1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@cam.org> 5 * 6 * This code is GPL 7 * 8 * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $ 9 * 10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 11 * added support for read_oob, write_oob 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/list.h> 19 #include <linux/kmod.h> 20 #include <linux/mtd/mtd.h> 21 #include <linux/mtd/partitions.h> 22 #include <linux/mtd/compatmac.h> 23 24 /* Our partition linked list */ 25 static LIST_HEAD(mtd_partitions); 26 27 /* Our partition node structure */ 28 struct mtd_part { 29 struct mtd_info mtd; 30 struct mtd_info *master; 31 u_int32_t offset; 32 int index; 33 struct list_head list; 34 int registered; 35 }; 36 37 /* 38 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 39 * the pointer to that structure with this macro. 40 */ 41 #define PART(x) ((struct mtd_part *)(x)) 42 43 44 /* 45 * MTD methods which simply translate the effective address and pass through 46 * to the _real_ device. 47 */ 48 49 static int part_read (struct mtd_info *mtd, loff_t from, size_t len, 50 size_t *retlen, u_char *buf) 51 { 52 struct mtd_part *part = PART(mtd); 53 int res; 54 55 if (from >= mtd->size) 56 len = 0; 57 else if (from + len > mtd->size) 58 len = mtd->size - from; 59 res = part->master->read (part->master, from + part->offset, 60 len, retlen, buf); 61 if (unlikely(res)) { 62 if (res == -EUCLEAN) 63 mtd->ecc_stats.corrected++; 64 if (res == -EBADMSG) 65 mtd->ecc_stats.failed++; 66 } 67 return res; 68 } 69 70 static int part_point (struct mtd_info *mtd, loff_t from, size_t len, 71 size_t *retlen, u_char **buf) 72 { 73 struct mtd_part *part = PART(mtd); 74 if (from >= mtd->size) 75 len = 0; 76 else if (from + len > mtd->size) 77 len = mtd->size - from; 78 return part->master->point (part->master, from + part->offset, 79 len, retlen, buf); 80 } 81 82 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) 83 { 84 struct mtd_part *part = PART(mtd); 85 86 part->master->unpoint (part->master, addr, from + part->offset, len); 87 } 88 89 static int part_read_oob(struct mtd_info *mtd, loff_t from, 90 struct mtd_oob_ops *ops) 91 { 92 struct mtd_part *part = PART(mtd); 93 int res; 94 95 if (from >= mtd->size) 96 return -EINVAL; 97 if (ops->datbuf && from + ops->len > mtd->size) 98 return -EINVAL; 99 res = part->master->read_oob(part->master, from + part->offset, ops); 100 101 if (unlikely(res)) { 102 if (res == -EUCLEAN) 103 mtd->ecc_stats.corrected++; 104 if (res == -EBADMSG) 105 mtd->ecc_stats.failed++; 106 } 107 return res; 108 } 109 110 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 111 size_t *retlen, u_char *buf) 112 { 113 struct mtd_part *part = PART(mtd); 114 return part->master->read_user_prot_reg (part->master, from, 115 len, retlen, buf); 116 } 117 118 static int part_get_user_prot_info (struct mtd_info *mtd, 119 struct otp_info *buf, size_t len) 120 { 121 struct mtd_part *part = PART(mtd); 122 return part->master->get_user_prot_info (part->master, buf, len); 123 } 124 125 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 126 size_t *retlen, u_char *buf) 127 { 128 struct mtd_part *part = PART(mtd); 129 return part->master->read_fact_prot_reg (part->master, from, 130 len, retlen, buf); 131 } 132 133 static int part_get_fact_prot_info (struct mtd_info *mtd, 134 struct otp_info *buf, size_t len) 135 { 136 struct mtd_part *part = PART(mtd); 137 return part->master->get_fact_prot_info (part->master, buf, len); 138 } 139 140 static int part_write (struct mtd_info *mtd, loff_t to, size_t len, 141 size_t *retlen, const u_char *buf) 142 { 143 struct mtd_part *part = PART(mtd); 144 if (!(mtd->flags & MTD_WRITEABLE)) 145 return -EROFS; 146 if (to >= mtd->size) 147 len = 0; 148 else if (to + len > mtd->size) 149 len = mtd->size - to; 150 return part->master->write (part->master, to + part->offset, 151 len, retlen, buf); 152 } 153 154 static int part_panic_write (struct mtd_info *mtd, loff_t to, size_t len, 155 size_t *retlen, const u_char *buf) 156 { 157 struct mtd_part *part = PART(mtd); 158 if (!(mtd->flags & MTD_WRITEABLE)) 159 return -EROFS; 160 if (to >= mtd->size) 161 len = 0; 162 else if (to + len > mtd->size) 163 len = mtd->size - to; 164 return part->master->panic_write (part->master, to + part->offset, 165 len, retlen, buf); 166 } 167 168 static int part_write_oob(struct mtd_info *mtd, loff_t to, 169 struct mtd_oob_ops *ops) 170 { 171 struct mtd_part *part = PART(mtd); 172 173 if (!(mtd->flags & MTD_WRITEABLE)) 174 return -EROFS; 175 176 if (to >= mtd->size) 177 return -EINVAL; 178 if (ops->datbuf && to + ops->len > mtd->size) 179 return -EINVAL; 180 return part->master->write_oob(part->master, to + part->offset, ops); 181 } 182 183 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 184 size_t *retlen, u_char *buf) 185 { 186 struct mtd_part *part = PART(mtd); 187 return part->master->write_user_prot_reg (part->master, from, 188 len, retlen, buf); 189 } 190 191 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len) 192 { 193 struct mtd_part *part = PART(mtd); 194 return part->master->lock_user_prot_reg (part->master, from, len); 195 } 196 197 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs, 198 unsigned long count, loff_t to, size_t *retlen) 199 { 200 struct mtd_part *part = PART(mtd); 201 if (!(mtd->flags & MTD_WRITEABLE)) 202 return -EROFS; 203 return part->master->writev (part->master, vecs, count, 204 to + part->offset, retlen); 205 } 206 207 static int part_erase (struct mtd_info *mtd, struct erase_info *instr) 208 { 209 struct mtd_part *part = PART(mtd); 210 int ret; 211 if (!(mtd->flags & MTD_WRITEABLE)) 212 return -EROFS; 213 if (instr->addr >= mtd->size) 214 return -EINVAL; 215 instr->addr += part->offset; 216 ret = part->master->erase(part->master, instr); 217 if (ret) { 218 if (instr->fail_addr != 0xffffffff) 219 instr->fail_addr -= part->offset; 220 instr->addr -= part->offset; 221 } 222 return ret; 223 } 224 225 void mtd_erase_callback(struct erase_info *instr) 226 { 227 if (instr->mtd->erase == part_erase) { 228 struct mtd_part *part = PART(instr->mtd); 229 230 if (instr->fail_addr != 0xffffffff) 231 instr->fail_addr -= part->offset; 232 instr->addr -= part->offset; 233 } 234 if (instr->callback) 235 instr->callback(instr); 236 } 237 EXPORT_SYMBOL_GPL(mtd_erase_callback); 238 239 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) 240 { 241 struct mtd_part *part = PART(mtd); 242 if ((len + ofs) > mtd->size) 243 return -EINVAL; 244 return part->master->lock(part->master, ofs + part->offset, len); 245 } 246 247 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) 248 { 249 struct mtd_part *part = PART(mtd); 250 if ((len + ofs) > mtd->size) 251 return -EINVAL; 252 return part->master->unlock(part->master, ofs + part->offset, len); 253 } 254 255 static void part_sync(struct mtd_info *mtd) 256 { 257 struct mtd_part *part = PART(mtd); 258 part->master->sync(part->master); 259 } 260 261 static int part_suspend(struct mtd_info *mtd) 262 { 263 struct mtd_part *part = PART(mtd); 264 return part->master->suspend(part->master); 265 } 266 267 static void part_resume(struct mtd_info *mtd) 268 { 269 struct mtd_part *part = PART(mtd); 270 part->master->resume(part->master); 271 } 272 273 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs) 274 { 275 struct mtd_part *part = PART(mtd); 276 if (ofs >= mtd->size) 277 return -EINVAL; 278 ofs += part->offset; 279 return part->master->block_isbad(part->master, ofs); 280 } 281 282 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs) 283 { 284 struct mtd_part *part = PART(mtd); 285 int res; 286 287 if (!(mtd->flags & MTD_WRITEABLE)) 288 return -EROFS; 289 if (ofs >= mtd->size) 290 return -EINVAL; 291 ofs += part->offset; 292 res = part->master->block_markbad(part->master, ofs); 293 if (!res) 294 mtd->ecc_stats.badblocks++; 295 return res; 296 } 297 298 /* 299 * This function unregisters and destroy all slave MTD objects which are 300 * attached to the given master MTD object. 301 */ 302 303 int del_mtd_partitions(struct mtd_info *master) 304 { 305 struct list_head *node; 306 struct mtd_part *slave; 307 308 for (node = mtd_partitions.next; 309 node != &mtd_partitions; 310 node = node->next) { 311 slave = list_entry(node, struct mtd_part, list); 312 if (slave->master == master) { 313 struct list_head *prev = node->prev; 314 __list_del(prev, node->next); 315 if(slave->registered) 316 del_mtd_device(&slave->mtd); 317 kfree(slave); 318 node = prev; 319 } 320 } 321 322 return 0; 323 } 324 325 /* 326 * This function, given a master MTD object and a partition table, creates 327 * and registers slave MTD objects which are bound to the master according to 328 * the partition definitions. 329 * (Q: should we register the master MTD object as well?) 330 */ 331 332 int add_mtd_partitions(struct mtd_info *master, 333 const struct mtd_partition *parts, 334 int nbparts) 335 { 336 struct mtd_part *slave; 337 u_int32_t cur_offset = 0; 338 int i; 339 340 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 341 342 for (i = 0; i < nbparts; i++) { 343 344 /* allocate the partition structure */ 345 slave = kzalloc (sizeof(*slave), GFP_KERNEL); 346 if (!slave) { 347 printk ("memory allocation error while creating partitions for \"%s\"\n", 348 master->name); 349 del_mtd_partitions(master); 350 return -ENOMEM; 351 } 352 list_add(&slave->list, &mtd_partitions); 353 354 /* set up the MTD object for this partition */ 355 slave->mtd.type = master->type; 356 slave->mtd.flags = master->flags & ~parts[i].mask_flags; 357 slave->mtd.size = parts[i].size; 358 slave->mtd.writesize = master->writesize; 359 slave->mtd.oobsize = master->oobsize; 360 slave->mtd.oobavail = master->oobavail; 361 slave->mtd.subpage_sft = master->subpage_sft; 362 363 slave->mtd.name = parts[i].name; 364 slave->mtd.owner = master->owner; 365 366 slave->mtd.read = part_read; 367 slave->mtd.write = part_write; 368 369 if (master->panic_write) 370 slave->mtd.panic_write = part_panic_write; 371 372 if(master->point && master->unpoint){ 373 slave->mtd.point = part_point; 374 slave->mtd.unpoint = part_unpoint; 375 } 376 377 if (master->read_oob) 378 slave->mtd.read_oob = part_read_oob; 379 if (master->write_oob) 380 slave->mtd.write_oob = part_write_oob; 381 if(master->read_user_prot_reg) 382 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 383 if(master->read_fact_prot_reg) 384 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 385 if(master->write_user_prot_reg) 386 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 387 if(master->lock_user_prot_reg) 388 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 389 if(master->get_user_prot_info) 390 slave->mtd.get_user_prot_info = part_get_user_prot_info; 391 if(master->get_fact_prot_info) 392 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 393 if (master->sync) 394 slave->mtd.sync = part_sync; 395 if (!i && master->suspend && master->resume) { 396 slave->mtd.suspend = part_suspend; 397 slave->mtd.resume = part_resume; 398 } 399 if (master->writev) 400 slave->mtd.writev = part_writev; 401 if (master->lock) 402 slave->mtd.lock = part_lock; 403 if (master->unlock) 404 slave->mtd.unlock = part_unlock; 405 if (master->block_isbad) 406 slave->mtd.block_isbad = part_block_isbad; 407 if (master->block_markbad) 408 slave->mtd.block_markbad = part_block_markbad; 409 slave->mtd.erase = part_erase; 410 slave->master = master; 411 slave->offset = parts[i].offset; 412 slave->index = i; 413 414 if (slave->offset == MTDPART_OFS_APPEND) 415 slave->offset = cur_offset; 416 if (slave->offset == MTDPART_OFS_NXTBLK) { 417 slave->offset = cur_offset; 418 if ((cur_offset % master->erasesize) != 0) { 419 /* Round up to next erasesize */ 420 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize; 421 printk(KERN_NOTICE "Moving partition %d: " 422 "0x%08x -> 0x%08x\n", i, 423 cur_offset, slave->offset); 424 } 425 } 426 if (slave->mtd.size == MTDPART_SIZ_FULL) 427 slave->mtd.size = master->size - slave->offset; 428 cur_offset = slave->offset + slave->mtd.size; 429 430 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, 431 slave->offset + slave->mtd.size, slave->mtd.name); 432 433 /* let's do some sanity checks */ 434 if (slave->offset >= master->size) { 435 /* let's register it anyway to preserve ordering */ 436 slave->offset = 0; 437 slave->mtd.size = 0; 438 printk ("mtd: partition \"%s\" is out of reach -- disabled\n", 439 parts[i].name); 440 } 441 if (slave->offset + slave->mtd.size > master->size) { 442 slave->mtd.size = master->size - slave->offset; 443 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", 444 parts[i].name, master->name, slave->mtd.size); 445 } 446 if (master->numeraseregions>1) { 447 /* Deal with variable erase size stuff */ 448 int i; 449 struct mtd_erase_region_info *regions = master->eraseregions; 450 451 /* Find the first erase regions which is part of this partition. */ 452 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++) 453 ; 454 455 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) { 456 if (slave->mtd.erasesize < regions[i].erasesize) { 457 slave->mtd.erasesize = regions[i].erasesize; 458 } 459 } 460 } else { 461 /* Single erase size */ 462 slave->mtd.erasesize = master->erasesize; 463 } 464 465 if ((slave->mtd.flags & MTD_WRITEABLE) && 466 (slave->offset % slave->mtd.erasesize)) { 467 /* Doesn't start on a boundary of major erase size */ 468 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */ 469 slave->mtd.flags &= ~MTD_WRITEABLE; 470 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 471 parts[i].name); 472 } 473 if ((slave->mtd.flags & MTD_WRITEABLE) && 474 (slave->mtd.size % slave->mtd.erasesize)) { 475 slave->mtd.flags &= ~MTD_WRITEABLE; 476 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 477 parts[i].name); 478 } 479 480 slave->mtd.ecclayout = master->ecclayout; 481 if (master->block_isbad) { 482 uint32_t offs = 0; 483 484 while(offs < slave->mtd.size) { 485 if (master->block_isbad(master, 486 offs + slave->offset)) 487 slave->mtd.ecc_stats.badblocks++; 488 offs += slave->mtd.erasesize; 489 } 490 } 491 492 if(parts[i].mtdp) 493 { /* store the object pointer (caller may or may not register it */ 494 *parts[i].mtdp = &slave->mtd; 495 slave->registered = 0; 496 } 497 else 498 { 499 /* register our partition */ 500 add_mtd_device(&slave->mtd); 501 slave->registered = 1; 502 } 503 } 504 505 return 0; 506 } 507 508 EXPORT_SYMBOL(add_mtd_partitions); 509 EXPORT_SYMBOL(del_mtd_partitions); 510 511 static DEFINE_SPINLOCK(part_parser_lock); 512 static LIST_HEAD(part_parsers); 513 514 static struct mtd_part_parser *get_partition_parser(const char *name) 515 { 516 struct list_head *this; 517 void *ret = NULL; 518 spin_lock(&part_parser_lock); 519 520 list_for_each(this, &part_parsers) { 521 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list); 522 523 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 524 ret = p; 525 break; 526 } 527 } 528 spin_unlock(&part_parser_lock); 529 530 return ret; 531 } 532 533 int register_mtd_parser(struct mtd_part_parser *p) 534 { 535 spin_lock(&part_parser_lock); 536 list_add(&p->list, &part_parsers); 537 spin_unlock(&part_parser_lock); 538 539 return 0; 540 } 541 542 int deregister_mtd_parser(struct mtd_part_parser *p) 543 { 544 spin_lock(&part_parser_lock); 545 list_del(&p->list); 546 spin_unlock(&part_parser_lock); 547 return 0; 548 } 549 550 int parse_mtd_partitions(struct mtd_info *master, const char **types, 551 struct mtd_partition **pparts, unsigned long origin) 552 { 553 struct mtd_part_parser *parser; 554 int ret = 0; 555 556 for ( ; ret <= 0 && *types; types++) { 557 parser = get_partition_parser(*types); 558 #ifdef CONFIG_KMOD 559 if (!parser && !request_module("%s", *types)) 560 parser = get_partition_parser(*types); 561 #endif 562 if (!parser) { 563 printk(KERN_NOTICE "%s partition parsing not available\n", 564 *types); 565 continue; 566 } 567 ret = (*parser->parse_fn)(master, pparts, origin); 568 if (ret > 0) { 569 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 570 ret, parser->name, master->name); 571 } 572 put_partition_parser(parser); 573 } 574 return ret; 575 } 576 577 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 578 EXPORT_SYMBOL_GPL(register_mtd_parser); 579 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 580