xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision 978d13d6)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /**
41  * struct mtd_part - our partition node structure
42  *
43  * @mtd: struct holding partition details
44  * @parent: parent mtd - flash device or another partition
45  * @offset: partition offset relative to the *flash device*
46  */
47 struct mtd_part {
48 	struct mtd_info mtd;
49 	struct mtd_info *parent;
50 	uint64_t offset;
51 	struct list_head list;
52 };
53 
54 /*
55  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
56  * the pointer to that structure.
57  */
58 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
59 {
60 	return container_of(mtd, struct mtd_part, mtd);
61 }
62 
63 
64 /*
65  * MTD methods which simply translate the effective address and pass through
66  * to the _real_ device.
67  */
68 
69 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
70 		size_t *retlen, u_char *buf)
71 {
72 	struct mtd_part *part = mtd_to_part(mtd);
73 	struct mtd_ecc_stats stats;
74 	int res;
75 
76 	stats = part->parent->ecc_stats;
77 	res = part->parent->_read(part->parent, from + part->offset, len,
78 				  retlen, buf);
79 	if (unlikely(mtd_is_eccerr(res)))
80 		mtd->ecc_stats.failed +=
81 			part->parent->ecc_stats.failed - stats.failed;
82 	else
83 		mtd->ecc_stats.corrected +=
84 			part->parent->ecc_stats.corrected - stats.corrected;
85 	return res;
86 }
87 
88 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
89 		size_t *retlen, void **virt, resource_size_t *phys)
90 {
91 	struct mtd_part *part = mtd_to_part(mtd);
92 
93 	return part->parent->_point(part->parent, from + part->offset, len,
94 				    retlen, virt, phys);
95 }
96 
97 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
98 {
99 	struct mtd_part *part = mtd_to_part(mtd);
100 
101 	return part->parent->_unpoint(part->parent, from + part->offset, len);
102 }
103 
104 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
105 					    unsigned long len,
106 					    unsigned long offset,
107 					    unsigned long flags)
108 {
109 	struct mtd_part *part = mtd_to_part(mtd);
110 
111 	offset += part->offset;
112 	return part->parent->_get_unmapped_area(part->parent, len, offset,
113 						flags);
114 }
115 
116 static int part_read_oob(struct mtd_info *mtd, loff_t from,
117 		struct mtd_oob_ops *ops)
118 {
119 	struct mtd_part *part = mtd_to_part(mtd);
120 	int res;
121 
122 	if (from >= mtd->size)
123 		return -EINVAL;
124 	if (ops->datbuf && from + ops->len > mtd->size)
125 		return -EINVAL;
126 
127 	/*
128 	 * If OOB is also requested, make sure that we do not read past the end
129 	 * of this partition.
130 	 */
131 	if (ops->oobbuf) {
132 		size_t len, pages;
133 
134 		len = mtd_oobavail(mtd, ops);
135 		pages = mtd_div_by_ws(mtd->size, mtd);
136 		pages -= mtd_div_by_ws(from, mtd);
137 		if (ops->ooboffs + ops->ooblen > pages * len)
138 			return -EINVAL;
139 	}
140 
141 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
142 	if (unlikely(res)) {
143 		if (mtd_is_bitflip(res))
144 			mtd->ecc_stats.corrected++;
145 		if (mtd_is_eccerr(res))
146 			mtd->ecc_stats.failed++;
147 	}
148 	return res;
149 }
150 
151 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
152 		size_t len, size_t *retlen, u_char *buf)
153 {
154 	struct mtd_part *part = mtd_to_part(mtd);
155 	return part->parent->_read_user_prot_reg(part->parent, from, len,
156 						 retlen, buf);
157 }
158 
159 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
160 				   size_t *retlen, struct otp_info *buf)
161 {
162 	struct mtd_part *part = mtd_to_part(mtd);
163 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
164 						 buf);
165 }
166 
167 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
168 		size_t len, size_t *retlen, u_char *buf)
169 {
170 	struct mtd_part *part = mtd_to_part(mtd);
171 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
172 						 retlen, buf);
173 }
174 
175 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
176 				   size_t *retlen, struct otp_info *buf)
177 {
178 	struct mtd_part *part = mtd_to_part(mtd);
179 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
180 						 buf);
181 }
182 
183 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184 		size_t *retlen, const u_char *buf)
185 {
186 	struct mtd_part *part = mtd_to_part(mtd);
187 	return part->parent->_write(part->parent, to + part->offset, len,
188 				    retlen, buf);
189 }
190 
191 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
192 		size_t *retlen, const u_char *buf)
193 {
194 	struct mtd_part *part = mtd_to_part(mtd);
195 	return part->parent->_panic_write(part->parent, to + part->offset, len,
196 					  retlen, buf);
197 }
198 
199 static int part_write_oob(struct mtd_info *mtd, loff_t to,
200 		struct mtd_oob_ops *ops)
201 {
202 	struct mtd_part *part = mtd_to_part(mtd);
203 
204 	if (to >= mtd->size)
205 		return -EINVAL;
206 	if (ops->datbuf && to + ops->len > mtd->size)
207 		return -EINVAL;
208 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
209 }
210 
211 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
212 		size_t len, size_t *retlen, u_char *buf)
213 {
214 	struct mtd_part *part = mtd_to_part(mtd);
215 	return part->parent->_write_user_prot_reg(part->parent, from, len,
216 						  retlen, buf);
217 }
218 
219 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
220 		size_t len)
221 {
222 	struct mtd_part *part = mtd_to_part(mtd);
223 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
224 }
225 
226 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
227 		unsigned long count, loff_t to, size_t *retlen)
228 {
229 	struct mtd_part *part = mtd_to_part(mtd);
230 	return part->parent->_writev(part->parent, vecs, count,
231 				     to + part->offset, retlen);
232 }
233 
234 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
235 {
236 	struct mtd_part *part = mtd_to_part(mtd);
237 	int ret;
238 
239 	instr->addr += part->offset;
240 	ret = part->parent->_erase(part->parent, instr);
241 	if (ret) {
242 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
243 			instr->fail_addr -= part->offset;
244 		instr->addr -= part->offset;
245 	}
246 	return ret;
247 }
248 
249 void mtd_erase_callback(struct erase_info *instr)
250 {
251 	if (instr->mtd->_erase == part_erase) {
252 		struct mtd_part *part = mtd_to_part(instr->mtd);
253 
254 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
255 			instr->fail_addr -= part->offset;
256 		instr->addr -= part->offset;
257 	}
258 	if (instr->callback)
259 		instr->callback(instr);
260 }
261 EXPORT_SYMBOL_GPL(mtd_erase_callback);
262 
263 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
264 {
265 	struct mtd_part *part = mtd_to_part(mtd);
266 	return part->parent->_lock(part->parent, ofs + part->offset, len);
267 }
268 
269 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
270 {
271 	struct mtd_part *part = mtd_to_part(mtd);
272 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
273 }
274 
275 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
276 {
277 	struct mtd_part *part = mtd_to_part(mtd);
278 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
279 }
280 
281 static void part_sync(struct mtd_info *mtd)
282 {
283 	struct mtd_part *part = mtd_to_part(mtd);
284 	part->parent->_sync(part->parent);
285 }
286 
287 static int part_suspend(struct mtd_info *mtd)
288 {
289 	struct mtd_part *part = mtd_to_part(mtd);
290 	return part->parent->_suspend(part->parent);
291 }
292 
293 static void part_resume(struct mtd_info *mtd)
294 {
295 	struct mtd_part *part = mtd_to_part(mtd);
296 	part->parent->_resume(part->parent);
297 }
298 
299 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
300 {
301 	struct mtd_part *part = mtd_to_part(mtd);
302 	ofs += part->offset;
303 	return part->parent->_block_isreserved(part->parent, ofs);
304 }
305 
306 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
307 {
308 	struct mtd_part *part = mtd_to_part(mtd);
309 	ofs += part->offset;
310 	return part->parent->_block_isbad(part->parent, ofs);
311 }
312 
313 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
314 {
315 	struct mtd_part *part = mtd_to_part(mtd);
316 	int res;
317 
318 	ofs += part->offset;
319 	res = part->parent->_block_markbad(part->parent, ofs);
320 	if (!res)
321 		mtd->ecc_stats.badblocks++;
322 	return res;
323 }
324 
325 static int part_get_device(struct mtd_info *mtd)
326 {
327 	struct mtd_part *part = mtd_to_part(mtd);
328 	return part->parent->_get_device(part->parent);
329 }
330 
331 static void part_put_device(struct mtd_info *mtd)
332 {
333 	struct mtd_part *part = mtd_to_part(mtd);
334 	part->parent->_put_device(part->parent);
335 }
336 
337 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
338 			      struct mtd_oob_region *oobregion)
339 {
340 	struct mtd_part *part = mtd_to_part(mtd);
341 
342 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
343 }
344 
345 static int part_ooblayout_free(struct mtd_info *mtd, int section,
346 			       struct mtd_oob_region *oobregion)
347 {
348 	struct mtd_part *part = mtd_to_part(mtd);
349 
350 	return mtd_ooblayout_free(part->parent, section, oobregion);
351 }
352 
353 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
354 	.ecc = part_ooblayout_ecc,
355 	.free = part_ooblayout_free,
356 };
357 
358 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
359 {
360 	struct mtd_part *part = mtd_to_part(mtd);
361 
362 	return part->parent->_max_bad_blocks(part->parent,
363 					     ofs + part->offset, len);
364 }
365 
366 static inline void free_partition(struct mtd_part *p)
367 {
368 	kfree(p->mtd.name);
369 	kfree(p);
370 }
371 
372 /**
373  * mtd_parse_part - parse MTD partition looking for subpartitions
374  *
375  * @slave: part that is supposed to be a container and should be parsed
376  * @types: NULL-terminated array with names of partition parsers to try
377  *
378  * Some partitions are kind of containers with extra subpartitions (volumes).
379  * There can be various formats of such containers. This function tries to use
380  * specified parsers to analyze given partition and registers found
381  * subpartitions on success.
382  */
383 static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
384 {
385 	struct mtd_partitions parsed;
386 	int err;
387 
388 	err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
389 	if (err)
390 		return err;
391 	else if (!parsed.nr_parts)
392 		return -ENOENT;
393 
394 	err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
395 
396 	mtd_part_parser_cleanup(&parsed);
397 
398 	return err;
399 }
400 
401 static struct mtd_part *allocate_partition(struct mtd_info *parent,
402 			const struct mtd_partition *part, int partno,
403 			uint64_t cur_offset)
404 {
405 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
406 							    parent->erasesize;
407 	struct mtd_part *slave;
408 	u32 remainder;
409 	char *name;
410 	u64 tmp;
411 
412 	/* allocate the partition structure */
413 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
414 	name = kstrdup(part->name, GFP_KERNEL);
415 	if (!name || !slave) {
416 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
417 		       parent->name);
418 		kfree(name);
419 		kfree(slave);
420 		return ERR_PTR(-ENOMEM);
421 	}
422 
423 	/* set up the MTD object for this partition */
424 	slave->mtd.type = parent->type;
425 	slave->mtd.flags = parent->flags & ~part->mask_flags;
426 	slave->mtd.size = part->size;
427 	slave->mtd.writesize = parent->writesize;
428 	slave->mtd.writebufsize = parent->writebufsize;
429 	slave->mtd.oobsize = parent->oobsize;
430 	slave->mtd.oobavail = parent->oobavail;
431 	slave->mtd.subpage_sft = parent->subpage_sft;
432 	slave->mtd.pairing = parent->pairing;
433 
434 	slave->mtd.name = name;
435 	slave->mtd.owner = parent->owner;
436 
437 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
438 	 * concern for showing the same data in multiple partitions.
439 	 * However, it is very useful to have the master node present,
440 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
441 	 * will have device nodes etc only if this is set, so make the
442 	 * parent conditional on that option. Note, this is a way to
443 	 * distinguish between the master and the partition in sysfs.
444 	 */
445 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
446 				&parent->dev :
447 				parent->dev.parent;
448 	slave->mtd.dev.of_node = part->of_node;
449 
450 	slave->mtd._read = part_read;
451 	slave->mtd._write = part_write;
452 
453 	if (parent->_panic_write)
454 		slave->mtd._panic_write = part_panic_write;
455 
456 	if (parent->_point && parent->_unpoint) {
457 		slave->mtd._point = part_point;
458 		slave->mtd._unpoint = part_unpoint;
459 	}
460 
461 	if (parent->_get_unmapped_area)
462 		slave->mtd._get_unmapped_area = part_get_unmapped_area;
463 	if (parent->_read_oob)
464 		slave->mtd._read_oob = part_read_oob;
465 	if (parent->_write_oob)
466 		slave->mtd._write_oob = part_write_oob;
467 	if (parent->_read_user_prot_reg)
468 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
469 	if (parent->_read_fact_prot_reg)
470 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
471 	if (parent->_write_user_prot_reg)
472 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
473 	if (parent->_lock_user_prot_reg)
474 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
475 	if (parent->_get_user_prot_info)
476 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
477 	if (parent->_get_fact_prot_info)
478 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
479 	if (parent->_sync)
480 		slave->mtd._sync = part_sync;
481 	if (!partno && !parent->dev.class && parent->_suspend &&
482 	    parent->_resume) {
483 		slave->mtd._suspend = part_suspend;
484 		slave->mtd._resume = part_resume;
485 	}
486 	if (parent->_writev)
487 		slave->mtd._writev = part_writev;
488 	if (parent->_lock)
489 		slave->mtd._lock = part_lock;
490 	if (parent->_unlock)
491 		slave->mtd._unlock = part_unlock;
492 	if (parent->_is_locked)
493 		slave->mtd._is_locked = part_is_locked;
494 	if (parent->_block_isreserved)
495 		slave->mtd._block_isreserved = part_block_isreserved;
496 	if (parent->_block_isbad)
497 		slave->mtd._block_isbad = part_block_isbad;
498 	if (parent->_block_markbad)
499 		slave->mtd._block_markbad = part_block_markbad;
500 	if (parent->_max_bad_blocks)
501 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
502 
503 	if (parent->_get_device)
504 		slave->mtd._get_device = part_get_device;
505 	if (parent->_put_device)
506 		slave->mtd._put_device = part_put_device;
507 
508 	slave->mtd._erase = part_erase;
509 	slave->parent = parent;
510 	slave->offset = part->offset;
511 
512 	if (slave->offset == MTDPART_OFS_APPEND)
513 		slave->offset = cur_offset;
514 	if (slave->offset == MTDPART_OFS_NXTBLK) {
515 		tmp = cur_offset;
516 		slave->offset = cur_offset;
517 		remainder = do_div(tmp, wr_alignment);
518 		if (remainder) {
519 			slave->offset += wr_alignment - remainder;
520 			printk(KERN_NOTICE "Moving partition %d: "
521 			       "0x%012llx -> 0x%012llx\n", partno,
522 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
523 		}
524 	}
525 	if (slave->offset == MTDPART_OFS_RETAIN) {
526 		slave->offset = cur_offset;
527 		if (parent->size - slave->offset >= slave->mtd.size) {
528 			slave->mtd.size = parent->size - slave->offset
529 							- slave->mtd.size;
530 		} else {
531 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
532 				part->name, parent->size - slave->offset,
533 				slave->mtd.size);
534 			/* register to preserve ordering */
535 			goto out_register;
536 		}
537 	}
538 	if (slave->mtd.size == MTDPART_SIZ_FULL)
539 		slave->mtd.size = parent->size - slave->offset;
540 
541 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
542 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
543 
544 	/* let's do some sanity checks */
545 	if (slave->offset >= parent->size) {
546 		/* let's register it anyway to preserve ordering */
547 		slave->offset = 0;
548 		slave->mtd.size = 0;
549 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
550 			part->name);
551 		goto out_register;
552 	}
553 	if (slave->offset + slave->mtd.size > parent->size) {
554 		slave->mtd.size = parent->size - slave->offset;
555 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
556 			part->name, parent->name, (unsigned long long)slave->mtd.size);
557 	}
558 	if (parent->numeraseregions > 1) {
559 		/* Deal with variable erase size stuff */
560 		int i, max = parent->numeraseregions;
561 		u64 end = slave->offset + slave->mtd.size;
562 		struct mtd_erase_region_info *regions = parent->eraseregions;
563 
564 		/* Find the first erase regions which is part of this
565 		 * partition. */
566 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
567 			;
568 		/* The loop searched for the region _behind_ the first one */
569 		if (i > 0)
570 			i--;
571 
572 		/* Pick biggest erasesize */
573 		for (; i < max && regions[i].offset < end; i++) {
574 			if (slave->mtd.erasesize < regions[i].erasesize) {
575 				slave->mtd.erasesize = regions[i].erasesize;
576 			}
577 		}
578 		BUG_ON(slave->mtd.erasesize == 0);
579 	} else {
580 		/* Single erase size */
581 		slave->mtd.erasesize = parent->erasesize;
582 	}
583 
584 	tmp = slave->offset;
585 	remainder = do_div(tmp, wr_alignment);
586 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
587 		/* Doesn't start on a boundary of major erase size */
588 		/* FIXME: Let it be writable if it is on a boundary of
589 		 * _minor_ erase size though */
590 		slave->mtd.flags &= ~MTD_WRITEABLE;
591 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
592 			part->name);
593 	}
594 
595 	tmp = slave->mtd.size;
596 	remainder = do_div(tmp, wr_alignment);
597 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
598 		slave->mtd.flags &= ~MTD_WRITEABLE;
599 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
600 			part->name);
601 	}
602 
603 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
604 	slave->mtd.ecc_step_size = parent->ecc_step_size;
605 	slave->mtd.ecc_strength = parent->ecc_strength;
606 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
607 
608 	if (parent->_block_isbad) {
609 		uint64_t offs = 0;
610 
611 		while (offs < slave->mtd.size) {
612 			if (mtd_block_isreserved(parent, offs + slave->offset))
613 				slave->mtd.ecc_stats.bbtblocks++;
614 			else if (mtd_block_isbad(parent, offs + slave->offset))
615 				slave->mtd.ecc_stats.badblocks++;
616 			offs += slave->mtd.erasesize;
617 		}
618 	}
619 
620 out_register:
621 	return slave;
622 }
623 
624 static ssize_t mtd_partition_offset_show(struct device *dev,
625 		struct device_attribute *attr, char *buf)
626 {
627 	struct mtd_info *mtd = dev_get_drvdata(dev);
628 	struct mtd_part *part = mtd_to_part(mtd);
629 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
630 }
631 
632 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
633 
634 static const struct attribute *mtd_partition_attrs[] = {
635 	&dev_attr_offset.attr,
636 	NULL
637 };
638 
639 static int mtd_add_partition_attrs(struct mtd_part *new)
640 {
641 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
642 	if (ret)
643 		printk(KERN_WARNING
644 		       "mtd: failed to create partition attrs, err=%d\n", ret);
645 	return ret;
646 }
647 
648 int mtd_add_partition(struct mtd_info *parent, const char *name,
649 		      long long offset, long long length)
650 {
651 	struct mtd_partition part;
652 	struct mtd_part *new;
653 	int ret = 0;
654 
655 	/* the direct offset is expected */
656 	if (offset == MTDPART_OFS_APPEND ||
657 	    offset == MTDPART_OFS_NXTBLK)
658 		return -EINVAL;
659 
660 	if (length == MTDPART_SIZ_FULL)
661 		length = parent->size - offset;
662 
663 	if (length <= 0)
664 		return -EINVAL;
665 
666 	memset(&part, 0, sizeof(part));
667 	part.name = name;
668 	part.size = length;
669 	part.offset = offset;
670 
671 	new = allocate_partition(parent, &part, -1, offset);
672 	if (IS_ERR(new))
673 		return PTR_ERR(new);
674 
675 	mutex_lock(&mtd_partitions_mutex);
676 	list_add(&new->list, &mtd_partitions);
677 	mutex_unlock(&mtd_partitions_mutex);
678 
679 	add_mtd_device(&new->mtd);
680 
681 	mtd_add_partition_attrs(new);
682 
683 	return ret;
684 }
685 EXPORT_SYMBOL_GPL(mtd_add_partition);
686 
687 /**
688  * __mtd_del_partition - delete MTD partition
689  *
690  * @priv: internal MTD struct for partition to be deleted
691  *
692  * This function must be called with the partitions mutex locked.
693  */
694 static int __mtd_del_partition(struct mtd_part *priv)
695 {
696 	struct mtd_part *child, *next;
697 	int err;
698 
699 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
700 		if (child->parent == &priv->mtd) {
701 			err = __mtd_del_partition(child);
702 			if (err)
703 				return err;
704 		}
705 	}
706 
707 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
708 
709 	err = del_mtd_device(&priv->mtd);
710 	if (err)
711 		return err;
712 
713 	list_del(&priv->list);
714 	free_partition(priv);
715 
716 	return 0;
717 }
718 
719 /*
720  * This function unregisters and destroy all slave MTD objects which are
721  * attached to the given MTD object.
722  */
723 int del_mtd_partitions(struct mtd_info *mtd)
724 {
725 	struct mtd_part *slave, *next;
726 	int ret, err = 0;
727 
728 	mutex_lock(&mtd_partitions_mutex);
729 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
730 		if (slave->parent == mtd) {
731 			ret = __mtd_del_partition(slave);
732 			if (ret < 0)
733 				err = ret;
734 		}
735 	mutex_unlock(&mtd_partitions_mutex);
736 
737 	return err;
738 }
739 
740 int mtd_del_partition(struct mtd_info *mtd, int partno)
741 {
742 	struct mtd_part *slave, *next;
743 	int ret = -EINVAL;
744 
745 	mutex_lock(&mtd_partitions_mutex);
746 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
747 		if ((slave->parent == mtd) &&
748 		    (slave->mtd.index == partno)) {
749 			ret = __mtd_del_partition(slave);
750 			break;
751 		}
752 	mutex_unlock(&mtd_partitions_mutex);
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(mtd_del_partition);
757 
758 /*
759  * This function, given a master MTD object and a partition table, creates
760  * and registers slave MTD objects which are bound to the master according to
761  * the partition definitions.
762  *
763  * For historical reasons, this function's caller only registers the master
764  * if the MTD_PARTITIONED_MASTER config option is set.
765  */
766 
767 int add_mtd_partitions(struct mtd_info *master,
768 		       const struct mtd_partition *parts,
769 		       int nbparts)
770 {
771 	struct mtd_part *slave;
772 	uint64_t cur_offset = 0;
773 	int i;
774 
775 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
776 
777 	for (i = 0; i < nbparts; i++) {
778 		slave = allocate_partition(master, parts + i, i, cur_offset);
779 		if (IS_ERR(slave)) {
780 			del_mtd_partitions(master);
781 			return PTR_ERR(slave);
782 		}
783 
784 		mutex_lock(&mtd_partitions_mutex);
785 		list_add(&slave->list, &mtd_partitions);
786 		mutex_unlock(&mtd_partitions_mutex);
787 
788 		add_mtd_device(&slave->mtd);
789 		mtd_add_partition_attrs(slave);
790 		if (parts[i].types)
791 			mtd_parse_part(slave, parts[i].types);
792 
793 		cur_offset = slave->offset + slave->mtd.size;
794 	}
795 
796 	return 0;
797 }
798 
799 static DEFINE_SPINLOCK(part_parser_lock);
800 static LIST_HEAD(part_parsers);
801 
802 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
803 {
804 	struct mtd_part_parser *p, *ret = NULL;
805 
806 	spin_lock(&part_parser_lock);
807 
808 	list_for_each_entry(p, &part_parsers, list)
809 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
810 			ret = p;
811 			break;
812 		}
813 
814 	spin_unlock(&part_parser_lock);
815 
816 	return ret;
817 }
818 
819 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
820 {
821 	module_put(p->owner);
822 }
823 
824 /*
825  * Many partition parsers just expected the core to kfree() all their data in
826  * one chunk. Do that by default.
827  */
828 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
829 					    int nr_parts)
830 {
831 	kfree(pparts);
832 }
833 
834 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
835 {
836 	p->owner = owner;
837 
838 	if (!p->cleanup)
839 		p->cleanup = &mtd_part_parser_cleanup_default;
840 
841 	spin_lock(&part_parser_lock);
842 	list_add(&p->list, &part_parsers);
843 	spin_unlock(&part_parser_lock);
844 
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(__register_mtd_parser);
848 
849 void deregister_mtd_parser(struct mtd_part_parser *p)
850 {
851 	spin_lock(&part_parser_lock);
852 	list_del(&p->list);
853 	spin_unlock(&part_parser_lock);
854 }
855 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
856 
857 /*
858  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
859  * are changing this array!
860  */
861 static const char * const default_mtd_part_types[] = {
862 	"cmdlinepart",
863 	"ofpart",
864 	NULL
865 };
866 
867 static int mtd_part_do_parse(struct mtd_part_parser *parser,
868 			     struct mtd_info *master,
869 			     struct mtd_partitions *pparts,
870 			     struct mtd_part_parser_data *data)
871 {
872 	int ret;
873 
874 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
875 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
876 	if (ret <= 0)
877 		return ret;
878 
879 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
880 		  parser->name, master->name);
881 
882 	pparts->nr_parts = ret;
883 	pparts->parser = parser;
884 
885 	return ret;
886 }
887 
888 /**
889  * parse_mtd_partitions - parse MTD partitions
890  * @master: the master partition (describes whole MTD device)
891  * @types: names of partition parsers to try or %NULL
892  * @pparts: info about partitions found is returned here
893  * @data: MTD partition parser-specific data
894  *
895  * This function tries to find partition on MTD device @master. It uses MTD
896  * partition parsers, specified in @types. However, if @types is %NULL, then
897  * the default list of parsers is used. The default list contains only the
898  * "cmdlinepart" and "ofpart" parsers ATM.
899  * Note: If there are more then one parser in @types, the kernel only takes the
900  * partitions parsed out by the first parser.
901  *
902  * This function may return:
903  * o a negative error code in case of failure
904  * o zero otherwise, and @pparts will describe the partitions, number of
905  *   partitions, and the parser which parsed them. Caller must release
906  *   resources with mtd_part_parser_cleanup() when finished with the returned
907  *   data.
908  */
909 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
910 			 struct mtd_partitions *pparts,
911 			 struct mtd_part_parser_data *data)
912 {
913 	struct mtd_part_parser *parser;
914 	int ret, err = 0;
915 
916 	if (!types)
917 		types = default_mtd_part_types;
918 
919 	for ( ; *types; types++) {
920 		pr_debug("%s: parsing partitions %s\n", master->name, *types);
921 		parser = mtd_part_parser_get(*types);
922 		if (!parser && !request_module("%s", *types))
923 			parser = mtd_part_parser_get(*types);
924 		pr_debug("%s: got parser %s\n", master->name,
925 			 parser ? parser->name : NULL);
926 		if (!parser)
927 			continue;
928 		ret = mtd_part_do_parse(parser, master, pparts, data);
929 		/* Found partitions! */
930 		if (ret > 0)
931 			return 0;
932 		mtd_part_parser_put(parser);
933 		/*
934 		 * Stash the first error we see; only report it if no parser
935 		 * succeeds
936 		 */
937 		if (ret < 0 && !err)
938 			err = ret;
939 	}
940 	return err;
941 }
942 
943 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
944 {
945 	const struct mtd_part_parser *parser;
946 
947 	if (!parts)
948 		return;
949 
950 	parser = parts->parser;
951 	if (parser) {
952 		if (parser->cleanup)
953 			parser->cleanup(parts->parts, parts->nr_parts);
954 
955 		mtd_part_parser_put(parser);
956 	}
957 }
958 
959 int mtd_is_partition(const struct mtd_info *mtd)
960 {
961 	struct mtd_part *part;
962 	int ispart = 0;
963 
964 	mutex_lock(&mtd_partitions_mutex);
965 	list_for_each_entry(part, &mtd_partitions, list)
966 		if (&part->mtd == mtd) {
967 			ispart = 1;
968 			break;
969 		}
970 	mutex_unlock(&mtd_partitions_mutex);
971 
972 	return ispart;
973 }
974 EXPORT_SYMBOL_GPL(mtd_is_partition);
975 
976 /* Returns the size of the entire flash chip */
977 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
978 {
979 	if (!mtd_is_partition(mtd))
980 		return mtd->size;
981 
982 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
983 }
984 EXPORT_SYMBOL_GPL(mtd_get_device_size);
985