xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision a234ca0f)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 
33 /* Our partition linked list */
34 static LIST_HEAD(mtd_partitions);
35 
36 /* Our partition node structure */
37 struct mtd_part {
38 	struct mtd_info mtd;
39 	struct mtd_info *master;
40 	uint64_t offset;
41 	struct list_head list;
42 };
43 
44 /*
45  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
46  * the pointer to that structure with this macro.
47  */
48 #define PART(x)  ((struct mtd_part *)(x))
49 
50 
51 /*
52  * MTD methods which simply translate the effective address and pass through
53  * to the _real_ device.
54  */
55 
56 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
57 		size_t *retlen, u_char *buf)
58 {
59 	struct mtd_part *part = PART(mtd);
60 	struct mtd_ecc_stats stats;
61 	int res;
62 
63 	stats = part->master->ecc_stats;
64 
65 	if (from >= mtd->size)
66 		len = 0;
67 	else if (from + len > mtd->size)
68 		len = mtd->size - from;
69 	res = part->master->read(part->master, from + part->offset,
70 				   len, retlen, buf);
71 	if (unlikely(res)) {
72 		if (res == -EUCLEAN)
73 			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
74 		if (res == -EBADMSG)
75 			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
76 	}
77 	return res;
78 }
79 
80 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
81 		size_t *retlen, void **virt, resource_size_t *phys)
82 {
83 	struct mtd_part *part = PART(mtd);
84 	if (from >= mtd->size)
85 		len = 0;
86 	else if (from + len > mtd->size)
87 		len = mtd->size - from;
88 	return part->master->point (part->master, from + part->offset,
89 				    len, retlen, virt, phys);
90 }
91 
92 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 {
94 	struct mtd_part *part = PART(mtd);
95 
96 	part->master->unpoint(part->master, from + part->offset, len);
97 }
98 
99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
100 					    unsigned long len,
101 					    unsigned long offset,
102 					    unsigned long flags)
103 {
104 	struct mtd_part *part = PART(mtd);
105 
106 	offset += part->offset;
107 	return part->master->get_unmapped_area(part->master, len, offset,
108 					       flags);
109 }
110 
111 static int part_read_oob(struct mtd_info *mtd, loff_t from,
112 		struct mtd_oob_ops *ops)
113 {
114 	struct mtd_part *part = PART(mtd);
115 	int res;
116 
117 	if (from >= mtd->size)
118 		return -EINVAL;
119 	if (ops->datbuf && from + ops->len > mtd->size)
120 		return -EINVAL;
121 	res = part->master->read_oob(part->master, from + part->offset, ops);
122 
123 	if (unlikely(res)) {
124 		if (res == -EUCLEAN)
125 			mtd->ecc_stats.corrected++;
126 		if (res == -EBADMSG)
127 			mtd->ecc_stats.failed++;
128 	}
129 	return res;
130 }
131 
132 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
133 		size_t len, size_t *retlen, u_char *buf)
134 {
135 	struct mtd_part *part = PART(mtd);
136 	return part->master->read_user_prot_reg(part->master, from,
137 					len, retlen, buf);
138 }
139 
140 static int part_get_user_prot_info(struct mtd_info *mtd,
141 		struct otp_info *buf, size_t len)
142 {
143 	struct mtd_part *part = PART(mtd);
144 	return part->master->get_user_prot_info(part->master, buf, len);
145 }
146 
147 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
148 		size_t len, size_t *retlen, u_char *buf)
149 {
150 	struct mtd_part *part = PART(mtd);
151 	return part->master->read_fact_prot_reg(part->master, from,
152 					len, retlen, buf);
153 }
154 
155 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
156 		size_t len)
157 {
158 	struct mtd_part *part = PART(mtd);
159 	return part->master->get_fact_prot_info(part->master, buf, len);
160 }
161 
162 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
163 		size_t *retlen, const u_char *buf)
164 {
165 	struct mtd_part *part = PART(mtd);
166 	if (!(mtd->flags & MTD_WRITEABLE))
167 		return -EROFS;
168 	if (to >= mtd->size)
169 		len = 0;
170 	else if (to + len > mtd->size)
171 		len = mtd->size - to;
172 	return part->master->write(part->master, to + part->offset,
173 				    len, retlen, buf);
174 }
175 
176 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
177 		size_t *retlen, const u_char *buf)
178 {
179 	struct mtd_part *part = PART(mtd);
180 	if (!(mtd->flags & MTD_WRITEABLE))
181 		return -EROFS;
182 	if (to >= mtd->size)
183 		len = 0;
184 	else if (to + len > mtd->size)
185 		len = mtd->size - to;
186 	return part->master->panic_write(part->master, to + part->offset,
187 				    len, retlen, buf);
188 }
189 
190 static int part_write_oob(struct mtd_info *mtd, loff_t to,
191 		struct mtd_oob_ops *ops)
192 {
193 	struct mtd_part *part = PART(mtd);
194 
195 	if (!(mtd->flags & MTD_WRITEABLE))
196 		return -EROFS;
197 
198 	if (to >= mtd->size)
199 		return -EINVAL;
200 	if (ops->datbuf && to + ops->len > mtd->size)
201 		return -EINVAL;
202 	return part->master->write_oob(part->master, to + part->offset, ops);
203 }
204 
205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
206 		size_t len, size_t *retlen, u_char *buf)
207 {
208 	struct mtd_part *part = PART(mtd);
209 	return part->master->write_user_prot_reg(part->master, from,
210 					len, retlen, buf);
211 }
212 
213 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
214 		size_t len)
215 {
216 	struct mtd_part *part = PART(mtd);
217 	return part->master->lock_user_prot_reg(part->master, from, len);
218 }
219 
220 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
221 		unsigned long count, loff_t to, size_t *retlen)
222 {
223 	struct mtd_part *part = PART(mtd);
224 	if (!(mtd->flags & MTD_WRITEABLE))
225 		return -EROFS;
226 	return part->master->writev(part->master, vecs, count,
227 					to + part->offset, retlen);
228 }
229 
230 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
231 {
232 	struct mtd_part *part = PART(mtd);
233 	int ret;
234 	if (!(mtd->flags & MTD_WRITEABLE))
235 		return -EROFS;
236 	if (instr->addr >= mtd->size)
237 		return -EINVAL;
238 	instr->addr += part->offset;
239 	ret = part->master->erase(part->master, instr);
240 	if (ret) {
241 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
242 			instr->fail_addr -= part->offset;
243 		instr->addr -= part->offset;
244 	}
245 	return ret;
246 }
247 
248 void mtd_erase_callback(struct erase_info *instr)
249 {
250 	if (instr->mtd->erase == part_erase) {
251 		struct mtd_part *part = PART(instr->mtd);
252 
253 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
254 			instr->fail_addr -= part->offset;
255 		instr->addr -= part->offset;
256 	}
257 	if (instr->callback)
258 		instr->callback(instr);
259 }
260 EXPORT_SYMBOL_GPL(mtd_erase_callback);
261 
262 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
263 {
264 	struct mtd_part *part = PART(mtd);
265 	if ((len + ofs) > mtd->size)
266 		return -EINVAL;
267 	return part->master->lock(part->master, ofs + part->offset, len);
268 }
269 
270 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
271 {
272 	struct mtd_part *part = PART(mtd);
273 	if ((len + ofs) > mtd->size)
274 		return -EINVAL;
275 	return part->master->unlock(part->master, ofs + part->offset, len);
276 }
277 
278 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
279 {
280 	struct mtd_part *part = PART(mtd);
281 	if ((len + ofs) > mtd->size)
282 		return -EINVAL;
283 	return part->master->is_locked(part->master, ofs + part->offset, len);
284 }
285 
286 static void part_sync(struct mtd_info *mtd)
287 {
288 	struct mtd_part *part = PART(mtd);
289 	part->master->sync(part->master);
290 }
291 
292 static int part_suspend(struct mtd_info *mtd)
293 {
294 	struct mtd_part *part = PART(mtd);
295 	return part->master->suspend(part->master);
296 }
297 
298 static void part_resume(struct mtd_info *mtd)
299 {
300 	struct mtd_part *part = PART(mtd);
301 	part->master->resume(part->master);
302 }
303 
304 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
305 {
306 	struct mtd_part *part = PART(mtd);
307 	if (ofs >= mtd->size)
308 		return -EINVAL;
309 	ofs += part->offset;
310 	return part->master->block_isbad(part->master, ofs);
311 }
312 
313 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
314 {
315 	struct mtd_part *part = PART(mtd);
316 	int res;
317 
318 	if (!(mtd->flags & MTD_WRITEABLE))
319 		return -EROFS;
320 	if (ofs >= mtd->size)
321 		return -EINVAL;
322 	ofs += part->offset;
323 	res = part->master->block_markbad(part->master, ofs);
324 	if (!res)
325 		mtd->ecc_stats.badblocks++;
326 	return res;
327 }
328 
329 /*
330  * This function unregisters and destroy all slave MTD objects which are
331  * attached to the given master MTD object.
332  */
333 
334 int del_mtd_partitions(struct mtd_info *master)
335 {
336 	struct mtd_part *slave, *next;
337 
338 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
339 		if (slave->master == master) {
340 			list_del(&slave->list);
341 			del_mtd_device(&slave->mtd);
342 			kfree(slave);
343 		}
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(del_mtd_partitions);
348 
349 static struct mtd_part *add_one_partition(struct mtd_info *master,
350 		const struct mtd_partition *part, int partno,
351 		uint64_t cur_offset)
352 {
353 	struct mtd_part *slave;
354 
355 	/* allocate the partition structure */
356 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
357 	if (!slave) {
358 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
359 			master->name);
360 		del_mtd_partitions(master);
361 		return NULL;
362 	}
363 	list_add(&slave->list, &mtd_partitions);
364 
365 	/* set up the MTD object for this partition */
366 	slave->mtd.type = master->type;
367 	slave->mtd.flags = master->flags & ~part->mask_flags;
368 	slave->mtd.size = part->size;
369 	slave->mtd.writesize = master->writesize;
370 	slave->mtd.oobsize = master->oobsize;
371 	slave->mtd.oobavail = master->oobavail;
372 	slave->mtd.subpage_sft = master->subpage_sft;
373 
374 	slave->mtd.name = part->name;
375 	slave->mtd.owner = master->owner;
376 	slave->mtd.backing_dev_info = master->backing_dev_info;
377 
378 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
379 	 * to have the same data be in two different partitions.
380 	 */
381 	slave->mtd.dev.parent = master->dev.parent;
382 
383 	slave->mtd.read = part_read;
384 	slave->mtd.write = part_write;
385 
386 	if (master->panic_write)
387 		slave->mtd.panic_write = part_panic_write;
388 
389 	if (master->point && master->unpoint) {
390 		slave->mtd.point = part_point;
391 		slave->mtd.unpoint = part_unpoint;
392 	}
393 
394 	if (master->get_unmapped_area)
395 		slave->mtd.get_unmapped_area = part_get_unmapped_area;
396 	if (master->read_oob)
397 		slave->mtd.read_oob = part_read_oob;
398 	if (master->write_oob)
399 		slave->mtd.write_oob = part_write_oob;
400 	if (master->read_user_prot_reg)
401 		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
402 	if (master->read_fact_prot_reg)
403 		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
404 	if (master->write_user_prot_reg)
405 		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
406 	if (master->lock_user_prot_reg)
407 		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
408 	if (master->get_user_prot_info)
409 		slave->mtd.get_user_prot_info = part_get_user_prot_info;
410 	if (master->get_fact_prot_info)
411 		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
412 	if (master->sync)
413 		slave->mtd.sync = part_sync;
414 	if (!partno && !master->dev.class && master->suspend && master->resume) {
415 			slave->mtd.suspend = part_suspend;
416 			slave->mtd.resume = part_resume;
417 	}
418 	if (master->writev)
419 		slave->mtd.writev = part_writev;
420 	if (master->lock)
421 		slave->mtd.lock = part_lock;
422 	if (master->unlock)
423 		slave->mtd.unlock = part_unlock;
424 	if (master->is_locked)
425 		slave->mtd.is_locked = part_is_locked;
426 	if (master->block_isbad)
427 		slave->mtd.block_isbad = part_block_isbad;
428 	if (master->block_markbad)
429 		slave->mtd.block_markbad = part_block_markbad;
430 	slave->mtd.erase = part_erase;
431 	slave->master = master;
432 	slave->offset = part->offset;
433 
434 	if (slave->offset == MTDPART_OFS_APPEND)
435 		slave->offset = cur_offset;
436 	if (slave->offset == MTDPART_OFS_NXTBLK) {
437 		slave->offset = cur_offset;
438 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
439 			/* Round up to next erasesize */
440 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
441 			printk(KERN_NOTICE "Moving partition %d: "
442 			       "0x%012llx -> 0x%012llx\n", partno,
443 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
444 		}
445 	}
446 	if (slave->mtd.size == MTDPART_SIZ_FULL)
447 		slave->mtd.size = master->size - slave->offset;
448 
449 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
450 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
451 
452 	/* let's do some sanity checks */
453 	if (slave->offset >= master->size) {
454 		/* let's register it anyway to preserve ordering */
455 		slave->offset = 0;
456 		slave->mtd.size = 0;
457 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
458 			part->name);
459 		goto out_register;
460 	}
461 	if (slave->offset + slave->mtd.size > master->size) {
462 		slave->mtd.size = master->size - slave->offset;
463 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
464 			part->name, master->name, (unsigned long long)slave->mtd.size);
465 	}
466 	if (master->numeraseregions > 1) {
467 		/* Deal with variable erase size stuff */
468 		int i, max = master->numeraseregions;
469 		u64 end = slave->offset + slave->mtd.size;
470 		struct mtd_erase_region_info *regions = master->eraseregions;
471 
472 		/* Find the first erase regions which is part of this
473 		 * partition. */
474 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
475 			;
476 		/* The loop searched for the region _behind_ the first one */
477 		if (i > 0)
478 			i--;
479 
480 		/* Pick biggest erasesize */
481 		for (; i < max && regions[i].offset < end; i++) {
482 			if (slave->mtd.erasesize < regions[i].erasesize) {
483 				slave->mtd.erasesize = regions[i].erasesize;
484 			}
485 		}
486 		BUG_ON(slave->mtd.erasesize == 0);
487 	} else {
488 		/* Single erase size */
489 		slave->mtd.erasesize = master->erasesize;
490 	}
491 
492 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
493 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
494 		/* Doesn't start on a boundary of major erase size */
495 		/* FIXME: Let it be writable if it is on a boundary of
496 		 * _minor_ erase size though */
497 		slave->mtd.flags &= ~MTD_WRITEABLE;
498 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
499 			part->name);
500 	}
501 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
502 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
503 		slave->mtd.flags &= ~MTD_WRITEABLE;
504 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
505 			part->name);
506 	}
507 
508 	slave->mtd.ecclayout = master->ecclayout;
509 	if (master->block_isbad) {
510 		uint64_t offs = 0;
511 
512 		while (offs < slave->mtd.size) {
513 			if (master->block_isbad(master,
514 						offs + slave->offset))
515 				slave->mtd.ecc_stats.badblocks++;
516 			offs += slave->mtd.erasesize;
517 		}
518 	}
519 
520 out_register:
521 	/* register our partition */
522 	add_mtd_device(&slave->mtd);
523 
524 	return slave;
525 }
526 
527 /*
528  * This function, given a master MTD object and a partition table, creates
529  * and registers slave MTD objects which are bound to the master according to
530  * the partition definitions.
531  *
532  * We don't register the master, or expect the caller to have done so,
533  * for reasons of data integrity.
534  */
535 
536 int add_mtd_partitions(struct mtd_info *master,
537 		       const struct mtd_partition *parts,
538 		       int nbparts)
539 {
540 	struct mtd_part *slave;
541 	uint64_t cur_offset = 0;
542 	int i;
543 
544 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
545 
546 	for (i = 0; i < nbparts; i++) {
547 		slave = add_one_partition(master, parts + i, i, cur_offset);
548 		if (!slave)
549 			return -ENOMEM;
550 		cur_offset = slave->offset + slave->mtd.size;
551 	}
552 
553 	return 0;
554 }
555 EXPORT_SYMBOL(add_mtd_partitions);
556 
557 static DEFINE_SPINLOCK(part_parser_lock);
558 static LIST_HEAD(part_parsers);
559 
560 static struct mtd_part_parser *get_partition_parser(const char *name)
561 {
562 	struct mtd_part_parser *p, *ret = NULL;
563 
564 	spin_lock(&part_parser_lock);
565 
566 	list_for_each_entry(p, &part_parsers, list)
567 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
568 			ret = p;
569 			break;
570 		}
571 
572 	spin_unlock(&part_parser_lock);
573 
574 	return ret;
575 }
576 
577 int register_mtd_parser(struct mtd_part_parser *p)
578 {
579 	spin_lock(&part_parser_lock);
580 	list_add(&p->list, &part_parsers);
581 	spin_unlock(&part_parser_lock);
582 
583 	return 0;
584 }
585 EXPORT_SYMBOL_GPL(register_mtd_parser);
586 
587 int deregister_mtd_parser(struct mtd_part_parser *p)
588 {
589 	spin_lock(&part_parser_lock);
590 	list_del(&p->list);
591 	spin_unlock(&part_parser_lock);
592 	return 0;
593 }
594 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
595 
596 int parse_mtd_partitions(struct mtd_info *master, const char **types,
597 			 struct mtd_partition **pparts, unsigned long origin)
598 {
599 	struct mtd_part_parser *parser;
600 	int ret = 0;
601 
602 	for ( ; ret <= 0 && *types; types++) {
603 		parser = get_partition_parser(*types);
604 		if (!parser && !request_module("%s", *types))
605 				parser = get_partition_parser(*types);
606 		if (!parser) {
607 			printk(KERN_NOTICE "%s partition parsing not available\n",
608 			       *types);
609 			continue;
610 		}
611 		ret = (*parser->parse_fn)(master, pparts, origin);
612 		if (ret > 0) {
613 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
614 			       ret, parser->name, master->name);
615 		}
616 		put_partition_parser(parser);
617 	}
618 	return ret;
619 }
620 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
621