct mtd_part *)(x)) 53 54 55 /* 56 * MTD methods which simply translate the effective address and pass through 57 * to the _real_ device. 58 */ 59 60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 61 size_t *retlen, u_char *buf) 62 { 63 struct mtd_part *part = PART(mtd); 64 struct mtd_ecc_stats stats; 65 int res; 66 67 stats = part->master->ecc_stats; 68 res = part->master->_read(part->master, from + part->offset, len, 69 retlen, buf); 70 if (unlikely(mtd_is_eccerr(res))) 71 mtd->ecc_stats.failed += 72 part->master->ecc_stats.failed - stats.failed; 73 else 74 mtd->ecc_stats.corrected += 75 part->master->ecc_stats.corrected - stats.corrected; 76 return res; 77 } 78 79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 80 size_t *retlen, void **virt, resource_size_t *phys) 81 { 82 struct mtd_part *part = PART(mtd); 83 84 return part->master->_point(part->master, from + part->offset, len, 85 retlen, virt, phys); 86 } 87 88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 89 { 90 struct mtd_part *part = PART(mtd); 91 92 return part->master->_unpoint(part->master, from + part->offset, len); 93 } 94 95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 96 unsigned long len, 97 unsigned long offset, 98 unsigned long flags) 99 { 100 struct mtd_part *part = PART(mtd); 101 102 offset += part->offset; 103 return part->master->_get_unmapped_area(part->master, len, offset, 104 flags); 105 } 106 107 static int part_read_oob(struct mtd_info *mtd, loff_t from, 108 struct mtd_oob_ops *ops) 109 { 110 struct mtd_part *part = PART(mtd); 111 int res; 112 113 if (from >= mtd->size) 114 return -EINVAL; 115 if (ops->datbuf && from + ops->len > mtd->size) 116 return -EINVAL; 117 118 /* 119 * If OOB is also requested, make sure that we do not read past the end 120 * of this partition. 121 */ 122 if (ops->oobbuf) { 123 size_t len, pages; 124 125 if (ops->mode == MTD_OPS_AUTO_OOB) 126 len = mtd->oobavail; 127 else 128 len = mtd->oobsize; 129 pages = mtd_div_by_ws(mtd->size, mtd); 130 pages -= mtd_div_by_ws(from, mtd); 131 if (ops->ooboffs + ops->ooblen > pages * len) 132 return -EINVAL; 133 } 134 135 res = part->master->_read_oob(part->master, from + part->offset, ops); 136 if (unlikely(res)) { 137 if (mtd_is_bitflip(res)) 138 mtd->ecc_stats.corrected++; 139 if (mtd_is_eccerr(res)) 140 mtd->ecc_stats.failed++; 141 } 142 return res; 143 } 144 145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 146 size_t len, size_t *retlen, u_char *buf) 147 { 148 struct mtd_part *part = PART(mtd); 149 return part->master->_read_user_prot_reg(part->master, from, len, 150 retlen, buf); 151 } 152 153 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 154 size_t *retlen, struct otp_info *buf) 155 { 156 struct mtd_part *part = PART(mtd); 157 return part->master->_get_user_prot_info(part->master, len, retlen, 158 buf); 159 } 160 161 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 162 size_t len, size_t *retlen, u_char *buf) 163 { 164 struct mtd_part *part = PART(mtd); 165 return part->master->_read_fact_prot_reg(part->master, from, len, 166 retlen, buf); 167 } 168 169 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 170 size_t *retlen, struct otp_info *buf) 171 { 172 struct mtd_part *part = PART(mtd); 173 return part->master->_get_fact_prot_info(part->master, len, retlen, 174 buf); 175 } 176 177 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 178 size_t *retlen, const u_char *buf) 179 { 180 struct mtd_part *part = PART(mtd); 181 return part->master->_write(part->master, to + part->offset, len, 182 retlen, buf); 183 } 184 185 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 186 size_t *retlen, const u_char *buf) 187 { 188 struct mtd_part *part = PART(mtd); 189 return part->master->_panic_write(part->master, to + part->offset, len, 190 retlen, buf); 191 } 192 193 static int part_write_oob(struct mtd_info *mtd, loff_t to, 194 struct mtd_oob_ops *ops) 195 { 196 struct mtd_part *part = PART(mtd); 197 198 if (to >= mtd->size) 199 return -EINVAL; 200 if (ops->datbuf && to + ops->len > mtd->size) 201 return -EINVAL; 202 return part->master->_write_oob(part->master, to + part->offset, ops); 203 } 204 205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 206 size_t len, size_t *retlen, u_char *buf) 207 { 208 struct mtd_part *part = PART(mtd); 209 return part->master->_write_user_prot_reg(part->master, from, len, 210 retlen, buf); 211 } 212 213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 214 size_t len) 215 { 216 struct mtd_part *part = PART(mtd); 217 return part->master->_lock_user_prot_reg(part->master, from, len); 218 } 219 220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 221 unsigned long count, loff_t to, size_t *retlen) 222 { 223 struct mtd_part *part = PART(mtd); 224 return part->master->_writev(part->master, vecs, count, 225 to + part->offset, retlen); 226 } 227 228 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 229 { 230 struct mtd_part *part = PART(mtd); 231 int ret; 232 233 instr->addr += part->offset; 234 ret = part->master->_erase(part->master, instr); 235 if (ret) { 236 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 237 instr->fail_addr -= part->offset; 238 instr->addr -= part->offset; 239 } 240 return ret; 241 } 242 243 void mtd_erase_callback(struct erase_info *instr) 244 { 245 if (instr->mtd->_erase == part_erase) { 246 struct mtd_part *part = PART(instr->mtd); 247 248 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 249 instr->fail_addr -= part->offset; 250 instr->addr -= part->offset; 251 } 252 if (instr->callback) 253 instr->callback(instr); 254 } 255 EXPORT_SYMBOL_GPL(mtd_erase_callback); 256 257 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 258 { 259 struct mtd_part *part = PART(mtd); 260 return part->master->_lock(part->master, ofs + part->offset, len); 261 } 262 263 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 264 { 265 struct mtd_part *part = PART(mtd); 266 return part->master->_unlock(part->master, ofs + part->offset, len); 267 } 268 269 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 270 { 271 struct mtd_part *part = PART(mtd); 272 return part->master->_is_locked(part->master, ofs + part->offset, len); 273 } 274 275 static void part_sync(struct mtd_info *mtd) 276 { 277 struct mtd_part *part = PART(mtd); 278 part->master->_sync(part->master); 279 } 280 281 static int part_suspend(struct mtd_info *mtd) 282 { 283 struct mtd_part *part = PART(mtd); 284 return part->master->_suspend(part->master); 285 } 286 287 static void part_resume(struct mtd_info *mtd) 288 { 289 struct mtd_part *part = PART(mtd); 290 part->master->_resume(part->master); 291 } 292 293 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 294 { 295 struct mtd_part *part = PART(mtd); 296 ofs += part->offset; 297 return part->master->_block_isreserved(part->master, ofs); 298 } 299 300 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 301 { 302 struct mtd_part *part = PART(mtd); 303 ofs += part->offset; 304 return part->master->_block_isbad(part->master, ofs); 305 } 306 307 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 308 { 309 struct mtd_part *part = PART(mtd); 310 int res; 311 312 ofs += part->offset; 313 res = part->master->_block_markbad(part->master, ofs); 314 if (!res) 315 mtd->ecc_stats.badblocks++; 316 return res; 317 } 318 319 static inline void free_partition(struct mtd_part *p) 320 { 321 kfree(p->mtd.name); 322 kfree(p); 323 } 324 325 /* 326 * This function unregisters and destroy all slave MTD objects which are 327 * attached to the given master MTD object. 328 */ 329 330 int del_mtd_partitions(struct mtd_info *master) 331 { 332 struct mtd_part *slave, *next; 333 int ret, err = 0; 334 335 mutex_lock(&mtd_partitions_mutex); 336 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 337 if (slave->master == master) { 338 ret = del_mtd_device(&slave->mtd); 339 if (ret < 0) { 340 err = ret; 341 continue; 342 } 343 list_del(&slave->list); 344 free_partition(slave); 345 } 346 mutex_unlock(&mtd_partitions_mutex); 347 348 return err; 349 } 350 351 static struct mtd_part *allocate_partition(struct mtd_info *master, 352 const struct mtd_partition *part, int partno, 353 uint64_t cur_offset) 354 { 355 struct mtd_part *slave; 356 char *name; 357 358 /* allocate the partition structure */ 359 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 360 name = kstrdup(part->name, GFP_KERNEL); 361 if (!name || !slave) { 362 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 363 master->name); 364 kfree(name); 365 kfree(slave); 366 return ERR_PTR(-ENOMEM); 367 } 368 369 /* set up the MTD object for this partition */ 370 slave->mtd.type = master->type; 371 slave->mtd.flags = master->flags & ~part->mask_flags; 372 slave->mtd.size = part->size; 373 slave->mtd.writesize = master->writesize; 374 slave->mtd.writebufsize = master->writebufsize; 375 slave->mtd.oobsize = master->oobsize; 376 slave->mtd.oobavail = master->oobavail; 377 slave->mtd.subpage_sft = master->subpage_sft; 378 379 slave->mtd.name = name; 380 slave->mtd.owner = master->owner; 381 slave->mtd.backing_dev_info = master->backing_dev_info; 382 383 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 384 * to have the same data be in two different partitions. 385 */ 386 slave->mtd.dev.parent = master->dev.parent; 387 388 slave->mtd._read = part_read; 389 slave->mtd._write = part_write; 390 391 if (master->_panic_write) 392 slave->mtd._panic_write = part_panic_write; 393 394 if (master->_point && master->_unpoint) { 395 slave->mtd._point = part_point; 396 slave->mtd._unpoint = part_unpoint; 397 } 398 399 if (master->_get_unmapped_area) 400 slave->mtd._get_unmapped_area = part_get_unmapped_area; 401 if (master->_read_oob) 402 slave->mtd._read_oob = part_read_oob; 403 if (master->_write_oob) 404 slave->mtd._write_oob = part_write_oob; 405 if (master->_read_user_prot_reg) 406 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 407 if (master->_read_fact_prot_reg) 408 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 409 if (master->_write_user_prot_reg) 410 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 411 if (master->_lock_user_prot_reg) 412 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 413 if (master->_get_user_prot_info) 414 slave->mtd._get_user_prot_info = part_get_user_prot_info; 415 if (master->_get_fact_prot_info) 416 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 417 if (master->_sync) 418 slave->mtd._sync = part_sync; 419 if (!partno && !master->dev.class && master->_suspend && 420 master->_resume) { 421 slave->mtd._suspend = part_suspend; 422 slave->mtd._resume = part_resume; 423 } 424 if (master->_writev) 425 slave->mtd._writev = part_writev; 426 if (master->_lock) 427 slave->mtd._lock = part_lock; 428 if (master->_unlock) 429 slave->mtd._unlock = part_unlock; 430 if (master->_is_locked) 431 slave->mtd._is_locked = part_is_locked; 432 if (master->_block_isreserved) 433 slave->mtd._block_isreserved = part_block_isreserved; 434 if (master->_block_isbad) 435 slave->mtd._block_isbad = part_block_isbad; 436 if (master->_block_markbad) 437 slave->mtd._block_markbad = part_block_markbad; 438 slave->mtd._erase = part_erase; 439 slave->master = master; 440 slave->offset = part->offset; 441 442 if (slave->offset == MTDPART_OFS_APPEND) 443 slave->offset = cur_offset; 444 if (slave->offset == MTDPART_OFS_NXTBLK) { 445 slave->offset = cur_offset; 446 if (mtd_mod_by_eb(cur_offset, master) != 0) { 447 /* Round up to next erasesize */ 448 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 449 printk(KERN_NOTICE "Moving partition %d: " 450 "0x%012llx -> 0x%012llx\n", partno, 451 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 452 } 453 } 454 if (slave->offset == MTDPART_OFS_RETAIN) { 455 slave->offset = cur_offset; 456 if (master->size - slave->offset >= slave->mtd.size) { 457 slave->mtd.size = master->size - slave->offset 458 - slave->mtd.size; 459 } else { 460 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 461 part->name, master->size - slave->offset, 462 slave->mtd.size); 463 /* register to preserve ordering */ 464 goto out_register; 465 } 466 } 467 if (slave->mtd.size == MTDPART_SIZ_FULL) 468 slave->mtd.size = master->size - slave->offset; 469 470 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 471 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 472 473 /* let's do some sanity checks */ 474 if (slave->offset >= master->size) { 475 /* let's register it anyway to preserve ordering */ 476 slave->offset = 0; 477 slave->mtd.size = 0; 478 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 479 part->name); 480 goto out_register; 481 } 482 if (slave->offset + slave->mtd.size > master->size) { 483 slave->mtd.size = master->size - slave->offset; 484 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 485 part->name, master->name, (unsigned long long)slave->mtd.size); 486 } 487 if (master->numeraseregions > 1) { 488 /* Deal with variable erase size stuff */ 489 int i, max = master->numeraseregions; 490 u64 end = slave->offset + slave->mtd.size; 491 struct mtd_erase_region_info *regions = master->eraseregions; 492 493 /* Find the first erase regions which is part of this 494 * partition. */ 495 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 496 ; 497 /* The loop searched for the region _behind_ the first one */ 498 if (i > 0) 499 i--; 500 501 /* Pick biggest erasesize */ 502 for (; i < max && regions[i].offset < end; i++) { 503 if (slave->mtd.erasesize < regions[i].erasesize) { 504 slave->mtd.erasesize = regions[i].erasesize; 505 } 506 } 507 BUG_ON(slave->mtd.erasesize == 0); 508 } else { 509 /* Single erase size */ 510 slave->mtd.erasesize = master->erasesize; 511 } 512 513 if ((slave->mtd.flags & MTD_WRITEABLE) && 514 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 515 /* Doesn't start on a boundary of major erase size */ 516 /* FIXME: Let it be writable if it is on a boundary of 517 * _minor_ erase size though */ 518 slave->mtd.flags &= ~MTD_WRITEABLE; 519 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 520 part->name); 521 } 522 if ((slave->mtd.flags & MTD_WRITEABLE) && 523 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 524 slave->mtd.flags &= ~MTD_WRITEABLE; 525 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 526 part->name); 527 } 528 529 slave->mtd.ecclayout = master->ecclayout; 530 slave->mtd.ecc_step_size = master->ecc_step_size; 531 slave->mtd.ecc_strength = master->ecc_strength; 532 slave->mtd.bitflip_threshold = master->bitflip_threshold; 533 534 if (master->_block_isbad) { 535 uint64_t offs = 0; 536 537 while (offs < slave->mtd.size) { 538 if (mtd_block_isreserved(master, offs + slave->offset)) 539 slave->mtd.ecc_stats.bbtblocks++; 540 else if (mtd_block_isbad(master, offs + slave->offset)) 541 slave->mtd.ecc_stats.badblocks++; 542 offs += slave->mtd.erasesize; 543 } 544 } 545 546 out_register: 547 return slave; 548 } 549 550 int mtd_add_partition(struct mtd_info *master, const char *name, 551 long long offset, long long length) 552 { 553 struct mtd_partition part; 554 struct mtd_part *p, *new; 555 uint64_t start, end; 556 int ret = 0; 557 558 /* the direct offset is expected */ 559 if (offset == MTDPART_OFS_APPEND || 560 offset == MTDPART_OFS_NXTBLK) 561 return -EINVAL; 562 563 if (length == MTDPART_SIZ_FULL) 564 length = master->size - offset; 565 566 if (length <= 0) 567 return -EINVAL; 568 569 part.name = name; 570 part.size = length; 571 part.offset = offset; 572 part.mask_flags = 0; 573 part.ecclayout = NULL; 574 575 new = allocate_partition(master, &part, -1, offset); 576 if (IS_ERR(new)) 577 return PTR_ERR(new); 578 579 start = offset; 580 end = offset + length; 581 582 mutex_lock(&mtd_partitions_mutex); 583 list_for_each_entry(p, &mtd_partitions, list) 584 if (p->master == master) { 585 if ((start >= p->offset) && 586 (start < (p->offset + p->mtd.size))) 587 goto err_inv; 588 589 if ((end >= p->offset) && 590 (end < (p->offset + p->mtd.size))) 591 goto err_inv; 592 } 593 594 list_add(&new->list, &mtd_partitions); 595 mutex_unlock(&mtd_partitions_mutex); 596 597 add_mtd_device(&new->mtd); 598 599 return ret; 600 err_inv: 601 mutex_unlock(&mtd_partitions_mutex); 602 free_partition(new); 603 return -EINVAL; 604 } 605 EXPORT_SYMBOL_GPL(mtd_add_partition); 606 607 int mtd_del_partition(struct mtd_info *master, int partno) 608 { 609 struct mtd_part *slave, *next; 610 int ret = -EINVAL; 611 612 mutex_lock(&mtd_partitions_mutex); 613 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 614 if ((slave->master == master) && 615 (slave->mtd.index == partno)) { 616 ret = del_mtd_device(&slave->mtd); 617 if (ret < 0) 618 break; 619 620 list_del(&slave->list); 621 free_partition(slave); 622 break; 623 } 624 mutex_unlock(&mtd_partitions_mutex); 625 626 return ret; 627 } 628 EXPORT_SYMBOL_GPL(mtd_del_partition); 629 630 /* 631 * This function, given a master MTD object and a partition table, creates 632 * and registers slave MTD objects which are bound to the master according to 633 * the partition definitions. 634 * 635 * We don't register the master, or expect the caller to have done so, 636 * for reasons of data integrity. 637 */ 638 639 int add_mtd_partitions(struct mtd_info *master, 640 const struct mtd_partition *parts, 641 int nbparts) 642 { 643 struct mtd_part *slave; 644 uint64_t cur_offset = 0; 645 int i; 646 647 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 648 649 for (i = 0; i < nbparts; i++) { 650 slave = allocate_partition(master, parts + i, i, cur_offset); 651 if (IS_ERR(slave)) 652 return PTR_ERR(slave); 653 654 mutex_lock(&mtd_partitions_mutex); 655 list_add(&slave->list, &mtd_partitions); 656 mutex_unlock(&mtd_partitions_mutex); 657 658 add_mtd_device(&slave->mtd); 659 660 cur_offset = slave->offset + slave->mtd.size; 661 } 662 663 return 0; 664 } 665 666 static DEFINE_SPINLOCK(part_parser_lock); 667 static LIST_HEAD(part_parsers); 668 669 static struct mtd_part_parser *get_partition_parser(const char *name) 670 { 671 struct mtd_part_parser *p, *ret = NULL; 672 673 spin_lock(&part_parser_lock); 674 675 list_for_each_entry(p, &part_parsers, list) 676 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 677 ret = p; 678 break; 679 } 680 681 spin_unlock(&part_parser_lock); 682 683 return ret; 684 } 685 686 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 687 688 void register_mtd_parser(struct mtd_part_parser *p) 689 { 690 spin_lock(&part_parser_lock); 691 list_add(&p->list, &part_parsers); 692 spin_unlock(&part_parser_lock); 693 } 694 EXPORT_SYMBOL_GPL(register_mtd_parser); 695 696 void deregister_mtd_parser(struct mtd_part_parser *p) 697 { 698 spin_lock(&part_parser_lock); 699 list_del(&p->list); 700 spin_unlock(&part_parser_lock); 701 } 702 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 703 704 /* 705 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 706 * are changing this array! 707 */ 708 static const char * const default_mtd_part_types[] = { 709 "cmdlinepart", 710 "ofpart", 711 NULL 712 }; 713 714 /** 715 * parse_mtd_partitions - parse MTD partitions 716 * @master: the master partition (describes whole MTD device) 717 * @types: names of partition parsers to try or %NULL 718 * @pparts: array of partitions found is returned here 719 * @data: MTD partition parser-specific data 720 * 721 * This function tries to find partition on MTD device @master. It uses MTD 722 * partition parsers, specified in @types. However, if @types is %NULL, then 723 * the default list of parsers is used. The default list contains only the 724 * "cmdlinepart" and "ofpart" parsers ATM. 725 * Note: If there are more then one parser in @types, the kernel only takes the 726 * partitions parsed out by the first parser. 727 * 728 * This function may return: 729 * o a negative error code in case of failure 730 * o zero if no partitions were found 731 * o a positive number of found partitions, in which case on exit @pparts will 732 * point to an array containing this number of &struct mtd_info objects. 733 */ 734 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 735 struct mtd_partition **pparts, 736 struct mtd_part_parser_data *data) 737 { 738 struct mtd_part_parser *parser; 739 int ret = 0; 740 741 if (!types) 742 types = default_mtd_part_types; 743 744 for ( ; ret <= 0 && *types; types++) { 745 parser = get_partition_parser(*types); 746 if (!parser && !request_module("%s", *types)) 747 parser = get_partition_parser(*types); 748 if (!parser) 749 continue; 750 ret = (*parser->parse_fn)(master, pparts, data); 751 put_partition_parser(parser); 752 if (ret > 0) { 753 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 754 ret, parser->name, master->name); 755 break; 756 } 757 } 758 return ret; 759 } 760 761 int mtd_is_partition(const struct mtd_info *mtd) 762 { 763 struct mtd_part *part; 764 int ispart = 0; 765 766 mutex_lock(&mtd_partitions_mutex); 767 list_for_each_entry(part, &mtd_partitions, list) 768 if (&part->mtd == mtd) { 769 ispart = 1; 770 break; 771 } 772 mutex_unlock(&mtd_partitions_mutex); 773 774 return ispart; 775 } 776 EXPORT_SYMBOL_GPL(mtd_is_partition); 777 778 /* Returns the size of the entire flash chip */ 779 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 780 { 781 if (!mtd_is_partition(mtd)) 782 return mtd->size; 783 784 return PART(mtd)->master->size; 785 } 786 EXPORT_SYMBOL_GPL(mtd_get_device_size); 787