xref: /openbmc/linux/drivers/mtd/mtdpart.c (revision 96de2506)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/of.h>
34 
35 #include "mtdcore.h"
36 
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40 
41 /**
42  * struct mtd_part - our partition node structure
43  *
44  * @mtd: struct holding partition details
45  * @parent: parent mtd - flash device or another partition
46  * @offset: partition offset relative to the *flash device*
47  */
48 struct mtd_part {
49 	struct mtd_info mtd;
50 	struct mtd_info *parent;
51 	uint64_t offset;
52 	struct list_head list;
53 };
54 
55 /*
56  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
57  * the pointer to that structure.
58  */
59 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
60 {
61 	return container_of(mtd, struct mtd_part, mtd);
62 }
63 
64 
65 /*
66  * MTD methods which simply translate the effective address and pass through
67  * to the _real_ device.
68  */
69 
70 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
71 		size_t *retlen, u_char *buf)
72 {
73 	struct mtd_part *part = mtd_to_part(mtd);
74 	struct mtd_ecc_stats stats;
75 	int res;
76 
77 	stats = part->parent->ecc_stats;
78 	res = part->parent->_read(part->parent, from + part->offset, len,
79 				  retlen, buf);
80 	if (unlikely(mtd_is_eccerr(res)))
81 		mtd->ecc_stats.failed +=
82 			part->parent->ecc_stats.failed - stats.failed;
83 	else
84 		mtd->ecc_stats.corrected +=
85 			part->parent->ecc_stats.corrected - stats.corrected;
86 	return res;
87 }
88 
89 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
90 		size_t *retlen, void **virt, resource_size_t *phys)
91 {
92 	struct mtd_part *part = mtd_to_part(mtd);
93 
94 	return part->parent->_point(part->parent, from + part->offset, len,
95 				    retlen, virt, phys);
96 }
97 
98 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
99 {
100 	struct mtd_part *part = mtd_to_part(mtd);
101 
102 	return part->parent->_unpoint(part->parent, from + part->offset, len);
103 }
104 
105 static int part_read_oob(struct mtd_info *mtd, loff_t from,
106 		struct mtd_oob_ops *ops)
107 {
108 	struct mtd_part *part = mtd_to_part(mtd);
109 	struct mtd_ecc_stats stats;
110 	int res;
111 
112 	stats = part->parent->ecc_stats;
113 	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
114 	if (unlikely(mtd_is_eccerr(res)))
115 		mtd->ecc_stats.failed +=
116 			part->parent->ecc_stats.failed - stats.failed;
117 	else
118 		mtd->ecc_stats.corrected +=
119 			part->parent->ecc_stats.corrected - stats.corrected;
120 	return res;
121 }
122 
123 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
124 		size_t len, size_t *retlen, u_char *buf)
125 {
126 	struct mtd_part *part = mtd_to_part(mtd);
127 	return part->parent->_read_user_prot_reg(part->parent, from, len,
128 						 retlen, buf);
129 }
130 
131 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
132 				   size_t *retlen, struct otp_info *buf)
133 {
134 	struct mtd_part *part = mtd_to_part(mtd);
135 	return part->parent->_get_user_prot_info(part->parent, len, retlen,
136 						 buf);
137 }
138 
139 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
140 		size_t len, size_t *retlen, u_char *buf)
141 {
142 	struct mtd_part *part = mtd_to_part(mtd);
143 	return part->parent->_read_fact_prot_reg(part->parent, from, len,
144 						 retlen, buf);
145 }
146 
147 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
148 				   size_t *retlen, struct otp_info *buf)
149 {
150 	struct mtd_part *part = mtd_to_part(mtd);
151 	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
152 						 buf);
153 }
154 
155 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
156 		size_t *retlen, const u_char *buf)
157 {
158 	struct mtd_part *part = mtd_to_part(mtd);
159 	return part->parent->_write(part->parent, to + part->offset, len,
160 				    retlen, buf);
161 }
162 
163 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
164 		size_t *retlen, const u_char *buf)
165 {
166 	struct mtd_part *part = mtd_to_part(mtd);
167 	return part->parent->_panic_write(part->parent, to + part->offset, len,
168 					  retlen, buf);
169 }
170 
171 static int part_write_oob(struct mtd_info *mtd, loff_t to,
172 		struct mtd_oob_ops *ops)
173 {
174 	struct mtd_part *part = mtd_to_part(mtd);
175 
176 	return part->parent->_write_oob(part->parent, to + part->offset, ops);
177 }
178 
179 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
180 		size_t len, size_t *retlen, u_char *buf)
181 {
182 	struct mtd_part *part = mtd_to_part(mtd);
183 	return part->parent->_write_user_prot_reg(part->parent, from, len,
184 						  retlen, buf);
185 }
186 
187 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
188 		size_t len)
189 {
190 	struct mtd_part *part = mtd_to_part(mtd);
191 	return part->parent->_lock_user_prot_reg(part->parent, from, len);
192 }
193 
194 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
195 		unsigned long count, loff_t to, size_t *retlen)
196 {
197 	struct mtd_part *part = mtd_to_part(mtd);
198 	return part->parent->_writev(part->parent, vecs, count,
199 				     to + part->offset, retlen);
200 }
201 
202 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
203 {
204 	struct mtd_part *part = mtd_to_part(mtd);
205 	int ret;
206 
207 	instr->addr += part->offset;
208 	ret = part->parent->_erase(part->parent, instr);
209 	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
210 		instr->fail_addr -= part->offset;
211 	instr->addr -= part->offset;
212 
213 	return ret;
214 }
215 
216 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
217 {
218 	struct mtd_part *part = mtd_to_part(mtd);
219 	return part->parent->_lock(part->parent, ofs + part->offset, len);
220 }
221 
222 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
223 {
224 	struct mtd_part *part = mtd_to_part(mtd);
225 	return part->parent->_unlock(part->parent, ofs + part->offset, len);
226 }
227 
228 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
229 {
230 	struct mtd_part *part = mtd_to_part(mtd);
231 	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
232 }
233 
234 static void part_sync(struct mtd_info *mtd)
235 {
236 	struct mtd_part *part = mtd_to_part(mtd);
237 	part->parent->_sync(part->parent);
238 }
239 
240 static int part_suspend(struct mtd_info *mtd)
241 {
242 	struct mtd_part *part = mtd_to_part(mtd);
243 	return part->parent->_suspend(part->parent);
244 }
245 
246 static void part_resume(struct mtd_info *mtd)
247 {
248 	struct mtd_part *part = mtd_to_part(mtd);
249 	part->parent->_resume(part->parent);
250 }
251 
252 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
253 {
254 	struct mtd_part *part = mtd_to_part(mtd);
255 	ofs += part->offset;
256 	return part->parent->_block_isreserved(part->parent, ofs);
257 }
258 
259 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
260 {
261 	struct mtd_part *part = mtd_to_part(mtd);
262 	ofs += part->offset;
263 	return part->parent->_block_isbad(part->parent, ofs);
264 }
265 
266 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
267 {
268 	struct mtd_part *part = mtd_to_part(mtd);
269 	int res;
270 
271 	ofs += part->offset;
272 	res = part->parent->_block_markbad(part->parent, ofs);
273 	if (!res)
274 		mtd->ecc_stats.badblocks++;
275 	return res;
276 }
277 
278 static int part_get_device(struct mtd_info *mtd)
279 {
280 	struct mtd_part *part = mtd_to_part(mtd);
281 	return part->parent->_get_device(part->parent);
282 }
283 
284 static void part_put_device(struct mtd_info *mtd)
285 {
286 	struct mtd_part *part = mtd_to_part(mtd);
287 	part->parent->_put_device(part->parent);
288 }
289 
290 static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
291 			      struct mtd_oob_region *oobregion)
292 {
293 	struct mtd_part *part = mtd_to_part(mtd);
294 
295 	return mtd_ooblayout_ecc(part->parent, section, oobregion);
296 }
297 
298 static int part_ooblayout_free(struct mtd_info *mtd, int section,
299 			       struct mtd_oob_region *oobregion)
300 {
301 	struct mtd_part *part = mtd_to_part(mtd);
302 
303 	return mtd_ooblayout_free(part->parent, section, oobregion);
304 }
305 
306 static const struct mtd_ooblayout_ops part_ooblayout_ops = {
307 	.ecc = part_ooblayout_ecc,
308 	.free = part_ooblayout_free,
309 };
310 
311 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
312 {
313 	struct mtd_part *part = mtd_to_part(mtd);
314 
315 	return part->parent->_max_bad_blocks(part->parent,
316 					     ofs + part->offset, len);
317 }
318 
319 static inline void free_partition(struct mtd_part *p)
320 {
321 	kfree(p->mtd.name);
322 	kfree(p);
323 }
324 
325 static struct mtd_part *allocate_partition(struct mtd_info *parent,
326 			const struct mtd_partition *part, int partno,
327 			uint64_t cur_offset)
328 {
329 	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
330 							    parent->erasesize;
331 	struct mtd_part *slave;
332 	u32 remainder;
333 	char *name;
334 	u64 tmp;
335 
336 	/* allocate the partition structure */
337 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
338 	name = kstrdup(part->name, GFP_KERNEL);
339 	if (!name || !slave) {
340 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
341 		       parent->name);
342 		kfree(name);
343 		kfree(slave);
344 		return ERR_PTR(-ENOMEM);
345 	}
346 
347 	/* set up the MTD object for this partition */
348 	slave->mtd.type = parent->type;
349 	slave->mtd.flags = parent->flags & ~part->mask_flags;
350 	slave->mtd.size = part->size;
351 	slave->mtd.writesize = parent->writesize;
352 	slave->mtd.writebufsize = parent->writebufsize;
353 	slave->mtd.oobsize = parent->oobsize;
354 	slave->mtd.oobavail = parent->oobavail;
355 	slave->mtd.subpage_sft = parent->subpage_sft;
356 	slave->mtd.pairing = parent->pairing;
357 
358 	slave->mtd.name = name;
359 	slave->mtd.owner = parent->owner;
360 
361 	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
362 	 * concern for showing the same data in multiple partitions.
363 	 * However, it is very useful to have the master node present,
364 	 * so the MTD_PARTITIONED_MASTER option allows that. The master
365 	 * will have device nodes etc only if this is set, so make the
366 	 * parent conditional on that option. Note, this is a way to
367 	 * distinguish between the master and the partition in sysfs.
368 	 */
369 	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
370 				&parent->dev :
371 				parent->dev.parent;
372 	slave->mtd.dev.of_node = part->of_node;
373 
374 	if (parent->_read)
375 		slave->mtd._read = part_read;
376 	if (parent->_write)
377 		slave->mtd._write = part_write;
378 
379 	if (parent->_panic_write)
380 		slave->mtd._panic_write = part_panic_write;
381 
382 	if (parent->_point && parent->_unpoint) {
383 		slave->mtd._point = part_point;
384 		slave->mtd._unpoint = part_unpoint;
385 	}
386 
387 	if (parent->_read_oob)
388 		slave->mtd._read_oob = part_read_oob;
389 	if (parent->_write_oob)
390 		slave->mtd._write_oob = part_write_oob;
391 	if (parent->_read_user_prot_reg)
392 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
393 	if (parent->_read_fact_prot_reg)
394 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
395 	if (parent->_write_user_prot_reg)
396 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
397 	if (parent->_lock_user_prot_reg)
398 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
399 	if (parent->_get_user_prot_info)
400 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
401 	if (parent->_get_fact_prot_info)
402 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
403 	if (parent->_sync)
404 		slave->mtd._sync = part_sync;
405 	if (!partno && !parent->dev.class && parent->_suspend &&
406 	    parent->_resume) {
407 		slave->mtd._suspend = part_suspend;
408 		slave->mtd._resume = part_resume;
409 	}
410 	if (parent->_writev)
411 		slave->mtd._writev = part_writev;
412 	if (parent->_lock)
413 		slave->mtd._lock = part_lock;
414 	if (parent->_unlock)
415 		slave->mtd._unlock = part_unlock;
416 	if (parent->_is_locked)
417 		slave->mtd._is_locked = part_is_locked;
418 	if (parent->_block_isreserved)
419 		slave->mtd._block_isreserved = part_block_isreserved;
420 	if (parent->_block_isbad)
421 		slave->mtd._block_isbad = part_block_isbad;
422 	if (parent->_block_markbad)
423 		slave->mtd._block_markbad = part_block_markbad;
424 	if (parent->_max_bad_blocks)
425 		slave->mtd._max_bad_blocks = part_max_bad_blocks;
426 
427 	if (parent->_get_device)
428 		slave->mtd._get_device = part_get_device;
429 	if (parent->_put_device)
430 		slave->mtd._put_device = part_put_device;
431 
432 	slave->mtd._erase = part_erase;
433 	slave->parent = parent;
434 	slave->offset = part->offset;
435 
436 	if (slave->offset == MTDPART_OFS_APPEND)
437 		slave->offset = cur_offset;
438 	if (slave->offset == MTDPART_OFS_NXTBLK) {
439 		tmp = cur_offset;
440 		slave->offset = cur_offset;
441 		remainder = do_div(tmp, wr_alignment);
442 		if (remainder) {
443 			slave->offset += wr_alignment - remainder;
444 			printk(KERN_NOTICE "Moving partition %d: "
445 			       "0x%012llx -> 0x%012llx\n", partno,
446 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
447 		}
448 	}
449 	if (slave->offset == MTDPART_OFS_RETAIN) {
450 		slave->offset = cur_offset;
451 		if (parent->size - slave->offset >= slave->mtd.size) {
452 			slave->mtd.size = parent->size - slave->offset
453 							- slave->mtd.size;
454 		} else {
455 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
456 				part->name, parent->size - slave->offset,
457 				slave->mtd.size);
458 			/* register to preserve ordering */
459 			goto out_register;
460 		}
461 	}
462 	if (slave->mtd.size == MTDPART_SIZ_FULL)
463 		slave->mtd.size = parent->size - slave->offset;
464 
465 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
466 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
467 
468 	/* let's do some sanity checks */
469 	if (slave->offset >= parent->size) {
470 		/* let's register it anyway to preserve ordering */
471 		slave->offset = 0;
472 		slave->mtd.size = 0;
473 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
474 			part->name);
475 		goto out_register;
476 	}
477 	if (slave->offset + slave->mtd.size > parent->size) {
478 		slave->mtd.size = parent->size - slave->offset;
479 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
480 			part->name, parent->name, (unsigned long long)slave->mtd.size);
481 	}
482 	if (parent->numeraseregions > 1) {
483 		/* Deal with variable erase size stuff */
484 		int i, max = parent->numeraseregions;
485 		u64 end = slave->offset + slave->mtd.size;
486 		struct mtd_erase_region_info *regions = parent->eraseregions;
487 
488 		/* Find the first erase regions which is part of this
489 		 * partition. */
490 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
491 			;
492 		/* The loop searched for the region _behind_ the first one */
493 		if (i > 0)
494 			i--;
495 
496 		/* Pick biggest erasesize */
497 		for (; i < max && regions[i].offset < end; i++) {
498 			if (slave->mtd.erasesize < regions[i].erasesize) {
499 				slave->mtd.erasesize = regions[i].erasesize;
500 			}
501 		}
502 		BUG_ON(slave->mtd.erasesize == 0);
503 	} else {
504 		/* Single erase size */
505 		slave->mtd.erasesize = parent->erasesize;
506 	}
507 
508 	/*
509 	 * Slave erasesize might differ from the master one if the master
510 	 * exposes several regions with different erasesize. Adjust
511 	 * wr_alignment accordingly.
512 	 */
513 	if (!(slave->mtd.flags & MTD_NO_ERASE))
514 		wr_alignment = slave->mtd.erasesize;
515 
516 	tmp = slave->offset;
517 	remainder = do_div(tmp, wr_alignment);
518 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
519 		/* Doesn't start on a boundary of major erase size */
520 		/* FIXME: Let it be writable if it is on a boundary of
521 		 * _minor_ erase size though */
522 		slave->mtd.flags &= ~MTD_WRITEABLE;
523 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
524 			part->name);
525 	}
526 
527 	tmp = slave->mtd.size;
528 	remainder = do_div(tmp, wr_alignment);
529 	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
530 		slave->mtd.flags &= ~MTD_WRITEABLE;
531 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
532 			part->name);
533 	}
534 
535 	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
536 	slave->mtd.ecc_step_size = parent->ecc_step_size;
537 	slave->mtd.ecc_strength = parent->ecc_strength;
538 	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
539 
540 	if (parent->_block_isbad) {
541 		uint64_t offs = 0;
542 
543 		while (offs < slave->mtd.size) {
544 			if (mtd_block_isreserved(parent, offs + slave->offset))
545 				slave->mtd.ecc_stats.bbtblocks++;
546 			else if (mtd_block_isbad(parent, offs + slave->offset))
547 				slave->mtd.ecc_stats.badblocks++;
548 			offs += slave->mtd.erasesize;
549 		}
550 	}
551 
552 out_register:
553 	return slave;
554 }
555 
556 static ssize_t mtd_partition_offset_show(struct device *dev,
557 		struct device_attribute *attr, char *buf)
558 {
559 	struct mtd_info *mtd = dev_get_drvdata(dev);
560 	struct mtd_part *part = mtd_to_part(mtd);
561 	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
562 }
563 
564 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
565 
566 static const struct attribute *mtd_partition_attrs[] = {
567 	&dev_attr_offset.attr,
568 	NULL
569 };
570 
571 static int mtd_add_partition_attrs(struct mtd_part *new)
572 {
573 	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
574 	if (ret)
575 		printk(KERN_WARNING
576 		       "mtd: failed to create partition attrs, err=%d\n", ret);
577 	return ret;
578 }
579 
580 int mtd_add_partition(struct mtd_info *parent, const char *name,
581 		      long long offset, long long length)
582 {
583 	struct mtd_partition part;
584 	struct mtd_part *new;
585 	int ret = 0;
586 
587 	/* the direct offset is expected */
588 	if (offset == MTDPART_OFS_APPEND ||
589 	    offset == MTDPART_OFS_NXTBLK)
590 		return -EINVAL;
591 
592 	if (length == MTDPART_SIZ_FULL)
593 		length = parent->size - offset;
594 
595 	if (length <= 0)
596 		return -EINVAL;
597 
598 	memset(&part, 0, sizeof(part));
599 	part.name = name;
600 	part.size = length;
601 	part.offset = offset;
602 
603 	new = allocate_partition(parent, &part, -1, offset);
604 	if (IS_ERR(new))
605 		return PTR_ERR(new);
606 
607 	mutex_lock(&mtd_partitions_mutex);
608 	list_add(&new->list, &mtd_partitions);
609 	mutex_unlock(&mtd_partitions_mutex);
610 
611 	add_mtd_device(&new->mtd);
612 
613 	mtd_add_partition_attrs(new);
614 
615 	return ret;
616 }
617 EXPORT_SYMBOL_GPL(mtd_add_partition);
618 
619 /**
620  * __mtd_del_partition - delete MTD partition
621  *
622  * @priv: internal MTD struct for partition to be deleted
623  *
624  * This function must be called with the partitions mutex locked.
625  */
626 static int __mtd_del_partition(struct mtd_part *priv)
627 {
628 	struct mtd_part *child, *next;
629 	int err;
630 
631 	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
632 		if (child->parent == &priv->mtd) {
633 			err = __mtd_del_partition(child);
634 			if (err)
635 				return err;
636 		}
637 	}
638 
639 	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
640 
641 	err = del_mtd_device(&priv->mtd);
642 	if (err)
643 		return err;
644 
645 	list_del(&priv->list);
646 	free_partition(priv);
647 
648 	return 0;
649 }
650 
651 /*
652  * This function unregisters and destroy all slave MTD objects which are
653  * attached to the given MTD object.
654  */
655 int del_mtd_partitions(struct mtd_info *mtd)
656 {
657 	struct mtd_part *slave, *next;
658 	int ret, err = 0;
659 
660 	mutex_lock(&mtd_partitions_mutex);
661 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
662 		if (slave->parent == mtd) {
663 			ret = __mtd_del_partition(slave);
664 			if (ret < 0)
665 				err = ret;
666 		}
667 	mutex_unlock(&mtd_partitions_mutex);
668 
669 	return err;
670 }
671 
672 int mtd_del_partition(struct mtd_info *mtd, int partno)
673 {
674 	struct mtd_part *slave, *next;
675 	int ret = -EINVAL;
676 
677 	mutex_lock(&mtd_partitions_mutex);
678 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
679 		if ((slave->parent == mtd) &&
680 		    (slave->mtd.index == partno)) {
681 			ret = __mtd_del_partition(slave);
682 			break;
683 		}
684 	mutex_unlock(&mtd_partitions_mutex);
685 
686 	return ret;
687 }
688 EXPORT_SYMBOL_GPL(mtd_del_partition);
689 
690 /*
691  * This function, given a master MTD object and a partition table, creates
692  * and registers slave MTD objects which are bound to the master according to
693  * the partition definitions.
694  *
695  * For historical reasons, this function's caller only registers the master
696  * if the MTD_PARTITIONED_MASTER config option is set.
697  */
698 
699 int add_mtd_partitions(struct mtd_info *master,
700 		       const struct mtd_partition *parts,
701 		       int nbparts)
702 {
703 	struct mtd_part *slave;
704 	uint64_t cur_offset = 0;
705 	int i;
706 
707 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
708 
709 	for (i = 0; i < nbparts; i++) {
710 		slave = allocate_partition(master, parts + i, i, cur_offset);
711 		if (IS_ERR(slave)) {
712 			del_mtd_partitions(master);
713 			return PTR_ERR(slave);
714 		}
715 
716 		mutex_lock(&mtd_partitions_mutex);
717 		list_add(&slave->list, &mtd_partitions);
718 		mutex_unlock(&mtd_partitions_mutex);
719 
720 		add_mtd_device(&slave->mtd);
721 		mtd_add_partition_attrs(slave);
722 		/* Look for subpartitions */
723 		parse_mtd_partitions(&slave->mtd, parts[i].types, NULL);
724 
725 		cur_offset = slave->offset + slave->mtd.size;
726 	}
727 
728 	return 0;
729 }
730 
731 static DEFINE_SPINLOCK(part_parser_lock);
732 static LIST_HEAD(part_parsers);
733 
734 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
735 {
736 	struct mtd_part_parser *p, *ret = NULL;
737 
738 	spin_lock(&part_parser_lock);
739 
740 	list_for_each_entry(p, &part_parsers, list)
741 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
742 			ret = p;
743 			break;
744 		}
745 
746 	spin_unlock(&part_parser_lock);
747 
748 	return ret;
749 }
750 
751 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
752 {
753 	module_put(p->owner);
754 }
755 
756 /*
757  * Many partition parsers just expected the core to kfree() all their data in
758  * one chunk. Do that by default.
759  */
760 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
761 					    int nr_parts)
762 {
763 	kfree(pparts);
764 }
765 
766 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
767 {
768 	p->owner = owner;
769 
770 	if (!p->cleanup)
771 		p->cleanup = &mtd_part_parser_cleanup_default;
772 
773 	spin_lock(&part_parser_lock);
774 	list_add(&p->list, &part_parsers);
775 	spin_unlock(&part_parser_lock);
776 
777 	return 0;
778 }
779 EXPORT_SYMBOL_GPL(__register_mtd_parser);
780 
781 void deregister_mtd_parser(struct mtd_part_parser *p)
782 {
783 	spin_lock(&part_parser_lock);
784 	list_del(&p->list);
785 	spin_unlock(&part_parser_lock);
786 }
787 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
788 
789 /*
790  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
791  * are changing this array!
792  */
793 static const char * const default_mtd_part_types[] = {
794 	"cmdlinepart",
795 	"ofpart",
796 	NULL
797 };
798 
799 /* Check DT only when looking for subpartitions. */
800 static const char * const default_subpartition_types[] = {
801 	"ofpart",
802 	NULL
803 };
804 
805 static int mtd_part_do_parse(struct mtd_part_parser *parser,
806 			     struct mtd_info *master,
807 			     struct mtd_partitions *pparts,
808 			     struct mtd_part_parser_data *data)
809 {
810 	int ret;
811 
812 	ret = (*parser->parse_fn)(master, &pparts->parts, data);
813 	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
814 	if (ret <= 0)
815 		return ret;
816 
817 	pr_notice("%d %s partitions found on MTD device %s\n", ret,
818 		  parser->name, master->name);
819 
820 	pparts->nr_parts = ret;
821 	pparts->parser = parser;
822 
823 	return ret;
824 }
825 
826 /**
827  * mtd_part_get_compatible_parser - find MTD parser by a compatible string
828  *
829  * @compat: compatible string describing partitions in a device tree
830  *
831  * MTD parsers can specify supported partitions by providing a table of
832  * compatibility strings. This function finds a parser that advertises support
833  * for a passed value of "compatible".
834  */
835 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
836 {
837 	struct mtd_part_parser *p, *ret = NULL;
838 
839 	spin_lock(&part_parser_lock);
840 
841 	list_for_each_entry(p, &part_parsers, list) {
842 		const struct of_device_id *matches;
843 
844 		matches = p->of_match_table;
845 		if (!matches)
846 			continue;
847 
848 		for (; matches->compatible[0]; matches++) {
849 			if (!strcmp(matches->compatible, compat) &&
850 			    try_module_get(p->owner)) {
851 				ret = p;
852 				break;
853 			}
854 		}
855 
856 		if (ret)
857 			break;
858 	}
859 
860 	spin_unlock(&part_parser_lock);
861 
862 	return ret;
863 }
864 
865 static int mtd_part_of_parse(struct mtd_info *master,
866 			     struct mtd_partitions *pparts)
867 {
868 	struct mtd_part_parser *parser;
869 	struct device_node *np;
870 	struct property *prop;
871 	const char *compat;
872 	const char *fixed = "fixed-partitions";
873 	int ret, err = 0;
874 
875 	np = mtd_get_of_node(master);
876 	if (mtd_is_partition(master))
877 		of_node_get(np);
878 	else
879 		np = of_get_child_by_name(np, "partitions");
880 
881 	of_property_for_each_string(np, "compatible", prop, compat) {
882 		parser = mtd_part_get_compatible_parser(compat);
883 		if (!parser)
884 			continue;
885 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
886 		if (ret > 0) {
887 			of_node_put(np);
888 			return ret;
889 		}
890 		mtd_part_parser_put(parser);
891 		if (ret < 0 && !err)
892 			err = ret;
893 	}
894 	of_node_put(np);
895 
896 	/*
897 	 * For backward compatibility we have to try the "fixed-partitions"
898 	 * parser. It supports old DT format with partitions specified as a
899 	 * direct subnodes of a flash device DT node without any compatibility
900 	 * specified we could match.
901 	 */
902 	parser = mtd_part_parser_get(fixed);
903 	if (!parser && !request_module("%s", fixed))
904 		parser = mtd_part_parser_get(fixed);
905 	if (parser) {
906 		ret = mtd_part_do_parse(parser, master, pparts, NULL);
907 		if (ret > 0)
908 			return ret;
909 		mtd_part_parser_put(parser);
910 		if (ret < 0 && !err)
911 			err = ret;
912 	}
913 
914 	return err;
915 }
916 
917 /**
918  * parse_mtd_partitions - parse and register MTD partitions
919  *
920  * @master: the master partition (describes whole MTD device)
921  * @types: names of partition parsers to try or %NULL
922  * @data: MTD partition parser-specific data
923  *
924  * This function tries to find & register partitions on MTD device @master. It
925  * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
926  * then the default list of parsers is used. The default list contains only the
927  * "cmdlinepart" and "ofpart" parsers ATM.
928  * Note: If there are more then one parser in @types, the kernel only takes the
929  * partitions parsed out by the first parser.
930  *
931  * This function may return:
932  * o a negative error code in case of failure
933  * o number of found partitions otherwise
934  */
935 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
936 			 struct mtd_part_parser_data *data)
937 {
938 	struct mtd_partitions pparts = { };
939 	struct mtd_part_parser *parser;
940 	int ret, err = 0;
941 
942 	if (!types)
943 		types = mtd_is_partition(master) ? default_subpartition_types :
944 			default_mtd_part_types;
945 
946 	for ( ; *types; types++) {
947 		/*
948 		 * ofpart is a special type that means OF partitioning info
949 		 * should be used. It requires a bit different logic so it is
950 		 * handled in a separated function.
951 		 */
952 		if (!strcmp(*types, "ofpart")) {
953 			ret = mtd_part_of_parse(master, &pparts);
954 		} else {
955 			pr_debug("%s: parsing partitions %s\n", master->name,
956 				 *types);
957 			parser = mtd_part_parser_get(*types);
958 			if (!parser && !request_module("%s", *types))
959 				parser = mtd_part_parser_get(*types);
960 			pr_debug("%s: got parser %s\n", master->name,
961 				parser ? parser->name : NULL);
962 			if (!parser)
963 				continue;
964 			ret = mtd_part_do_parse(parser, master, &pparts, data);
965 			if (ret <= 0)
966 				mtd_part_parser_put(parser);
967 		}
968 		/* Found partitions! */
969 		if (ret > 0) {
970 			err = add_mtd_partitions(master, pparts.parts,
971 						 pparts.nr_parts);
972 			mtd_part_parser_cleanup(&pparts);
973 			return err ? err : pparts.nr_parts;
974 		}
975 		/*
976 		 * Stash the first error we see; only report it if no parser
977 		 * succeeds
978 		 */
979 		if (ret < 0 && !err)
980 			err = ret;
981 	}
982 	return err;
983 }
984 
985 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
986 {
987 	const struct mtd_part_parser *parser;
988 
989 	if (!parts)
990 		return;
991 
992 	parser = parts->parser;
993 	if (parser) {
994 		if (parser->cleanup)
995 			parser->cleanup(parts->parts, parts->nr_parts);
996 
997 		mtd_part_parser_put(parser);
998 	}
999 }
1000 
1001 int mtd_is_partition(const struct mtd_info *mtd)
1002 {
1003 	struct mtd_part *part;
1004 	int ispart = 0;
1005 
1006 	mutex_lock(&mtd_partitions_mutex);
1007 	list_for_each_entry(part, &mtd_partitions, list)
1008 		if (&part->mtd == mtd) {
1009 			ispart = 1;
1010 			break;
1011 		}
1012 	mutex_unlock(&mtd_partitions_mutex);
1013 
1014 	return ispart;
1015 }
1016 EXPORT_SYMBOL_GPL(mtd_is_partition);
1017 
1018 /* Returns the size of the entire flash chip */
1019 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1020 {
1021 	if (!mtd_is_partition(mtd))
1022 		return mtd->size;
1023 
1024 	return mtd_get_device_size(mtd_to_part(mtd)->parent);
1025 }
1026 EXPORT_SYMBOL_GPL(mtd_get_device_size);
1027